WorldWideScience

Sample records for waste feed batch

  1. Low-activity waste feed delivery -- Minimum duration between successive batches

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.

    1998-08-25

    The purpose of this study is to develop a defensible basis for establishing what ``minimum duration`` will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates.

  2. Low-activity waste feed delivery -- Minimum duration between successive batches

    International Nuclear Information System (INIS)

    Peters, B.B.

    1998-01-01

    The purpose of this study is to develop a defensible basis for establishing what ''minimum duration'' will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates

  3. Application of ''Confirm tank T is an appropriate feed source for Low-Activity waste feed batch X'' to specific feed batches

    International Nuclear Information System (INIS)

    JO, J.

    1999-01-01

    This document addresses the characterization needs of tanks as set forth in the ''Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X'' Data Quality Objective (DQO) (Certa and Jo 1998). The primary purpose of this document is to collect existing data and identify the data needed to determine whether or not the feed source(s) are appropriate for a specific batch before transfer is made to the feed staging tanks. To answer these questions, the existing tank data must be collected and a detailed review performed. If the existing data are insufficient to complete a full comparison, additional data must be obtained from the feed source(s). Additional information requirements need to be identified and formally documented, then the source tank waste must be sampled or resampled and analyzed. Once the additional data are obtained, the data shall be incorporated into the existing database for the source tank and a reevaluation of the data against the DQO must be made

  4. Application of ''Confirm tank T is an appropriate feed source for High-Level waste feed batch X'' to specific feed batches

    International Nuclear Information System (INIS)

    JO, J.

    1999-01-01

    This document addresses the characterization needs of tanks as set forth in the Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for High-Level Waste Feed Batch X (Crawford et al. 1998). The primary purpose of this document is to collect existing data and identify the data needed to determine whether or not the feed source(s) are appropriate for a specific batch. To answer these questions, the existing tank data must be collected and a detailed review performed. If the existing data are insufficient to complete a full comparison, additional data must be obtained from the feed source(s). Additional information requirements need to be identified and formally documented, then the source tank waste must be sampled or resampled and analyzed. Once the additional data are obtained, the data shall be incorporated into the existing database for the source tank and a reevaluation of the data against the Data Quality Objective (DQO) must be made

  5. High Level Waste Feed Delivery AZ-101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements

    International Nuclear Information System (INIS)

    DUNCAN, G.P.

    2000-01-01

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC

  6. Data quality objectives for TWRS privatization Phase 1: Confirm tank T is an appropriate feed source for low-activity waste feed batch X

    International Nuclear Information System (INIS)

    Certa, P.J.

    1998-01-01

    The Phase 1 privatization contracts require that the Project Hanford Management Contract (PHMC) contractors, on behalf of the US Department of Energy, Richland Operations Office (RL), deliver the appropriate quantities of the proper composition of feed on schedule to the Privatization contractors (DOE-RL 1996). The type of feed needed, the amount of feed needed, and the overall timing of when feed is to be delivered to the Privatization contractor are specified by the contract. Additional requirements are imposed by the interface control document (ICD) for low-activity waste (LAW) feed (PHMC 1997a). The Tank Waste Remediation System Operation and Utilization Plan (TWRSO/UP) as updated by the Readiness-to-Proceed (RTP) deliverable establishes the baseline operating scenario for the delivery of feed to two Privatization contractors for the first twelve LAW batches. The project master baseline schedule (PMBS) and corresponding logic diagrams that will be used to implement the operating scenario have been developed and are currently being refined. The baseline operating scenario in the TWRSO/UP/RTP specifies which tanks will be used to provide feed for each specific feed batch, the operational activities needed to prepare and deliver each feed batch, and the timing of these activities. This operating scenario has considered such factors as the privatization contracts and ICD requirements, waste composition and chemistry, equipment availability, project schedules and funding, tank farm logistics and the availability of tank space. The PMBS includes activities to reduce programmatic risk

  7. Data quality objectives for TWRS privatization Phase 1: Confirm tank T is an appropriate feed source for low-activity waste feed batch X

    Energy Technology Data Exchange (ETDEWEB)

    Certa, P.J.

    1998-07-02

    The Phase 1 privatization contracts require that the Project Hanford Management Contract (PHMC) contractors, on behalf of the US Department of Energy, Richland Operations Office (RL), deliver the appropriate quantities of the proper composition of feed on schedule to the Privatization contractors (DOE-RL 1996). The type of feed needed, the amount of feed needed, and the overall timing of when feed is to be delivered to the Privatization contractor are specified by the contract. Additional requirements are imposed by the interface control document (ICD) for low-activity waste (LAW) feed (PHMC 1997a). The Tank Waste Remediation System Operation and Utilization Plan (TWRSO/UP) as updated by the Readiness-to-Proceed (RTP) deliverable establishes the baseline operating scenario for the delivery of feed to two Privatization contractors for the first twelve LAW batches. The project master baseline schedule (PMBS) and corresponding logic diagrams that will be used to implement the operating scenario have been developed and are currently being refined. The baseline operating scenario in the TWRSO/UP/RTP specifies which tanks will be used to provide feed for each specific feed batch, the operational activities needed to prepare and deliver each feed batch, and the timing of these activities. This operating scenario has considered such factors as the privatization contracts and ICD requirements, waste composition and chemistry, equipment availability, project schedules and funding, tank farm logistics and the availability of tank space. The PMBS includes activities to reduce programmatic risk.

  8. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    Science.gov (United States)

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Hujova, Miroslava [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Pokorny, Richard [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Klouzek, Jaroslav [Laboratory of Inorganic Materials, Joint Workplace of the University of Chemistry and Technology Prague and the Institute, Institute of Rock Structure and Mechanics of the ASCR, Prague Czech Republic; Dixon, Derek R. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Cutforth, Derek A. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Lee, Seungmin [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; McCarthy, Benjamin P. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Radiological Materials & Detection Group, Pacific Northwest National Laboratory, Richland Washington

    2017-07-10

    The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feed in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.

  10. Infectious waste feed system

    Science.gov (United States)

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  11. Data quality objectives for TWRS privatization Phase 1: Confirm tank T is an appropriate feed source for low-activity waste feed batch X

    International Nuclear Information System (INIS)

    Certa, P.J.

    1998-01-01

    This document is one of a series of problem-specific data quality objectives prepared to help identify information needs of tank waste disposal in support of the Phase 1 privatization of the Tank Waste Remediation System (TWRS)

  12. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  13. Medication waste reduction in pediatric pharmacy batch processes.

    Science.gov (United States)

    Toerper, Matthew F; Veltri, Michael A; Hamrock, Eric; Mollenkopf, Nicole L; Holt, Kristen; Levin, Scott

    2014-04-01

    To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste.

  14. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  15. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  16. Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.

    Science.gov (United States)

    Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S

    2005-03-01

    Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.

  17. Impact of Sterile Compounding Batch Frequency on Pharmaceutical Waste.

    Science.gov (United States)

    Abbasi, Ghalib; Gay, Evan

    2017-01-01

    Purpose: To measure the impact of increasing sterile compounding batch frequency on pharmaceutical waste as it relates to cost and quantity. Methods: Pharmaceutical IV waste at a tertiary care hospital was observed and recorded for 7 days. The batching frequency of compounded sterile products (CSPs) was then increased from twice daily to 4 times daily. After a washout period, pharmaceutical IV waste was then recorded for another 7 days. The quantity of units wasted and the cost were compared between both phases to determine the impact that batching frequency has on IV waste, specifically among high- and low-cost drugs. Results: Patient days increased from 2,459 during phase 1 to 2,617 during phase 2. The total number of CSPs wasted decreased from 3.6 to 2.7 doses per 100 patient days. Overall cost was reduced from $4,585.36 in phase 1 to $4,453.88 in phase 2. The value of wasted high-cost drugs per 100 patient days increased from $146 in phase 1 to $149 in phase 2 ( p > .05). The value of wasted low cost drugs per 100 patient days decreased from $41 in phase 1 to $21 in phase 2 ( p waste quantity and cost. The highest impact of the intervention was observed among low-cost CSPs.

  18. Copper solubility in DWPF, Batch 1 waste glass: Update report

    International Nuclear Information System (INIS)

    Schumacker, R.F.

    1992-01-01

    The ''Late Washing'' Step in the processing of precipitate will require the use of additional copper formate in the Precipitate Reactor to catalyze the hydrolysis reaction. The increased copper concentration in the melter feed increases the potential for metal precipitation during the vitrification of the melter feed. This report describes recent results with a conservative glass selected from the DWPF acceptable region in the Batch 1 Variability Study

  19. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    Energy Technology Data Exchange (ETDEWEB)

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  20. Waste feed delivery test and evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    O' TOOLE, S.M.

    1999-09-30

    This plan documents the Waste Feed Delivery Program test and evaluation planning and implementation approach. The purpose of this document is to define and communicate the Waste Feed Delivery Program Test and Evaluation scope, objectives, planning and implementation approach.

  1. Waste feed delivery test and evaluation plan

    International Nuclear Information System (INIS)

    O'TOOLE, S.M.

    1999-01-01

    This plan documents the Waste Feed Delivery Program test and evaluation planning and implementation approach. The purpose of this document is to define and communicate the Waste Feed Delivery Program Test and Evaluation scope, objectives, planning and implementation approach

  2. Sequential batch anaerobic composting (SEBAC sup TM ) of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, D.P.; O' Keefe, D.M.; Barkdoll, A.W.; Owens, J.M. (Department of Agricultural Engineering, University of Florida, Gainesville, Florida (US)); Legrand, R. (Radian Corporation, Austin, Texas (US))

    1992-01-01

    Anaerobic high-solids digestion (anaerobic composting) is an attractive option for treatment of organic wastes. The main advantages of anaerobic composting are the lack of aeration requirements and production of methane. An anaerobic composting design, sequential batch anaerobic composting (SEBAC{sup TM}), has been developed and demonstrated at the pilot scale which has proven to be stable and effective for treatment of the non-yeard waste and yard waste organic fractions of municipal solid waste (MSW). The design employs leachate recycle for wetting, inoculation, and removal of volatile organic acids during startup. Performance is similar to that of other designs requiring heavy solids inoculation and mixing and which do not have a mechanism for volatile organic acid removal during imbalance. (au) (12 refs.).

  3. SPEEDUP simulation of liquid waste batch processing. Revision 1

    International Nuclear Information System (INIS)

    Shannahan, K.L.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950's. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site

  4. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  5. Fed-Batch Feeding Strategies for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John

    2014-01-01

    of the differences in the interfacial and bulk concentrations of the enzyme. The model is then used to evaluate various feeding strategies to improve the enzymatic biodiesel production. The feeding strategies investigated, gave insight into how the methanol should be fed to potentially mitigate enzyme deactivation...... while improving the biodiesel yield. The best experimental results gave a yield of 703 .76 g FAME L-1 and a reactor productivity of 28.12 g FAME L-1 h-1. In comparison, to reach the same yield, the optimised two step feeding strategy took 6.25 hours less, which equates to an increase the reactor...

  6. HLW Feed Delivery AZ101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements [Initial Release at Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, G.P.

    2000-02-28

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

  7. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: Batch versus CSTR experiments to investigate optimal design

    OpenAIRE

    Girault , R.; Bridoux , G.; Nauleau , F.; Poullain , C.; Buffet , J.; Peu , P.; Sadowski , A.G.; Béline , F.

    2012-01-01

    In this study, the maximum ratio of greasy sluvdge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determi...

  8. Environmental Hazard Assessment of Jarosite Waste Using Batch Leaching Tests

    Directory of Open Access Journals (Sweden)

    M. Kerolli – Mustafa

    2018-01-01

    Full Text Available Jarosite waste samples from Trepça Zinc Industry in Kosovo were subjected to two batch leaching tests as an attempt to characterize the leaching behavior and mobility of minor and major elements of jarosite waste. To achieve this, deionized water and synthetic acidic rain leaching tests were employed. A two-step acidic treatment in microwave digestion system were used to dissolve jarosite waste samples, followed by determination of Al, Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Si, Sr, and Zn by inductively coupled plasma optical emission spectrometry (ICP-OES. The validation of the procedure was performed by the analysis of two geochemical reference materials, S JR-3 and S Jsy-1. Two toxicity leaching tests revealed a high metal releasing of Cd, Cu, Ni, Mn, Pb, Zn, and As, and the metal release risk for these elements is still very high due the low pH and acid rain. The statistical analysis showed useful data information on the relationship between elements in jarosite samples in two different extraction conditions (deionized water and synthetic acid rain.

  9. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  10. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  11. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  12. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  13. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains

    Directory of Open Access Journals (Sweden)

    Herwig Christoph

    2011-10-01

    Full Text Available Abstract Background The microorganism Pichia pastoris is a commonly used microbial host for the expression of recombinant proteins in biotechnology and biopharmaceutical industry. To speed up process development, a fast methodology to determine strain characteristic parameters, which are needed to subsequently set up fed batch feeding profiles, is required. Results Here, we show the general applicability of a novel approach to quantify a certain minimal set of bioprocess-relevant parameters, i.e. the adaptation time of the culture to methanol, the specific substrate uptake rate during the adaptation phase and the maximum specific substrate uptake rate, based on fast and easy-to-do batch cultivations with repeated methanol pulses in a batch culture. A detailed analysis of the adaptation of different P. pastoris strains to methanol was conducted and revealed that each strain showed very different characteristics during adaptation, illustrating the need of individual screenings for an optimal parameter definition during this phase. Based on the results obtained in batch cultivations, dynamic feeding profiles based on the specific substrate uptake rate were employed for different P. pastoris strains. In these experiments the maximum specific substrate uptake rate, which had been defined in batch experiments, also represented the upper limit of methanol uptake, underlining the validity of the determined process-relevant parameters and the overall experimental strategy. Conclusion In this study, we show that a fast approach to determine a minimal set of strain characteristic parameters based on easy-to-do batch cultivations with methanol pulses is generally applicable for different P. pastoris strains and that dynamic fed batch strategies can be designed on the specific substrate uptake rate without running the risk of methanol accumulation.

  14. Waste feed delivery planning at Hanford-13232

    International Nuclear Information System (INIS)

    Certa, Paul J.; West, Elizha B.; Rodriguez, Juissepp S.; Hohl, Ted M.; Larsen, Douglas C.; Ritari, Jaakob S.; Kelly, James W.

    2013-01-01

    The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades

  15. Waste Feed Delivery Planning at Hanford - 13232

    International Nuclear Information System (INIS)

    Certa, Paul J.; Hohl, Ted M.; Kelly, James W.; Larsen, Douglas C.; West, Elizha B.; Ritari, Jaakob S.; Rodriguez, Juissepp S.

    2013-01-01

    The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades. (authors)

  16. Waste Feed Delivery Planning at Hanford - 13232

    Energy Technology Data Exchange (ETDEWEB)

    Certa, Paul J.; Hohl, Ted M.; Kelly, James W.; Larsen, Douglas C.; West, Elizha B.; Ritari, Jaakob S.; Rodriguez, Juissepp S. [Washington River Protection Solutions, LLC, P.O. 850, Richland, WA 99352 (United States)

    2013-07-01

    The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades. (authors)

  17. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    Science.gov (United States)

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Ahmed, El Hadi; Christensen, Claus H.

    2011-01-01

    Hydrodeoxygenation of waste fats and oils is a viable method for producing renewable diesel oil. In this study a model feed consisting of oleic acid and tripalmitin in molar ratio 1:3 was hydrotreated at 325°C with 20bars H2 in a stirred batch autoclave with a 5wt% Pt/γ-Al2O3 catalyst, and samples...

  19. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  20. Optimal Control of a Fed-Batch Fermentation Involving Multiple Feeds

    Directory of Open Access Journals (Sweden)

    Chongyang Liu

    2012-01-01

    Full Text Available A nonlinear dynamical system, in which the feed rates of glycerol and alkali are taken as the control functions, is first proposed to formulate the fed-batch culture of 1,3-propanediol (1,3-PD production. To maximize the 1,3-PD concentration at the terminal time, a constrained optimal control model is then presented. A solution approach is developed to seek the optimal feed rates based on control vector parametrization method and improved differential evolution algorithm. The proposed methodology yielded an increase by 32.17% of 1,3-PD concentration at the terminal time.

  1. A Genetic Algorithm for Feeding Trajectory Optimisation of Fed-batch Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2009-03-01

    Full Text Available In this work a genetic algorithm is proposed with the purpose of the feeding trajectory optimization during a fed-batch fermentation of E. coli. The feed rate profiles are evaluated based on a number of objective functions. Optimization results obtained for different feeding trajectories demonstrate that the genetic algorithm works well and shows good computational performance. Developed optimal feed profiles meet the defined criteria. The ration of the substrate concentration and the difference between actual cell concentration and theoretical maximum cell concentration is defined as the most appropriate objective function. In this case the final cell concentration of 43 g·l-1 and final product concentration of 125 g·l-1 are achieved and there is not significant excess of substrate.

  2. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland

    International Nuclear Information System (INIS)

    Zhang Dongqing; Gersberg, Richard M.; Zhu, Junfei; Hua, Tao; Jinadasa, K.B.S.N.; Tan, Soon Keat

    2012-01-01

    This study evaluated the effect of continuous and batch feeding on the removal of 8 pharmaceuticals (carbamazepine, naproxen, diclofenac, ibuprofen, caffeine, salicylic acid, ketoprofen and clofibric acid) from synthetic wastewater in mesocosm-scale constructed wetlands (CWs). Both loading modes were operated at hydraulic application rates of 5.6 cm day −1 and 2.8 cm day −1 . Except for carbamazepine, clofibric acid and naproxen, removal in CWs was significantly (p ow ) and removal efficiencies of pharmaceutical compounds in the CWs, showed that pharmaceutical removal efficiency was significantly (p ow value, but not with log K ow value. - Highlights: ► Batch feeding in mesocosm-scale constructed wetlands enhances pharmaceutical removal. ► K values for the 8 pharmaceuticals were in the range of 0.01–0.1 m day −1 . ► The pharmaceutical removal efficiency was inversely correlated with log D ow value. - Batch (drain and fill) feeding in mesocosm-scale constructed wetlands enhances pharmaceutical removal.

  3. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1994-01-01

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200 West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above

  4. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  5. Low Activity Waste Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  6. MECHANISMS GOVERNING TRANSIENTS FROM THE BATCH INCINERATION OF LIQUID WASTES IN ROTARY KILNS

    Science.gov (United States)

    When "containerized" liquid wastes, bound on sorbents. are introduced into a rotary kiln in a batch mode, transient phenomena in-volving heat transfer into, and waste mass transfer out of, the sorbent can oromote the raoid release of waste vaoor into the kiln environment. This ra...

  7. Sequential batch anaerobic composting of municipal solid waste (MSW) and yard waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.M.; Chynoweth, D.P.; Barkdoll, A.W.; Nordstedt, R.A.; Owens, J.M.; Sifontes, J. (Florida Univ., Gainesville, FL (United States). Dept. of Agricultural Engineering)

    1993-01-01

    Sequential batch anaerobic composting (SEBAC[sup TM]) was used to treat two fractions of municipal solid waste (MSW), the organic fraction of the MSW (processed MSW) and yard waste. Processed MSW gave a mean methane yield of 0.19 m[sup 3] kg[sup -1] volatile solids (VS) after 42 days. The mean VS reduction was 49.7% for this same period. Yard waste gave a mean methane yield of 0.07 m[sup 3] kg[sup -1] VS. Methane content of the biogas stabilized at a mean of 48% from three to four days after startup. The mean VS reduction for yard waste was 19%. With processed MSW, the volatile acid concentration was over 3000 mg L[sup -1] during startup but these acids were reduced within a few days to negligible levels. The trend was similar with yard waste except that volatile acids reached maximum concentrations of less than 1000 mg L[sup -1]. Composts from the reactors were evaluated for agronomic characteristics and pollution potential. Processed MSW and yard waste residues had marginal fertilizer value but posed no potential for groundwater pollution. Yard waste residue caused no apparent inhibition to mustard (Brassica juncea) germination relative to a commercial growth medium. Anaerobic yard waste compost demonstrated the potential to improve the water holding capacity of Florida soils. (author)

  8. Green, Eco, Innovative Design, and Manufacturing Technology of a 1-Ton per Batch Municipal Solid Waste Incinerator

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The thermal treatment of waste by incineration is considered an ultimate solution in order to get rid of waste properly by using the combustible properties of waste and transforming them into inert form and gaseous emission, with the main advantage of a huge reduction in mass and volume of treated waste, destruction of the dangerous components in waste, and obtaining green and clean energy from the exothermal reaction from the completed combustion process. In order to achieve the main goal of incineration, a good design, construction, supervision, and intensive operation and maintenance must be taken into account, especially for the small-scale incinerator. This research will deal with the green, innovative, and eco design and manufacturing technology of a 1-ton per batch municipal solid waste (MSW incinerator. The concept design of the incinerator will focus on the design of the feeding process where only one batch of waste will be discharged into the combustion chamber at one time instead of the semi-feed process, as found in the conventional incinerator. This will ease the operation of the operator and reduce the operating cost. Moreover, the innovative design includes the redesign of combustion air injection into either the primary or secondary combustion chamber in order to achieve the 3Ts of combustion (time, temperature. and turbulence. This design can eliminate the use of an auxiliary burner in the primary combustion chamber. Rethinking the innovative design of using recirculation hot flue gas for preheating of wet garbage in order to pre-dry the waste before combustion is also taken into account. The manufacturing process of the wall composition as well as other parts of the incinerator are also examined.

  9. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  10. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    OpenAIRE

    Wei Han; Yingting Yan; Yiwen Shi; Jingjing Gu; Junhong Tang; Hongting Zhao

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35?g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen prod...

  11. Remote waste handling and feed preparation for Mixed Waste Management

    International Nuclear Information System (INIS)

    Couture, S.A.; Merrill, R.D.; Densley, P.J.

    1995-05-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation

  12. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  13. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)], E-mail: al-abed.souhail@epa.gov; Jegadeesan, G. [Pegasus Technical Services Inc., 46 East Hollister Street, Cincinnati, OH 45219 (United States); Purandare, J. [Englandgeosystem Inc., 15375 Barranca Pkwy, Suite F-106, Irvine, CA 92618 (United States); Allen, D. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2008-05-30

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste.

  14. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    International Nuclear Information System (INIS)

    Al-Abed, Souhail R.; Jegadeesan, G.; Purandare, J.; Allen, D.

    2008-01-01

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste

  15. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation

    International Nuclear Information System (INIS)

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-01-01

    Highlights: ► Apple waste (AW) was co-digested with swine manure (SM). ► Mixture of AW and SM produced a higher biogas yield than SM only. ► Mixture of AW and SM produced a higher biogas yield at 55 °C than at 36.5 °C. ► Modified Gompertz model best fitted to the substrates used. ► Positive synergetic effect up to 33% AW during continuous digestion. -- Abstract: This study evaluated the performance of anaerobic digesters using a mixture of apple waste (AW) and swine manure (SM). Tests were performed using both batch and continuous digesters. The batch test evaluated the gas potential, gas production rate of the AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,% volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilic temperatures. The first-order kinetic model and modified Gompertz model were also evaluated for methane yield. The continuous test evaluated the performance of a single stage completely stirred tank reactor (CSTR) with different mixture ratios of AW and SM at mesophilic temperature. The ultimate biogas and methane productivity of AW in terms of total chemical oxygen demand (TCOD) was determined to be 510 and 252 mL/g TCOD added, respectively. The mixture of AW and SM improved the biogas yield by approximately 16% and 48% at mesophilic and thermophilic temperatures, respectively, compared to the use of SM only, but no significant difference was found in the methane yield. The difference between the predicted and measured methane yield was higher with a first order kinetic model (4.6–18.1%) than with a modified Gompertz model (1.2–3.4%). When testing continuous digestion, the methane yield increased from 146 to 190 mL/g TCOD added when the AW content in the feed was increased from 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6 g VS/L/d and a hydraulic retention time (HRT) of 30 days. However, the total volatile fatty acids (TVFA) accumulation increased rapidly and the p

  16. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  17. Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant

    International Nuclear Information System (INIS)

    Herman, Connie C.

    2013-01-01

    The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the

  18. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Feed Basis for Processing Relatively Low Radioactivity Waste Tanks

    International Nuclear Information System (INIS)

    Pike, J.A.

    2002-01-01

    This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38 and 41

  20. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-23

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  1. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.

  2. Compression device for feeding a waste material to a reactor

    Science.gov (United States)

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  3. Use of batch and column methodologies to assess utility waste leaching and subsurface chemical attenuation

    International Nuclear Information System (INIS)

    Zachara, J.M.; Streile, G.P.

    1991-05-01

    Waste leaching and chemical attenuation involve geochemical reactions between immobile solid surfaces in the waste or in other porous media and dissolved solutes in the mobile fluid phase. Because the geochemical reactions occur along with water flow, the question often arises whether waste leaching and chemical attenuation are best studied under static or dynamic conditions. To answer this question, the scientific literature was reviewed to identify how static (batch) and dynamic (column) approaches have been applied to obtain data on waste leaching and chemical attenuation and the types of information each technique has provided. This review made it possible to both (1) assess the specific merits of the batch and column experimental techniques and (2) develop an integrated research strategy for employing these techniques to quantify leaching and chemical attenuation processes under conditions relevant to the field. This review led to the conclusion that batch systems are best suited to systematically establishing the specific geochemical reactions involved in leaching and attenuation, obtaining thermodynamic and kinetic constants, and identifying the manifestation of these reactions in wastes or natural subsurface materials. 184 refs., 5 figs., 4 tabs

  4. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    International Nuclear Information System (INIS)

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  5. Waste feed delivery program systems engineering implementation plan

    International Nuclear Information System (INIS)

    O'Toole, S.M.; Hendel, B.J.

    1998-01-01

    This document defines the systems engineering processes and products planned by the Waste Feed Delivery Program to develop the necessary and sufficient systems to provide waste feed to the Privatization Contractor for Phase 1. It defines roles and responsibilities for the performance of the systems engineering processes and generation of products

  6. ANALYSIS OF THE PREDICTIVE DMC CONTROLLER PERFORMANCE APPLIED TO A FEED-BATCH BIOREACTOR

    Directory of Open Access Journals (Sweden)

    J. A. D. RODRIGUES

    1997-12-01

    Full Text Available Two control algorithms were implemented in the stabilization of the dissolved oxygen concentration of the penicillin process production phase. A deterministic and nonstructured mathematical model was used, where were considered the balances of cell, substrate, dissolved oxygen and product formation as well as kinetic of the growth, respiration, product inhibition due to excess of substrate, penicillin hydrolyze, yield factors among cell growth, substrate consumption and dissolved oxygen consumption. The bioreactor was operated in a feed-batch way using an optimal strategy for the operational policy. The agitation speed was used as manipulated variable in order to achieve the dissolved oxygen control because it was found to be the most sensitive one. Two types of control configurations were implemented. First, the PID feedback control with the parameters estimated through Modified Simplex optimization method using the IAE index, and second, the DMC predictive control that had as control parameters the model, prediction and control horizons as well as suppression factor and the trajectory parameter. A sensitivity analysis of these two control algorithms was performed using the sample time and dead time as the index to make stability evaluation. Both configurations showed stable performance, however, the predictive one was found to be more robust in relation to the sample time, as well as the dead time variations. This is a very important characteristic to be considered for the implementation of control scheme in real fermentative process

  7. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  8. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  9. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    OpenAIRE

    Schwarzb?ck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternati...

  10. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    International Nuclear Information System (INIS)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A.

    2016-01-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H 2 S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H 2 S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H 2 S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H 2 S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H 2 S by base adsorption was effective for mitigating inhibition. H 2 S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H 2 S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H 2 S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H 2 S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H 2 S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the

  11. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H{sub 2}S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H{sub 2}S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H{sub 2}S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H{sub 2}S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H{sub 2}S by base adsorption was effective for mitigating inhibition. H{sub 2}S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H{sub 2}S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H{sub 2}S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H{sub 2}S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H{sub 2}S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating

  12. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis

    International Nuclear Information System (INIS)

    DYKES, A.A.

    2000-01-01

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O and M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis

  13. Alternative fish feed production from waste chicken feathers

    Directory of Open Access Journals (Sweden)

    Sri Jumini

    2017-08-01

    Full Text Available In this This devotion has been done to provide education and training of the utilization of waste chicken manure, making flour chicken feathers as a fish feed alternative, that can overcome some of the problems that waste chicken feathers from the center cutting broiler chickens in the village Krasak enough, it causes pollution, and not used optimally; Low public awareness of awareness of environmental pollution; the lack of public knowledge about the utilization of waste chicken feathers, and processing technology, as well as to address the needs of fish feed more expensive, need alternative feed ingredients. This service program has provided insight to the public about waste chicken feathers so that it can be used as a new entrepreneurial startups. To achieve these objectives have been done of activity as follows: 1 Provide counseling and understanding of the community will be a negative impact on the environment of waste chicken feathers. 2 Provide counseling utilization of waste chicken feathers for people in nearby farms. 3 Make a chicken feather meal of chicken feather waste as an alternative fish feed to improve digestibility of chicken feathers. 3 The formation of the group for increasing the economic income of the family. This service activities program runs quite well with demonstrated some activity, namely: 1 Change Behavior Society (knowledge transfer; 2 Chicken Feather Extension Waste Utilization; 3 Making Unit Waste Chicken Feathers; 4 Establishment of New Business of Diversified Waste Chicken Feathers.

  14. Protein from preprocessed waste activated sludge as a nutritional supplement in chicken feed.

    Science.gov (United States)

    Chirwa, Evans M N; Lebitso, Moses T

    2014-01-01

    Five groups of broiler chickens were raised on feed containing varying substitutions of single cell protein from preprocessed waste activated sludge (pWAS) in varying compositions of 0:100, 25:75, 50:50, 75:25, and 100:0 pWAS: fishmeal by mass. Forty chickens per batch were evaluated for growth rate, mortality rate, and feed conversion efficiency (ηє). The initial mass gain rate, mortality rate, initial and operational cost analyses showed that protein from pWAS could successfully replace the commercial feed supplements with a significant cost saving without adversely affecting the health of the birds. The chickens raised on preprocessed WAS weighed 19% more than those raised on fishmeal protein supplement over a 45 day test period. Growing chickens on pWAS translated into a 46% cost saving due to the fast growth rate and minimal death losses before maturity.

  15. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  16. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  17. Review Guidance for the TWRS FSAR amendment for Waste Retrieval and waste feed delivery

    International Nuclear Information System (INIS)

    GRIFFITH, R.W.

    1999-01-01

    This review guidance (Guide) was developed for Office of River Protection (ORP) reviewers to use in reviewing the amendment to the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR) covering waste retrieval and waste feed delivery. Waste retrieval and waste feed delivery are necessary to supply nuclear waste from TWRS storage tanks to the TWRS Privatization (TWRS-P) Contractor's vitrification facility and to receive intermediate waste from the vitrification facility back into the TWRS tank farms for interim storage. An amendment to the approved TWRS FSAR (HNF-SD-WM-SAR-067,Rev. 0) is necessary to change the authorization basis to accommodate waste retrieval and waste feed delivery. The ORP'S safety responsibility in reviewing the FSAR amendment is to determine that reasonable assurance exists that waste retrieval and waste feed delivery operations can be accomplished with adequate safety for the workers, the public, and the environment. To carry out this responsibility, the ORP will evaluate the Contractor's amendment to the TWRS FSAR for waste retrieval and waste feed delivery to determine whether the submittal provides adequate safety and complies with applicable regulatory requirements

  18. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  19. A simple model of the batch electrochemical reduction of nitrate/nitrite waste

    International Nuclear Information System (INIS)

    Wingard, D.A.; Weidner, J.W.; Van Zee, J.W.

    1994-01-01

    A model of a divided parallel plate electrochemical cell operated in a batch mode for the destruction of NO 3 - /NO 2 - in alkaline waste streams is presented. The model uses boundary layer approximations at each electrode and at the separator to minimize computation time. Five competing electrochemical reactions are included at the cathode. The model uses either an explicit Runge-Kutta routine with empirically determined current efficiencies or an implicit stepping routine for each electrode if the current efficiencies are to be predicted. Tim dependent changes of the concentration, temperature, and cell voltage are predicted for constant current operation. Model predictions are compared with experimental data

  20. The waste minimization program at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Blasdel, J.E.; Crotzer, M.E.; Gardner, R.L.; Kato, T.R.; Spradlin, C.N.

    1987-01-01

    A waste minimization program is being implemented at the Feed Materials Production Center to reduce the generation of uranium-contaminated wastes and to comply with existing and forthcoming regulations. Procedures and plans are described which deal with process and non-process trash, contaminated wood and metals, used metal drums, and major process wastes such as contaminated magnesium fluoride and neutralized raffinate. Waste minimization techniques used include segregation, source reduction, volume reduction, material substitution and waste/product recycle. The importance of training, communication, and incentives is also covered. 5 refs., 11 figs

  1. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  2. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus.

    Science.gov (United States)

    Nancib, Aicha; Nancib, Nabil; Boubendir, Abdelhafid; Boudrant, Joseph

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained.

  3. Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice.

    Science.gov (United States)

    Choi, Minsung; Al-Zahrani, Saeed M; Lee, Sang Yup

    2014-06-01

    Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70-80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l(-1) of lactic acid with the productivity and yield of 1.58 and 0.87 g l(-1) h(-1), respectively.

  4. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Sin, Gürkan

    2017-01-01

    . This review covers a range of strategies which have been employed to use the feed rate as a manipulated variable in a control strategy. The feed rate is chosen as the focus for this review, as it is seen that this variable may be used towards many different objectives depending on the process of interest...

  5. In vitro rumen feed degradability assessed with DaisyII and batch culture: effect of sample size

    Directory of Open Access Journals (Sweden)

    Stefano Schiavon

    2010-01-01

    Full Text Available In vitro degradability with DaisyII (D equipment is commonly performed with 0.5g of feed sample into each filter bag. Literature reported that a reduction of the ratio of sample size to bag surface could facilitate the release of soluble or fine particulate. A reduction of sample size to 0.25 g could improve the correlation between the measurements provided by D and the conventional batch culture (BC. This hypothesis was screened by analysing the results of 2 trials. In trial 1, 7 feeds were incubated for 48h with rumen fluid (3 runs x 4 replications both with D (0.5g/bag and BC; the regressions between the mean values provided for the various feeds in each run by the 2 methods either for NDF (NDFd and in vitro true DM (IVTDMD degradability, had R2 of 0.75 and 0.92 and RSD of 10.9 and 4.8%, respectively. In trial 2, 4 feeds were incubated (2 runs x 8 replications with D (0.25 g/bag and BC; the corresponding regressions for NDFd and IVTDMD showed R2 of 0.94 and 0.98 and RSD of 3.0 and 1.3%, respectively. A sample size of 0.25 g improved the precision of the measurements obtained with D.

  6. High-Level Waste (HLW) Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  7. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    International Nuclear Information System (INIS)

    Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

    2014-01-01

    The heat conductivity (λ) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating λ of melter feed at temperatures up to 680 deg C, we focus in this work on the λ(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the λ(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap

  8. DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE

    International Nuclear Information System (INIS)

    Click, D; Tommy Edwards, T; Henry Ajo, H

    2008-01-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 5 (SB5) SRAT Receipt and SB5 SRAT Product samples. The SB5 SRAT Receipt and SB5 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB5 Batch composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 4 (SB4), to form the SB5 Blend composition. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element in the sludge or used to estimate ratios of compounds in the sludge. A statistical comparison of the data validates the use of the DWPF CC method for SB5 Batch composition. However, the difficulty that was encountered in using the CC method for SB4 brings into question the adequacy of CC for the SB5 Blend. Also, it should be noted that visible solids remained in the final diluted solutions of all samples digested by this method at SRNL (8 samples total), which is typical for the DWPF CC method but not seen in the other methods. Recommendations to the DWPF for application to SB5 based on studies to date: (1) A dissolution study should be performed on the WAPS

  9. Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch

    International Nuclear Information System (INIS)

    Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel

    2013-01-01

    The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter

  10. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  11. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although

  12. Batch study, equilibrium and kinetics of adsorption of naphthalene using waste tyre rubber granules

    Directory of Open Access Journals (Sweden)

    Felix A. Aisien

    2014-04-01

    Full Text Available The potential use of waste tyre rubber granules (WTRG for the batch adsorption of naphthalene from aqueous solutions was investigated. The effect of various operational variables such as contact time, initial naphthalene concentration, adsorbent dose, size of adsorbent particles, and temperature of solution on the adsorption capacity of WTRG was evaluated. The adsorption of naphthalene by WTRG was a fast kinetic process with an equilibrium contact time of 60 min. A low temperature (5°C, small adsorbent particle size (0.212 mm and higher adsorbent dosage favored the adsorption process. Results of isotherm studies revealed that adsorption of naphthalene was best described by the Langmuir isotherm equation (R2=0.997 while the kinetics of the process was best described by the Lagergren pseudofirst order kinetic equation (R2=0.998. This study has demonstrated the suitability of WTRG for the removal of naphthalene from aqueous solution.

  13. Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion.

    Science.gov (United States)

    Dreher, Teal M; Mott, Henry V; Lupo, Christopher D; Oswald, Aaron S; Clay, Sharon A; Stone, James J

    2012-12-01

    The effects of antimicrobial chlortetracycline (CTC) on the anaerobic digestion (AD) of swine manure slurry using anaerobic sequencing batch reactors (ASBRs) was investigated. Reactors were loaded with manure collected from pigs receiving CTC and no-antimicrobial amended diets at 2.5 g/L/d. The slurry was intermittently fed to four 9.5L lab-scale anaerobic sequencing batch reactors, two with no-antimicrobial manure, and two with CTC-amended manure, and four 28 day ASBR cycles were completed. The CTC concentration within the manure was 2 8 mg/L immediately after collection and 1.02 mg/L after dilution and 250 days of storage. CTC did not inhibit ASBR biogas production extent, however the volumetric composition of methane was significantly less (approximately 13% and 15% for cycles 1 and 2, respectively) than the no-antimicrobial through 56 d. CTC decreased soluble chemical oxygen demand and acetic acid utilization through 56 d, after which acclimation to CTC was apparent for the duration of the experiment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Process development work plan for waste feed delivery system

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This work plan defines the process used to develop project definition for Waste Feed Delivery (WFD). Project definition provides the direction for development of definitive design media required for the ultimate implementation of operational processing hardware and software. Outlines for the major deliverables are attached as appendices. The implementation of hardware and software will accommodate requirements for safe retrieval and delivery of waste currently stored in Hanford's underground storage tanks. Operations and maintenance ensure the availability of systems, structures, and components for current and future planned operations within the boundary of the Tank Waste Remediation System (TWRS) authorization basis

  15. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste.

    Science.gov (United States)

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Jinhui

    2018-03-01

    Information on the anaerobic digestion (AD) of food waste (FW) with different waste cooking oil contents is limited in terms of the effect of the initial substrate concentrations. In this work, batch tests were performed to evaluate the combined effects of waste cooking oil content (33-53%) and feed/inoculum (F/I) ratios (0.5-1.2) on biogas/methane yield, process stability parameters and organics reduction during the FW AD. Both waste cooking oil and the inoculation ratios were found to affect digestion parameters during the AD process start-up and the F/I ratio was the predominant factor affecting AD after the start-up phase. The possible inhibition due to acidification caused by volatile fatty acids accumulation, low pH values and long-chain fatty acids was reversible. The characteristics of the final digestate indicated a stable anaerobic system, whereas samples with F/I ratios ranging from 0.8 to 1.2 display higher propionic and valeric acid contents and high amounts of total ammonia nitrogen and free ammonia nitrogen. Overall, F/I ratios higher than 0.70 caused inhibition and resulted in low biogas/methane yields from the FW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Waste Feed Delivery Environmental Permits and Approvals Plan

    Energy Technology Data Exchange (ETDEWEB)

    TOLLEFSON, K.S.

    2000-01-18

    This plan describes the environmental permits approvals, and other requirements that may affect establishment of a waste feed delivery system for the Hanford Site's River Protection Project. This plan identifies and screens environmental standards for potential applicability, outlines alternatives for satisfying applicable standards, and describes preferred permitting and approval approaches.

  17. Waste Feed Delivery Environmental Permits and Approvals Plan

    International Nuclear Information System (INIS)

    TOLLEFSON, K.S.

    2000-01-01

    This plan describes the environmental permits approvals, and other requirements that may affect establishment of a waste feed delivery system for the Hanford Site's River Protection Project. This plan identifies and screens environmental standards for potential applicability, outlines alternatives for satisfying applicable standards, and describes preferred permitting and approval approaches

  18. Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels

    International Nuclear Information System (INIS)

    Ayanoğlu, Abdulkadir; Yumrutaş, Recep

    2016-01-01

    Highlights: • Waste Tire Oil (WTO) is produced from waste tire at rotary kiln reactor. • Physical and chemical properties of WTO and fuel samples are analyzed. • Gasoline like fuel (GLF) and diesel like fuel (DLF) are produced from the WTO-10 wt% CaO mixture at fixed bed reactor. • Physical and chemical properties of the GLF and DLF are compared with the standard fuels. - Abstract: In this study, waste tire is pyrolyzed in a rotary kiln reactor to obtain more gas, light liquid, heavy liquid, wax products, and less carbon black at their maximum yields as, 20%, 12%, 25%, 8% and 35% of the total weight (4 tones), respectively. Then, the heavy and light oils are reacted with additives such as natural zeolite (NZ) and lime (CaO) at different mass ratio as 2, 6, and 10 wt%, respectively, in the batch reactor to produce liquids similar to standard petroleum fuels. The heavy and light oils mixture samples are distillated to observe their optimum graphics which are similar to gasoline and diesel like fuel. Consequently, the best results are obtained from the CaO sample with 10 wt% in comparison to the ones from the gasoline and diesel fuels. The 10 wt% CaO light liquid mixture resembles to gasoline named as gasoline like fuel (GLF) and the 10 wt% CaO heavy liquid mixture is similar to diesel called as diesel like fuel (DLF). The chemical and physical features of the waste tire, light oil, heavy oil, GLF, and DLF are analyzed by TG (thermogravimetric)/dTG (derivative thermogravimetric), proximate, ultimate, higher heating value (HHV), fourier transform-infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET), sulfur, density, viscosity, gas chromatography–mass spectroscopy (GC–MS), flash point, moisture, and distillation tests. The test results are turned out to be very close to the standard petroleum fuel.

  19. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  20. Quality assessment of corn batches received at a feed mill in the brazilian cerrado

    Directory of Open Access Journals (Sweden)

    SIFC Rodrigues

    2014-09-01

    Full Text Available This study aimed at investigating factors that contribute to changes in the quality of corn used in compound poultry feeds. Samples were collected from 6488 bulk cargos received at a feed mill located close to Brasília, Brazil. The parameters studied were divided into two groups: those related to corn chemical composition, including crude protein (% CP, ether extract (% EE, crude fiber (% CF, nitrogen-free extract (% NFE, and estimated metabolizable energy (ME, and corn physical characteristics, including density, moisture, and grain physical damage. High coefficients of determination (R² and low coefficients of variation (CV were determined for the chemical and physical parameters. The analysis of variance showed low to medium R². Month, year, supplier, and their interactions influenced (p <0.05 all chemical properties, as well as density, moisture, and ME. Physical characteristics were less affected by those factors, except for quantity of damaged grains. The principal component analysis separated the physical and chemical factors. The coefficients of the first component explained 54% of the total variation between variables. The first principal component showed that NFE and ME increased as humidity decreased. The second component also showed a decrease of physical problems due to reduction in humidity. Results indicate that the feed mills should take preventive measures when selecting suppliers, and diets should be formulated according to the differences in chemical and physical composition of corn supplied in different months and years.

  1. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  2. Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: A laboratory scale study

    Energy Technology Data Exchange (ETDEWEB)

    Matamoros, Víctor, E-mail: victor.matamoros@idaea.csic.es; Rodríguez, Yolanda

    2016-05-15

    Highlights: • The effect of microalgae on the removal of pesticides has been evaluated. • Continuous feeding operational mode is more efficient for removing pesticides. • Microalgae increased the removal of some pesticides. • Pesticide TPs confirmed that biodegradation was relevant. - Abstract: Microalgae-based water treatment technologies have been used in recent years to treat different water effluents, but their effectiveness for removing pesticides from agricultural run-off has not yet been addressed. This paper assesses the effect of microalgae in pesticide removal, as well as the influence of different operation strategies (continuous vs batch feeding). The following pesticides were studied: mecoprop, atrazine, simazine, diazinone, alachlor, chlorfenvinphos, lindane, malathion, pentachlorobenzene, chlorpyrifos, endosulfan and clofibric acid (tracer). 2 L batch reactors and 5 L continuous reactors were spiked to 10 μg L{sup −1} of each pesticide. Additionally, three different hydraulic retention times (HRTs) were assessed (2, 4 and 8 days) in the continuous feeding reactors. The batch-feeding experiments demonstrated that the presence of microalgae increased the efficiency of lindane, alachlor and chlorpyrifos by 50%. The continuous feeding reactors had higher removal efficiencies than the batch reactors for pentachlorobenzene, chlorpyrifos and lindane. Whilst longer HRTs increased the technology’s effectiveness, a low HRT of 2 days was capable of removing malathion, pentachlorobenzene, chlorpyrifos, and endosulfan by up to 70%. This study suggests that microalgae-based treatment technologies can be an effective alternative for removing pesticides from agricultural run-off.

  3. Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: A laboratory scale study

    International Nuclear Information System (INIS)

    Matamoros, Víctor; Rodríguez, Yolanda

    2016-01-01

    Highlights: • The effect of microalgae on the removal of pesticides has been evaluated. • Continuous feeding operational mode is more efficient for removing pesticides. • Microalgae increased the removal of some pesticides. • Pesticide TPs confirmed that biodegradation was relevant. - Abstract: Microalgae-based water treatment technologies have been used in recent years to treat different water effluents, but their effectiveness for removing pesticides from agricultural run-off has not yet been addressed. This paper assesses the effect of microalgae in pesticide removal, as well as the influence of different operation strategies (continuous vs batch feeding). The following pesticides were studied: mecoprop, atrazine, simazine, diazinone, alachlor, chlorfenvinphos, lindane, malathion, pentachlorobenzene, chlorpyrifos, endosulfan and clofibric acid (tracer). 2 L batch reactors and 5 L continuous reactors were spiked to 10 μg L"−"1 of each pesticide. Additionally, three different hydraulic retention times (HRTs) were assessed (2, 4 and 8 days) in the continuous feeding reactors. The batch-feeding experiments demonstrated that the presence of microalgae increased the efficiency of lindane, alachlor and chlorpyrifos by 50%. The continuous feeding reactors had higher removal efficiencies than the batch reactors for pentachlorobenzene, chlorpyrifos and lindane. Whilst longer HRTs increased the technology’s effectiveness, a low HRT of 2 days was capable of removing malathion, pentachlorobenzene, chlorpyrifos, and endosulfan by up to 70%. This study suggests that microalgae-based treatment technologies can be an effective alternative for removing pesticides from agricultural run-off.

  4. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    Science.gov (United States)

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap -1 . In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap -1  a -1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  5. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  6. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  7. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  8. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.

  9. Pre-treatment of desalination feed seawater by Jordanian Tripoli, Pozzolana and Feldspar: batch experiments

    Directory of Open Access Journals (Sweden)

    AIMAN E. AL-RAWAJFEH

    2011-06-01

    Full Text Available In this research, composites of layered double hydroxide (LDH with three Jordanian natural raw materials: Tripoli (T, Pozzolana (P and Feldspar (F were prepared by co-precipitation and have been used for feed seawater pre-treatment. The data reveals that percent adsorption decreased with increase in initial concentration, but the actual amount of adsorbed ions per unit mass of LDH/T-P-F increased with increase in metal ion concentrations. The values of ΔG were negative and within 21 to 26 kJ/mol, while the values of and ΔS were positive, with ΔH within the range of 0.1 to 25 kJ/mol. The values of ΔH, ΔS and ΔG indicate the favorability of physisorption and show that the LDH/T-P-F composites have a considerable potential as adsorbents for the removal of ions from seawater.

  10. Ecofeed, animal feed produced from recycled food waste

    Directory of Open Access Journals (Sweden)

    Katsuaki Sugiura

    2009-09-01

    Full Text Available Due to the price hike of imported grains for feed, the production of Ecofeed, feed produced from recycled food waste, has increased in recent years. Food dregs from the food and beverage processing industry and out-of-date food from supermarkets and convenience stores are most often used as raw materials for Ecofeed. As food waste usually contains a lot of moisture and is easily spoiled, guidelines prescribing measures to be taken when collecting, transporting and storing raw materials, and for the production, shipment, storage and use of Ecofeed products, have been developed to ensure the safety of Ecofeed. The guidelines also include measures that should be taken to prevent the spread of bovine spongiform encephalopathy when producing and using Ecofeed. A certification system was introduced in March 2009 to ensure the quality and safety of Ecofeed and thus promote its use.

  11. Ecofeed, animal feed produced from recycled food waste.

    Science.gov (United States)

    Sugiura, Katsuaki; Yamatani, Shoich; Watahara, Masashi; Onodera, Takashi

    2009-01-01

    Due to the price hike of imported grains for feed, the production of Ecofeed, feed produced from recycled food waste, has increased in recent years. Food dregs from the food and beverage processing industry and out-of-date food from supermarkets and convenience stores are most often used as raw materials for Ecofeed. As food waste usually contains a lot of moisture and is easily spoiled, guidelines prescribing measures to be taken when collecting, transporting and storing raw materials, and for the production, shipment, storage and use of Ecofeed products, have been developed to ensure the safety of Ecofeed. The guidelines also include measures that should be taken to prevent the spread of bovine spongiform encephalopathy when producing and using Ecofeed. A certification system was introduced in March 2009 to ensure the quality and safety of Ecofeed and thus promote its use.

  12. Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies.

    Science.gov (United States)

    Figueiredo, S A; Loureiro, J M; Boaventura, R A

    2005-10-01

    In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials' adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents' behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials' bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500-1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20 degrees C), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments.

  13. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Waste volume reduction factors for potential 242-A evaporator feed

    International Nuclear Information System (INIS)

    Sederburg, J.P.

    1995-01-01

    Double-shell tank (DST) storage space requirements have been shown to be highly dependent on the end point of 242-A operations. Consequences to the DST of various waste volumes, and concentrations, are evaluated. Only waste streams that are currently planned to be stored in the DST system before the year 2004 are discussed. As of January 1, 1995, approximately 27-million L (7.2-million gal) of dilute wastes are stored in the DSTs available for evaporator processing. Waste streams planned to be transferred to the DSTs before December 31, 2004, are identified. The DST volume for storing slurry from these wastes is presented in this document. At a final slurry specific gravity of -1.35, 22.5-million L (5.93-million gal) of DST space would be needed on December 31, 2004, to store the product from evaporator processing of these feedstocks. The expected volume needed if the resultant slurry were concentrated to the traditional double-shell slurry feed (DSSF) phase boundary (a specific gravity of ∼1.5) would be 17.7-million L (4.67-million gal). An additional 4.8-million L (1.26-million gal) is therefore needed if these wastes are concentrated to a specific gravity of 1.35 instead of the DSSF limit

  15. Waste feed delivery environmental permits and approvals plan

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This document describes the range of environmental actions, including required permits and other agency approvals, that may affect waste feed delivery (WFD) activities in the Hanford Site's Tank Waste Remediation System (TWRS). This plan expands on the summary level information in the Tank Waste Remediation System Environmental Program Plan (HNF 1773) to address requirements that are most pertinent to WFD. This plan outlines alternative approaches to satisfying applicable environmental standards, and describes selected strategies for acquiring permits and other approvals needed for WFD to proceed. Appendices at the end of this plan provide preliminary cost and schedule estimates for implementing the selected strategies. The rest of this section summarizes the scope of WFD activities, including important TWRS operating information, and describes in more detail the objectives, structure, and content of this plan

  16. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options.

    Science.gov (United States)

    Salemdeeb, Ramy; Zu Ermgassen, Erasmus K H J; Kim, Mi Hyung; Balmford, Andrew; Al-Tabbaa, Abir

    2017-01-01

    The disposal of food waste is a large environmental problem. In the United Kingdom (UK), approximately 15 million tonnes of food are wasted each year, mostly disposed of in landfill, via composting, or anaerobic digestion (AD). European Union (EU) guidelines state that food waste should preferentially be used as animal feed though for most food waste this practice is currently illegal, because of disease control concerns. Interest in the potential diversion of food waste for animal feed is however growing, with a number of East Asian states offering working examples of safe food waste recycling - based on tight regulation and rendering food waste safe through heat treatment. This study investigates the potential benefits of diverting food waste for pig feed in the UK. A hybrid, consequential life cycle assessment (LCA) was conducted to compare the environmental and health impacts of four technologies for food waste processing: two technologies of South Korean style-animal feed production (as a wet pig feed and a dry pig feed) were compared with two widespread UK disposal technologies: AD and composting. Results of 14 mid-point impact categories show that the processing of food waste as a wet pig feed and a dry pig feed have the best and second-best scores, respectively, for 13/14 and 12/14 environmental and health impacts. The low impact of food waste feed stems in large part from its substitution of conventional feed, the production of which has substantial environmental and health impacts. While the re-legalisation of the use of food waste as pig feed could offer environmental and public health benefits, this will require support from policy makers, the public, and the pig industry, as well as investment in separated food waste collection which currently occurs in only a minority of regions.

  17. Alternatives Generation and Analysis for Phase 1 High-Level Waste Feed Tanks Selection

    International Nuclear Information System (INIS)

    CRAWFORD, T.W.

    1999-01-01

    A recent revision of the US Department of Energy privatization contract for the immobilization of high-level waste (HLW) at Hanford necessitates the investigation of alternative waste feed sources to meet contractual feed requirements. This analysis identifies wastes to be considered as HLW feeds and develops and conducts alternative analyses to comply with established criteria. A total of 12,426 cases involving 72 waste streams are evaluated and ranked in three cost-based alternative models. Additional programmatic criteria are assessed against leading alternative options to yield an optimum blended waste feed stream

  18. Melting characteristics of a plasma torch melter according to the waste feeding method

    International Nuclear Information System (INIS)

    Kim, T. W.; Choi, J. R.; Park, S. C.; Lu, C. S.; Park, J. K.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    By using a batch type plasma torch melting system, continuous feeding and melting tests of non-combustible waste were executed. Using the results, the establishment of a heat transfer model and its verification were executed; the characteristics of the molten slag, exhaust gas, fly dust, volatilization of Cs, and leaching of slag were analyzed. In order to establish the heat transfer mode, the followings were considered; the electrical energy supplied to the plasma torch, the absorbed energy to the plasma torch for generating the plasma gas, the absorbed energy to the cooling water of the plasma torch, the energy supplied to the melter from the plasma gas by radiant heat, the energy loss through the exhaust gas, the waste melting energy, and the heating energy of an inner crucible and the melter. The concrete and soil were melted for the verification of the model. The waste was fed through waste feeder by the amount of 0.5kg or 1kg that was calculated by using the model. The experiment for the verification resulted in that the model was fitted well until the melter was heated sufficiently. If the electrical energy of 128kW were supplied to the plasma torch, energy balance of the plasma melting system was calculated with the model: the absorbed energy to the plasma torch for generating the plasma gas (27kW), the absorbed energy to the cooling water of the plasma torch (0∼ 36kW), the energy loss through the exhaust gas (5 ∼ 8kW), the waste melting energy (14kW), and the heating energy of an inner crucible and the melter (82 ∼ 43kW)

  19. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2000-09-15

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR).

  20. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    International Nuclear Information System (INIS)

    WILLIAMS, J.C.

    2000-01-01

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR)

  1. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    Science.gov (United States)

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.

  2. Biogas feed analysis

    OpenAIRE

    Song, Yuan

    2008-01-01

    Biogas production is regarded as the best energy recovery process from wet organic solid wastes (WOSW). Feed composition, storage conditions and time will influence the compositions of feed to biogas processes. In this study, apple juice from Meierienes Juice factory was used as the model substrates to mimic the liquid phase that can be extracted from fruit or juice industry WOSW. A series of batch experiments were carried out with different initial feed concentrations (0, 1, 2, 5, 10 %) of a...

  3. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    International Nuclear Information System (INIS)

    Berry, J.; Gallaher, B.N.

    2011-01-01

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  4. Batch versus column modes for the adsorption of radioactive metal onto rice husk waste: conditions optimization through response surface methodology.

    Science.gov (United States)

    Kausar, Abida; Bhatti, Haq Nawaz; Iqbal, Munawar; Ashraf, Aisha

    2017-09-01

    Batch and column adsorption modes were compared for the adsorption of U(VI) ions using rice husk waste biomass (RHWB). Response surface methodology was employed for the optimization of process variables, i.e., (pH (A), adsorbent dose (B), initial ion concentration (C)) in batch mode. The B, C and C 2 affected the U(VI) adsorption significantly in batch mode. The developed quadratic model was found to be validated on the basis of regression coefficient as well as analysis of variance. The predicted and actual values were found to be correlated well, with negligible residual value, and B, C and C 2 were significant terms. The column study was performed considering bed height, flow rate and initial metal ion concentration, and adsorption efficiency was evaluated through breakthrough curves and bed depth service time and Thomas models. Adsorption was found to be dependent on bed height and initial U(VI) ion concentration, and flow rate decreased the adsorption capacity. Thomas models fitted well to the U(VI) adsorption onto RHWB. Results revealed that RHWB has potential to remove U(VI) ions and batch adsorption was found to be efficient versus column mode.

  5. Heterogeneous batch distillation processes for waste solvent recovery in pharmaceutical industry

    OpenAIRE

    Rodriguez-Donis, Ivonne; Gerbaud, Vincent; Arias-Barreto, Alien; Joulia, Xavier

    2009-01-01

    A summary about our experiences in the introduction of heterogeneous entrainers in azeotropic and extractive batch distillation is presented in this work. Essential advantages of the application of heterogeneous entrainers are showed by rigorous simulation and experimental verification in a bench batch distillation column for separating several azeotropic mixtures such as acetonitrile – water, n hexane – ethyl acetate and chloroform – methanol, commonly found in pharmaceutical industry.

  6. Development of a two-stage feeding strategy based on the kind and level of feeding nutrients for improving fed-batch production of L-threonine by Escherichia coli.

    Science.gov (United States)

    Liu, Shuwen; Liang, Yong; Liu, Qian; Tao, Tongtong; Lai, Shujuan; Chen, Ning; Wen, Tingyi

    2013-01-01

    Fed-batch fermentation is the predominant method for industrial production of amino acids. In this study, we comprehensively investigated the effects of four kinds of feeding nutrients and developed an accurate optimization strategy for fed-batch production of L-threonine. The production of L-threonine was severely inhibited when cell growth ceased in the bath culture. Similarly, L-threonine production was also associated with cell growth in the carbon-, phosphate-, and sulfate-limited fed-batch cultures, but the accumulation of L-threonine was markedly increased because of the extended production time in the growth stage. Interestingly, auxotrophic amino acid (L-isoleucine)-limited feeding promoted L-threonine production over the non-growth phase. Metabolite analysis indicates that substantial production of acetate and glutamate and the resulting accumulation of ammonium may lead to the inhibition of L-threonine production. During the growth phase, the levels of L-isoleucine were accurately optimized by balancing cell growth and production with Pontryagin's maximum principle, basing on the relationship between the specific growth rate μ and specific production rate ρ. Furthermore, the depletion of L-isoleucine and phosphate at the end of the growth phase favored the synthesis of L-threonine in the subsequent non-growth phase. Combining the two-stage feeding profiles, the final L-threonine concentration and conversion rate were increased by 5.9- and 2.1-fold, respectively, compared to batch processes without feeding control. The identification of efficient feeding nutrient and the development of accurate feeding strategies provide potential guidelines for microbial production of amino acids.

  7. Batch Kd measurements of nuclides to estimate migration potential at the proposed Waste Isolation Pilot Plant in New Mexico

    International Nuclear Information System (INIS)

    Serne, R.J.; Rai, D.; Mason, M.J.; Molecke, M.A.

    1977-01-01

    Laboratory measurements to determine the sorption distribution coefficients, Kd, of radionuclides present in, and potentially leached from, radioactive wastes, in contact with representative geologic media, have been conducted. The nuclides studied include Cs, Sr, Tc, Ru, Sb, Ce, Eu, Pu, Np, Cm, Am, U, and Pa. The crushed rock materials used were from the vicinity of the Waste Isolation Pilot Plant, a project to isolate radioactive wastes in a bedded salt facility, near Carlsbad, New Mexico. Solutions used consist of salt brine and groundwater, specific to the WIPP site, plus distilled water, for laboratory intercomparisons. The batch Kd data reported, plus data from sorption and migration measurements being conducted or planned elsewhere, will be used to evaluate the potential for radionuclide migration from the bedded salt WIPP facility. The data can be used for transport modeling and for safety assessment determinations

  8. Large batch recycling of waste Nd–Fe–B magnets to manufacture sintered magnets with improved magnetic properties

    International Nuclear Information System (INIS)

    Li, X.T.; Yue, M.; Liu, W.Q.; Li, X.L.; Yi, X.F.; Huang, X.L.; Zhang, D.T.; Chen, J.W.

    2015-01-01

    The waste Nd–Fe–B sintered magnets up to 500 kg per batch were recycled to manufacture anisotropic sintered magnets by combination of hydrogen decrepitation (HD) and alloying technique. Magnetic properties and thermal stability of both the waste magnets and recycled magnets were investigated. The recycled magnet exhibits magnetic properties with remanence (B r ) of 12.38 kGs, coercivity (H ci ) of 24.89 kOe, and maximum energy product [(BH) max ] of 36.51 MGOe, respectively, which restores 99.20% of B r , 105.65% of H ci , and 98.65% of (BH) max of the waste magnets, respectively. The volume fraction of Nd-rich phase in the recycled magnets is about 10.1 vol.%, which is bigger than that of the waste magnets due to the additive of Nd 3 PrFe 14 B alloy containing more rare earth. The remanence temperature coefficient (α) and coercivity temperature coefficient (β) of the recycled magnets are −0.1155%/K and −0.5099%/K in the range of 288–423 K, respectively, which are comparative to those of the waste magnets. - Highlights: • Large batch recycling of waste Nd–Fe–B sintered magnets were performed. • The recycled magnet restores 99.20% of B r , 105.65% of H ci and 98.65% of (BH) max of the magnet. • The recycled magnets bears bigger volume fraction and better distribution of Nd-rich phase. • The recycled magnets exhibit similar temperature coefficients and maximum working temperature

  9. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-08-28

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions

  10. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    International Nuclear Information System (INIS)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-01-01

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions

  11. Particulate waste outflow from fish-farming cages. How much is uneaten feed?

    Science.gov (United States)

    Ballester-Moltó, M; Sanchez-Jerez, P; Cerezo-Valverde, J; Aguado-Giménez, F

    2017-06-15

    Particulate wastes drive benthic organic enrichment from cage fish farming. Differentiation between faeces and uneaten feed estimates at cage level are of great value to both economize the feeding process and reduce waste. This study estimates the particulate waste outflowing cages at different depths and orientations, and the wasted feed component by combining in situ measurements and modelling. Particulate matter flux (PMF) was greater vertically through the cage bottoms (60.89%), but lateral outflow was also substantial (39.11%). PMF occurs all around the cages, and the influence of the mainstream current was low. Wasted feed was greatly variable, reaching high values (about 50% of supplied feed. The self-application of feed wastage monitoring and estimates by fish farmers is recommended to improve sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  13. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  14. Increased Coal Replacement in a Cement Kiln Burner by Feeding a Mixture of Solid Hazardous Waste and Shredded Plastic Waste

    OpenAIRE

    Ariyaratne, W. K. Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    The present study aims to find the maximum possible replacement of coal by combined feeding of plastic waste and solid hazardous waste mixed with wood chips (SHW) in rotary kiln burners used in cement kiln systems. The coal replacement should be achieved without negative impacts on product quality, emissions or overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement kiln by varying SHW and plastic waste feeding rates. Experimental result...

  15. The low-level waste handling challenge at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Harmon, J.E.; Diehl, D.E.; Gardner, R.L.

    1988-01-01

    The management of low-level wastes from the production of depleted uranium at the Feed Materials Production Center presents an enormous challenge. The recovery of uranium from materials contaminated with depleted uranium is usually not economical. As a result, large volumes of wastes are generated. The Westinghouse Materials Company of Ohio has established an aggressive waste management program. Simple solutions have been applied to problems in the areas of waste handling and waste minimization. The success of this program has been demonstrated by the reduction of low-level waste inventory at the Feed Materials Production Center

  16. The low-level waste handling challenge at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Harmon, J.E.; Diehl, D.E.; Gardner, R.L.

    1988-02-01

    The management of low-level wastes from the production of depleted uranium at the Feed Materials Production Center presents an enormous challenge. The recovery of uranium from materials contaminated with depleted uranium is usually not economical. As a result, large volumes of wastes are generated. The Westinghouse Materials Company of Ohio has established an aggressive waste management program. Simple solutions have been applied to problems in the areas of waste handling and waste minimization. The success of this program has been demonstrated by the reduction of low-level waste inventory at the Feed Materials Production Center. 8 refs., 4 figs

  17. Evaluation of vitrification factors from DWPF's macro-batch 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    2000-01-01

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ''glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015

  18. Waste Oils pre-Esterification for Biodiesel Synthesis: Effect of Feed Moisture Contents

    OpenAIRE

    Kalala Jalama

    2012-01-01

    A process flowsheet was developed in ChemCad 6.4 to study the effect of feed moisture contents on the pre-esterification of waste oils. Waste oils were modelled as a mixture of triolein (90%), oleic acid (5%) and water (5%). The process mainly consisted of feed drying, pre-esterification reaction and methanol recovery. The results showed that the process energy requirements would be minimized when higher degrees of feed drying and higher preesterification reaction tempera...

  19. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    OpenAIRE

    Dolianitis Ioannis; Giannakopoulos Dionysios; Hatzilau Christina-Stavrula; Karellas Sotirios; Kakaras Emmanuil; Nikolova Evelina; Skarpetis Georgios; Christodoulou Nikolaos; Giannoulas Nikolaos; Zitounis Theodoros

    2016-01-01

    A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized containe...

  20. Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hrma, Pavel R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rice, Jarrett A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-23

    Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted with amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.

  1. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production.

    Science.gov (United States)

    Han, Wei; Ye, Min; Zhu, Ai Jun; Zhao, Hong Ting; Li, Yong Feng

    2015-09-01

    A combination bioprocess of solid-state fermentation (SSF) and dark fermentative hydrogen production from food waste was developed. Aspergillus awamori and Aspergillus oryzae were utilized in SSF from food waste to generate glucoamylase and protease which were used to hydrolyze the food waste suspension to get the nutrients-rich (glucose and free amino nitrogen (FAN)) hydrolysate. Both glucose and FAN increased with increasing of food waste mass ratio from 4% to 10% (w/v) and the highest glucose (36.9 g/L) and FAN (361.3mg/L) were observed at food waste mass ratio of 10%. The food waste hydrolysates were then used as the feedstock for dark fermentative hydrogen production by heat pretreated sludge. The best hydrogen yield of 39.14 ml H2/g food waste (219.91 ml H2/VSadded) was achieved at food waste mass ratio of 4%. The proposed combination bioprocess could effectively accelerate the hydrolysis rate, improve raw material utilization and enhance hydrogen yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    International Nuclear Information System (INIS)

    Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; Pokorny, Richard; Yano, Tetsuji

    2017-01-01

    The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2 /(Li 2 CO 3 +H 3 BO 3 +Na 2 CO 3 ) mass fractions at temperatures between 600°C and 1040°C. To track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2 /(Li 2 CO 3 +H 3 BO 3 +Na 2 CO 3 ) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.

  3. Demonstration of a batch vacuum thermal desorption process on hazardous and mixed waste

    International Nuclear Information System (INIS)

    Palmer, C.R.; McElwee, M.; Meyers, G.

    1995-01-01

    Many different waste streams have been identified at Department of Energy (DOE) facilities as having both hazardous organic and radioactive contaminants. There is presently only one permitted facility in which to manage these materials, and that facility has only limited capacity to process solid wastes. Over the past two years, Rust has been pilot testing a new thermal desorption process that is very well suited to these wastes, and has begun permitting and design of a unit for commercial operation. This paper presents both historic and recent pilot test data on the treatment of hazardous and mixed waste. Also described is the commercial unit. Rust's patented VAC*TRAX technology takes advantage of high vacuum to reduced operating temperature for the thermal desorption of organic contaminants from waste soils, sludges and other contaminated solids. This allows for economical thermal separation on relatively small sites (30 to 5,000 m 3 of waste). VAC*TRAX employs indirect heating; this, combined with a very low carrier gas flow, results in a vent flow rate of approximately 1 m 3 /min which allows for the use of control devices that would not be practical with conventional thermal technology. The unit is therefore ideally suited to processing mixed waste, since zero radioactive emissions can be maintained. An additional benefit of the technology is that the low operating temperature allows highly effective separation to be performed well below the degradation point for the solid components of a trash type waste stream, which constitutes a large fraction of the present mixed waste inventory

  4. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  5. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol.

    Science.gov (United States)

    Celik, Eda; Calik, Pinar; Oliver, Stephen G

    2009-09-01

    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  6. Modeling and Performance of Waste Tires as Media in Fixed Bed Sequence Batch Reactor

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2016-12-01

    Results: The maximum removal efficiencies of dissolved chemical oxygen demand for FBSBR and SBR reactors were 98.3 % and 97.9 %, respectively. In addition, Stover-Kincannon model provided a very suitable fitness (R2   > 0.99 for loading the bioreactor FBSBR. Conclusion: According to the results, not only waste tires can be reused, but also these wastes can be employed as a proper biological bed in wastewater refineries to improve their efficiency.

  7. The deep processing of seaweed industrial waste--Influence of several fermentation on seaweed waste of feed

    Science.gov (United States)

    Zhao, Shipeng; Zhang, Shuping

    2018-02-01

    This paper focuses on several factors on the effects of fermented seaweed feed, and obtains the optimal fermentation process through the analysis of nutrients. Through the experiment we can get, Seaweed waste fermented the best feed when adding 1% of microbial agents and 0.5% of corn powder, fermenting for 15 days.

  8. Design and performance of feed-delivery systems for simulated radioactive waste slurries

    International Nuclear Information System (INIS)

    Perez, J.M. Jr.

    1983-02-01

    Processes for vitrifying simulated high-level radioactive waste have been developed at the Pacific Northwest Laboratory (PNL) over the last several years. Paralleling this effort, several feed systems used to deliver the simulated waste slurry to the melter have been tested. Because there had been little industrial experience in delivering abrasive slurries at feed rates of less than 10 L/min, early experience helped direct the design of more-dependable systems. Also, as feed delivery requirements changed, the feed system was modified to meet these new requirements. The various feed systems discussed in this document are part of this evolutionary process, so they have not been ranked against each other. The four slurry feed systems discussed are: (1) vertical-cantilevered centrifugal pump system; (2) airlift feed systems; (3) pressurized-loop systems; and (4) positive-displacement pump system. 20 figures, 11 tables

  9. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation.

    Science.gov (United States)

    Dubey, Swati; Singh, Jyoti; Singh, R P

    2018-01-01

    Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL -1 ) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL -1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Feed Materials Production Center waste management plan (Revision to NLCO-1100, R.6)

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  11. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    DYKES, A.A.

    2000-10-11

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O&M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis.

  12. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor

    International Nuclear Information System (INIS)

    Nopharatana, Annop; Pullammanappallil, Pratap C.; Clarke, William P.

    2007-01-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations

  13. Recycle food wastes into high quality fish feeds for safe and quality fish production.

    Science.gov (United States)

    Wong, Ming-Hung; Mo, Wing-Yin; Choi, Wai-Ming; Cheng, Zhang; Man, Yu-Bon

    2016-12-01

    The amount of food waste generated from modern societies is increasing, which has imposed a tremendous pressure on its treatment and disposal. Food waste should be treated as a valuable resource rather than waste, and turning it into fish feeds would be a viable alternative. This paper attempts to review the feasibility of using food waste to formulate feed pellets to culture a few freshwater fish species, such as grass carp, grey mullet, and tilapia, under polyculture mode (growing different species in the same pond). These species occupy different ecological niches, with different feeding modes (i.e., herbivorous, filter feeding, etc.), and therefore all the nutrients derived from the food waste could be efficiently recycled within the ecosystem. The problems facing environmental pollution and fish contamination; the past and present situation of inland fish culture (focusing on South China); upgrade of food waste based feed pellets by adding enzymes, vitamin-mineral premix, probiotics (yeast), prebiotics, and Chinese medicinal herbs into feeds; and potential health risks of fish cultivated by food waste based pellets are discussed, citing some local examples. It can be concluded that appropriate portions of different types of food waste could satisfy basic nutritional requirements of lower trophic level fish species such as grass carp and tilapia. Upgrading the fish pellets by adding different supplements mentioned above could further elevated the quality of feeds, leading to higher growth rates, and enhanced immunity of fish. Health risk assessments based on the major environmental contaminants (mercury, PAHs and DDTs) in fish flesh showed that fish fed food waste based pellets are safer for consumption, when compared with those fed commercial feed pellets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Analysis of the Potential Solid Waste Palm Oil as Animal Feed Cattle in Province Riau

    OpenAIRE

    Chalid, Nursiah; Flordeluna, Cattelya

    2014-01-01

    This study aims to identify and analyze the potential of solid waste as cattle feed in the Riau province where oil palm solid waste is estimated each year has increased the amount of solid waste production as the increasing production of fresh fruit bunches ( FFB ) is in if every year .The data used in this study are primary and secondary data . The method used in this peneilitan is descriptive method . To see the right strategy in the potential of oil palm solid waste as cattle feed in the p...

  15. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  16. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs

  17. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system

  18. Use of slaughter house waste as a feed for shrimps and prawns

    Digital Repository Service at National Institute of Oceanography (India)

    Sumitra-Vijayaraghavan; Royan, J.P.; Krishnakumari, L.

    Feeding experiments with some shrimps and fishes (Metapenaeus monoceros, Metapenaeus dobsoni, Sarotherodon mossambicus and Etroplus suratensis) using slaughter house waste as food, showed that the shrimps and arotherodon were able to utilize...

  19. Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials

    International Nuclear Information System (INIS)

    Mittal, Alok; Kaur, Dipika; Mittal, Jyoti

    2009-01-01

    De-Oiled Soya, an agricultural waste material and Bottom Ash a waste of power plants, have been used as adsorbents for the removal and recovery of a triarylmethane dye Fast Green FCF from wastewater. Batch studies have been carried by observing the effects of pH, temperature, concentration of the dye, amount of adsorbents, sieve size of adsorbent, contact time, etc. Graphical correlation of various adsorption isotherm models like, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich have been carried out for both the adsorbents. The adsorption over both the materials has been found endothermic and feasible in nature. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process have been calculated. The kinetic studies suggest the process following pseudo first order kinetics and involvement of particle diffusion mechanism. The bulk removal of the dye has been carried out by passing the dye solution through columns of Bottom Ash and De-Oiled Soya and saturation factor of each column has been calculated. Attempts have also been made to recover the dye by eluting dilute NaOH through the columns

  20. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor

    International Nuclear Information System (INIS)

    Escudero, Carlos; Fiol, Nuria; Poch, Jordi; Villaescusa, Isabel

    2009-01-01

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  1. Batch anaerobic co-digestion of Kimchi factory waste silage and swine manure under mesophilic conditions.

    Science.gov (United States)

    Kafle, Gopi Krishna; Kim, Sang Hun; Sung, Kyung Ill

    2012-11-01

    The objective of this study was to investigate the feasibility of anaerobic co-digestion of Kimchi factory waste silage (KFWS) with swine manure (SM). Chinese cabbage (CC) is the major waste generated by a Kimchi factory and KFWS was prepared by mixing CC and rice bran (RB) (70:30 on a dry matter basis). In Experiment I, the biogas potential of CC and RB were measured and, in Experiment II, the test was conducted with different ratios of KFWS and SM (KFWS: SM=0:100; 33:67; 67:33; 100:0 by% volatile solids (VS) basis). KFWS produced a 27% higher biogas yield and a 59% higher methane yield compared to CC. The specific biogas yields increased by 19, 40 and 57% with KFWS-33%, KFWS-67% and KFWS-100%, respectively compared to SM-100% (394 mL/g VS). Similarly, VS removal increased by 37, 51 and 74% with KFWS-33%, KFWS-67% and KFWS-100%, respectively compared to SM-100%. These results suggested that Kimchi factory waste could be effectively treated by making silage, and the silage could be used as a potential co-substrate to enhance biogas production from SM digesters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Feed intake and growth performance of goats supplemented with soy waste

    Directory of Open Access Journals (Sweden)

    Mohammad Mijanur Rahman

    2014-07-01

    Full Text Available The objective of this work was to evaluate the effects of supplemental feeding of soy waste on the feed intake and growth rate of goats. Twenty male crossbred (Boer x local goats were assigned to two isonitrogenous diet groups: one of commercial pellet and the other of soy waste. The commercial pellet (1.0% and soy waste (0.8% were provided on the dry matter basis of body weight (BW per day, to the respective group of each diet. The soy waste group had lower daily intakes of total dry matter (0.79 vs. 0.88 kg and organic matter (665.71 vs. 790.44 g than the group fed pellet; however, the differences on daily intakes for grass (0.62 vs. 0.64 kg, crude protein (96.81 vs. 96.83 g, and neutral detergent fibre (483.70 vs. 499.86 g were not significant. No differences were observed between groups for BW gain. The feed conversion ratio and feed cost per kilogram of BW gain were lower for the group fed soy waste than for the one fed pellet. Goats fed supplemental soy waste have a lower total dry matter intake, feed conversion ratio, and feed cost per kilogram of body weight gain than those fed commercial pellets.

  3. Irradiated Palm Oil Waste (Sludge) As Feed Supplement For Nila Gift Fish (Oreochromis niloticus)

    International Nuclear Information System (INIS)

    MU, Jenny; PM, Adria

    2002-01-01

    The objective of the experiment was to study the fish weight development after being fed with irradiated palm oil waste pellet. Irradiated Palm oil waste pellet was produced from palm oil waste (sludge) with some additional materials, i.e. rice bran, fish powder, soybean powder, tapioca powder. The mixture was then irradiated with a dose of 4 kGy to decontaminate pathogen microbe and other contaminant microbes, the experiment have been carried out in 4 treatments. Treatment A was male fish which was being fed with irradiated sludge palm oil waste pellet and commercial pelletized feed (2:1), treatment C was female with the same feed as A, treatment B was male fish feed with commercial pelletized, treatment D was female fish with the same feed as B. Each treatment was placed in a pond. The feed with the amount of 3% of total body weight was given to the fishes 2 times per day. The result of this experiment showed that the male fish weight receiving treatment A and B were 195.37 g and 175.12 g. The female fish weight at treatments C and D were 170.28 g and 160.15 g, respectively. Data obtained from this experiment showed that the treatment of irradiated sludge palm oil waste pellet and commercial pelletized (2:1) were more efficient as fish feeding compared to commercial pellets

  4. Evaluation of the Validity of three Criteria for Sampling and Analyzing DST Wastes in Support of Waste Feed Delivery

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    This document summarizes the analysis of 3 basic criteria for the sampling systems that will provide waste validation samples of tank waste feeds prior to delivery to the waste treatment and immobilization plant where the wastes will be converted to glass forms. The assessed criteria includes sampling through a 4-inch riser, sampling while a mixer pump is operating, and the deployment of an at-tank analysis system. The assessment, based on the Phase I, 3S6 waste feed scenario, indicated that for high level waste, sampling through a 4-inch riser is not required but sampling while mixer pumps are operating will be required. For low activity waste, sampling through a 4-inch riser will be required but sampling while mixer pumps are operating is not required. The assessment indicated that an at-tank analysis system to provide tank mixing/settling (homogeneity) status is not needed since the number of tanks providing LAW feed was expanded and the payment basis in the original privatization contract has been modified

  5. Estimated dose to in-tank equipment: Phase 1 waste feed delivery

    International Nuclear Information System (INIS)

    Claghorn, R.D.

    1998-01-01

    This analysis estimates the radiation dose to the equipment that will be submerged in double-shell tank waste. The results of this analysis are intended to be the basis for specifications for in-tank equipment. The scope of this analysis is limited to the new equipment required for the delivery of waste feed to Phase 1 private contractors. Phase 1 refers to the first of a two-phase plan to privatize the remediation of Hanford's tank waste. The focus of this analysis is on waste feed delivery because of the extraordinarily high cost of any failure that would lead to the interruption of a steady flow of feed to the private contractors

  6. Agroindustrial and Chicken Poultry Waste as Feed Supplement for Nila Fish (Oreochromis sp)

    International Nuclear Information System (INIS)

    Harsojo, L.S.; Andini, S.H.; Rosalina, S.; Suwirma

    2000-01-01

    An experiment was conducted to study the use of industrial waste such as soybean sauce waste, tofu waste and chicken manure as feed supplement for nila fish raised in in ponds to increase the body weight. There were four compositions i.e composition A consisted of soybean sauce waste mixed with the other materials; composition B consisted of irradiated chicken manure mixed with the other materials; composition C was commercial pellet as control and composition D was tofu waste . The feeding with the amount of 3% from total body weight was given to the fishes three times per day. The quality of food measured with the conversion value (amount of feed for 1 kg body weight gain) and the quality of water i.e pH, temperature and oxygen concentration were also measured. Determination of heavy metal content in fish and water were carried out using the atomic absorption spectrophotometer (AAS). Results of the experiment showed that feed of composition A (soybean sauce waste) at 12 th 21 st weeks had lowest conversion value although statistically there was no different significant among the others feed. The content of heavy metals in all fish and water were under permissible limit and also for Fe content was also under permissible limit.There were no Salmonella found in the industrial waste. This means that industrial waste can be used safely as feed supplement for fish and has also the same effect compared to the commercial pelletized for the growth of fish. The water quality was found suitable for the growth of fish

  7. Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study.

    Science.gov (United States)

    Negi, Suraj; Dhar, Hiya; Hussain, Athar; Kumar, Sunil

    2018-04-01

    Rice straw (RS) contains a high amount of lignocellulosic materials which are difficult to degrade without thermal pretreatment. In the present study, co-digestion of municipal solid waste (MSW) and RS was carried out in three different ratios i.e., 1:1, 2:1, and 3:1 to get the maximum biomethanation potential and methane generation rate constant (k). The biogas and methane (CH 4 ) potential increased by 60% and 57%, respectively for MSW and RS in the ratio 2:1 as compared to other combination. The values of k, biochemical methane potential (µ b ) and sludge activity were measured as 0.1 d -1 , 0.99 CH 4 -COD/COD fed and 0.50 g CH 4 -COD/g VSS, respectively. The sludge activity was found to be 100% for 2:1 ratio. Co-digestion of RS with MSW can also optimize the C/N ratio which is an essential parameter in the anaerobic digestion process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Adsorption of chromium(VI) on pomace-An olive oil industry waste: Batch and column studies

    International Nuclear Information System (INIS)

    Malkoc, Emine; Nuhoglu, Yasar; Dundar, Murat

    2006-01-01

    The waste pomace of olive oil factory (WPOOF) was tested for its ability to remove chromium(VI) from aqueous solution by batch and column experiments. Various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o have been calculated. The thermodynamics of chromium(VI) ion onto WPOOF system indicates spontaneous and endothermic nature of the process. The ability of WPOOF to adsorb chromium(VI) in a fixed bed column was investigated, as well. The effect of operating parameters such as flow rate and inlet metal ion concentration on the sorption characteristics of WPOOF was investigated. The longest breakthrough time and maximum of Cr(VI) adsorption is obtained at pH 2.0. The total adsorbed quantities, equilibrium uptakes and total removal percents of chromium(VI) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different flow rates and different inlet chromium(VI) concentrations for adsorbent. The data confirmed that the total amount of sorbed chromium(VI) and equilibrium chromium(VI) uptake decreased with increasing flow rate and increased with increasing inlet chromium(VI) concentration. The Adams-Bohart model were used to analyze the experimental data and the model parameters were evaluated

  9. Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis.

    Science.gov (United States)

    Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You

    2018-01-01

    This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  11. Proximate analyses - Utilization of Marine Process Waste for Aquaculture Feeds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Limited amounts of forage fish are available as an ingredient in feeds for the expanding aquaculture industry. Work is being conducted on a variety of underutilized...

  12. Investigation of Rheological Impacts on the Defense Waste Processing Facility's Sludge Slurry Feed as Insoluble Solids and Wash Endpoints are Adjusted

    International Nuclear Information System (INIS)

    Fellinger, T. L.; Howard, S.J.; Lee, M.C.; Galloway, R.H.

    2006-01-01

    The Savannah River Site (SRS) is currently pursuing an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). To create a batch of feed for the DWPF, several tanks of radioactive sludge slurry are combined into one of the million gallon (i.e. 3.79 E06 liters) feed tanks for DWPF. Once these sludge slurries are combined, the soluble sodium and weight percent total solids are adjusted by a 'washing' process. The 'washing' process involves diluting the soluble sodium of the sludge slurry with inhibited water (0.015 M NaOH and 0.015 M NaNO 2 ) and allowing the sludge slurry to settle into two layers. The two layers in the tank consist of a clear supernate on top and a layer of settled sludge solids on the bottom. The clear supernate layer is then decanted to another hold tank. This 'washing' process is repeated until the desired wash endpoint (i.e. sodium concentration in the supernate) and weight percent total solids are achieved. A final washed batch of feed consists of approximately 500,000 gallons (i.e. 1.89 E06 liters). DWPF has already processed three batches of feed and is currently processing a fourth. Prior to processing a batch of feed in the DWPF, it must be well characterized. Samples of the prepared feed batch are sent to the Savannah River National Laboratory (SRNL) for this characterization. As a part of the SRNL characterization for the fourth batch, rheology measurements were performed. Measurements were performed at different weight percent insoluble solids loadings to mimic potential facility processing scenarios (i.e. mixing/pumping of concentrated sludge slurry). In order to determine the influence of the soluble Na on the rheological properties of the sample, the supernate of the 'as received' sample was adjusted from 1 M soluble Na to 0.5 M soluble Na by using a lab scale version of the 'washing' process. Rheology

  13. The Utilization of Sago Waste as Cattle Feed

    Science.gov (United States)

    Tiro, B. M. W.; Beding, P. A.; Baliadi, Y.

    2018-02-01

    This study aimed was to evaluate nutrition value of sago waste and its effect on cattle performance.The collected data were analyzed using analysis of variance. The results of the study showed that of the utilization of sago waste had a positive effect on average daily gain (ADG), where with 2% sago waste of body weight (P2 treatment) gave the highest ADG 0.43 ± 0.02 kg/h/day and cattle which consumed only forage without sago waste (P0) gave the lowest ADG 0.26 ± 0.04 kg/h/day. Statistical analysis showed that the addition of sago waste significantly affected the ADG (P0.05), but significant affect(Pcattle.

  14. Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae H058

    Directory of Open Access Journals (Sweden)

    Shoubao Yan

    2012-04-01

    Full Text Available The enzymatic hydrolysis of food waste by commercially available enzymes and the subsequent ethanol fermentation of the hydrolysates by Saccharomyces cerecisiae H058 were studied in this work. The optimum batch enzymatic conditions were found to be saccharification pH of 4.5, temperature of 55!, glucoamylase concentration of 120 u/g, α-amylase concentration of 10 u/g, solid-liquid ratio of 1: 0.75 (w/w. Fed batch hydrolysis process was started with a solid-liquid ratio of 1: 1 (w/w, with solid food waste added at time lapse of 2 h to get a final solid-liquid ratio of 1: 0.5 (w/w. After 4 h of reaction, the reducing sugar concentration reached 194.43 g/L with a enzymatic digestibility of 93.12%. Further fermentation of the batch and fed batch enzymatic hydrolysates, which contained reducing sugar concentration of 131.41 and 194.43 g/L respectively, was performed using Saccharomyces cerevisiae H058, 62.93 and 90.72 g/L ethanol was obtained within 48 h.

  15. Feed Materials Production Center Waste Management: Annual report for fiscal year 1986

    International Nuclear Information System (INIS)

    Watts, R.E.; Kottner, S.A.

    1986-01-01

    During FY-1986, the Westinghouse Materials Company of Ohio (WMCO) and the Department of Energy focused on safe storage and disposition of all wastes at the Feed Materials Production Center (FMPC) in compliance with federal and state regulations concerning waste management and worker health and safety. The Waste Management Annual Report identifies the comprehensive programs developed to achieve WMCO goals at the FMPC. The programs address waste issues which concern worker and public health and safety. Among those programs discussed are the decontamination, safe storage, and disposition of low-level and mixed hazardous radioactive waste. Principal attention and resources were allocated to programs which identify the largest waste streams (both currently generated and inventory backlogged). The most voluminous waste streams include low-level waste approved for shipment to the Nevada Test Site (MgF 2 slag, slag leach filter cake, and neutralized raffinate); remedial action wastes (K-65, stormwater runoff/effluent, and waste pits); thorium; and contaminated construction rubble and soil. Goals were established and met for the Waste Management Section in the form of completed milestones. The completed milestones involved such activities as characterization studies for the waste pits, K-65 Silos and adjacent areas; issuance of the Waste Management Plan required by DOE; analysis of decontamination alternatives for copper scrap; and analysis of silo structural integrity and remedial action alternatives

  16. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    Science.gov (United States)

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety.

  17. Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste.

    Science.gov (United States)

    Chaudhary, Rubina; Pati, Anupama

    2016-04-01

    Leather industry generates huge amount of chrome-containing leather solid waste which creates major environment problems to tanners worldwide. Chrome-tanned leather solid waste is primarily chromium complex of collagen protein. The presence of chromium limits its protein application in animal feed industry. The purified protein hydrolysate with zero chromium could be used in poultry feed. In this study, an attempt has been made to assess performance of poultry with purified protein hydrolysate as a feed derived from chrome-tanned leather waste as partial replacement of soyabean meal as a sole source of protein for growing broiler chickens. Growth study was conducted to evaluate the effect of feeding protein hydrolysate on performance and physiochemical characteristics of meat of broiler chickens. Two experimental diets containing various levels of protein hydrolysate (EI-20 % and EII-30 %) were evaluated. The comparative study was performed as control with soyabean meal. Daily feed intake, body weight gain and feed conversion ratio were measured from day 8 to day 35. At the end of the study, birds were randomly selected and slaughtered to evaluate for physiochemical characteristics of meat. Diet had significant effects on feed intake and body weight gain. Birds fed with 20 and 30 % protein hydrolysate consumed 9.5 and 17.5 % higher amount of feed and gained 6.5 and 16.6 % higher than soyabean meal-fed birds. The current study produced evidence that protein hydrolysate can replace up to 75 % of soyabean meal in broiler diets without affecting either growth performance or meat characteristics.

  18. Effect of feeding system and fermented sago waste on performance of broiler chicken

    Directory of Open Access Journals (Sweden)

    I Putu Kompiang

    2001-03-01

    Full Text Available An experiment, with a split plot experimental design, was conducted to determine the effect of feeding system (full vs choice feeding and fermented sago waste (AST 5 vs 0% on the performance of broiler chickens. Complete feed was formulated tocontain 21% crude protein, 2900 kcal ME/kg, without or with 5% AST. Feed for choice feeding was formulated to contain 2900 kcal ME/kg, without or with 5% AST with crude protein 23 or 17%. Four hundreds DOC broilers were used for each treatment divided into 4 replicates (100 birds/replicate on litter system. Feed and water were given ad lib. during the 4 weeks trial. Data collected included feed consumption (weekly, body weight (bi-weekly, feed conversion ratio (FCR and protein efficiency ratio (PER were calculated biweekly. Feeding system has no significant effect on total feed/energy consumption. Choice feeding reduced total protein consumption (P<0.01; 323.5 vs 354.9 gram/head/4weeks, increased body weight gained (P<0.01; 889.5 vs 835 gram/head/4weeks, improved FCR (P<0.05; 1.90 vs 2.03, and PER (P<0.001; 0.37 vs 0.43. Fermented sago waste (AST had no significant effect on total feed/energy consumption (P<0.05, reduced total protein consumption (P<0.05; 333.6 vs 349.8 gram/head/4weeks, increased body weight gained (P<0.05; 887.5 vs 837 gram/head/4weeks, improved FCR (P<0.05; 1.88 vs 2.06 and PER (P<0.05; 0.38 vs 0.42. It is concluded that broiler chicken had an ability to determine its protein requirement, and AST supplementation significantly improved performance of the birds.

  19. Aquaculture and the utilisation of plant wastes in fish feeds

    CSIR Research Space (South Africa)

    Jacobs, A

    2010-08-31

    Full Text Available shape and size of pellets vary between species and age of the fish • Feed management needs on fish farms, must be convenient, thus feed must be stable, dry, easy to handle, cost-effective © CSIR 2010 Slide 5 Plant-based feedstuffs to replace... Acids 65.4 0.77 1.4 0.7 18.3 0.8 1.5 0.7 Fermented Soya 56.1 0.68 1.7 0.6 18.4 0.8 1.6 0.6 © CSIR 2010 Slide 16 The effect of aquaculture biological agents on water quality during feeding trials • Freshwater finfish Oreochromis...

  20. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    International Nuclear Information System (INIS)

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles

  1. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes.

    Science.gov (United States)

    Kim, Hyun-Woo; Nam, Joo-Youn; Kang, Seok-Tae; Kim, Dong-Hoon; Jung, Kyung-Won; Shin, Hang-Sik

    2012-04-01

    Extracellular enzymes offer active catalysis for hydrolysis of organic solid wastes in anaerobic digestion. To evidence the quantitative significance of hydrolytic enzyme activities for major waste components, track studies of thermophilic and mesophilic anaerobic sequencing-batch reactors (TASBR and MASBR) were conducted using a co-substrate of real organic wastes. During 1day batch cycle, TASBR showed higher amylase activity for carbohydrate (46%), protease activity for proteins (270%), and lipase activity for lipids (19%) than MASBR. In particular, the track study of protease identified that thermophilic anaerobes degraded protein polymers much more rapidly. Results revealed that differences in enzyme activities eventually affected acidogenic and methanogenic performances. It was demonstrated that the superior nature of enzymatic capability at thermophilic condition led to successive high-rate acidogenesis and 32% higher CH(4) recovery. Consequently, these results evidence that the coupling thermophilic digestion with sequencing-batch operation is a viable option to promote enzymatic hydrolysis of organic particulates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Valorisation of food waste to produce new raw materials for animal feed.

    Science.gov (United States)

    San Martin, D; Ramos, S; Zufía, J

    2016-05-01

    This study assesses the suitability of vegetable waste produced by food industry for use as a raw material for animal feed. It includes safety and nutritional viability, technical feasibility and environmental evaluation. Vegetable by-products were found to be nutritionally and sanitarily appropriate for use in animal feed. The drying technologies tested for making vegetable waste suitable for use in the animal feed market were pulse combustion drying, oven and microwave. The different meal prototypes obtained were found to comply with all the requirements of the animal feed market. An action plan that takes into account all the stages of the valorisation process was subsequently defined in agreement with local stakeholders. This plan was validated in a pilot-scale demonstration trial. Finally, the technical feasibility was studied and environmental improvement was performed. This project was funded by the European LIFE+ program (LIFE09 ENV/ES/000473). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  4. Feed Additives Production Out of Dairy Industry Waste

    Science.gov (United States)

    Ulrikh, EV

    2017-05-01

    Application of macro- and microelements in animal feed is the most effective in the case of their industrial brining in mixed feeds, feed mixes, and protein-vitamin supplements in the form of various complex salts. Application of the product contributes to the body’s needs of broiler chickens in vitamins and minerals, normalization of metabolism, and ensures a high rate of growth and development. The composition of the premix can be adjusted depending on the actual proportion of biologically active substances in the feed used by a consumer. It is possible to include in the premix other biologically active substances. Assessing the slaughter qualities of experimental pigs, it was found (Table. 2) that the pigs of group II has a tendency toward greater weight of hot carcass (4.5 kg), of slaughter yelts (by 3.83%) and toward a smaller thickness of fat over the spinous processes of the 6-7th thoracic vertebrae (1.67 mm). The performed investigations have established that there is no significant difference between groups I and II in the content of certain amino acids, however, group I shows poorer results in the content of valine, isoleucine, leucine and lysine by 0.16 g / 100 g of protein (P> 0.999) 0.2 (P> 0.90), 0.46 (P> 0.999) and 0.39 (P> 0.999) g / 100 g protein respectively.

  5. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  6. Assessment of the Electrical Power Requirements for Continued Safe Storage and Waste Feed Delivery Phase One

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    This study evaluated the ability of the electrical distribution system to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the electrical system. The ability to assure adequate Waste Feed Delivery (WFD) to the Privatization Contractor's vitrification facility is a key element in the overall Hanford cleanup schedule. An important aspect of this WFD is the availability of sufficient and appropriate electrical power in the single- and double-shell tank farms. The methodology for performing this review and the results are described

  7. Remotely replaceable fuel and feed nozzles for the new waste calcining facility calciner vessel

    International Nuclear Information System (INIS)

    Fletcher, R.D.; Carter, J.A.; May, K.W.

    1978-01-01

    The development and testing of remotely replaceable fuel and feed nozzles for calcination of liquid radioactive wastes in the calciner vessel of the New Waste Calcining Facility being built at the Idaho National Engineering Laboratory is described. A complete fuel nozzle assembly was fabricated and tested at the Remote Maintenance Development Facility to evolve design refinements, identify required support equipment, and develop handling techniques. The design also provided for remote replacement of the nozzle support carriage and adjacent feed and fuel pipe loops using two pairs of master-slave manipulators

  8. ENHANCED PRODUCTION OF POLYHYDROXYBUTYRATE (PHB FROM AGRO-INDUSTRIAL WASTES; FED-BATCH CULTIVATION AND STATISTICAL MEDIA OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Berekaa

    2016-06-01

    Full Text Available Bacillus megaterium SW1-2 showed enhanced growth and polyhydroxybutyrate (PHB production during cultivation on date palm syrup (DEPS or sugar cane molasses. FT-IR and NMR spectroscopic analyses of the polymer accumulated during growth on DEPS revealed specific absorption peaks characteristic for PHB. 1.65 g/L of PHB (56.9% CDW was produced during growth on medium supplemented with 2 g/L of DEPS. Approximately, 36.1% CDW of PHB were recorded during growth on sugar cane molasses. Six runs of different fed-batch cultivation strategies were tested, the optimal run showed approximately 6.87-fold increase. Modified E2 medium was prefered recording 10.11 and 11.34 g/L of total PHB produced for runs 1 and 2, at the end of 96 h incubation period, respectively. Decrease in PHB was recorded during growth on complex medium (run 3 and run 4. In another independent optimization strategy, ten variables were concurrently examined for their significance on PHB production by Plackett-Burman statistical design for the first time. Among variables, DEPS-II and inoculum concentration followed by KH2PO4 and (NH42SO4 were found to be the most significant variables encourage PHB production. Indeed, DEPS-II or Fresh syrup is more significant than commercial syrup DEPS-I (p-value= 0.05. RPM, incubation period have highly negative effect on PHB production. Role of ago-industrial wastes, especially DEPS, in enhancement of PHB production was closely discussed.

  9. Bioprocessing papaya processing waste for potential aquaculture feed supplement--economic and nutrient analysis with shrimp feeding trial.

    Science.gov (United States)

    Kang, H Y; Yang, P Y; Dominy, W G; Lee, C S

    2010-10-01

    Papaya processing waste (PPW), a major fruit processing waste in the Hawaii islands, served as substrate for yeast (Saccharomyces cerevisiae) growth. The fermented PPW products containing nutrients of 45% crude protein and various fat, fiber, lignin, cellulose, and minerals were advantages to nutrients of yeast alone. Three experimental diets controlled at 35% protein formulation containing different levels of inclusion of PPW products and a commercial control diet were fed to shrimps for 8 weeks. The 50% inclusion of PPW diets were comparable to commercial feed in weight, growth, feed conversion ratio (FCR) and survival rate. Such bioprocess treatment system would be economically feasible with the control of annual cost and increase of the amount of PPW treated. The selling price of PPW products and annual operation and maintenance cost were the most influential factors to additional profits. This study presented a promising alternative for environmental-friendly treatment of organic wastes as well as the sustainability of local agriculture and aquaculture industries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Low-Activity Waste Feed Data Quality Objectives

    Energy Technology Data Exchange (ETDEWEB)

    MJ Truex; KD Wiemers

    1998-12-11

    This document describes characterization requirements for the Tank Waste Remediation System (TWRS) Waste Disposal Program's privatization efforts in support of low-activity waste (LAW) treatment and immobilization, This revised Data Quality Objective (DQO) replaces earlier documents (PNNL 1997; DOE-W 1998zq Wiemers 1996). Revision O of this DQO was completed to meet Tri-Party Agreement (TPA) target milestone M-60-14-TO1. Revision 1 updates the data requirements based on the contract issued `August 1998 (DOE-RL 1998b). In addition, sections of Revision O pertaining to "environmental planning" were not acceptable to the Washington State Department of Ecology (Ecology) and have been removed. Regulatory compliance for TWRS Privatization is being addressed in a separate DQO (Wiemers et al. 1998). The Project Hanford Management Contract (PHMC) Contractors and the private contractor may elect to complete issue-specific DQOS to accommodate their individual work scope.

  11. Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong.

    Science.gov (United States)

    Cheng, Jack Y K; Lo, Irene M C

    2016-04-01

    Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities.

  12. The use of food wastes as feed ingredients for culturing grass carp (Ctenopharyngodon idellus) in Hong Kong.

    Science.gov (United States)

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    Different types of food wastes, e.g., meats, bones, cereals, fruits, and vegetables, were collected from hotels in Hong Kong, mixed in different ratio, and processed into feed pellets (food wastes (FWs) A, B, and C) for feeding trials in aquaculture species. Grass carp fed with cereal-dominant feed (FW A) showed the best growth (in terms of specific growth rate, relative weight gain, and protein efficiency ratio), among all food waste feeds. However, the growth rates of food waste groups especially the meat product-contained feeds (FW B and FW C) were lower than the commercial feed, Jinfeng(®) 613 formulation (control). The results indicated that grass carp utilized plant proteins better than animal proteins and preferred carbohydrate as a major energy source than lipid. The high-lipid content in feed containing meat products was also a possible reason for hindering growth and resulted high body lipid. It is suggested that lipid should be removed in the preparation of food waste feed or further investigations by implementing supplements, e.g., enzymes in feed to enhance lipid or protein utilization by fish. This utilization of food waste could be an effective and practical way to deal with these wastes in this densely populated city.

  13. The German bakery waste incident; use of a combined approach of screening and confirmation for dioxins in feed and food

    NARCIS (Netherlands)

    Hoogenboom, L.A.P.; Bovee, T.F.H.; Portier, L.; Weg, van der G.; Onstenk, C.G.M.; Traag, W.A.

    2004-01-01

    During the last six years several incidents have occurred with dioxins in feed, stressing the need for rapid screening methods for these compounds. The most recent incident was the contamination of bakery waste used for animal feed due to the use of waste wood for drying of the material. In addition

  14. One Step In-Situ Formed Magnetic Chitosan Nanoparticles as an Efficient Sorbent for Removal of Mercury Ions From Petrochemical Waste Water: Batch and Column Study

    Directory of Open Access Journals (Sweden)

    Rahbar

    2015-10-01

    Full Text Available Background In the recent years, mercury contamination has attracted great deal of attention due to its serious environmental threat. Objectives The main goal of this study was application of one-step synthesized magnetic (magnetite chitosan nanoparticles (MCNs in the removal of mercury ions from petrochemical waste water. Materials and Methods This study was performed in batch and column modes. Effects of various parameters such as pH, adsorbent dose, contact time, temperature and agitation speed for the removal of mercury ions by MCNs investigated in batch mode. Afterwards, optimum conditions were exploited in column mode. Different kinetic models were also studied. Results An effective Hg (II removal (99.8% was obtained at pH 6, with 50 mg of MCNs for an initial concentration of this ion in petrochemical waste water (5.63 mg L-1 and 10 minutes agitation of the solution. The adsorption kinetic data was well fitted to the pseudo-second-order model. Conclusions Experimental results showed that MCNs is an excellent sorbent for removal of mercury ions from petrochemical waste water. In addition, highly complex matrix of this waste does not affect the adsorption capability of MCNs.

  15. Root cause analysis for waste area grouping 1, Batch I, Series 1 Tank T-30 project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Four inactive liquid low-level waste (LLLW) tanks were scheduled for remedial actions as the Batch L Series I Tank Project during fiscal year (FY) 1995. These tanks are 3001-B, 3004-B, T-30, and 3013. The initial tank remediation project was conducted as a maintenance action. One project objective was to gain experience in remediation efforts (under maintenance actions) to assist in conducting remedial action projects for the 33 remaining inactive LLLW tanks. Batch I, Series 1 project activities resulted in the successful remediation of tanks 3001-B, 3004-B, and 3013. Tank T-30 remedial actions were halted as a result of information obtained during waste characterization activities. The conditions discovered on tank T-30 would not allow completion of tank removal and smelting as originally planned. A decision was made to conduct a root cause analysis of Tank T-30 events to identify and, where possible, correct weaknesses that, if uncorrected, could result in similar delays for completion of future inactive tank remediation projects. The objective of the analysis was to determine why a portion of expected project end results for Tank T-30 were not fully achieved. The root cause analysis evaluates project events and recommends beneficial improvements for application to future projects. This report presents the results of the Batch I, Series root cause analysis results and makes recommendations based on that analysis

  16. HIERARCHIAL DESIGN AND EVALUATION OF PROCESSES TO GENERATE WASTE-RECYCLED FEEDS

    Science.gov (United States)

    Hierarchical Design and Evaluation of Processes to Generate Waste-Recycled FeedsRaymond L. SmithU.S. Environmental Protection AgencyOffice of Research and DevelopmentNational Risk Management Research Laboratory26 W. Martin Luther King DriveCincinna...

  17. Double Shell Tanks (DST) and Waste Feed Delivery Project Management Quality Affecting Procedures Management Plan

    International Nuclear Information System (INIS)

    LUND, D.P.

    2000-01-01

    The purpose of the Double Shell Tanks (DST) and Waste Feed Delivery (WFD) Management Assessment Plan is to define how management assessments within DST h WFD will be conducted. The plan as written currently includes only WFD Project assessment topics. Other DST and WFD group assessment topics will be added in future revisions

  18. Anaerobic digestion of solid waste in RAS: Effect of reactor type on the biochemical acidogenic potential (BAP) and assessment of the biochemical methane potential (BMP) by a batch assay

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Letelier-Gordo, Carlos Octavio; Lund, Ivar

    2015-01-01

    the biochemical acidogenic potential of solid waste from juvenile rainbow trout was evaluated by measuring the yield of volatile fatty acids (VFA) during anaerobic digestion by batch or fed-batch reactor operation at hydrolysis time (HT) / hydraulic retention time (HRT) of 1, 5, or 10 days (and for batch......Anaerobic digestion is a way to utilize the potential energy contained in solid waste produced in recirculating aquaculture systems (RASs), either by providing acidogenic products for driving heterotrophic denitrification on site or by directly producing combustive methane. In this study...

  19. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  20. A junk-food hypothesis for gannets feeding on fishery waste

    Science.gov (United States)

    Grémillet, David; Pichegru, Lorien; Kuntz, Grégoire; Woakes, Anthony G; Wilkinson, Sarah; Crawford, Robert J.M; Ryan, Peter G

    2008-01-01

    Worldwide fisheries generate large volumes of fishery waste and it is often assumed that this additional food is beneficial to populations of marine top-predators. We challenge this concept via a detailed study of foraging Cape gannets Morus capensis and of their feeding environment in the Benguela upwelling zone. The natural prey of Cape gannets (pelagic fishes) is depleted and birds now feed extensively on fishery wastes. These are beneficial to non-breeding birds, which show reduced feeding effort and high survival. By contrast, breeding gannets double their diving effort in an attempt to provision their chicks predominantly with high-quality, live pelagic fishes. Owing to a scarcity of this resource, they fail and most chicks die. Our study supports the junk-food hypothesis for Cape gannets since it shows that non-breeding birds can survive when complementing their diet with fishery wastes, but that they struggle to reproduce if live prey is scarce. This is due to the negative impact of low-quality fishery wastes on the growth patterns of gannet chicks. Marine management policies should not assume that fishery waste is generally beneficial to scavenging seabirds and that an abundance of this artificial resource will automatically inflate their populations. PMID:18270155

  1. Calcination of Fluorinel-sodium waste blends using sugar as a feed additive (formerly WINCO-11879)

    International Nuclear Information System (INIS)

    Newby, B.J.; Thomson, T.D.; O'Brien, B.H.

    1992-06-01

    Methods were studied for using sugar as a feed additive for converting the sodium-bearing wastes stored at the Idaho Chemical Processing Plant into granular, free flowing solids by fluidized-bed calcination at 500 degrees C. All methods studied blended sodium-bearing wastes with Fluorinel wastes but differed in the types of sugar (sucrose or dextrose) that were added to the blend. The most promising sugar additive was determined to be sucrose, since it is converted more completely to inorganic carbon than is dextrose. The effect of the feed aluminum-to-alkali metal mole ratio on calcination of these blends with sugar was also investigated. Increasing the aluminum-to-alkali metal ratio from 0.6 to 1.0 decreased the calcine product-to-fines ratio from 3.0 to 1.0 and the attrition index from 80 to 15%. Further increasing the ratio to 1.25 had no effect

  2. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulated waste feeds from Hanford, Savannah River, and Germany were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. the majority of particles and agglomerates were generally less than 10 microns; however, large agglomerations (up to 1 mm) were found in the German feed. Detailed particle distribution and characterization was performed for a Hanford waste to provide input to computer modeling of particle settling in the melter

  3. Utilization of shrimp industry waste in the formulation of tilapia (Oreochromis niloticus Linnaeus) feed.

    Science.gov (United States)

    Oliveira Cavalheiro, José Marcelino; Oliveira de Souza, Erivelto; Bora, Pushkar Singh

    2007-02-01

    A rapid expansion of fisheries is demanding an adequate supply of efficient, nutritious and inexpensive fish feed, because feed contributes highly to the cost of fish production. Shrimp head, a waste product from the shrimp export industry qualifies as an economical, abundant and good quality protein source for fish feeds. In the present work, shrimp head silage powder, which contained approximately 40% protein, was used as a substitute for fish flour. Four feeds, in the form of pellets, were prepared by substituting shrimp head silage for fish flour at 0%, 33.3%, 66.6% and 100% dietary levels. Other ingredients such as corn, soy, bovine blood, cassava and corn cob flours, soy oil, vitamin premix, salt, and other components also were used in the formulation. A commercial fish feed was used as the control. The proximate composition of these feeds did not differ significantly at p>0.05, except for the protein content of the control feed, which was about 30.6% versus 35.4-36.9% protein in the other diets. No significant differences (p>0.05 level) in weight and length of juveniles fed with the different feeds during a period of 60 days were observed. In all cases, an excellent correlation (0.9950-0.9996) between weight and length of juveniles was observed. No significant difference in growth of juveniles fed on R1, R2, R3, or R4, or the control feed, was observed. Similarly, the proximate analyses of the flesh of juveniles did not present significant differences (p>0.05). The result of the study indicates that the shrimp head silage could replace fish flour as an ingredient in tilapia feed with economic advantages and without sacrificing the quality of the feed.

  4. Backcasting to identify food waste prevention and mitigation opportunities for infant feeding in maternity services.

    Science.gov (United States)

    Ryan-Fogarty, Yvonne; Becker, Genevieve; Moles, Richard; O'Regan, Bernadette

    2017-03-01

    Food waste in hospitals is of major concern for two reasons: one, healthcare needs to move toward preventative and demand led models for sustainability and two, food system sustainability needs to seek preventative measures such as diet adaptation and waste prevention. The impact of breast-milk substitute use on health services are well established in literature in terms of healthcare implications, cost and resourcing, however as a food demand and waste management issue little has been published to date. This paper presents the use of a desk based backcasting method to analyse food waste prevention, mitigation and management options within the Irish Maternity Service. Best practice in healthcare provision and waste management regulations are used to frame solutions. Strategic problem orientation revealed that 61% of the volume of ready to use breast-milk substitutes purchased by maternity services remains unconsumed and ends up as waste. Thirteen viable strategies to prevent and manage this waste were identified. Significant opportunities exist to prevent waste and also decrease food demand leading to both positive health and environmental outcomes. Backcasting methods display great promise in delivering food waste management strategies in healthcare settings, especially where evidenced best practice policies exist to inform solution forming processes. In terms of food waste prevention and management, difficulties arise in distinguishing between demand reduction, waste prevention and waste reduction measures under the current Waste Management Hierarchy definitions. Ultimately demand reduction at source requires prioritisation, a strategy which is complimentary to health policy on infant feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Preservation of hatchery waste by lactic acid fermentation. 2. Large-scale fermentation and feeding trial to evaluate feeding value.

    Science.gov (United States)

    Deshmukh, A C; Patterson, P H

    1997-09-01

    Two waste streams from a Leghorn hatchery were preserved and recycled by fermentation with a by-product carbohydrate and extrusion processing into new feed ingredients that were evaluated with broiler chickens. Cockerel chicks (CC) and a 60:40 ratio of CC:shell waste (CC:SW) were fermented in 189-L barrels for 21 d following grinding, then mixing with a liquid culture (0.2%) and carbohydrate source at 15 and 16.66%, respectively. At 2 wk, pH was 4.44 and 5.09 for the CC and CC:SW products compared with higher values of 6.54 and 6.98 for the raw ingredients at the onset. Negligible hydrogen sulfide and no ammonia gas were recorded during the fermentation period. At 21 d, the fermented CC and CC:SW were extruded, dried, and ground to meals containing CP and TMEn levels of 47.4%, 3,187 kcal/kg, and 33.1%, 2,696 kcal/kg, respectively. Broiler chickens were fed a control diet and the CC (5 and 10%) and CC:SW (2.5 and 5%) ingredient diets with corn and soybean meal for 6 wk to evaluate feeding value and carcass yield. Body weight, gain and feed conversion at 42 d for birds fed diets supplemented with CC or CC:SW at all levels were comparable to those of the control. Diets supplemented with hatchery by-product had no negative effect on carcass measurements except ready to cook carcass and wing yield, which were significantly greater for the 10% CC:SW birds than for the control. These data indicate that nutrient dense hatchery by-products can be preserved with fermentation up to 21 d and support broiler live performance and carcass yield as dietary ingredients equal to or better than a corn-soybean meal control.

  6. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    Science.gov (United States)

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. SPS batch spacing optimisation

    CERN Document Server

    Velotti, F M; Carlier, E; Goddard, B; Kain, V; Kotzian, G

    2017-01-01

    Until 2015, the LHC filling schemes used the batch spac-ing as specified in the LHC design report. The maximumnumber of bunches injectable in the LHC directly dependson the batch spacing at injection in the SPS and hence onthe MKP rise time.As part of the LHC Injectors Upgrade project for LHCheavy ions, a reduction of the batch spacing is needed. In thisdirection, studies to approach the MKP design rise time of150ns(2-98%) have been carried out. These measurementsgave clear indications that such optimisation, and beyond,could be done also for higher injection momentum beams,where the additional slower MKP (MKP-L) is needed.After the successful results from 2015 SPS batch spacingoptimisation for the Pb-Pb run [1], the same concept wasthought to be used also for proton beams. In fact, thanksto the SPS transverse feed back, it was already observedthat lower batch spacing than the design one (225ns) couldbe achieved. For the 2016 p-Pb run, a batch spacing of200nsfor the proton beam with100nsbunch spacing wasreque...

  8. Towards zero solid waste: utilising tannery waste as a protein source for poultry feed

    OpenAIRE

    Paul, Hiralal; Antunes, A Paula M; Covington, Anthony D; Evans, Paul; Phillips, Paul S

    2013-01-01

    Zero waste is now a strongly emerging issue for sustainable industrial development where minimisation and utilisation of waste are a priority in the leather industry. In a tannery hides and skins converted in to leather through various processes. Approximately 20% (w/w) of the chrome containing tannery solid waste (TSW) is generated from one tonne of raw hides and skins. However, tannery solid waste may also be a resource if it is managed expertly as we move towards zero waste.\\ud This resear...

  9. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    International Nuclear Information System (INIS)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-01-01

    This report contains the results and comparison of data generated from inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition

  10. A novel shredder for municipal solid waste (MSW): influence of feed moisture on breakage performance.

    Science.gov (United States)

    Luo, Siyi; Xiao, Bo; Xiao, Lei

    2010-08-01

    A novel MSW shredder was presented but many aspects of the shredder have not been fully characterized. The feed moisture is an important factor that influences crushing performance. This paper focuses on the effect of feed moisture. The breakage of municipal solid waste (MSW) at several moisture levels (0%, 10%, 20%, 40% and 60%) was conducted with a laboratory shredder to investigate the effect of feed moisture on product size distribution and specific energy consumption under two different hydraulic pressures (40 and 60 kg/cm(2)). The results showed definite effects of feed moisture on the product size distribution and specific energy consumption: there is a tendency for the fine production in products to decrease with increasing amounts of water content in the feed; with the increasing feed moisture, specific energy shows an increasing trend; the specific energy and product size distribution under lower hydraulic pressure is more sensitive to the feed moisture than it is under higher hydraulic pressure. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  11. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.

    Science.gov (United States)

    Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo

    2013-10-15

    Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Infant feeding practices among mildly wasted children: a retrospective study on Nias Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Inayati Dyah

    2012-03-01

    Full Text Available Abstract Background This study investigated the infant feeding practices of participating mothers who were recruited into a research project aimed at improving the nutritional status of mildly wasted children (-scores aged ≥ 6 to Methods Cross-sectional, questionnaire-based interview of mothers of the index children (n = 215 who were admitted to the community program for mildly wasted children in the study area. Four focus groups and twenty in-depth interviews were conducted to explore further information on infant feeding practices in the study area. Results Retrospective results indicated that 6% of the mothers never breastfed. Fifty two percent of mothers initiated breastfeeding within six hours of birth, but 17% discarded colostrum. Exclusive breastfeeding until 6 months of age was practiced by 12%. Seventy-four percent of the mothers offered supplementary liquids besides breast milk within the first 7 days of life, and 14% of infants received these supplementary liquids from 7 days onwards until 6 months of age. Moreover, 79% of the infants were given complementary foods (solid, semi-solid, or soft foods before 6 months of age. About 9% of the children were breastfed at least two years. Less than one in five of the mildly wasted children (19% were breastfed on admission to the community program. Qualitative assessments found that inappropriate infant feeding practices were strongly influenced by traditional beliefs of the mothers and paternal grandmothers in the study areas. Conclusion Generally, suboptimal infant feeding was widely practiced among mothers of mildly wasted children in the study area on Nias Island, Indonesia. To promote breastfeeding practices among mothers on Nias Island, appropriate nutrition training for community workers and health-nutrition officers is needed to improve relevant counseling skills. In addition, encouraging public nutrition education that promotes breastfeeding, taking into account social

  13. Remotely controlled reagent feed system for mixed waste treatment Tank Farm

    International Nuclear Information System (INIS)

    Dennison, D.K.; Bowers, J.S.; Reed, R.K.

    1995-02-01

    LLNL has developed and installed a large-scale. remotely controlled, reagent feed system for use at its existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). LLNL's Tank Farm is used to treat aqueous low-level and mixed wastes prior to vacuum filtration and to remove the hazardous and radioactive components before it is discharged to the City of Livermore Water Reclamation Plant (LWRP) via the sanitary sewer in accordance with established limits. This reagent feed system was installed to improve operational safety and process efficiency by eliminating the need for manual handling of various reagents used in the aqueous waste treatment processes. This was done by installing a delivery system that is controlled either remotely or locally via a programmable logic controller (PLC). The system consists of a pumping station, four sets of piping to each of six 6,800-L (1,800-gal) treatment tanks, air-actuated discharge valves at each tank, a pH/temperature probe at each tank, and the PLC-based control and monitoring system. During operation, the reagents are slowly added to the tanks in a preprogrammed and controlled manner while the pH, temperature, and liquid level are continuously monitored by the PLC. This paper presents the purpose of this reagent feed system, provides background related to LLNL's low-level/mixed waste treatment processes, describes the major system components, outlines system operation, and discusses current status and plans

  14. Preliminary Assessment of the Hanford Tank Waste Feed Acceptance and Product Qualification Programs

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C. C.; Adamson, Duane J.; Herman, D. T.; Peeler, David K.; Poirier, Micheal R.; Reboul, S. H.; Stone, M. E.; Peterson, Reid A.; Chun, Jaehun; Fort, James A.; Vienna, John D.; Wells, Beric E.

    2013-04-01

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL) have been chartered to implement a science and technology program addressing Hanford Tank waste feed acceptance and product qualification. As a first step, the laboratories examined the technical risks and uncertainties associated with the planned waste feed acceptance and qualification testing for Hanford tank wastes. Science and technology gaps were identified for work associated with 1) feed criteria development with emphasis on identifying the feed properties and the process requirements, 2) the Tank Waste Treatment and Immobilization Plant (WTP) process qualification program, and 3) the WTP HLW glass product qualification program. Opportunities for streamlining the accetpance and qualification programs were also considered in the gap assessment. Technical approaches to address the science and technology gaps and/or implement the opportunities were identified. These approaches will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Pursuing the identified approaches will have immediate and long-term benefits to DOE in reducing risks and uncertainties associated with tank waste removal and preparation, transfers from the tank farm to the WTP, processing within the WTP Pretreatment Facility, and in producing qualified HLW glass products. Additionally, implementation of the identified opportunities provides the potential for long-term cost savings given the anticipated

  15. Formulation of a fish feed for goldfish with natural astaxanthin extracted from shrimp waste.

    Science.gov (United States)

    Weeratunge, W K O V; Perera, B G K

    2016-01-01

    Astaxanthin is a xanthophyll carotenoid, which exhibits many important biological activities including a high degree of antioxidant capacity (AOC) and antibacterial activity, hence has a significant applicability in food, pharmaceutical and cosmetic industries. An attempt was made towards optimization of astaxanthin extraction conditions using three different extraction conditions and a solvent series, from uncooked, cooked and acid-treated shrimp waste, which is a readily available and cheap source of the pigment. The astaxanthin extracts were analyzed by comparing their UV-visible absorbance spectra and thin layer chromatograms with a standard astaxanthin sample. The percentage of astaxanthin in each crude sample was determined using the Beer-Lambert law. The Folin-Ciocalteu assay and the disk diffusion assay were used to investigate the antioxidant capacities and antibacterial activities of extracted astaxanthin samples respectively. The extracted astaxanthin was incorporated into fish feeds to test its ability to enhance the skin color of goldfish. The best astaxanthin percentage of 68 % was observed with the acetone:ethyl acetate (1:1) solvent system facilitated by maceration of cooked and acid treated shrimp, whereas the best crude yield of 33 % was found to be in the acetone extract of the acid-treated shrimp sample. The highest AOC of 65 µg pyrogallol equivalents/mg was observed for the EtOAc extract obtained by maceration of acid-treated shrimp waste. The highest AOC by sonication and soxhlet extraction methods were also obtained with the EtOAc solvent. The extracts exhibited antibacterial activity against four selected bacterial strains. The newly formulated astaxanthin enriched fish feed was economical and indicated a significant improvement of the skin color and healthiness of goldfish compared to the control feeds. Biologically active astaxanthin can be successfully extracted from shrimp waste in higher percentages. The extraction technique and the

  16. Rheological Properties of Defense Waste processing Facility Melter Feeds

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Mao, F.

    1998-01-01

    In the present investigation, viscosity measurements have been carried out for two types of simulated Defense waste slurries, a Savannah River slurry and a Hanford slurry. The measurements were conducted in two experimental options. A rotational viscometer was used to measure viscosity under well-defined temperature and pH value operating conditions. The solids concentration used for this option was lower than 15 wt.%. Both the slurries have been investigated using this experimental option. The Savannah River slurry has also been investigated in a pipeline flow system, which measured the pressure drop as the slurry flowed through the pipe. The slurry's viscosity can be extracted from the pressure drop information. These investigations have been performed in relatively wide parameter ranges. The solids concentration of the slurry tested in the pipeline system was as high as 25 wt.%.The slurry pH in both experimental options covered a range of 4 to 13.5. The highest operating temperature was 66 C for the rotational viscometer and 55 C for the pipeline system. In FY97, the experiments for the Hanford slurry in the pipeline system will be performed

  17. Pineapple waste-silages as basal feed for growing Boer X Kacang cross goats

    Directory of Open Access Journals (Sweden)

    Simon P Ginting

    2007-10-01

    Full Text Available The study was aimed: 1 to evaluate the effects of using different additives on the quality of pineapple waste-silage (SLN, and 2 to investigate the responses of goats fed with PAS as a basal feed. Pineapple processing wastes include skins and the pulp left after cannery wastes are pressed to extract the juice. Six additive treatments were used in the processing of pressed pineapple wastes, namely 1 urea (5% DM, 2 Urea (2% DM and cassava meal (3% DM, 3 molasses (5% DM, 4 urea (2.5% DM and molasses (2.5% DM, 5 fermented-juice lactic acid bacteria (5% DM, and 6 without additives. Fermentation periode were set at 9, 12, 15, 18 and 21 days. The best SLN obtained from those treatments was then used in feeding trials. Twenty male Boer x Kacang crosses with an initial body weight averaging 13.2 ± 1.9 kg were used in this experiment. The animals were allocated to one of the following feed treatments, in DM: A Grasses (75% + SLN (25%, B SLN (75% + Concentrates (25%, C SLN (50% +Concentrate (50%, and D SLN (25% + Concentrates (75%. Using molasses as additive material at 5% and 15 days of fermentation period gave the best chemical and physical characteristics of the SLN. Its crude fiber content decreased and it showed the lowest pH (4.7 The silage showed temperature at 280C, and its taste was sour, and no fungi contamination. The DM and OM intakes and DM, OM and N digestibility were not different (P>0.05 between the animals fed 75% Grass/25% CON and 75% SLN/25% CON. When the proportion of concentrates in the rations was increased, the feed intake and digestibility were increase significantly (P<0.05. ADG (71.3 vs 68.8 g and feed efficiency (11.2 vs 13.4 was similar between the 75% Grass/25% CON and 75% SLN 25% CON groups. ADG increased significantly (P<0.05 when the proportion of concentrates in ration was increased to 50% (82.6 g or to 75% (89.1 g. N retention was positive in all treatments, and it was increased significantly (P<0.05 as the proportion of

  18. Radiation induced chemical changes in and disinfection of organic wastes suitable for supplemental feed

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1980-01-01

    Ionizing radiation has been found to disinfect organic wastes and simultaneously ease the separation of suspended solids from water. Because these effects can have important favourable impacts on the technology of upgrading organic wastes to animal feed or fertilizers, experimental studies are reported on the rationale of effects of gamma irradiation or disinfection and separation of the solid and the liquid phase of organic waste systems. The radiation inactivation of microorganisms occurs by direct and indirect action. Mechanisms of inactivation are discussed and measures are proposed how the indirect action of the radiation inactivation of microorganisms can be increased. Effects of gamma irradiation on dewatering properties of organic wastes were indirectly caused by the oxidizing OH radicals produced by the irradiation of water. OH radicals react with organic components of the solid phase which leads to their solubilisation resulting in an increase of the total organic carbon concentration in the liquid phase. Results of a mutagenicity test indicate that the solvated compounds exhibited no mutagenic activity. Microbiological case studies on the disinfection and upgrading of liquid and solid organic wastes to animal feed are discussed and the acceptance of radiation processing is evaluated. (Auth.)

  19. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    Energy Technology Data Exchange (ETDEWEB)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  20. Thermoradiation treatment of sewage sludge using reactor waste to obtain acceptable fertilizer or animal supplement feed

    International Nuclear Information System (INIS)

    Sivinski, H.D.

    1976-01-01

    This document is a report of the Beneficial Uses Program. This program consists of a number of activities at Sandia Laboratories to develop the necessary technology for cost-beneficial use of a maximum amount of radioactive waste. Major activity is currently concentrated in the Waste Resources Utilization Program which has as its objective the use of cesium-134/137 as a gamma radiation source, coupled with modest heating, to treat sewage sludge to rid it of pathogenic organisms so that it may safely be used as a fertilizer or a feed supplement for ruminant animals. (author)

  1. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1998-01-01

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization

  2. SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED

    Energy Technology Data Exchange (ETDEWEB)

    Cercy, M.; Peeler, D.; Stone, M.

    2013-09-25

    This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

  3. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulate waste feeds from Hanford, Savannah River, and Kernforschungszentrum Karlsruhe were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. The majority of particles and agglomerates were generally less than 10 μm; however, large agglomerations (up to 1 mm) were found in the German feed. 5 refs., 6 figs., 2 tabs

  4. Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste.

    Science.gov (United States)

    Park, Jong-Hun; Kumar, Gopalakrishnan; Yun, Yeo-Myeong; Kwon, Joong-Chun; Kim, Sang-Hyoun

    2018-01-01

    The effect of feeding mode and dilution was studied in anaerobic digestion of food waste. An upflow anaerobic digester with a settler was fed at six different organic loading rates (OLRs) from 4.6 to 8.6kgCOD/m 3 /d for 200days. The highest methane productivity of 2.78LCH 4 /L/d was achieved at 8.6kgCOD/m 3 /d during continuous feeding of diluted FW. Continuous feeding of diluted food waste showed more stable and efficient performance than stepwise feeding of undiluted food waste. Sharp increase in propionate concentration attributed towards deterioration of the digester performances in stepwise feeding of undiluted food waste. Microbial communities at various OLRs divulged that the microbial distribution in the continuous feeding of diluted food waste was not significantly perturbed despite the increase of OLR up to 8.6kgCOD/m 3 /d, which was contrast to the unstable distribution in stepwise feeding of undiluted food waste at 6.1kgCOD/m 3 /d. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  6. Livestock Feed Production from Sago Solid Waste by Pretreatment and Anaerobic Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available Food needs in Indonesia is increasing, including beef. Today, Indonesia has problem to do self-sufficiency in beef. The cause of the problem is the quality of local beef is still lower compared with imported beef due to the quality of livestock feed consumed. To increase the quality of livestock is through pretreatment and fermentation. Source of livestock feed that processed is solid sago waste (Arenga microcarpa, because in Indonesia that is relatively abundant and not used optimally. Chemical pretreatment process for delignification is by using NaOH solution. The purposes of this research are to study NaOH pretreatment, the addition of Trichoderma sp, and fermentation time to improve the quality of sago solid waste as livestock feed through anaerobic fermentation. The variables used are addition or without addition (4%w NaOH solution and Trichoderma sp 1%w and fermentation time (7, 14 and 21 days, with the response of crude fiber and protein. The result of this research shows that the pretreatment with soaking of NaOH solution, addition of Trichoderma sp and 14 days of fermentation was more effective to improve the quality of solid sago waste with decrease of crude fiber from 33.37% to 17.36% and increase of crude protein from 4.00% to 7.96%.

  7. Impacts of waste from concentrated animal feeding operations on water quality

    Science.gov (United States)

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  8. Enhancement of certain agro-cellulosic wastes through radiation processing for livestock feed

    International Nuclear Information System (INIS)

    Farag, D.M.H.; Zakaria, S.

    1999-01-01

    A study was undertaken with air-dried peanut hulls, sugarcane bagasse, corn stalks, concobs, banana leaves, wheat straw and broad bean straw to determine the effect of radiation treatment up to 3 MGY on their chemical composition and the effect of enzymatic hydrolysis on treated wastes. The effect of gamma irradiation on crude protein, fat and ash of these wastes was negligible. While radiation treatment reduced the content of crude fiber in all these wastes with corresponding increases in dry matter digestibility in vitro, as a function of radiation dose. When peanut hulls, sugarcane bagasse and wheat straw were exposed to gamma rays at 0, 1, 2 and 3 MGy a linear reduction in fiber components (neutral detergent fiber, acid detergent fiber, and lignin), increased in glucose yield enzymatic hydrolysis and dry matter digestibility were observed for peanut hulls, sugarcane bagasse and wheat straw. The findings confirm that irradiation of fibrous vegetable materials could convert them into a valuable feed supplement

  9. PHYSICAL CHARACTERIZATION OF VITREOUS STATE LABORATORY AY102/C106 AND AZ102 HIGH LEVEL WASTE MELTER FEED SIMULANTS (U)

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E

    2005-03-31

    The objective of this task is to characterize and report specified physical properties and pH of simulant high level waste (HLW) melter feeds (MF) processed through the scaled melters at Vitreous State Laboratories (VSL). The HLW MF simulants characterized are VSL AZ102 straight hydroxide melter feed, VSL AZ102 straight hydroxide rheology adjusted melter feed, VSL AY102/C106 straight hydroxide melter feed, VSL AY102/C106 straight hydroxide rheology adjusted melter feed, and Savannah River National Laboratory (SRNL) AY102/C106 precipitated hydroxide processed sludge blended with glass former chemicals at VSL to make melter feed. The physical properties and pH were characterized using the methods stated in the Waste Treatment Plant (WTP) characterization procedure (Ref. 7).

  10. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    International Nuclear Information System (INIS)

    JULYK, L.J.

    1999-01-01

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant

  11. Waste Feed Delivery System Phase 1 Preliminary Reliability and Availability and Maintainability Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CARLSON, A.B.

    1999-11-11

    The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed.

  12. Waste Feed Delivery System Phase 1 Preliminary Reliability and Availability and Maintainability Analysis [SEC 1 and 2

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1999-01-01

    The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed

  13. Engineering evaluation/cost analysis: Waste Pit Area storm water runoff control, Feed Materials Production Center, Fernald, Ohio

    International Nuclear Information System (INIS)

    1990-08-01

    This report evaluates remedial action alternatives at the Feed Materials production Center in response to the need to contain contaminated storm water runoff. The storm water is being contaminated as it falls over a radioactive/chemical waste pit which contains uranium contaminated wastes. Alternatives considered include no action, surface capping, surface capping with lateral drainage, runoff collection and treatment, and source removal

  14. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    Czech Academy of Sciences Publication Activity Database

    Hujová, Miroslava; Pokorný, R.; Kloužek, Jaroslav; Dixon, D.R.; Cutforth, D.A.; Lee, S.; McCarthy, B.P.; Schweiger, M. J.; Kruger, A.A.; Hrma, P.

    2017-01-01

    Roč. 100, č. 11 (2017), s. 5096-5106 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : foams * glassmelting * modelling/model * thermal conductivity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.841, year: 2016

  15. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  16. Round-bale feeder design affects hay waste and economics during horse feeding.

    Science.gov (United States)

    Martinson, K; Wilson, J; Cleary, K; Lazarus, W; Thomas, W; Hathaway, M

    2012-03-01

    Many horse owners find round bales convenient, less labor intensive, and more affordable than other hay types, but report an inability to control horse BW gain and excessive hay waste. The objectives were to compare hay waste, hay intake, and payback of 9 round-bale feeders and a no-feeder control when used during horse feeding. Nine round-bale feeders were tested: Cinch Net, Cone, Covered Cradle, Hayhut, Hay Sleigh, Ring, Tombstone, Tombstone Saver, and Waste Less. Each feeder design was placed on the ground in a dirt paddock. Five groups of 5 horses were fed in rotation for a 4-d period with each feeder. Every fourth day, groups were rotated among paddocks and a new round bale was placed in each feeder. In the 5 paddocks used, 5 feeders were installed for d 1 through 20, and the remaining 4 feeders and no-feeder control were installed for d 21 through 40. Groups of horses were sequentially assigned to feeders using two 5 × 5 Latin squares, the first for d 1 through 20, the second for d 21 through 40. Horse groups of similar age, BW, breed, and sex were formed from 25 Quarter Horse and Thoroughbred geldings and open mares (means: 11 yr; 541 kg of BW). Hay on the ground surrounding the feeder was collected daily, dried, and weighed. The total amount of hay removed around each feeder for a 4-d period was considered waste. Dry matter intake was estimated as the difference between hay disappearance and waste. Number of months for the reduction in waste to repay feeder cost (payback) were calculated using hay valued at $110/t, and improved feeder efficiency over the control. Feeder design did not affect hay intake (P > 0.05); all feeders resulted in an estimated hay intake of 2.0 to 2.4% BW; the no-feeder control resulted in a reduced intake of 1.3% BW (P = 0.001). Mean percentage of hay waste differed among feeders (P feeder control, 57%. Feeder design also affected payback (P feeder design affected hay waste and payback, but not estimated hay intake or BW change

  17. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING and SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    International Nuclear Information System (INIS)

    Griffin, P.W.

    2009-01-01

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  18. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  19. Initial Investigation of Waste Feed Delivery Tank Mixing and Sampling Issues

    International Nuclear Information System (INIS)

    Fort, James A.; Bamberger, Judith A.; Meyer, Perry A.; Stewart, Charles W.

    2007-01-01

    The Hanford tank farms contractor will deliver waste to the Waste Treatment Plant (WTP) from a staging double-shell tank. The WTP broadly classifies waste it receives in terms of 'Envelopes,' each with different limiting properties and composition ranges. Envelope A, B, and C wastes are liquids that can include up to 4% entrained solids that can be pumped directly from the staging DST without mixing. Envelope D waste contains insoluble solids and must be mixed before transfer. The mixing and sampling issues lie within Envelope D solid-liquid slurries. The question is how effectively these slurries are mixed and how representative the grab samples are that are taken immediately after mixing. This report summarizes the current state of knowledge concerning jet mixing of wastes in underground storage tanks. Waste feed sampling requirements are listed, and their apparent assumption of uniformity by lack of a requirement for sample representativeness is cited as a significant issue. The case is made that there is not an adequate technical basis to provide such a sampling regimen because not enough is known about what can be achieved in mixing and distribution of solids by use of the baseline submersible mixing pump system. A combined mixing-sampling test program is recommended to fill this gap. Historical Pacific Northwest National Laboratory project and tank farms contractor documents are used to make this case. A substantial investment and progress are being made to understand mixing issues at the WTP. A summary of the key WTP activities relevant to this project is presented in this report. The relevant aspects of the WTP mixing work, together with a previously developed scaled test strategy for determining solids suspension with submerged mixer pumps (discussed in Section 3) provide a solid foundation for developing a path forward

  20. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  1. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    International Nuclear Information System (INIS)

    Villarroel, M.; Alvarino, J. M. R.; Duran, J. M.

    2011-01-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by f ish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for f ish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC 2 5, HCO3 - , Cl - , NH + 4 , NO 2 - , NO 3 - , H 2 PO 4 - , SO 4 2 -, Na + , K + , Ca 2 + and Mg 2 + build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO 3 - , followed, in decreasing order, by Ca 2 +, H 2 PO 4 - , K + , Mg 2 + and SO 4 2 -. The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO 3 - , Ca 2 +, H 2 PO 4 - and K + ) at a density of 2 kg fish m3, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  2. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    International Nuclear Information System (INIS)

    Seymour, R.G.

    1995-01-01

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H 2 ) and ammonia (NH 3 ) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H 2 and NH 3 could evolve at appreciable rates and quantities. The explosive nature of H 2 and NH 3 (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed

  3. Performance of crossbred heifers in different step-down waste milk-feeding strategies.

    Science.gov (United States)

    Leão, Juliana Mergh; Lima, Juliana Aparecida Mello; Lana, Ângela Maria Quintão; Saturnino, Helton Mattana; Reis, Ronaldo Braga; Barbosa, Fabiano Alvim; de Azevedo, Rafael Alves; Sá Fortes, Robson Vilela; Coelho, Sandra Gesteira

    2016-12-01

    The aim of this study was to evaluate the consumption, performance, feed efficiency, glucose concentration, and the cost per kilogram of weight gain of crossbred Holstein-Gyr heifers (n = 33) subjected to one of the three waste milk step-down strategies: 6L-30d/4L-60d/2L-90d (T1), 6L-45d/4L-60d/2L-90d (T2), and 8L-30d/6L-60d/3L-90d (T3). Heifers were weaned at the age of 91 days. Water and starter were provided ad libitum. The average waste milk intake was higher in T3 than in T1 and T2 strategies until 30 days and between 60 and 90 days. The starter intake did not differ among the strategies until 45 days, but it was higher in strategy T1 than in strategy T3 between 60 and 90 days. The waste milk step-down strategy did not influence the total dry matter intake, average daily gain, body weight, and feed efficiency. Glucose concentrations in plasma varied within a range that could be considered normal and were similar among the treatments. The average cost per kilogram of weight gain was the lowest in strategy T1 (US$3.0) compared to that in the other strategies (T2, US$3.2, and T3, US$3.6). The 6L-30d/4L-60d/2L-90d waste milk step-down strategy was the most effective, since it increased the starter intake, led to normal glucose concentrations in plasma, and caused similar weight gain compared with the other strategies; however, it had a lower cost per kilogram.

  4. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    International Nuclear Information System (INIS)

    Lee, Kearn P.; Thien, Michael G.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased

  5. Batch-wise final disposal made feasible by long-term interim storage of waste: the choice of the Netherlands

    International Nuclear Information System (INIS)

    Codee, Hans D.K.; Vrijen, Jan

    1991-01-01

    Radioactive waste produced in the Netherlands is managed by COVRA, the Central Organisation for Radioactive Waste. All kinds and categories of radwaste generated in the next 50-100 years will be stored in above ground engineered structures which allow retrieval at all times. After this long-term storage, the wastes will finally be disposed of in a deep geologic repository. At the political level no firm decisions have yet been taken with respect to the final disposal. Disposal in rock salt, which is available in the Netherlands, is explored as an option. Immediate disposal requires the availability of a large amount of money as well as a site. Neither of the two are available at present in the Netherlands, nor are they required at this time. Based on economic considerations, immediate disposal into a rock salt facility in not an acceptable option for the wastes presently produced in the Netherlands. Only after sufficient capital has been generated through an interest bearing fund can this option be considered for implementation

  6. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    Science.gov (United States)

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  7. Apparatus of vaporizing and condensing liquid radioactive wastes and its operation method

    International Nuclear Information System (INIS)

    Irie, Hiromitsu; Tajima, Fumio.

    1975-01-01

    Object: To prevent corrosion of material for a vapor-condenser and a vapor heater and to prevent radioactive contamination of heated vapor. Structure: Liquid waste is fed from a liquid feeding tank to a vapor-condenser to vaporize and condense the waste. Uncondensed liquid waste, which is not in a level of a given density, is temporally stored in a batch tank through a switching valve and a pipe. Prior to successive feeding from the liquid feeding tank, the uncondensed liquid waste within the batch tank is returned by a return pump to the condenser, after which a new liquid is fed from the liquid feeding tank for re-vaporization and condensation in the vapor-condenser. Then, similar operation is repeated until the uncondensed liquid waste assumes a given density, and when the uncondensed liquid waste reaches a given density, the condensed liquid waste is discharged into the storage tank through the switching valve. (Ohara, T.)

  8. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  9. Fed-batch culture for the direct conversion of cellulosic substrates to acetic acid/ethanol by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.K.R.; Singh, A.; Schuegerl, K. (Hannover Univ. (Germany). Inst. fuer Technische Chemie)

    1991-01-01

    The production of acetic acid/ethanol and hydrolytic enzymes from potato waste (cellulosic waste from potato starch industries) by Fusarium oxysporum 841 was improved considerably by using fed-batch culture. In this, two types of feed policies were adopted consisting of different substrate concentrations and feeding times. In fed-batch culture, the enzymes tested, namely avicelase, CMCase, cellobiase and xylanase, showed significant improvements over batch fermentations with regard to enzyme titres and productivities. The maximum concentration, yield and productivity of acetic acid were 22.5 g litre{sup -1}, 0.38 g (g {sub strate}){sup -1} and 0.09 g litre{sup -1} h{sup -1}, respectively, and these values for ethanol were 5.7 g litre{sup -1}, 0.1 g (g substrate){sup -1} and 0.03 g litre{sup -1}h{sup -1}, respectively. (author).

  10. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  11. A summary report on feed preparation offgas and glass redox data for Hanford waste vitrification plant: Letter report

    International Nuclear Information System (INIS)

    Merz, M.D.

    1996-03-01

    Tests to evaluate feed processing options for the Hanford Waste Vitrification Plant (HWVP) were conducted by a number of investigators, and considerable data were acquired for tests of different scale, including recent full-scale tests. In this report, a comparison was made of the characteristics of feed preparation observed in tests of scale ranging from 57 ml to full-scale of 28,000 liters. These tests included Pacific Northwest Laboratory (PNL) laboratory-scale tests, Kernforschungszentrums Karlsruhe (KfK) melter feed preparation, Research Scale Melter (RSM) feed preparation, Integrated DWPF Melter System (IDMS) feed preparation, Slurry Integrated Performance Testing (SIPT) feed preparation, and formic acid addition to Hanford Neutralized Current Acid Waste (NCAW) care samples.' The data presented herein were drawn mainly from draft reports and include system characteristics such as slurry volume and depth, sweep gas flow rate, headspace, and heating and stirring characteristics. Operating conditions such as acid feed rate, temperature, starting pH, final pH, quantities and type of frit, nitrite, nitrate, and carbonate concentrations, noble metal content, and waste oxide loading were tabulated. Offgas data for CO 2 , NO x , N 2 O, NO 2 , H 2 and NH 3 were tabulated on a common basis. Observation and non-observation of other species were also noted

  12. Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery - Effects of process conditions during batch tests.

    Science.gov (United States)

    Girotto, Francesca; Lavagnolo, Maria Cristina; Pivato, Alberto; Cossu, Raffaello

    2017-12-01

    The problem of fossil fuels dependency is being addressed through sustainable bio-fuels and bio-products production worldwide. At the base of this bio-based economy there is the efficient use of biomass as non-virgin feedstock. Through acidogenic fermentation, organic waste can be valorised in order to obtain several precursors to be used for bio-plastic production. Some investigations have been done but there is still a lack of knowledge that must be filled before moving to effective full scale plants. Acidogenic fermentation batch tests were performed using food waste (FW) and cheese whey (CW) as substrates. Effects of nine different combinations of substrate to inoculum (S/I) ratio (2, 4, and 6) and initial pH (5, 7, and 9) were investigated for metabolites (acetate, butyrate, propionate, valerate, lactate, and ethanol) productions. Results showed that the most abundant metabolites deriving from FW fermentation were butyrate and acetate, mainly influenced by the S/I ratio (acetate and butyrate maximum productions of 21.4 and 34.5g/L, respectively, at S/I=6). Instead, when dealing with CW, lactate was the dominant metabolite significantly correlated with pH (lactate maximum production of 15.7g/L at pH = 9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Upgrading of oil palm wastes to animal feeds by radiation and fermentation treatment

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Ito, Hitoshi; Hashimoto, Shoji; Mutaat, H.H.; Awang, M.R.

    1992-01-01

    Upgrading of oil palm cellulosic wastes to animal feeds by radiation and fermentation treatment has been investigated in order to recycle the agro-resources and to reduce the smoke pollution. The process is as follows; decontamination of microorganisms in fermentation media using oil palm wastes by irradiation, inoculation of useful microorganisms, and subsequent microbial digestion of cellulosic materials as well as production of proteins. The dose of 25 kGy was required to sterilize the contaminated bacteria whereas the dose of 5 - 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus was selected as the most suitable seed microorganism for the fermentation of EFB (Empty Fruit Bunch of oil palm). The protein content increased to 13 % and the crude fiber content decreased to 20 % after 30 days incubation with C. cinereus at 30degC in solid state fermentation. It is considered that these fermented products can be used for the ruminant animal feeds. (author)

  14. Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies

    Science.gov (United States)

    Kooh, Muhammad Raziq Rahimi; Dahri, Muhammad Khairud; Lim, Linda B. L.; Lim, Lee Hoon; Chan, Chin Mei

    2018-05-01

    Three plant-based materials, namely water lettuce (WL), tarap peel (TP) and cempedak peel (CP), were used to investigate their potentials as adsorbents using acid blue 25 (AB25) dye as a model for acidic dye. The adsorbents were characterised using Fourier transform infrared spectroscopy, X-ray fluorescence and scanning electron microscope. Batch experiments involving parameters such as pH, temperature, contact time, and initial dye concentration were done to investigate the optimal conditions for the adsorption of AB25 onto the adsorbents. Thermodynamics study showed that the uptake of AB25 by the three adsorbents was feasible and endothermic in nature. Both the Langmuir and Freundlich isotherm models can be used to describe the adsorption process of AB25 onto WL and CP while pseudo-second-order fitted the kinetics data, suggesting that chemisorptions were majorly involved. The use of 0.1 M of NaOH showed the best results in regenerating of the WL, TP and CP's adsorption ability after AB25 treatment.

  15. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste.

    Science.gov (United States)

    Angenent, Largus T; Sung, Shihwu; Raskin, Lutgarde

    2002-11-01

    Changes in methanogenic population levels were followed during startup of a full-scale, farm-based anaerobic sequencing batch reactor (ASBR) and these changes were linked to operational and performance data. The ASBR was inoculated with anaerobic digester sludge from a municipal wastewater treatment facility. During an acclimation period of approximately 3 months, the ASBR content was diluted to maintain a total ammonia-N level of approximately 2000mg l(-1). After this acclimation period, the volatile solids loading rate was increased to its design value of 1.7g l(-1) day(-1) with a 15-day hydraulic retention time, which increased the total ammonia-N level in the ASBR to approximately 3,600 mg l(-1). The 16S ribosomal RNA (rRNA) levels of the acetate-utilizing methanogens of the genus Methanosarcina decreased from 3.8% to 1.2% (expressed as a percentage of the total 16S rRNA levels) during this period, while the 16S rRNA levels of Methanosaeta concilii remained low (below 2.2%). Methane production and reactor performance were not affected as the 16S rRNA levels of the hydrogen-utilizing methanogens of the order Methanomicrobiales increased from 2.3% to 7.0%. Hence, it is likely that during operation with high ammonia levels, the major route of methane production is through a syntrophic relationship between acetate-oxidizing bacteria and hydrogen-utilizing methanogens. Anaerobic digestion at total ammonia-N levels exceeding 3500mg l(-1) was sustainable apparently due to the acclimation of hydrogen-utilizing methanogens to high ammonia levels.

  16. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to the LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF

  17. Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

    1997-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life

  18. The technology of fish-vegetable feed production

    Directory of Open Access Journals (Sweden)

    Mukatova M. D.

    2016-09-01

    Full Text Available Perspective direction of the Volga-Caspian basin fisheries is increasing the productivity of aquaculture production which requires the availability of sufficient quantities of feed. The cutting waste of carp and crucian carp, crayfish processing (cephalothorax, wheat bran, soy isolate, freshwater plants – pondweed perfoliate, fish-vegetable ration, produced feeding staffs have been investigated. In researching samples of manufactured pelleted feeds the standard methods adopted in the animal feed industry have been used. The number of nitrogen-free extractives and energy value has been determined by calculation. The composition of fish-vegetable ration has been worked out. Some manufacturing inspection of fish-vegetable feed technology using proofing process has been carried out. The possibility of manufacturing on the basis of crushed fish waste of the company LLC "VES" and dry ingredients of fish-vegetable feed has been determined; the output of feed at water content of not more than 10 % is 43 % of feed mix based on the mass of directed waste equal to 84 %. The pilot batch of dry fish-vegetable feed has been investigated to establish quality indicators. It has been determined that fish-vegetable feed meets the requirements of GOST 10385–2014 "Combined feeding staffs for fishes. General specifications" as for main quality indicators and refers to economic grower for catfish and carp fish weighing more than 50 g. This reveals good palatability of the experimental batch of floating feed by carp fish species and African catfish. Thus, fish-vegetable feed manufacturing technology can be implemented in the production for processing secondary raw materials: waste from butchering fish by grinding, cooking, mixing with selected vegetable fillings which is waste of flour or grain processing industries and freshwater plants mowed annually during the reclamation works on the Volga delta.

  19. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  20. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Science.gov (United States)

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700 °C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  1. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Villarroel, M; Alvarino, J M. R.; Duran, J M

    2011-07-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3{sup -}, Cl{sup -}, NH{sup +}{sub 4}, NO{sub 2}{sup -}, NO{sub 3}{sup -}, H{sub 2}PO{sub 4}{sup -}, SO{sub 4}{sup 2}-, Na{sup +}, K{sup +}, Ca{sup 2}+ and Mg{sup 2}+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO{sub 3}{sup -}, followed, in decreasing order, by Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -}, K{sup +}, Mg{sup 2}+ and SO{sub 4}{sup 2}-. The total amount of feed required per mEq ranged from 1.61 - 13.1 kg for the four most abundant ions (NO{sub 3}{sup -}, Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -} and K{sup +}) at a density of 2 kg fish m{sup -3}, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  2. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations.

    Science.gov (United States)

    Heaney, Christopher D; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R

    2015-04-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI]=1.03, 5.94) and 2.30 times (95% CI=0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI=1.21, 6.80) and 3.36 (95% CI=1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fuzzy batch controller for granular materials

    OpenAIRE

    Zamyatin Nikolaj; Smirnov Gennadij; Fedorchuk Yuri; Rusina Olga

    2018-01-01

    The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy infer...

  4. Analytical study plan: Shielded Cells batch 1 campaign; Revision 1

    International Nuclear Information System (INIS)

    Bibler, N.E.; Ha, B.C.; Hay, M.S.; Ferrara, D.M.; Andrews, M.K.

    1993-01-01

    Radioactive operations in the Defense Waste Processing Facility (DWPF) will require that the Savannah River Technology Center (SRTC) perform analyses and special studies with actual Savannah River Site (SRS) high-level waste sludge. SRS Tank 42 and Tank 51 will comprise the first batch of sludge to be processed in the DWPF. Approximately 25 liters of sludge from each of these tanks will be characterized and processed in the Shielded Cells of SRTC. During the campaign, processes will include sludge characterization, sludge washing, rheology determination, mixing, hydrogen evolution, feed preparation, and vitrification of the waste. To complete the campaign, the glass will be characterized to determine its durability and crystallinity. This document describes the types of samples that will be produced, the sampling schedule and analyses required, and the methods for sample and analytical control

  5. Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)

    International Nuclear Information System (INIS)

    Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

    1996-02-01

    High-level radioactive waste stored in tanks at the U.S. Department of Energy's (DOE's) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H 2 and NH 3 during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H 2 and NH 3 . Both laboratory-scale and pilot-scale studies at SRTC have documented the H 2 and NH 3 generation phenomenal Because H 2 and NH 3 may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H 2 generation rate and the NH 3 generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste

  6. Vermiconversion of paper waste by earthworm born and grown in the waste-fed reactors compared to the pioneers raised to adulthood on cowdung feed.

    Science.gov (United States)

    Gajalakshmi, S; Abbasi, S A

    2004-08-01

    The performance of four species of earthworm--Eudrilus eugeniae, Kinberg, Drawida willsi Michaelsen, Lampito mauritii, Kinberg and Perionyx excavatus, Perrier--born and grown in vermireactors fed with paper waste was studied over six months, in terms of vermicast output per unit feed, production of offspring, and increase in worm zoomass. These were compared with the performance of the previous generation which had been raised to adulthood on cowdung as principal feed before shifting them to vermireactors operating on cowdung-spiked paper waste. The results indicated that except with D. willsi of which the second generation performed only a shade better than the first, there was significant improvement in vermicast output, animal growth, and reproduction in the second generation compared to the first. The results indicated that cowdung-spiked paper waste can be an adequate food for successive generations of earthworms and that reactors can be operated indefinitely on this feed. The results also indicated that the earthworm generations born and raised in vermireactors operated on this feed become better vermiconverters of this feed than the parent earthworms.

  7. A biotechnological process for treatment and recycling poultry wastes manure as a feed ingredient

    Energy Technology Data Exchange (ETDEWEB)

    El Jalil, M.H. [Faculty of Sciences, Kenitra (Morocco). Biology Dept.; Hassan II Inst. of Agronomy and Veterinary Medicine, Rabat-Instituts (Morocco); Faid, M. [Hassan II Inst. of Agronomy and Veterinary Medicine, Rabat-Instituts (Morocco); Elyachioui, M. [Faculty of Sciences, Kenitra (Morocco)

    2001-07-01

    Poultry wastes manure was diluted by adding the same amount of water 50-50 (w/v). They were then mixed with 10% molasses. The mixture was inoculated with a starter culture of Lactobacillus plantarum and Pediococcus acidolactici, and incubated at 30{sup o}C for 10 days. Changes in nutritional quality and biochemical properties (pH, total nitrogen, total volatile nitrogen, non protein nitrogen, carbohydrates and ash) were determined for the raw and the transformed product. In parallel, microbiological analyses, including standard plant count, enterobacteria and enterococci, were performed. Results indicated that the product obtained from the wastes fermentation showed low counts of enterobacteria and enterococci. Chemical determinations showed a net decrease of the pH to around 4.0 and the growth curve of the lactic acid bacteria showed the success of the acidification process. The total nitrogen was conserved in the product and the total volatile nitrogen was totally eliminated. The product was used for substituting some protein sources in a conventional formula used in laying feeding of three lots. Two formulae containing, respectively, 20% and 40% of the product was compared to the control (0%). The food consumption and laying performances were monitored for 30 days. The nutritional test indicted that the incorporation of the poultry manure silage of up to 40% gave laying performances similar to those obtained with the conventional formula. These results show that it is possible to transform poultry manure by controlled fermentation and that the product has an added value as a feed ingredient. (Author)

  8. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    Science.gov (United States)

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-04-01

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds.

    Science.gov (United States)

    Di Maria, Francesco; Barratta, Martino; Bianconi, Francesco; Placidi, Pisana; Passeri, Daniele

    2017-01-01

    Solid anaerobic digestion batch (SADB) with liquid digestate recirculation and wet anaerobic digestion of organic waste were experimentally investigated. SADB was operated at an organic loading rate (OLR) of 4.55kgVS/m 3 day, generating about 252NL CH 4 /kgVS, whereas the wet digester was operated at an OLR of 0.9kgVS/m 3 day, generating about 320NL CH 4 /kgVS. The initial total volatile fatty acids concentrations for SADB and wet digestion were about 12,500mg/L and 4500mg/L, respectively. There were higher concentrations of ammonium and COD for the SADB compared to the wet one. The genomic analysis performed by high throughput sequencing returned a number of sequences for each sample ranging from 110,619 to 373,307. More than 93% were assigned to the Bacteria domain. Seven and nine major phyla were sequenced for the SADB and wet digestion, respectively, with Bacteroidetes, Firmicutes and Proteobacteria being the dominant phyla in both digesters. Taxonomic profiles suggested a methanogenic pathway characterized by a relevant syntrophic acetate-oxidizing metabolism mainly in the liquid digestate of the SADB. This result also confirms the benefits of liquid digestate recirculation for improving the efficiency of AD performed with high solids (>30%w/w) content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste.

    Science.gov (United States)

    Muñoz-Páez, Karla M; Ríos-Leal, Elvira; Valdez-Vazquez, Idania; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-03-01

    In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added. After the fourth cycle, no more H(2) could be harvested. Interestingly, accumulated hydrogen in 4 cycles was 100% higher than that produced in the first cycle alone. At the end of incubation, partial pressure of H(2) was near zero whereas high concentrations of organic acids and solvents remained in the spent solids. So, since approximate mass balances indicated that there was still a moderate amount of biodegradable matter in the spent solids we hypothesized that the organic metabolites imposed some kind of inhibition on further fermentation of digestates. Spent solids were washed to eliminate organic metabolites and they were used in a second SSAHF-IV. Two more cycles of H(2) production were obtained, with a cumulative production of ca. 2.4 mmol H(2)/mini-reactor. As a conclusion, washing of spent solids of a previous SSAHF-IV allowed for an increase of hydrogen production by 15% in a second run of SSAHF-IV, leading to the validation of our hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effect of Feed Melting, Temperature History, and Minor Component Addition on Spinel Crystallization in High-Level Waste Glass

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Hrma, P.; Arey, B. W.; Plaisted, T. J.

    2001-01-01

    Roč. 289, 1-3 (2001), s. 17-29 ISSN 0022-3093 Grant - others:DOE(US) DE/06/76RL01830 Keywords : feed melting * crystalization * high-level waste glass Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.363, year: 2001

  12. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A.; Ritter, J.A.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe 3 O 4 and FeCrO 4 , results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  13. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    International Nuclear Information System (INIS)

    Seymour, R.G.

    1995-01-01

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing

  14. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    Science.gov (United States)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  15. Application of wet waste from shrimp ( Litopenaeus vannamei) with or without sea mud to feeding sea cucumber ( Stichopus monotuberculatus)

    Science.gov (United States)

    Chen, Yanfeng; Hu, Chaoqun; Ren, Chunhua

    2015-02-01

    In the present study, the applicability of the wet waste collected from shrimp ( Litopenaeus vannamei) to the culture of sea cucumber ( Stichopus monotuberculatus) was determined. The effects of dietary wet shrimp waste on the survival, specific growth rate (SGR), fecal production rate (FPR), ammonia- and nitrite-nitrogen productions of sea cucumber were studied. The total organic matter (TOM) level in the feces of sea cucumber was compared with that in corresponding feeds. Diet C (50% wet shrimp waste and 50% sea mud mash) made sea cucumber grow faster than other diets. Sea cucumber fed with either diet D (25% wet shrimp waste and 75% sea mud mash) or sole sea mud exhibited negative growth. The average lowest total FPR of sea cucumber occurred in diet A (wet shrimp waste), and there was no significant difference in total FPR between diet C and diet E (sea mud mash) ( P > 0.05). The average ammonia-nitrogen production of sea cucumber in different diet treatments decreased gradually with the decrease of crude protein content in different diets. The average highest nitrite-nitrogen production occurred in diet E treatment, and there was no significant difference in nitrite-nitrogen production among diet A, diet B (75% wet shrimp waste and 25% sea mud mash) and diet C treatments ( P > 0.05). In each diet treatment, the total organic matter (TOM) level in feces decreased to different extent compared with that in corresponding feeds.

  16. Anaerobic treatment of palm oil mill effluent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization

    Science.gov (United States)

    Setyowati, Paulina Adina Hari; Halim, Lenny; Mellyanawaty, Melly; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Palm oil mill effluent (POME) is the wastewater discharged from sludge separation, sterilization, and clarification process of palm oil industries. Each ton of palm oil produces about half ton of high organic load wastewater. Up to now, POME treatment is done in lagoon, leaving major problems in land requirement and greenhouse gasses release. The increasing of palm oil production provokes the urgency of appropriate technology application in treating POME to prevent the greenhouse gasses emission while exploit POME as renewable energy source. The purposes of this study were firstly to test the effectiveness of using the digested biodiesel waste as the inoculum and secondly to evaluate the effectiveness of natural zeolite addition in minimizing the inhibitory effect in digesting POME. It was expected that the oil-degrading bacteria in the inoculum would shorten the adaptation period in digesting POME. Furthermore, the consortium formation of anaerobic bacteria accelerated by natural zeolite powder addition would increase the microbial resistance to the inhibitors contained in the POME. The batch digesters, containing 0 (control); 17; 38; and 63 g natural zeolite/g sCOD substrate were observed for 43 days. The result showed that zeolite addition did not give significant effect on sCOD reduction (97.3-98.6% of initial sCOD). Moreover, addition of immobilization media up to 17 g natural zeolite/g stimulated the acidification and biogas production up to 10% higher than control. The purity of methane produced with various amount of immobilization media did not differ for each variation, i.e. 50-54% v/v methane. The increasing amount of natural zeolite up to 63 g/g sCOD did not significantly enhance biogas product rate nor methane content.

  17. Effect of feeding cassava bioethanol waste on nutrient intake, digestibility, and rumen fermentation in growing goats.

    Science.gov (United States)

    Cherdthong, Anusorn; Pornjantuek, Boonserm; Wachirapakorn, Chalong

    2016-10-01

    This experiment was conducted to investigate the effects of various levels of cassava bioethanol waste (CBW) on nutrient intake, digestibility, rumen fermentation, and blood metabolites in growing goats. Twelve crossbred, male (Thai Native × Anglo Nubian) growing goats with initial body weight (BW) of 20±3 kg were randomly assigned according to a completely randomized design (CRD). The dietary treatments were total mixed ration (TMR) containing various levels of CBW at 0, 10, and 20 % dry matter (DM). CBW contained crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) at 11, 69, 47, and 23 % DM, respectively. The TMR diets were offered ad libitum and contained CP at 15 % DM. Inclusion of CBW at 10 % DM in TMR did not alter feed intake (g DM and g/kg BW(0.75)) and CP intake when compared to the control fed group (0 % CBW). Total OM intake was lower in the 20 % CBW group than in the others (P  0.05) whereas when 20 % CBW was incorporated to diet, intermediate digestibility coefficients were decreased. Average ruminal pH values ranged from 6-7. Rumen NH3-N and PUN concentration at 0, 3, and 6 h post-feeding were not significantly different among treatments (P > 0.05). Thus, inclusion of 10 % CBW in TMR diets does not adversely affect nutrient intake, digestibility, rumen fermentation, and blood metabolite in fattening goats, and CBW may be effectively used as an alternative roughage source in the diets of goats.

  18. Appropriate Usage Level of Shrimp Waste Meal as Chitin Source for Feeding Young Crayfish (Astacus leptodactylus Esch. 1823

    Directory of Open Access Journals (Sweden)

    Seval Bahadır Koca*, Nalan Ozgur Yigit, Arife Dulluc, Gonca Erol1, Nihal Cılbız1 and Ramazan Kucukkara1

    2011-06-01

    Full Text Available This study was conducted to determine effects of shrimp waste meal as natural chitin source at different rates (0 (control, 10, 20, 30 and 40% on growth, feed conversion ratio (FCR, survival of young crayfish (1.61±0.04 g and 3.74±0.03 cm for 60 days. Fifteen glass aquariums (70x30x40 cm were used in the experiment and 20 individuals were stocked per aquarium (95/m2. The highest of final weight and weight gain were obtained in feed with 10% shrimp waste meal group (3.29±0.23 and 1.66±0.23 g, while the lowest of final weight and weight gain was obtained in fed with 40% shrimp waste meal group (2.75±0.35 and 1.18±0.37 g, respectively. However, non-significant differences were found between final weight, weight gain, specific growth rate, final total length, feed conversion ratio, survival percentage among groups at the end of experimental period. It was concluded that shrimp waste meal as natural chitin source can be used in young crayfish diets up to 40% without adverse effect influence on growth.

  19. Effects of feeding untreated, pasteurized and acidified waste milk and bunk tank milk on the performance, serum metabolic profiles, immunity, and intestinal development in Holstein calves.

    Science.gov (United States)

    Zou, Yang; Wang, Yajing; Deng, Youfei; Cao, Zhijun; Li, Shengli; Wang, Jiufeng

    2017-01-01

    The present experiment was performed to assess the effects of different sources of milk on the growth performance, serum metabolism, immunity, and intestinal development of calves. Eighty-four Holstein male neonatal calves were assigned to one of the following four treatment groups: those that received bunk tank milk (BTM), untreated waste milk (UWM), pasteurized waste milk (PWM), and acidified waste milk (AWM) for 21 d. Calves in the BTM and AWM groups consumed more starter ( P  feeding on BTM had lower ( P  waste milk. The efficiency of feeding pasteurized and acidified waste milk are comparable, and the acidification of waste milk is an acceptable labor-saving and diarrhea-preventing feed for young calves.

  20. West Valley waste removal system study

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1981-04-01

    This study addresses the specific task of removing high-level wastes from underground tanks at Western New York Nuclear Center and delivering them to an onsite waste solidification plant. It begins with a review of the design and construction features of the waste storage tanks pertinent to the waste removal task with particular emphasis on the unique and complex tank internals which severely complicate the task of removal. It follows with a review of tank cleaning techniques used and under study at both Hanford and Savannah River and previous studies proposing the use of these techniques at West Valley. It concludes from these reviews that existing techniques are not directly transferable to West Valley and that a new approach is required utilizing selected feature and attributes from existing methodology. The study also concludes, from an investigation of the constraints imposed by the processing facility, that waste removal will be intermittent, requiring batch transfer over the anticipated 3 years of processing operations. Based on these reviews and conclusions, the study proposes that the acid waste be processed first and that one of the 15,000-gallon acid tanks then be used for batch feeding the neutralized waste. The proposed system would employ commercially available pumping equipment to transfer the wastes from the batch tank to processing via existing process piping. A commercially available mixed-flow pump and eight turbine pumps would homogenize the neutralized waste in conjunction with eight custom-fabricated sluicers for periodic transfer to the batch tank

  1. Assessment of Available Particle Size Data to Support an Analysis of the Waste Feed Delivery System Transfer System

    International Nuclear Information System (INIS)

    JEWETT, J.R.

    2000-01-01

    Available data pertaining to size distribution of the particulates in Hanford underground tank waste have been reviewed. Although considerable differences exist between measurement methods, it may be stated with 95% confidence that the median particle size does not exceed 275 (micro)m in at least 95% of the ten tanks selected as sources of HLW feed for Phase 1 vitrification in the RPP. This particle size is recommended as a design basis for the WFD transfer system

  2. Comparison of fermented animal feed and mushroom growth media as two value-added options for waste Cassava pulp management.

    Science.gov (United States)

    Trakulvichean, Sivalee; Chaiprasert, Pawinee; Otmakhova, Julia; Songkasiri, Warinthorn

    2017-12-01

    Cassava is one of the main processed crops in Thailand, but this generates large amounts (7.3 million tons in 2015) of waste cassava pulp (WCP). The solid WCP is sold directly to farmers or pulp-drying companies at a low cost to reduce the burden of on-site waste storage. Using an integrated direct and environmental cost model, fermented animal feed and mushroom growth media were compared as added-value waste management alternatives for WCP to mitigate environmental problems. Primary and secondary data were collected from the literature, field data, and case studies. Data boundaries were restricted to a gate-to-gate scenario with a receiving capacity of 500 t WCP/d, and based on a new production unit being set up at the starch factory. The total production cost of each WCP utilization option was analyzed from the economic and environmental costs. Fermented animal feed was an economically attractive scenario, giving a higher net present value (NPV), lower investment cost and environmental impact, and a shorter payback period for the 10-year operational period. The selling price of mushrooms was the most sensitive parameter regarding the NPV, while the NPV for the price of fermented animal feed had the highest value in the best-case scenario.

  3. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    International Nuclear Information System (INIS)

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-01-01

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe 2+ /ΣFe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit

  4. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai, E-mail: kaixu@whut.edu.cn [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Washton, Nancy; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2017-01-15

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min{sup −1} to 700 °C was investigated with transmission electron microscopy, {sup 27}Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m{sup 2} g{sup −1}). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification. - Highlights: • Porous amorphous alumina formed in a simulated high-Al HLW melter feed during heating. • The feed had a high specific surface area at 300 °C ≤ T ≤ 500 °C. • Porous amorphous alumina induced increased specific surface area.

  5. Waste feed from coastal fish farms: A trophic subsidy with compositional side-effects for wild gadoids

    Science.gov (United States)

    Fernandez-Jover, Damian; Martinez-Rubio, Laura; Sanchez-Jerez, Pablo; Bayle-Sempere, Just T.; Lopez Jimenez, Jose Angel; Martínez Lopez, Francisco Javier; Bjørn, Pål-Arne; Uglem, Ingebrigt; Dempster, Tim

    2011-03-01

    Aquaculture of carnivorous fish species in sea-cages typically uses artificial feeds, with a proportion of these feeds lost to the surrounding environment. This lost resource may provide a trophic subsidy to wild fish in the vicinity of fish farms, yet the physiological consequences of the consumption of waste feed by wild fish remain unclear. In two regions in Norway with intensive aquaculture, we tested whether wild saithe ( Pollachius virens) and Atlantic cod ( Gadus morhua) associated with fish farms (F assoc), where waste feed is readily available, had modified diets, condition and fatty acid (FA) compositions in their muscle and liver tissues compared to fish unassociated (UA) with farms. Stomach content analyses revealed that both cod and saithe consumed waste feed in the vicinity of farms (6-96% of their diet was composed of food pellets). This translated into elevated body and liver condition compared to fish caught distant from farms for cod at both locations and elevated body condition for saithe at one of the locations. As a consequence of a modified diet, we detected significantly increased concentrations of terrestrial-derived fatty acids (FAs) such as linoleic (18:2ω6) and oleic (18:1ω9) acids and decreased concentrations of DHA (22:6ω3) in the muscle and/or liver of F assoc cod and saithe when compared with UA fish. In addition, the ω3:ω6 ratio clearly differed between F assoc and UA fish. Linear discriminant analysis (LDA) correctly classified 97% of fish into F assoc or UA origin for both cod and saithe based on the FA composition of liver tissues, and 89% of cod and 86% of saithe into F assoc or UA origin based on the FA composition of muscle. Thus, LDA appears a useful tool for detecting the influence of fish farms on the FA composition of wild fish. Ready availability of waste feed with high protein and fat content provides a clear trophic subsidy to wild fish in coastal waters, yet whether the accompanying side-effect of altered fatty

  6. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1998 annual progress report

    International Nuclear Information System (INIS)

    Crawford, C.; Doctor, R.D.; Landsberger, S.; Nunez, L.; Ritter, J.

    1998-01-01

    'The objective is to reduce the volume and cost of high-level waste glass produced during US DOE remediation activities by demonstrating that magnetic separation can separate crystalline, amorphous, and colloidal constituents in vitrification feed streams known to be deleterious to the production of borosilicate glass. Magnetic separation will add neither chemicals nor generate secondary waste streams. The project includes the systematic study of magnetic interactions of waste constituents under controlled physical and chemical conditions (e.g., hydration, oxidation, temperature) to identify mechanisms that control the magnetic properties. Partitioning of radionuclides to determine their sorption mechanisms is also being studied. The identification of fundamental magnetic properties within the microscopic chemical environment in combination with hydrodynamic and electrodynamic models provides insights into the design of a system for optimal separation. Following this, experimental studies using superconducting open-gradient magnetic separation (OGMS) will be conducted to validate its effectiveness as a pretreatment technique.'

  7. CYCLAM - Recycling by a Laser-driven Drop Jet from Waste that Feeds AM

    Science.gov (United States)

    Kaplan, Alexander F. H.; Samarjy, Ramiz S. M.

    Additive manufacturing of metal parts is supplied by powder or wire. Manufacturing of this raw material causes additional costs and environmental impact. A new technique is proposed where the feeding directly originates from a metal sheet, which can even be waste. When cutting is done by laser-induced boiling, melt is continuously ejected downwards underneath the sheet. The ejected melt is deposited as a track on a substrate, enabling additive manufacturing by substrate movement along a desired path. The melt first flows downwards as a column and after a few millimeters separates into drops, here about 500 micrometer in diameter, as observed by high speed imaging. The drops incorporate sequentially and calmly into a long melt pool on the substrate. While steel drops formed regular tracks on steel and aluminium substrates, on copper substrate periodic drops solidified instead. For this new technique, called CYCLAM, the laser beam acts indirectly while the drop jet becomes the main tool. From imaging, properties like the width or fluctuations of the drop jet can be statistically evaluated. Despite oscillation of the liquid column, the divergence of the drop jet remained small, improving the precision and robustness. The melt leaves the cut sheet as a liquid column, 1 to 4 mm in length, which periodically separates drops that are transferred as a liquid jet to the substrate. For very short distance of 2 to 3 mm between the two sheets this liquid column can transfer the melt continuously as a liquid bridge. This phenomenon was observed, as a variant of the technique, but the duration of the bridge was limited by fluid mechanic instabilities.

  8. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  9. Fuzzy batch controller for granular materials

    Directory of Open Access Journals (Sweden)

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  10. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    Energy Technology Data Exchange (ETDEWEB)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  11. Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-15

    The objective of this study was to investigate the effect of the feed-to-microbe (F/M) ratios on anaerobic digestion of Chinese cabbage waste (CCW) generated from a kimchi factory. The batch test was conducted for 96 days under mesophilic (36.5 °C) (Experiment I) and thermophilic (55 °C) conditions (Experiment II) at F/M ratios of 0.5, 1.0 and 2.0. The first-order kinetic model was evaluated for methane yield. The biogas yield in terms of volatile solids (VS) added increased from 591 to 677 mL/g VS under mesophilic conditions and 434 to 639 mL/g VS under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. Similarly, the volumetric biogas production increased from 1.479 to 6.771 L/L under mesophilic conditions and from 1.086 to 6.384 L/L under thermophilic conditions when F/M ratio increased from 0.5 to 2.0. The VS removal increased from 59.4 to 75.6% under mesophilic conditions and from 63.5 to 78.3% under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The first-order kinetic constant (k, 1/day) decreased under the mesophilic temperature conditions and increased under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The difference between the experimental and predicted methane yield was in the range of 3.4-14.5% under mesophilic conditions and in the range of 1.1-3.0% under thermophilic conditions. The predicted methane yield derived from the first-order kinetic model was in good agreement with the experimental results. Published by Elsevier Ltd.

  12. Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Kuthiala, Sidhant

    2018-01-01

    reactor was comparable with the results obtained from the batch assay (i.e. expected value). Finally, the outputs from an applied mathematical model were in good agreement with the experimental data obtained from the continuous reactor operation, demonstrating that the BioModel can...

  13. Effect of Feed Melting, Temperature History and Minor Component Addition on Spinel Crystallization in High-Level Waste Glass

    International Nuclear Information System (INIS)

    Izak, Pavel; Hrma, Pavel R.; Arey, Bruce W.; Plaisted, Trevor J.

    2001-01-01

    This study was undertaken to help design mathematical models for high-level waste (HLW) glass melter that simulate spinel behavior in molten glass. Spinel, (Fe,Ni,Mn) (Fe,Cr)2O4, is the primary solid phase that precipitates from HLW glasses containing Fe and Ni in sufficient concentrations. Spinel crystallization affects the anticipated cost and risk of HLW vitrification. To study melting reactions, we used simulated HLW feed, prepared with co-precipitated Fe, Ni, Cr, and Mn hydroxides. Feed samples were heated up at a temperature-increase rate (4C/min) close to that which the feed experiences in the HLW glass melter. The decomposition, melting, and dissolution of feed components (such as nitrates, carbonates, and silica) and the formation of intermediate crystalline phases (spinel, sodalite (Na8(AlSiO4)6(NO2)2), and Zr-containing minerals) were characterized using evolved gas analysis, volume-expansion measurement, optical microscope, scanning electron microscope, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction. Nitrates and quartz, the major feed components, converted to a glass-forming melt by 880C. A chromium-free spinel formed in the nitrate melt starting from 520C and Sodalite, a transient product of corundum dissolution, appeared above 600C and eventually dissolved in glass. To investigate the effects of temperature history and minor components (Ru,Ag, and Cu) on the dissolution and growth of spinel crystals, samples were heated up to temperatures above liquidus temperature (TL), then subjected to different temperature histories, and analyzed. The results show that spinel mass fraction, crystals composition, and crystal size depend on the chemical and physical makeup of the feed and temperature history

  14. Preliminary low-level waste feed definition guidance - LLW pretreatment interface

    International Nuclear Information System (INIS)

    Shade, J.W.; Connor, J.M.; Hendrickson, D.W.; Powell, W.J.; Watrous, R.A.

    1995-02-01

    The document describes limits for key constituents in the LLW feed, and the bases for these limits. The potential variability in the stream is then estimated and compared to the limits. Approaches for accomodating uncertainty in feed inventory, processing strategies, and process design (melter and disposal system) are discussed. Finally, regulatory constraints are briefly addressed

  15. Worm-it: converting organic wastes into sustainable fish feed by using aquatic worms

    NARCIS (Netherlands)

    Elissen, H.J.H.; Hendrickx, T.L.G.; Temmink, H.; Laarhoven, B.; Buisman, C.J.N.

    2015-01-01

    Due to overfishing and the use of one-third of wild fish catches for feeding farmed fish and livestock, there is a strong need for alternative sources of suitable proteins and lipids in fish feeds. Small freshwater worms of the species Lumbriculus variegatus can be such a source based on their high

  16. From environmental nuisance to environmental opportunity: housefly larvae convert waste to livestock feed

    NARCIS (Netherlands)

    Zanten, van H.H.E.; Mollenhorst, H.; Oonincx, D.G.A.B.; Bikker, P.; Meerburg, B.G.; Boer, de I.J.M.

    2015-01-01

    The livestock sector is in urgent need for more sustainable feed sources, because of the increased demand for animal-source food and the already high environmental costs associated with it. Recent developments indicate environmental benefits of rearing insects for livestock feed, suggesting that

  17. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  18. Nuclear Waste Vitrification Efficiency: Cold Cap Reactions

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Pokorny, R.

    2011-01-01

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe 2 O 3 and Al 2 O 3 ), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter

  19. Effect of Radiation Processing as an Integral Part of Safe Recycling Kitchen Waste for Poultry Feed

    International Nuclear Information System (INIS)

    Farag, M.; Diaa El-Din, H.

    2004-01-01

    Kitchen wastes are relevant as a source of organic matter (i.e. protein, carbohydrate, minerals, and vitamins). Several microorganisms break down organic matter into methane, carbon dioxide, and other organic compounds containing sulfur and halogens. Kitchen wastes are valuable whereas they are too hazardous to be rejected into the environment without any attempt to recover and recycle them in a valuable form. Recycling kitchen waste as a feedstuff could have a considerable effect on reducing costs and solving some disposal problems. Treated such wastes with ionizing radiation can make an important contribution to minimize the risk of pathogens and the emission of greenhouse gases. The study was undertaken with two hundred and thirty kitchen waste samples collected from different restaurants in Cairo, Egypt. Effect of radiation treatment at 10 kGy on crude protein, amino acids profile, available lysine and the in-vitro digestibility of kitchen waste protein have been studied. The results suggest that radiation pasteurization of dried kitchen waste has a beneficial effect on recycling of such waste and permits waste to be included in poultry ration without any health hazard and nutritional problem. (author)

  20. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in the TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.

  1. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations

    Science.gov (United States)

    Campagnolo, E.R.; Johnson, K.R.; Karpati, A.; Rubin, C.S.; Kolpin, D.W.; Meyer, M.T.; Esteban, J. Emilio; Currier, R.W.; Smith, K.; Thu, K.M.; McGeehin, M.

    2002-01-01

    Expansion and intensification of large-scale animal feeding operations (AFOs) in the United States has resulted in concern about environmental contamination and its potential public health impacts. The objective of this investigation was to obtain background data on a broad profile of antimicrobial residues in animal wastes and surface water and groundwater proximal to large-scale swine and poultry operations. The samples were measured for antimicrobial compounds using both radioimmunoassay and liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) techniques. Multiple classes of antimicrobial compounds (commonly at concentrations of >100 μg/l) were detected in swine waste storage lagoons. In addition, multiple classes of antimicrobial compounds were detected in surface and groundwater samples collected proximal to the swine and poultry farms. This information indicates that animal waste used as fertilizer for crops may serve as a source of antimicrobial residues for the environment. Further research is required to determine if the levels of antimicrobials detected in this study are of consequence to human and/or environmental ecosystems. A comparison of the radioimmunoassay and LC/ESI-MS analytical methods documented that radioimmunoassay techniques were only appropriate for measuring residues in animal waste samples likely to contain high levels of antimicrobials. More sensitive LC/ESI-MS techniques are required in environmental samples, where low levels of antimicrobial residues are more likely.

  2. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations.

    Science.gov (United States)

    Campagnolo, Enzo R; Johnson, Kammy R; Karpati, Adam; Rubin, Carol S; Kolpin, Dana W; Meyer, Michael T; Esteban, J Emilio; Currier, Russell W; Smith, Kathleen; Thu, Kendall M; McGeehin, Michael

    2002-11-01

    Expansion and intensification of large-scale animal feeding operations (AFOs) in the United States has resulted in concern about environmental contamination and its potential public health impacts. The objective of this investigation was to obtain background data on a broad profile of antimicrobial residues in animal wastes and surface water and groundwater proximal to large-scale swine and poultry operations. The samples were measured for antimicrobial compounds using both radioimmunoassay and liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) techniques. Multiple classes of antimicrobial compounds (commonly at concentrations of > 100 microg/l) were detected in swine waste storage lagoons. In addition, multiple classes of antimicrobial compounds were detected in surface and groundwater samples collected proximal to the swine and poultry farms. This information indicates that animal waste used as fertilizer for crops may serve as a source of antimicrobial residues for the environment. Further research is required to determine if the levels of antimicrobials detected in this study are of consequence to human and/or environmental ecosystems. A comparison of the radioimmunoassay and LC/ESI-MS analytical methods documented that radioimmunoassay techniques were only appropriate for measuring residues in animal waste samples likely to contain high levels of antimicrobials. More sensitive LC/ESI-MS techniques are required in environmental samples, where low levels of antimicrobial residues are more likely.

  3. Effect of feeding different levels of corn snack waste on broiler ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effect of using corn snack waste on growth performance, carcass traits and economical efficiency of broiler chicks. Five hundred Ross 308 day-old broiler chicks were divided randomly into 20 pens. There were 25 chicks in each pen which consists of 4 treatments (4 levels of waste ...

  4. Potential Human Health Risks of Tannery Waste-contaminated Poultry Feed

    Directory of Open Access Journals (Sweden)

    Mohammad Latiful Bari

    2015-01-01

    Conclusions. The estimated daily intake value, THQ, along with the aggregate hazard index value, indicated a potential risk to consumers through consumption of contaminated chicken. Therefore, the study results clearly demonstrate heavy metals accumulation in chicken due to feeding SCW-based feed. The contaminated chicken further transfers these heavy metals to humans through ingestion. Hence, there is a potential human health risk through consumption of contaminated chicken meat.

  5. Food wastes as fish feeds for polyculture of low-trophic-level fish: bioaccumulation and health risk assessments of heavy metals in the cultured fish.

    Science.gov (United States)

    Cheng, Zhang; Lam, Cheung-Lung; Mo, Wing-Yin; Nie, Xiang-Ping; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The major purpose of this study was to use different types of food wastes which serve as the major sources of protein to replace the fish meal used in fish feeds to produce quality fish. Two types of food waste-based feed pellets FW A (with cereals) and FW B (with cereals and meat products) and the commercial feed Jinfeng® were used to culture fingerlings of three low-trophic-level fish species: bighead carp, grass carp, and mud carp (in the ratio of 1:3:1) for 1 year period in the Sha Tau Kok Organic Farm in Hong Kong. Heavy metal concentrations in all of the fish species fed with food waste pellets and commercial pellets in Sha Tau Kok fish ponds were all below the local and international maximum permissible levels in food. Health risk assessments indicated that human consumption of the fish fed with food waste feed pellets was safe for the Hong Kong residents. The present results revealed that recycling of food waste for cultivating low-trophic-level fish (mainly herbivores and detritus feeders) is feasible, and at the same time will ease the disposal pressure of food waste, a common problem of densely populated cities like Hong Kong.

  6. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD

  7. Fly larvae as sustainable bioconverters of waste for feed in the future

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Aabo, Søren

    2014-01-01

    How to provide enough food and feed for the growing population is a major challenge for the nextgeneration. Improved economy in many developing countries increases the demand for protein from meator fish. This may lead to depletion of the seas and overexploitation of agricultural land in the in s......How to provide enough food and feed for the growing population is a major challenge for the nextgeneration. Improved economy in many developing countries increases the demand for protein from meator fish. This may lead to depletion of the seas and overexploitation of agricultural land......, or nutrients may be refined fromprocessed insects, however there is a huge need for technological development in order to automateculture and harvest of the insects.In nature insects and insect larvae are important feed sources for poultry and the larva of the commonhouse fly (Musca domestica) have been shown...... to be especially rich in essential amino and fatty acids. Atthe Food institute we have investigated in feed safety of using these fly larvae as feed for egg laying hens.The larvae were reared on poultry manure which implies the risk of transmission of pathogenicmicroorganism between animals and to humans, as well...

  8. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  9. The Effects of Amofer Palm Oil Waste-based Complete Feed to Blood Profiles and Liver Function on Local Sheep

    Directory of Open Access Journals (Sweden)

    Hamdi Mayulu

    2012-04-01

    Full Text Available Amoniation-Fermentation (amofer technology should be conducted in order to improve the low quality of by product produced from palm oil plantations and mills (palm oil waste which is used for constituent of feed ingredients in complete feed (CF. This technology also reforms the feed material into edible form. Before broadly applicable, it must be ensured that the feed does not have toxic effects on livestock. This research was peformed to evaluate the effects of amofer palm oil waste-based CF to blood profile and liver function on local sheep. Completely Randomly Design (CRD was used with 4 treaments and 4 replications. The observed variables were the levels of hemoglobin, hematocrit, blood glucose, ALT and AST was analyzed by ANOVA. The average value of blood glucose levels at T1= 80.68 mg/dl, T2=79.08 mg/dl, T3=81.18 mg/dl and T4=73.70 mg/dl. The average value of hemoglobin levels at T1=10.80 g/dl, T2=10.30 g/dl, T3=11.23 g/dl and T4=10.25 g/dl. The average value of hematocrit levels at T1=31.00%, T2=31.00%, T3=33.75% and T4=30%. The average value of ALT levels at T1=17.90 ml, T2=13.83 ml, T3=18.75 ml and, T4=13.40 ml. The average value of AST level at T1=106.20 ml, T2=88.98 ml, T3=104.40 ml and T4=91.25 ml. There was no significant difference among four treatments (p>0.05. The administration CF did not cause hematological disorders which showed by the blood profiles and liver function were in normal range, so that suggested the CF was appropriate and safe for local sheep. [Keywords––amofer, complete feed, hemoglobin, hematocrit, glucose, liver function

  10. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, and summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation

  11. Chemical composition of culinary wastes and their potential as a feed for ruminants

    Energy Technology Data Exchange (ETDEWEB)

    Summers, J.D.; MacLeod, G.K.; Warner, W.C.

    1980-09-01

    Culinary wastes were collected from three different sources, namely, institutional, restaurant and household. As dry matter content of the food wastes increased, protein level (on a dry weight basis) remained relatively constant, whereas fat content markedly increased. Sheep readily adapted to a diet containing 35% of dry matter as food wastes, their daily dry matter intake being 4.5% of body weight; this suggested that palatability was no problem. Digestibility values of 76, 68, 73 and 99% were calculated for dry matter, protein ether extract and acid detergent fibre fractions of garbage, indicating that the material had a high nutritive value for sheep. The culinary wastes had a low count of harmful bacteria. Storage of the material at room temperature resulted in molds and odours after a week, indicating that the material deteriorated quite rapidly. The addition of organic acids or formaldehyde kept the material quite stable for several weeks.

  12. Effect of feeding graded levels of biscuit waste based diet on non ...

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... Department of Animal Production, College of Agricultural Science, Olabisi ... that diets B1 (25%) and B2 (50%) biscuit waste inclusion had the best (P ... through adaptation for two weeks before the experiment commenced.

  13. Fruit and vegetable waste (FV) from the market places: A potential source for animal feeding?

    International Nuclear Information System (INIS)

    Angulo, J.; Yepes, S. A.; Yepes, A. M.; Bustamante, G.; Mahecha, L.

    2009-01-01

    The generation of organic solid waste and its inappropriate management is considered one of the main environmental problems in the world associated with emissions of methane from landfill sites, with emission of dusts, odors and hazardous gases, and with contamination of water. There are different sources for the generation of solid wastes; the market places are considered one of then on a global scale. (Author)

  14. Batch tests of a microbial fuel cell for electricity generation from spent organic extracts from hydrogenogenic fermentation of organic solid wastes

    International Nuclear Information System (INIS)

    Carmona-Martinez, A.; Solorza-Feria, O.; Poggi-Varaldo, H. M.

    2009-01-01

    Hydrogenogenic fermentative processes of organic solid wastes produce spent solids that contain substantial concentrations of low molecular weight organic acids and solvents. The spent solids can be extracted with wastewater to give a stream containing concentrated, degradable organic compounds. (Author)

  15. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    Czech Academy of Sciences Publication Activity Database

    Lee, S.M.; Hrma, P.; Kloužek, Jaroslav; Pokorný, R.; Hujová, Miroslava; Dixon, D.R.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 43, č. 16 (2017), s. 13113-13118 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : oxygen mass balance * feed-to-glass conversion * evolved gas * oxygen partial pressure * Fe redox ratio Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.986, year: 2016

  16. Supplementary feeding in the care of the wasted HIV infected patient

    African Journals Online (AJOL)

    from anorexia or food insecurity associated with poverty, a catabolic state induced by ... common in sub-Saharan Africa,3,4,5 and an adequate diet is believed to be ... supplementary feeding of malnourished children with and without HIV14,15.

  17. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  18. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  19. Waste Feed Delivery Strategy for Tanks 241-AN-102 and 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    BLACKER, S.M.

    2000-04-13

    This engineering study establishes the detailed retrieval strategy, equipment requirements, and key parameters for preparing detailed process flowsheets; evaluates the technical and programmatic risks associated with processing, certifying, transferring, and delivering waste from Tanks 241-AN-102 and 241-AN-107 to BNFL; and provides a list of necessary follow-on actions so that program direction from ORP can be successfully implemented.

  20. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    Czech Academy of Sciences Publication Activity Database

    Harris, W.H.; Guillen, D.P.; Kloužek, Jaroslav; Pokorný, P.; Yano, T.; Lee, S.; Schweiger, M. J.; Hrma, P.

    2017-01-01

    Roč. 100, č. 9 (2017), s. 3883-3894 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : borosilicate glass * computed tomography * glass melting * morphology * nuclear waste * X-ray Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.841, year: 2016

  1. The effect of feed made from fish processing waste silage on the ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... silage from fish processing waste and fish products of low .... placed in bags and then stored in a deep freeze (at -18°C) until they ... rences were found in the behavior of the fish in the trial ... information about the percentage of silage that can be .... not change (Lie et al., 1988; Goncalves et al., 1989).

  2. Waste Feed Delivery Strategy for Tanks 241-AN-102 and 241-AN-107

    International Nuclear Information System (INIS)

    BLACKER, S.M.

    2000-01-01

    This engineering study establishes the detailed retrieval strategy, equipment requirements, and key parameters for preparing detailed process flowsheets; evaluates the technical and programmatic risks associated with processing, certifying, transferring, and delivering waste from Tanks 241-AN-102 and 241-AN-107 to BNFL; and provides a list of necessary follow-on actions so that program direction from ORP can be successfully implemented

  3. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  4. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    International Nuclear Information System (INIS)

    Nunez', L.; Kaminsky', M.D.; Crawford, C.; Ritter, J.A.

    1999-01-01

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994] Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal changes in

  5. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  6. Study on upgrading of oil palm wastes to animal feeds by radiation and fermentation processing

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Matsuhashi, Shinpei; Ito, Hitoshi

    1998-03-01

    Upgrading of oil palm empty fruit bunch (EFB), which is a main by-product of palm oil industry, to animal feeds by radiation pasteurization and fermentation was investigated for recycling the agro-resources and reducing the environmental pollution. The following results were obtained: 1) The necessary dose for pasteurization of EFB contaminated by various microorganisms including aflatoxin producing fungi was determined as 10 kGy. The chemical and biological properties of EFB were changed little by irradiation up to 50 kGy. 2) In the fermentation process, Pleurotus sajor-caju was selected as the most effective fungi and the optimum condition for fermentation was clarified. The process of fermentation in suspension was also established for the liquid seed preparation. 3) The digestibility and nutritional value of fermented products were evaluated as ruminant animal feeds and the mushroom can be produced as by-product. 4) The pilot plant named Sterifeed was built at MINT and a large volume production has been trying for animal feeding test and economical evaluation. It is expected to develop the process for the commercial use in Malaysia and to expand the technique to Asian region through UNDP/RCA/IAEA project. (author)

  7. Study on upgrading of oil palm wastes to animal feeds by radiation and fermentation processing

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Matsuhashi, Shinpei; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; and others

    1998-03-01

    Upgrading of oil palm empty fruit bunch (EFB), which is a main by-product of palm oil industry, to animal feeds by radiation pasteurization and fermentation was investigated for recycling the agro-resources and reducing the environmental pollution. The following results were obtained: (1) The necessary dose for pasteurization of EFB contaminated by various microorganisms including aflatoxin producing fungi was determined as 10 kGy. The chemical and biological properties of EFB were changed little by irradiation up to 50 kGy. (2) In the fermentation process, Pleurotus sajor-caju was selected as the most effective fungi and the optimum condition for fermentation was clarified. The process of fermentation in suspension was also established for the liquid seed preparation. (3) The digestibility and nutritional value of fermented products were evaluated as ruminant animal feeds and the mushroom can be produced as by-product. (4) The pilot plant named Sterifeed was built at MINT and a large volume production has been trying for animal feeding test and economical evaluation. It is expected to develop the process for the commercial use in Malaysia and to expand the technique to Asian region through UNDP/RCA/IAEA project. (author)

  8. The Impact of the Source of Alkali on Sludge Batch 3 Melt Rate

    International Nuclear Information System (INIS)

    Smith, M

    2005-01-01

    Previous Savannah River National Laboratory (SRNL) melt rate tests in support of the Defense Waste Processing Facility (DWPF) have indicated that improvements in melt rate can be achieved through an increase in the total alkali of the melter feed. Higher alkali can be attained by the use of an ''underwashed'' sludge, a high alkali frit, or a combination of the two. Although the general trend between melt rate and total alkali (in particular Na 2 O content) has been demonstrated, the question of ''does the source of alkali (SOA) matter?'' still exists. Therefore the purpose of this set of tests was to determine if the source of alkali (frit versus sludge) can impact melt rate. The general test concept was to transition from a Na 2 O-rich frit to a Na 2 O-deficient frit while compensating the Na 2 O content in the sludge to maintain the same overall Na 2 O content in the melter feed. Specifically, the strategy was to vary the amount of alkali in frits and in the sludge batch 3 (SB3) sludge simulant (midpoint or baseline feed was SB3/Frit 418 at 35% waste loading) so that the resultant feeds had the same final glass composition when vitrified. A set of SOA feeds using frits ranging from 0 to 16 weight % Na 2 O (in 4% increments) was first tested in the Melt Rate Furnace (MRF) to determine if indeed there was an impact. The dry-fed MRF tests indicated that if the alkali is too depleted from either the sludge (16% Na 2 O feed) or the frit (the 0% Na 2 O feed), then melt rate was negatively impacted when compared to the baseline SB3/Frit 418 feed currently being processed at DWPF. The MRF melt rates for the 4 and 12% SOA feeds were similar to the baseline SB3/Frit 418 (8% SOA) feed. Due to this finding, a smaller subset of SOA feeds that could be processed in the DWPF (4 and 12% SOA feeds) was then tested in the Slurry-fed Melt Rate Furnace (SMRF). The results from a previous SMRF test with SB3/Frit 418 (Smith et al. 2004) were used as the SMRF melt rate of the baseline

  9. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats.

    Science.gov (United States)

    Chanjula, Pin; Pongprayoon, Sahutaya; Kongpan, Sirichai; Cherdthong, Anusorn

    2016-06-01

    This experiment was evaluation of the effects of increasing concentrations of crude glycerin from waste vegetable oil (CGWVO) in diets on feed intake, digestibility, ruminal fermentation characteristics, and nitrogen balance of goats. Four crossbred male (Thai Native × Anglo Nubian) goats, with an average initial body weight (BW) of 31.5 ± 1.90 kg, were randomly assigned according to a 4 × 4 Latin square design. The dietary treatments contained 0, 2, 4, and 6 % of dietary dry matter (DM) of CGWVO. Based on this experiment, there were significantly different (P > 0.05) among treatment groups regarding DM intake and digestion coefficients of nutrients (DM, OM, CP, EE, NDF, and ADF), which goats receiving 6 % of CGWVO had lower daily DMI and nutrient intake than those fed on 0, 2, and 4 % of CGWVO. Ruminal pH, NH3-N, and blood urea nitrogen (BUN) concentration were unchanged by dietary treatments, except that for 6 % of CGWVO supplementation, NH3-N, and BUN were lower (P goats. This study was a good approach in exploiting the use of biodiesel production from waste vegetable oil for goat production.

  10. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Chaudhary, M.Y.; Shah, M.A.; Shah, F.H.

    1991-01-01

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  11. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Effective utilization of distiller's grain soluble-an agro-industrial waste in the feed of cage-reared minor carp Labeo bata in a tropical reservoir, India.

    Science.gov (United States)

    Hassan, M A; Aftabuddin, Md; Meena, D K; Mishal, P; Gupta, S Das

    2016-08-01

    A 60-day feeding trial was conducted to evaluate the efficacy of distiller's grain soluble (brewery waste) as a prospective ingredient to substitute expensive and high demand feed component, soybean meal for farming Labeo bata in cages installed in tropical reservoir. Two isonitrogenous and isocaloric diets comprising brewery waste (49.2 % CP) as test diet and soybean meal (44.4 % CP) as reference diet were formulated and extruded to obtain 2-mm floating pellets. The efficacy of the diets was tested in terms of survival (%), live weight gain (%), SGR (%/day), FCR, PER and ANPU and recorded 65 ± 0.2, 96 ± 8.1, 1.9 ± 0.1, 2.5 ± 0.02, 1.4 ± 0.1, 20.3 ± 2.0 and 66 ± 0.6, 112 ± 9.8, 2.2 ± 0.1, 2.2 ± 0.2, 1.6 ± 0.1 and 20 ± 2.1, respectively, for soybean and brewer's waste-based formulated feed. The analyses of results revealed that survival, growth parameters and biochemical composition of whole body tissue did not differ significantly (p > 0.05) despite complete replacement of soybean meal by brewery waste. However, the cost estimate of diet revealed marked reduction of feed cost of Rs. 9.2/kg (33.8 %) in the test diet as compared to the reference diet. The study suggests that brewery waste could effectively replace soybean meal without effecting survival and growth of the fish. The finding thus may pave a productive way for reducing environmental pressure of disposal of an agro-industrial waste.

  13. Limiting factors in Escherichia colifed-batch production of recombinant proteins

    DEFF Research Database (Denmark)

    Sanden, A.M.; Prytz, I.; Tubelekas, I.

    2003-01-01

    recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation......recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation...

  14. Batch sorption-desorption of As(III) from waste water by magnetic palm kernel shell activated carbon using optimized Box-Behnken design

    Science.gov (United States)

    Anyika, Chinedum; Asri, Nur Asilayana Mohd; Majid, Zaiton Abdul; Jaafar, Jafariah; Yahya, Adibah

    2017-12-01

    In this study, we converted activated carbon (AC) into magnetic activated carbon (MAC), which was established to have removed arsenic (III) from wastewater. Arsenic (III) is a toxic heavy metal which is readily soluble in water and can be detrimental to human health. The MAC was prepared by incorporating Fe3O4 into the AC by using Fe3O4 extracted from a ferrous sulfate solution, designated: magnetic palm kernel shell from iron suspension (MPKSF). Batch experiments were conducted using two methods: (1) one-factor-at-a-time and (2) Box-Behnken statistical analysis. Results showed that the optimum conditions resulted in 95% of As(III) removal in the wastewater sample. The adsorption data were best fitted to the Langmuir isotherm. The adsorption of As(III) onto the MPKSF was confirmed by energy dispersive X-ray spectrometry analysis which detected the presence of As(III) of 0.52% on the surface of the MPKSF. The Fourier transform infrared spectroscopy analysis of the MPKSF-As presented a peak at 573 cm-1, which was assigned to M-O (metal-oxygen) bending, indicating the coordination of As(III) with oxygen through the formation of inner-sphere complexation, thereby indicating a covalent bonding between the MPKSF functional groups and As(III). The findings suggested that the MPKSF exhibited a strong capacity to efficiently remove As(III) from wastewater, while the desorption studies showed that the As(III) was rigidly bound to the MPKSF thereby eliminating the possibility of secondary pollution.

  15. The potential of Pleurotus-treated olive mill solid waste as cattle feed.

    Science.gov (United States)

    Shabtay, Ariel; Hadar, Yitzhak; Eitam, Harel; Brosh, Arieh; Orlov, Alla; Tadmor, Yaakov; Izhaki, Ido; Kerem, Zohar

    2009-12-01

    The aims of the current study were to follow: (1) the capability of the edible mushroom Pleurotus ostreatus to degrade cell wall components and soluble phenols of the olive mill solid waste (OMSW), and improve it for ruminant nutrition (2) the fate of oil and the lipid-soluble compounds tocopherols, squalene and beta-sitosterol in the fermented OMSW. A significant decrease in oil and lipid-soluble compounds with a concomitant shift in the fatty acid profile and degradation of soluble phenols took place already after 14 d. The utilization of lipids by the fungus shifted the degradation of the structural carbohydrates to a later stage, and significantly reduced the metabolizable energy of the OMSW. We propose that edible fungi with reduced lipase activity would preserve the energy and health promoting ingredients of the oil, and force the fungus to degrade structural carbohydrates, thus improving its digestibility.

  16. EFFECT OF FEEDING COOKED HATCHERY WASTE ON THE PERFORMANCE OF BROILERS

    Directory of Open Access Journals (Sweden)

    Sohail Hassan Khan and Bashir Mahmood Bhatti

    2002-01-01

    Full Text Available Raw hatchery waste was cooked with water at 2:1 ratio for 15 minutes and then oven dried at 65C and ground. Hatchery waste meal (HWM thus prepared contained 32% crude protein, 16% ether extract, 0.9% crude fibre, 40% total ash, 11.1% nitrogen free extract, 20% calcium and 0.6 % available phosphorous with no E.Coli and Salmonella. In biological evaluation trail, non significant differences was observed among rations in which HWM replaced the fish meal at 0(A, 25(B, 50(C and 75 (D levels in broiler rations. These rations showed that protein efficiency ratios were 1.68, 1.79, 1.65,and 1.64 apparent biological value 59.96, 60.25, 59.75 and 58.32% respectively, indicating better balance of amino acid in HWM to be replaced with fish meal,. In 6 weeks performance trail, the body weight gains were 1807.69, 1916.39, 1788.39 and 1635.66 gm in A, B, C and D rations, respectively. Whereas, FCR values were 2.59, 2.32, 2.43 and 2.63 in the corresponding groups, which shows no significant difference among all rations. The cost per chick to market age was lowest in ration containing high level of HWM (7.5% and highest in ration containing high level of fish meal (10% indicating maximum replacement of fish meal by HWM in broiler ration is economical. Similarly, slaughtering data revealed no significant difference among all rations in all parameters. It may be concluded that the HWM can completely replace fish meal in commercial broiler rations.

  17. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    Science.gov (United States)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  18. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    International Nuclear Information System (INIS)

    Marcial, Jose; Hrma, Pavel R.; Schweiger, Michael J.; Swearingen, Kevin J.; Tegrotenhuis, Nathan E.; Henager, Samuel H.

    2010-01-01

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 (micro)m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-(micro)m quartz particles; particles (ge) 150 (micro)m formed clusters. Particles of 5 (micro)m completely dissolved by 900 C whereas particles (ge) 150 (micro)m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.

  19. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    Science.gov (United States)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  20. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    International Nuclear Information System (INIS)

    Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

    1986-03-01

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs

  1. Corrosion of Alloy 690 process pot by sulfate containing high level radioactive waste at feed stage

    International Nuclear Information System (INIS)

    Sengupta, P.; Soudamini, N.; Kaushik, C.P.; Jagannath; Mishra, R.K.; Kale, G.B.; Raj, K.; Das, D.; Sharma, B.P.

    2008-01-01

    Prolonged exposure of Alloy 690 process pot to sulfate containing high level radioactive waste leads to (a) depletion of Cr from the alloy, (b) intergranular attack and (c) building up of Cr 2 O 3 -Ni 2 O 3 -Fe 2 O 3 mixed oxide surface layer containing Na and Cs sulfate precipitates. Time dependence of material loss from Alloy 690 is found to follow a linear relationship of the type Δw (material loss) = -7.05 + 0.05t. Corrosion rate calculated for 2400 h exposure is 3.66 mpy. Cr and Ni leach rates obtained for the same sample are 1.61 g m -2 d -1 and 2.52 g m -2 d -1 , respectively. Ni leach rates followed a linear time dependence relationship of the type dNL Ni /dt (leach rate) = -0.09 + 0.027t, whereas Cr leach rates obeyed a non-linear relationship of the type dNL Cr /dt (leach rate) = 0.241 + 0.027t - 1.33 x 10 -4 t 1/2

  2. Optimization of the thermal conditions for processing hatchery waste eggs as meal for feed.

    Science.gov (United States)

    Chiu, W Z; Wei, H W

    2011-05-01

    The purpose of this study was to optimize the thermal conditions for processing hatchery waste eggs (HWE) into rich feedstuff with lower electricity consumption by using response surface methodology. In the study, the effects of processing temperature and time on HWE meal (HWEM) quality and production were evaluated. As the results indicate, optimization was obtained when the processing lasted for 23 h at the fixed temperature of 65°C, resulting in higher protein digestibility in vitro (89.6%) and DM (88.5%) content of HWEM with lower electricity consumption (82.4 kWh/60 kg of HWE). No significant differences existed between the quality values predicted by mathematical formulae and those obtained through practical analyses in DM (87 vs. 88.5%), CP (39.2 vs. 38.3%), protein digestibility in vitro (90.7 vs. 89.6%), and electricity consumed (80.8 vs. 82.4 kWh/60 kg of HWE). Furthermore, the product derived from the optimized processing conditions had better biosecurity; Salmonella spp. were not found and Escherichia coli levels were substantially reduced (from 10(7) to 10(4) cfu/g). In summary, HWEM of superior quality can be produced when the processing conditions optimized in the current research are utilized.

  3. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  4. Cultivation of Arthrospira (Spirulina platensis using confectionary wastes for aquaculture feeding

    Directory of Open Access Journals (Sweden)

    Hala Y. El-Kassas

    2015-12-01

    Full Text Available The microalga biomass production from confectionary effluent is a possible solution for the urgent need for a live food in aquaculture. Arthrospira (Spirulina platensis was the dominant alga in effluent of “Biscomisr a confectionary factory”, in Alexandria–Egypt. Therefore, it was isolated from the effluent samples and used throughout the study. The cyanobacterium, A. platensis was grown on the effluent using 22 Central Composite Design (22 CCD. This work addresses the best effluent dilution (WC, % as well as sodium bicarbonate concentration (SBC on the alga growth and biochemical composition. Total protein, carbohydrate, lipid contents and fatty acid profiles of the produced algal biomass were highly improved. The statistical analyses suggested that the main effect of (WC, % is significant negative influences on the algal contents of proteins, lipids and carbohydrates (p > 0.01. Although it had a significant positive influence on chlorophyll (p > 0.01, no significant effect on algal β carotenes (p > 0.05 had been reported. The inter action effect of SBC together with WC, % exerted a significant negative influence on the algal proteins (p > 0.01 and no significant effect on the other responses (p > 0.05. The produced alga biomass was used for feeding the rotifer, Brachionus plicatilis for further application in aquaculture. Growth rate, reproductive rate and fecundity attributes, fatty acid content of B. plicatilis were amended. The Pearson correlation test indicated that β carotenes displayed a highly positive significant correlation with the growth rate of B. plicatilis (r = 0.733, p < 0.01 and the carbohydrates showed significant positive correlations with Egg % (r = 0.657, p < 0.05.

  5. Utilization of agro-resources by radiation treatment -production of animal feed and mushroom from oil palm wastes

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji

    1993-01-01

    The production of animal feeds and mushrooms from oil palm cellulosic wastes by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EBF) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13% and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30 o C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran. (author)

  6. Kinnow madarin (Citrus nobilis lour × Citrus deliciosa tenora) fruit waste silage as potential feed for small ruminants.

    Science.gov (United States)

    Malla, B A; Rastogi, A; Sharma, R K; Ishfaq, A; Farooq, And J

    2015-01-01

    Study was conducted to ascertain the quality of Kinnow mandarin waste (KMW) silage and its utilization by adult male goats. KMW was collected, dried to 30% dry matter level and ensiled in silo pit after addition of disodium hydrogen orthophosphate as source of phosphorus as KMW is deficient in phosphorus. Oat was collected at milking stage, chopped finely and ensiled in a silo pit for 2 months. Twelve nondescript local adult male goats of about 8-10 months age and mean body weight of 23.00±0.90 kg were selected. The goats were randomly allotted on body weight as per randomized block design into two equal groups, six animals in each group (n=6) namely "oat silage (OS)" and "Kinnow silage." Goats were offered weighed quantities of respective silage on ad libitum basis. The silages were evaluated for proximate principles and silage quality attributes. Differences were found between chemical composition of both silages with higher organic matter, ether extracts, nitrogen free extract (p0.05 for CP) and possess comparable (2.23 vs. 2.06; p>0.05) calcium content. The pH, ammonia nitrogen (percent of total nitrogen) and soluble carbohydrate content were lower (4.20 vs. 3.30; 4.14 vs. 3.80; 2.73 vs. 1.86; p0.05) among the two dietary groups. It can be concluded that KMW can be used to prepare good quality silage for feeding of goats.

  7. Prunus dulcis, Batch

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... almond (Prunus dulcis, Batch) genotypes as revealed by PCR analysis. Yavar Sharafi1*, Jafar Hajilou1, Seyed AbolGhasem Mohammadi2, Mohammad Reza Dadpour1 and Sadollah Eskandari3. 1Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, 5166614766, Iran.

  8. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  9. Modeling The Impact Of Elevated Mercury In Defense Waste Processing Facility Melter Feed On The Melter Off-Gas System - Preliminary Report

    International Nuclear Information System (INIS)

    Zamecnik, J.; Choi, A.

    2009-01-01

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl 2 , and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg 2 Cl 2 ) to HgCl 2 with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of

  10. Control of DWPF melter feed composition

    International Nuclear Information System (INIS)

    Brown, K.G.; Edwards, R.E.; Postles, R.L.; Randall, C.T.

    1989-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility

  11. A newly isolated Pseudomonas putida S-1 strain for batch-mode-propanethiol degradation and continuous treatment of propanethiol-containing waste gas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong-Zhi, E-mail: cdz@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Sun, Yi-Ming; Han, Li-Mei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen, Jing [College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316004 (China); Ye, Jie-Xu; Chen, Jian-Meng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2016-01-25

    Highlights: • A novel strain capable of effectively degrading 1-propanethiol (PT) was isolated. • Cells could be feasibly cultured in nutrition-rich media for PT degradation. • A possible pathway for PT degradation was proposed. • Pseudomonas putida S-1 could degrade mixed pollutants with diauxic growth. • Continuous removal of gaseous PT with or without isopropanol was demonstrated. - Abstract: Pseudomonas putida S-1 was isolated from activated sludge. This novel strain was capable of degrading malodorous 1-propanethiol (PT). PT degradation commenced with no lag phase by cells pre-grown in nutrition-rich media, such as Luria–Bertani (LB), and PT-contained mineral medium at specific growth rates of 0.10–0.19 h{sup −1}; this phenomenon indicated the operability of a large-scale cell culture. A possible PT degradation pathway was proposed on the basis of the detected metabolites, including dipropyl disulfide, 3-hexanone, 2-hexanone, 3-hexanol, 2-hexanol, S{sup 0}, SO{sub 4}{sup 2−}, and CO{sub 2}. P. putida S-1 could degrade mixed pollutants containing PT, diethyl disulfide, isopropyl alcohol, and acetaldehyde, and LB-pre-cultured cells underwent diauxic growth. Waste gas contaminated with 200–400 mg/m{sup 3} PT was continuously treated by P. putida S-1 pre-cultured in LB medium in a completely stirred tank reactor. The removal efficiencies exceeded 88% when PT stream was mixed with 200 mg/m{sup 3} isopropanol; by contrast, the removal efficiencies decreased to 60% as the empty bed residence time was shortened from 40 s to 20 s.

  12. A newly isolated Pseudomonas putida S-1 strain for batch-mode-propanethiol degradation and continuous treatment of propanethiol-containing waste gas

    International Nuclear Information System (INIS)

    Chen, Dong-Zhi; Sun, Yi-Ming; Han, Li-Mei; Chen, Jing; Ye, Jie-Xu; Chen, Jian-Meng

    2016-01-01

    Highlights: • A novel strain capable of effectively degrading 1-propanethiol (PT) was isolated. • Cells could be feasibly cultured in nutrition-rich media for PT degradation. • A possible pathway for PT degradation was proposed. • Pseudomonas putida S-1 could degrade mixed pollutants with diauxic growth. • Continuous removal of gaseous PT with or without isopropanol was demonstrated. - Abstract: Pseudomonas putida S-1 was isolated from activated sludge. This novel strain was capable of degrading malodorous 1-propanethiol (PT). PT degradation commenced with no lag phase by cells pre-grown in nutrition-rich media, such as Luria–Bertani (LB), and PT-contained mineral medium at specific growth rates of 0.10–0.19 h"−"1; this phenomenon indicated the operability of a large-scale cell culture. A possible PT degradation pathway was proposed on the basis of the detected metabolites, including dipropyl disulfide, 3-hexanone, 2-hexanone, 3-hexanol, 2-hexanol, S"0, SO_4"2"−, and CO_2. P. putida S-1 could degrade mixed pollutants containing PT, diethyl disulfide, isopropyl alcohol, and acetaldehyde, and LB-pre-cultured cells underwent diauxic growth. Waste gas contaminated with 200–400 mg/m"3 PT was continuously treated by P. putida S-1 pre-cultured in LB medium in a completely stirred tank reactor. The removal efficiencies exceeded 88% when PT stream was mixed with 200 mg/m"3 isopropanol; by contrast, the removal efficiencies decreased to 60% as the empty bed residence time was shortened from 40 s to 20 s.

  13. Replacing fish meal by food waste in feed pellets to culture lower trophic level fish containing acceptable levels of organochlorine pesticides: health risk assessments.

    Science.gov (United States)

    Cheng, Zhang; Mo, Wing-Yin; Man, Yu-Bon; Nie, Xiang-Ping; Li, Kai-Bing; Wong, Ming-Hung

    2014-12-01

    The present study used food waste (collected from local hotels and restaurants) feed pellets in polyculture of low-trophic level fish [bighead (Aristichtys nobilis), grass carp (Ctenopharyngodon idellus), and mud carp (Cirrhina molitorella)] aiming at producing safe and quality products for local consumption. The results indicated that grass carp (hexachlorocyclohexanes (HCHs) waste feed pellets were relatively free of organochlorine pesticides (OCPs). The experimental ponds (water and sediment) were relatively free of OCPs, lowering the possibility of biomagnification of OCPs in the food chains within the ponds. The raw concentrations of OCPs extracted from the fish were not in the bioavailable form, which would ultimately reach bloodstream and exert adverse effects on human body. Health risk assessments based on digestible concentrations are commonly regarded as a more accurate method. The results of health risk assessments based on raw and digestible concentrations showed that the fish fed with food waste feed pellets were safe for consumption from the OCP perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-01

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS feed , while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS feed . The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO 3 /kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  15. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  16. Tratamento de resíduos sólidos de centrais de abastecimento e feiras livres em reator anaeróbio de batelada Treatment of solid waste from supply centers and free markets in batch anaerobic reactor

    Directory of Open Access Journals (Sweden)

    Valderi D. Leite

    2003-08-01

    Full Text Available Em feiras livres e centrais de abastecimento são produzidas quantidades bastante significativas de resíduos sólidos, com características favoráveis ao aproveitamento integral em processo de bioestabilização anaeróbia. O processo de bioestabilização é realizado em reatores anaeróbios de batelada (RAB, com tempo de detenção de sólidos variando de 250 a 300 dias originando, como produtos finais, o biogás, com cerca de 60% de gás metano, além de composto orgânico parcialmente bioestabilizado. Neste trabalho, foram utilizados resíduos sólidos orgânicos tipicamente vegetais, advindos de centrais de abastecimento, feiras livres e lodo de esgoto sanitário. O sistema experimental utilizado era constituído basicamente por um reator anaeróbio de batelada, com capacidade unitária de 2200 litros, além de outros dispositivos complementares. O sistema experimental foi instalado e monitorado na Estação Experimental de Tratamento Biológico de Esgoto Sanitário, situada no Bairro do Tambor, na cidade de Campina Grande, Estado da Paraíba, no período de janeiro a setembro de 2001. No processo de monitoração foram realizadas caracterizações sistemáticas das frações sólidas, líquidas e gasosas. Após análise dos dados, ficou evidenciada a viabilidade desta alternativa de tratamento, restando ser investigada ainda a viabilidade econômica, quando comparada com outras alternativas tecnológicas de tratamento de resíduos sólidos orgânicos.Significant quantity of organic solid waste with favorable characteristics for integral utilization in anaerobic biostabilization is produced in free markets and supply centers. The process is conducted in anaerobic batch reactors (ABR, with detention time of solids varying from 250 to 300 days, producing biogas with about 60% of methane, besides the partially biostabilized organic compost as the final product. In this study, the organic solid waste used was typically of vegetables

  17. Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production.

    Science.gov (United States)

    Mark Ibekwe, A; Murinda, Shelton E; Murry, Marcia A; Schwartz, Gregory; Lundquist, Trygve

    2017-02-15

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. However, there is very limited knowledge on bacterial communities that may play significant roles with algae in the bioconversion of manure nutrients to animal feed. In this study, water samples were collected during winter, spring, summer, and fall from the dairy lagoon effluent (DLE), high rate algae ponds (HRAP) that were fed with diluted DLE, and municipal waste water treatment plant (WWTP) effluent which was included as a comparison system for the analysis of total bacteria, Cyanobacteria, and microalgae communities using MiSeq Illumina sequencing targeting the 16S V4 rDNA region. The main objective was to examine dynamics in microbial community composition in the HRAP used for the production of algal biomass. DNA was extracted from the different sample types using three commercially available DNA extraction kits; MoBio Power water extraction kit, Zymo fungi/bacterial extraction kit, and MP Biomedicals FastDNA SPIN Kit. Permutational analysis of variance (PERMANOVA) using distance matrices on each variable showed significant differences (P=0.001) in beta-diversity based on sample source. Environmental variables such as hydraulic retention time (HRT; P<0.031), total N (P<0.002), total inorganic N (P<0.002), total P (P<0.002), alkalinity (P<0.002), pH (P<0.022), total suspended solid (TSS; P<0.003), and volatile suspended solids (VSS; P<0.002) significantly affected microbial communities in DLE, HRAP, and WWTP. Of the operational taxonomic units (OTUs) identified to phyla level, the dominant classes of bacteria identified were: Cyanobacteria, Alpha-, Beta-, Gamma-, Epsilon-, and Delta-proteobacteria, Bacteroidetes, Firmicutes, and Planctomycetes. Our data suggest that microbial communities were significantly affected in HRAP by different environmental variables, and care must be taken in extraction procedures when evaluating specific groups of microbial communities for

  18. Kinnow madarin (Citrus nobilis lour × Citrus deliciosa tenora fruit waste silage as potential feed for small ruminants

    Directory of Open Access Journals (Sweden)

    B. A. Malla

    2015-01-01

    Full Text Available Aim: Study was conducted to ascertain the quality of Kinnow mandarin waste (KMW silage and its utilization by adult male goats. Materials and Methods: KMW was collected, dried to 30% dry matter level and ensiled in silo pit after addition of disodium hydrogen orthophosphate as source of phosphorus as KMW is deficient in phosphorus. Oat was collected at milking stage, chopped finely and ensiled in a silo pit for 2 months. Twelve nondescript local adult male goats of about 8-10 months age and mean body weight of 23.00±0.90 kg were selected. The goats were randomly allotted on body weight as per randomized block design into two equal groups, six animals in each group (n=6 namely “oat silage (OS” and “Kinnow silage.” Goats were offered weighed quantities of respective silage on ad libitum basis. The silages were evaluated for proximate principles and silage quality attributes. Results: Differences were found between chemical composition of both silages with higher organic matter, ether extracts, nitrogen free extract (p0.05 for CP and possess comparable (2.23 vs. 2.06; p>0.05 calcium content. The pH, ammonia nitrogen (percent of total nitrogen and soluble carbohydrate content were lower (4.20 vs. 3.30; 4.14 vs. 3.80; 2.73 vs. 1.86; p0.05 among the two dietary groups. Conclusion: It can be concluded that KMW can be used to prepare good quality silage for feeding of goats.

  19. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  20. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  1. Small Scale Mixing Demonstration Batch Transfer and Sampling Performance of Simulated HLW - 12307

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jesse; Townson, Paul; Vanatta, Matt [EnergySolutions, Engineering and Technology Group, Richland, WA, 99354 (United States)

    2012-07-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste treatment Plant (WTP) has been recognized as a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. At the end of 2009 DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS), awarded a contract to EnergySolutions to design, fabricate and operate a demonstration platform called the Small Scale Mixing Demonstration (SSMD) to establish pre-transfer sampling capacity, and batch transfer performance data at two different scales. This data will be used to examine the baseline capacity for a tank mixed via rotational jet mixers to transfer consistent or bounding batches, and provide scale up information to predict full scale operational performance. This information will then in turn be used to define the baseline capacity of such a system to transfer and sample batches sent to WTP. The Small Scale Mixing Demonstration (SSMD) platform consists of 43'' and 120'' diameter clear acrylic test vessels, each equipped with two scaled jet mixer pump assemblies, and all supporting vessels, controls, services, and simulant make up facilities. All tank internals have been modeled including the air lift circulators (ALCs), the steam heating coil, and the radius between the wall and floor. The test vessels are set up to simulate the transfer of HLW out of a mixed tank, and collect a pre-transfer sample in a manner similar to the proposed baseline configuration. The collected material is submitted to an NQA-1 laboratory for chemical analysis. Previous work has been done to assess tank mixing performance at both scales. This work involved a combination of unique instruments to understand the three dimensional distribution of solids using a combination of Coriolis meter measurements, in situ chord length distribution

  2. Comparing the effects of feeding a grain- or a fish meal-based diet on water quality, waste production, and rainbow trout Oncorhynchus mykiss performance within low exchange water recirculating aquaculture systems

    Science.gov (United States)

    Feeding a fish meal-free grain-based diet (GB) was compared to feeding a fish meal-based diet (FM) relative to water quality criteria, waste production, water treatment process performance, and rainbow trout Oncorhynchus mykiss performance within six replicated water recirculating aquaculture system...

  3. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  4. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Science.gov (United States)

    2012-01-01

    Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v) and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates. PMID:22433563

  5. Reconfirmation of frit 803 based on the January 2016 sludge batch 9 reprojection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-10

    On January 11, 2016, Savannah River Remediation (SRR) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 9 (SB9) reprojection that was developed from the analyzed composition of a Tank 51 sample. This sample was collected after field washing had been completed in Tank 51 to support the alternate reductant task. Based on this reprojection, Frit 803 is still a viable option for the processing of SB9 under sludge-only operations and coupled (Actinide Removal Process (ARP) product with and without monosodium titanate (MST)) operations. The maximum projected volumes of ARP product that can be transferred from the Precipitate Reactor Feed Tank (PRFT) per Sludge Receipt and Adjustment Tank (SRAT) batch and the resulting Na2O concentrations in the SRAT for coupled operations were determined. The Na2O concentrations in the SRAT resulting from the maximum projected ARP product transfer volumes are consistent with those from the previous assessments that were based on the August 2015 projections. Regardless of the presence or absence of MST in the ARP product, the contribution of Na2O to the resulting glass will be similar at the same waste loading (WL). These projected volumes of ARP product are not anticipated to be an issue for SB9. The actual transfer volumes from the PRFT to the SRAT are determined based upon the analyzed Na2O concentrations in the PRFT samples, which has resulted in larger transfer volumes than those allowed by the projections for Sludge Batch 8 (SB8). An operating window of 32-40% WL around the nominal WL of 36% is achievable for both sludge-only and coupled operations; however, each of the glass systems studied does become limited by waste form affecting constraints (durability) at higher volumes of ARP product and WLs of 41-42%.

  6. Impact of Alkali Source on Vitrification of SRS High Level Waste

    International Nuclear Information System (INIS)

    LAMBERT, D. P.; MILLER, D. H.; PEELER, D. K.; SMITH, M. E.; STONE, M. E.

    2005-01-01

    The Defense Waste Processing Facility (DWPF) Savannah River Site is currently immobilizing high level nuclear waste sludge by vitrification in borosilicate glass. The processing strategy involves blending a large batch of sludge into a feed tank, washing the sludge to reduce the amount of soluble species, then processing the large ''sludge batch'' through the DWPF. Each sludge batch is tested by the Savannah River National Laboratory (SRNL) using simulants and tests with samples of the radioactive waste to ''qualify'' the batch prior to processing in the DWPF. The DWPF pretreats the sludge by first acidifying the sludge with nitric and formic acid. The ratio of nitric to formic acid is adjusted as required to target a final glass composition that is slightly reducing (the target is for ∼20% of the iron to have a valence of two in the glass). The formic acid reduces the mercury in the feed to elemental mercury which is steam stripped from the feed. After a concentration step, the glass former (glass frit) is added as a 50 wt% slurry and the batch is concentrated to approximately 50 wt% solids. The feed slurry is then fed to a joule heated melter maintained at 1150 C. The glass must meet both processing (e.g., viscosity and liquidus temperature) and product performance (e.g., durability) constraints The alkali content of the final waste glass is a critical parameter that affects key glass properties (such as durability) as well as the processing characteristics of the waste sludge during the pretreatment and vitrification processes. Increasing the alkali content of the glass has been shown to improve the production rate of the DWPF, but the total alkali in the final glass is limited by constraints on glass durability and viscosity. Two sources of alkali contribute to the final alkali content of the glass: sodium salts in the waste supernate and sodium and lithium oxides in the glass frit added during pretreatment processes. Sodium salts in the waste supernate can

  7. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    Science.gov (United States)

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  9. Analysis Of DWPF Sludge Batch 7A (Macrobatch 8) Pour Stream Samples

    International Nuclear Information System (INIS)

    Johnson, F.

    2012-01-01

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental

  10. Results of Aging Tests of Vendor-Produced Blended Feed Simulant

    International Nuclear Information System (INIS)

    Russell, Renee L.; Buchmiller, William C.; Cantrell, Kirk J.; Peterson, Reid A.; Rinehart, Donald E.

    2009-01-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is procuring through Pacific Northwest National Laboratory (PNNL) a minimum of five 3,500 gallon batches of waste simulant for Phase 1 testing in the Pretreatment Engineering Platform (PEP). To make sure that the quality of the simulant is acceptable, the production method was scaled up starting from laboratory-prepared simulant through 15-gallon vendor prepared simulant and 250-gallon vendor prepared simulant before embarking on the production of the 3500-gallon simulant batch by the vendor. The 3500-gallon PEP simulant batches were packaged in 250-gallon high molecular weight polyethylene totes at NOAH Technologies. The simulant was stored in an environmentally controlled environment at NOAH Technologies within their warehouse before blending or shipping. For the 15-gallon, 250-gallon, and 3500-gallon batch 0, the simulant was shipped in ambient temperature trucks with shipment requiring nominally 3 days. The 3500-gallon batch 1 traveled in a 70-75 F temperature controlled truck. Typically the simulant was uploaded in a PEP receiving tank within 24-hours of receipt. The first uploading required longer with it stored outside. Physical and chemical characterization of the 250-gallon batch was necessary to determine the effect of aging on the simulant in transit from the vendor and in storage before its use in the PEP. Therefore, aging tests were conducted on the 250-gallon batch of the vendor-produced PEP blended feed simulant to identify and determine any changes to the physical characteristics of the simulant when in storage. The supernate was also chemically characterized. Four aging scenarios for the vendor-produced blended simulant were studied: (1) stored outside in a 250-gallon tote, (2) stored inside in a gallon plastic bottle, (3) stored inside in a well mixed 5-L tank, and (4) subject to extended temperature cycling under summer temperature conditions in a gallon plastic bottle. The following

  11. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  12. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  13. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford site low-level waste

    International Nuclear Information System (INIS)

    Shade, J.W.

    1996-01-01

    Commercially available melter technologies were tested for application to vitrification of Hanford site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW simulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO x generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented

  14. Use of food waste as fish feeds: effects of prebiotic fibers (inulin and mannanoligosaccharide) on growth and non-specific immunity of grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Mo, Wing Y; Cheng, Zhang; Choi, Wai M; Lun, Clare H I; Man, Yu B; Wong, James T F; Chen, Xun W; Lau, Stanley C K; Wong, Ming H

    2015-11-01

    The effects of inulin and mannanoligosaccharide (MOS) on the growth performance and non-specific immunity of grass carp were studied. Two doses of prebiotic fiber with 0.2 or 2% of the fibers are being mixed into fish feed pellets. Fish growth as well as selected non-specific immune parameters of grass carp were tested in a feeding trial, which lasted for 8 weeks. Fish was fed at 2.5% body mass per day. INU02, INU2, and MOS2 significantly improved relative weight gain, specific growth rate, protein efficiency ratio, and food conversion ratio of grass carp fed with food waste-based diet. In terms of non-specific immune response, grass carp showed significant improvement in all three tested parameters (total serum immunoglobin, bactericidal activity, and anti-protease activity). Adding 2% of inulin (INU2) into food waste diets seemed to be more preferable than other supplemented experimental diets (INU02, MOS02, MOS2), as it could promote growth of grass carp as well as improving the non-specific immune systems of grass carp.

  15. Assessment of nutritional value of single-cell protein from waste-activated sludge as a protein supplement in poultry feed.

    Science.gov (United States)

    Nkhalambayausi-Chirwa, Evans M; Lebitso, Moses T

    2012-12-01

    The amount of protein wasted through sludge in Gauteng, South Africa, amounts to 95 000 metric tonne/yr, with the order of magnitude of the national protein requirement of approximately 145 000 metric tonne/yr. Waste-activated sludge (WAS) from wastewater treatment plants (WWTPs) that treat domestic wastewater contains protein in a ratio of 2:1 against fishmeal. This protein source has not been utilized because of the high content of toxic heavy metals and other potential carcinogenic pollutants in the sludge. In this study, a pretreatment method of modified aqua regia dilute acid wash was used to lower the metal content by approximately 60%. However, this resulted in a 33% loss of amino acids in the acid-washed WAS. A feed substitution test in poultry with different fishmeal-sludge ratios (0%, 25%, 50%, 75%, and 100% WAS as percent substitution of fishmeal) showed no impact of sludge single-cell protein (SCP) on mortality rate. However, sludge substitution in the feed yielded weight gains and cost savings up to 46%.

  16. Effects of feeding polyphenol-rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers.

    Science.gov (United States)

    Ishida, Kyohei; Kishi, Yosuke; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2015-03-01

    Four wethers were used in a 4 × 4 Latin square design experiment to evaluate the availability of two types of winery wastes, winery sediment and grape pomace, as ruminant feeds possessing antioxidant activities. Each wether was assigned to one of the following four treatments: (i) 75 g/kg winery sediment (WS) on a dry matter (DM) basis; (ii) 166 g/kg DM winery grape pomace (WP); (iii) control diet (CD; 17 g/kg DM soybean meal);and (iv) only tall fescue hay (TFH; no additive). Winery sediment and grape pomace had high levels of polyphenols and of radical scavenging activities. Feeding with winery sediment and grape pomace did not negatively affect the intake, but it depressed crude protein (CP) digestibility compared with CD (P = 0.052 and P winery wastes decreased ruminal ammonia production (P = 0.089 and P winery sediment and grape pomace decreased urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG; an index of oxidative damages) excretion per day (P winery sediment and grape pomace could alter nitrogen metabolism and/or act as new antioxidants for ruminants. © 2014 Japanese Society of Animal Science.

  17. A plasma melting system for solid radioactive waste

    International Nuclear Information System (INIS)

    Higashi, Yasuo; Sugimoto, Masahiko; Fujitomi, Masashi; Noura, Tsuyoshi

    2003-01-01

    Kobe Steel has developed a plasma melting system for the volume reduction and stabilization of solid radioactive wastes such as concrete, insulation, filters, glass, sand etc. The main features of the system are as follows. (1) Non-transfer air plasma torches: 1.3 MW x 2 (2) Treatment capacity: 2 tons/batch (3) Waste feed: 200 liter drums (4) Tapping method: furnace tilting (5) Molten slag cooling: in the system's chambers. In this paper, an outline of the system and its first-run performance results are described. (author)

  18. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  19. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  20. OPTIMATION OF TIME AND CATALYST/FEED RATIO IN CATALYTIC CRACKING OF WASTE PLASTICS FRACTION TO GASOLINE FRACTION USING Cr/NATURAL ZEOLITE CATALYST

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Optimation of time and catalyst/feed ratio in catalytic cracking of waste plastics fraction to gasoline fraction using Cr/Natural Zeolite catalyst has been studied.The natural zeolite was calcined by using nitrogen gas at 500 oC for 5 hours. The chromium supported on to the zeolite was prepared by ion exchange methode with Cr(NO33.9H2O solution with chromium/zeolite concentration of 1% (w/w. The zeolite samples were then calcined  with nitrogen gas at 500 oC for 2 hours, oxidyzed with oxygen gas and reduced with hydrogen at 400 oC for 2 hours. The characterization of the zeolite catalyst by means of Si/Al ratio by UV-Vis spectroscopy, acidity with pyridine vapour adsorption and Na, Ca and Cr contents by atomic adsorption spectroscopy (AAS. The catalyst activity test was carried out in the cracking process of waste plastics fraction with boiling point range of 150 - 250 °C (consisted of C12 - C16 hydrocarbons at 450 oC for 30 min, 60 min and 90 min, and catalyst/feed ratio 1/1, 1/2, 1/3, ¼ (w/w. The result of catalyst activity test  showed  that  the maximum number  conversion of gasoline fraction (C5-C11 is 53,27% with relatively low coke formation using 1/3 catalyst/feed ratio and the cracking time of 60 min.. This  catalyst has  Si/Al ratio = 1,21 (w/w , acidity = 0,16 mmol/g and Na content = 0,81%, Ca content = 0,15% and Cr content 0,24%.   Keywords: zeolite, catalytic cracking, gasoline, chromium.

  1. Control of polymer network topology in semi-batch systems

    Science.gov (United States)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  2. The policy effects of feed-in tariff and renewable portfolio standard: A case study of China's waste incineration power industry.

    Science.gov (United States)

    Xin-Gang, Zhao; Yu-Zhuo, Zhang; Ling-Zhi, Ren; Yi, Zuo; Zhi-Gong, Wu

    2017-10-01

    Among the regulatory policies, feed-in tariffs (FIT) and renewable portfolio standards (RPS) are the most popular to promote the development of renewable energy power industry. They can significantly contribute to the expansion of domestic industrial activities in terms of sustainable energy. This paper uses system dynamics (SD) to establish models of long-term development of China's waste incineration power industry under FIT and RPS schemes, and provides a case study by using scenario analysis method. The model, on the one hand, not only clearly shows the complex logical relationship between the factors but also assesses policy effects of the two policy tools in the development of the industry. On the other hand, it provides a reference for scholars to study similar problems in different countries, thereby facilitating an understanding of waste incineration power's long-term sustainable development pattern under FIT and RPS schemes, and helping to provide references for policy-making institutions. The results show that in the perfect competitive market, the implementation of RPS can promote long-term and rapid development of China's waste incineration power industry given the constraints and actions of the mechanisms of RPS quota proportion, the TGC valid period, and fines, compared with FIT. At the end of the paper, policy implications are offered as references for the government. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Physicochemical Characteristics, in Vitro Fermentation Indicators, Gas Production Kinetics, and Degradability of Solid Herbal Waste as Alternative Feed Source for Ruminants

    Directory of Open Access Journals (Sweden)

    A. N. Kisworo

    2017-08-01

    Full Text Available The aims of this research were to study the nutrient and secondary metabolite contents of solid herbal wastes (SHW that were preserved by freeze drying, sun drying and silage, as well as to analyze their effects on in vitro fermentation indicators i.e., gas production kinetics and degradability of solid herbal waste. Physical and chemical properties on three forms of SHW (sun dry, freeze dry, and silage were characterized and then an in vitro gas production experiment was performed to determine the kinetics of gas production, methane production, NH3, microbial protein, and SHW degradability. Polyethylene glycol (PEG was added to the three treatments to determine the biological activity of tannins. Results showed that all three preparations of SHW still contained high nutrient and plant secondary metabolite contents. Gas production, methane, NH3, microbial protein, in vitro degradability of dry matter (IVDMD and organic matter (IVDOM of SHW silage were lower (P<0.05 compared to sun dry and freeze dry. These results were apparently due to the high content of secondary metabolites especially tannin. It can be concluded that solid herbal wastes (SHW can be used as an alternative feed ingredients for ruminants with attention to the content of secondary metabolites that can affect the process of fermentation and digestibility in the rumen.

  4. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun

    2011-01-01

    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  5. Demonstrating compliance with WAPS 1.3 in the Hanford waste vitrification plant process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to immobilize transuranic and high-level radioactive waste in borosilicate glass. This document describes the statistical procedure to be used in verifying compliance with requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS, USDOE 1993). WAPS 1.3 is a specification for ``product consistency,`` as measured by the Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium, and boron. Properties of a process batch and the resulting glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values, including PCT results, from data on feed composition. These models will be used in conjunction with measurements of feed composition to control the HLW vitrification process and product.

  6. Microbial community structures in algae cultivation ponds for bioconversion of agricultural wastes from livestock industry for feed production

    Science.gov (United States)

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. There is very limited knowledge on community compositions that may play significant roles in the bioconversion of manure nu¬trients to animal feed. Algae production is an alternative where land area for pro...

  7. Novel feed including bioactive compounds from winery wastes improved broilers' redox status in blood and tissues of vital organs.

    Science.gov (United States)

    Makri, Sotiria; Kafantaris, Ioannis; Stagos, Dimitrios; Chamokeridou, Theodora; Petrotos, Konstantinos; Gerasopoulos, Konstantinos; Mpesios, Anastasios; Goutzourelas, Nikolaos; Kokkas, Stylianos; Goulas, Panagiotis; Komiotis, Dimitrios; Kouretas, Dimitrios

    2017-04-01

    Currently, there is a great interest in the production of animal feed with antioxidant activity. The aim of this study was to examine the potential antioxidant effects of a feed supplemented with grape pomace (GP), a winery by-product with high environmental load, in chickens. Broilers of 15 days post birth were separated into two groups fed either with standard diet or with diet supplemented with GP for 35 days. Blood and tissues collections were performed after feeding for 15 and 35 days with the experimental diet (i.e. at 30 and 50 days post birth). Free radical toxicity markers, namely thiobarbituric acid reactive substances, protein carbonyls, total antioxidant capacity, reduced glutathione, catalase activity and rate of H 2 O 2 decomposition were determined in blood and tissues of vital organs. The results indicated that feed supplemented with GP decreased oxidative stress-induced toxic effects and improved chickens' redox status, and so it may also improve their wellness and productivity. On the other hand, this exploitation of GP may solve problems of environmental pollution in areas with wineries. Copyright © 2017. Published by Elsevier Ltd.

  8. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  9. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency.

    Science.gov (United States)

    Li, Qian; Li, Hao; Wang, Gaojun; Wang, Xiaochang

    2017-08-01

    A continuously stirred tank reactor (CSTR) with a high feeding frequency (HFF) of once every 15min was employed in order to ease the loading shock frequently occurred in digester with a low feeding frequency. The effects of the organic loading rate (OLR) and temperature on the co-digestion of food waste and waste activated sludge was evaluated in a 302-day long-term experiment. Due to the high hydrolysis rate, the maximum CH 4 yield in a thermophilic reactor was 407mL CH 4 /gVS added , a value that was significantly higher than the 350mL CH 4 /gVS added that occurred in a mesophilic reactor. Although the alkalinity declined when HRT was shorted than 10d, caused by the decrease of conversion ratio from protein to ammonium, the increase of specific methanogenic activity helped HFF system to achieve stable performance at an OLR of 11.2 (HRT 7.5d) and 30.2gVS/L/d (HRT 3d) under mesophilic and thermophilic conditions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste.

    Science.gov (United States)

    Kwan, Tsz Him; Pleissner, Daniel; Lau, Kin Yan; Venus, Joachim; Pommeret, Aude; Lin, Carol Sze Ki

    2015-12-01

    A techno-economic study of food waste valorization via fungal hydrolysis, microalgae cultivation and production of plasticizer, lactic acid and animal feed was simulated and evaluated by Super-Pro Designer®. A pilot-scale plant was designed with a capacity of 1 metric ton day(-1) of food waste with 20 years lifetime. Two scenarios were proposed with different products: Scenario (I) plasticizer & lactic acid, Scenario (II) plasticizer & animal feed. It was found that only Scenario I was economically feasible. The annual net profits, net present value, payback period and internal rate of return were US$ 422,699, US$ 3,028,000, 7.56 years and 18.98%, respectively. Scenario II was not economic viable due to a deficit of US$ 42,632 per year. Sensitivity analysis showed that the price of lactic acid was the largest determinant of the profitability in Scenario I, while the impact of the variables was very close in Scenario II. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Kubernetes as a batch scheduler

    OpenAIRE

    Souza, Clenimar; Brito Da Rocha, Ricardo

    2017-01-01

    This project aims at executing a CERN batch use case using Kubernetes, in order to figure out what are the advantages and disadvantages, as well as the functionality that can be replicated or is missing. The reference for the batch system is the CERN Batch System, which uses HTCondor. Another goal of this project is to evaluate the current status of federated resources in Kubernetes, in comparison to the single-cluster API resources. Finally, the last goal of this project is to implement buil...

  12. A Comparison of Rheology Data for Radioactive and Stimulant Savannah River Site Waste

    International Nuclear Information System (INIS)

    KOOPMAN, DAVIDC.

    2004-01-01

    This document reviews radioactive and simulant rheology data on SRS waste slurries. Simulant sludge slurries have been prepared at Optima: Tank 51 for Sludge Batch 1A (SB1A) and trimmed for Sludge Batch 1B (SB1B), at USC-Columbia: Tank 8 and Tank 40 for Sludge Batch 2 (SB2), and at Clemson Environmental Technology Laboratory (CETL): SB2, Sludge Batch 3 (SB3), and several generic simulants. Various radioactive waste tank slurry samples have been analyzed for rheology in the SRTC Shielded Cells during the past 25 years. More recently, some rheological measurements have been made on the DWPF qualification samples for new sludge batches or on special samples pulled to help with resolution of processing issues. This document attempts to make comparisons of rheological data for systems where there were both some radioactive slurry data and some potentially similar simulant slurry data. The Approach section describes the basic data types encountered, e.g. sludges, Sludge Receipt and Adjustment Tank (SRAT) products, and Slurry Mix Evaporator (SME) products. The last are equivalent to melter feeds. This is followed by a discussion of rheometry and the Bingham Plastic fluid model. This model has been used to reduce rheological data on SRS waste slurries over the past twenty years

  13. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  14. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  15. Results of sampling the contents of the liquid low-level waste evaporator feed tank W-22 at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.

    1996-09-01

    This report summarizes the results of the fall 1994 sampling of the contents of the liquid low- level waste (LLLW) tank W-22 at the Oak Ridge National Laboratory (ORNL). Tank W-22 is the central collection and holding tank for LLLW at ORNL before the waste is transferred to the evaporators. Samples of the tank liquid and sludge were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) the metals listed on the U.S. Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of the determinations of the EPA Contract Laboratory Program Target Compound List semivolatile compounds, pesticides, and polychlorinated biphenyls (PCBs). Water-soluble volatile organic compounds were also determined. Information provided in this report forms part of the technical basis in support of (1) waste management for the active LLLW system and (2) planning for the treatment and disposal of the waste

  16. Fuel optimization in a multi chamber incinerator by the moisture control of oily sludge and medical wastes

    International Nuclear Information System (INIS)

    Haider, I.; Hussain, S.; Khan, S.; Mehran, T.

    2011-01-01

    Experiments have been performed to study the effects of %age moisture content on fuel optimization during the waste feed combustion of oily sludge, medical waste and mix blend waste in a 50 kg/hr multi chamber incinerator installed at NCPC- ARL RWP. Intention is to find out the optimum and in compliance with NEQs incinerator performance at various moisture contents in the different waste feeds. Optimum performances of the incinerator, so that optimum operating moisture conditions, which has been used for multi purpose waste, feeds, may be defined. Three waste feeds of 10 kg batch size were used for the experimentation namely; Oily Sludge, Medical waste and Mix blend waste (oily sludge and medical), with the primary chamber preheating temperature 655 deg. C for 15 mins. interval monitoring. The secondary chamber temperature was set to 850 deg. C. By the data obtained it is apparent that rising the waste moisture content tend to increase fuel consumption specifically in case of medical waste and hence lowering the overall combustion efficiency. In the emissions the CO/sub 2/ concentration is showing the incineration efficiency. Higher efficiency of the system could have been achieved by increasing the CO/sub 2/ in the gases leaving the incinerator, lower fuel usage per kg waste feed and maintain proper operating conditions. Fuel consumption for the oily sludge with 10% moisture content, was found to be least as compared with the same %age of medical waste and mix blend waste. However environmental compliance of the operation is shown by the flue gas analysis. The results shows that using mix blend(oily sludge and medical) waste having 12-13% moisture content would be suitable for incineration in multi-chamber incinerator .Other makes it possible to determine the optimum incinerator temperature control settings and operating conditions, as well as to assure continuous, efficient, environmentally satisfactory operation. The optimum fuel consumption for 10 kg each waste

  17. Carry-over of veterinary drugs from medicated to non-medicated feeds in commercial feed manufacturing plants

    NARCIS (Netherlands)

    Stolker, A.A.M.; Zuidema, T.; Egmond, van H.J.; Deckers, E.R.; Herbes, R.; Hooglught, J.; Olde Heuvel, E.; Jong, de J.

    2013-01-01

    Different compound feeds have to be manufactured in the same production line. As a consequence, traces of the first produced feed may remain in the production and get mixed with the next feed batches. This "carry-over" is unavoidable, and so non-medicated feed can be contaminated with veterinary

  18. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  19. Feeding of waste milk to Holstein calves affects antimicrobial resistance of Escherichia coli and Pasteurella multocida isolated from fecal and nasal swabs.

    Science.gov (United States)

    Maynou, G; Bach, A; Terré, M

    2017-04-01

    The use of milk containing antimicrobial residues in calf feeding programs has been shown to select for resistant fecal Escherichia coli in dairy calves. However, information is scarce about the effects of feeding calves waste milk (WM) on the prevalence of multidrug-resistant bacteria. The objective of this study was to determine the antimicrobial resistance patterns of fecal E. coli and nasal Pasteurella multocida isolates from calves fed either milk replacer (MR) or WM in 8 commercial dairy farms (4 farms per feeding program). Fecal and nasal swabs were collected from 20 ± 5 dairy calves at 42 ± 3.2 d of age, and from 10 of these at approximately 1 yr of age in each study farm to isolate the targeted bacteria. Furthermore, resistance of E. coli isolates from calf-environment and from 5 calves at birth and their dams was also evaluated in each study farm. Resistances were tested against the following antimicrobial agents: amoxicillin-clavulanic acid, ceftiofur, colistin, doxycycline (DO), enrofloxacin (ENR), erythromycin, florfenicol, imipenem, and streptomycin. A greater number of fecal E. coli resistant to ENR, florfenicol, and streptomycin and more multidrug-resistant E. coli phenotypes were isolated in feces of calves fed WM than in those fed MR. However, the prevalence of fecal-resistant E. coli was also influenced by calf age, as it increased from birth to 6 wk of age for ENR and DO and decreased from 6 wk to 1 yr of age for DO regardless of the feeding program. From nasal samples, an increase in the prevalence of colistin-resistant P. multocida was observed in calves fed WM compared with those fed MR. The resistance patterns of E. coli isolates from calves and their dams tended to differ, whereas similar resistance profiles among E. coli isolates from farm environment and calves were observed. The findings of this study suggest that feeding calves WM fosters the presence of resistant bacteria in the lower gut and respiratory tracts of dairy calves

  20. Investigation of Sludge Batch 3 (Macrobatch 4) Glass Sample Anomalous Behavior

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Bibler, N. E.; Peeler, D. K.

    2005-01-01

    Two Defense Waste Processing Facility (DWPF) glass samples from Sludge Batch 3 (SB3) (Macrobatch 4) were received by the Savannah River National Laboratory (SRNL) on February 23, 2005. One sample, S02244, was designated for the Product Consistency Test (PCT) and elemental and radionuclide analyses. The second sample, S02247, was designated for archival storage. The samples were pulled from the melter pour stream during the feeding of Melter Feed Tank (MFT) Batch 308 and therefore roughly correspond to feed from Slurry Mix Evaporator (SME) Batches 306-308. During the course of preparing sample S02244 for PCT and other analyses two observations were made which were characterized as ''unusual'' or anomalous behavior relative to historical observations of glasses prepared for the PCT. These observations ultimately led to a series of scoping tests in order to determine more about the nature of the behavior and possible mechanisms. The first observation was the behavior of the ground glass fraction (-100 +200 mesh) for PCT analysis when contacted with deionized water during the washing phase of the PCT procedure. The behavior was analogous to that of an organic compound in the presence of water: clumping, floating on the water surface, and crawling up the beaker walls. In other words, the glass sample did not ''wet'' normally, displaying a hydrophobic behavior in water. This had never been seen before in 18 years SRNL PCT tests on either radioactive or non-radioactive glasses. Typical glass behavior is largely to settle to the bottom of the water filled beaker, though there may be suspended fines which result in some cloudiness to the wash water. The typical appearance is analogous to wetting sand. The second observation was the presence of faint black rings at the initial and final solution levels in the Teflon vessels used for the mixed acid digestion of S02244 glass conducted for compositional analysis. The digestion is composed of two stages, and at both the

  1. Commissioning of a continuous melt densification system for plastic waste. Contributed Paper PE-05

    International Nuclear Information System (INIS)

    Anji Reddy, D.; Chennakeshavalu, G.; Ramesh Babu, B.; Subba Rao, V.; Coelho, G.J.M.; Rao, S.V.S.; Paul, Biplob

    2014-01-01

    Volume reduction of radioactive solid wastes is carried out with an aim to maximize the utilization of disposal space. Cellulosic combustible solid wastes like cotton, paper etc. are treated by incineration and the plastic wastes are volume reduced by baling. Compaction of plastic wastes gives volume reduction factors in the range of 3 to 5. With a view to achieve higher volume reduction factors, a melt-densification process was developed indigenously at CWMF for reducing the volume of plastic wastes before disposal. Based on laboratory results, a pilot plant scale batch Melt Densification Unit was designed and operated. 120 M 3 of Category-I polythene waste was melted and the Volume Reduction Factors (VRF) obtained were up to 20. To meet the future needs and increasing the throughput, a continues-feed, PLC controlled, advanced Melt Densification System was commissioned recently. (author)

  2. Effect of glass-batch makeup on the melting process

    International Nuclear Information System (INIS)

    Hrma, Pavel R.; Schweiger, Michael J.; Humrickhouse, Carissa J.; Moody, J. Adam; Tate, Rachel M.; Rainsdon, Timothy T.; Tegrotenhuis, Nathan E.; Arrigoni, Benjamin M.; Marcial, Jose; Rodriguez, Carmen P.; Tincher, Benjamin

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  3. Effect Of Glass-Batch Makeup On The Melting Process

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  4. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Heinz J.

    2013-06-24

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  5. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    International Nuclear Information System (INIS)

    Huber, Heinz J.

    2013-01-01

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps

  6. High Level Waste (HLW) Processing Experience with Increased Waste Loading

    International Nuclear Information System (INIS)

    JANTZEN, CAROL

    2004-01-01

    The Defense Waste Processing Facility (DWPF) Engineering requested characterization of glass samples that were taken after the second melter had been operational for about 5 months. After the new melter had been installed, the waste loading had been increased to about 38 weight percentage after a new quasicrystalline liquidus model had been implemented. The DWPF had also switched from processing with refractory Frit 200 to a more fluid Frit 320. The samples were taken after DWPF observed very rapid buildup of deposits in the upper pour spout bore and on the pour spout insert while processing the high waste loading feedstock. These samples were evaluated using various analytical techniques to determine the cause of the crystallization. The pour stream sample was homogeneous, amorphous, and representative of the feed batch from which it was derived. Chemical analysis of the pour stream sample indicated that a waste loading of 38.5 weight per cent had been achieved. The data analysis indicated that surface crystallization, induced by temperature and oxygen fugacity gradients in the pour spout, caused surface crystallization to occur in the spout and on the insert at the higher waste loadings even though there was no crystallization in the pour stream

  7. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2006-09-01

    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  8. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  9. Biodenitrification in Sequencing Batch Reactors. Final report

    International Nuclear Information System (INIS)

    Silverstein, J.

    1996-01-01

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO 3- ) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995

  10. ESTIMATING HIGH LEVEL WASTE MIXING PERFORMANCE IN HANFORD DOUBLE SHELL TANKS

    International Nuclear Information System (INIS)

    Thien, M.G.; Greer, D.A.; Townson, P.

    2011-01-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of high level waste (HLW) feed from the Hanford double shell tanks (DSTs) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. The Department of Energy's (DOE's) Tank Operations Contractor (TOC), Washington River Protection Solutions (WRPS) is currently demonstrating mixing, sampling, and batch transfer performance in two different sizes of small-scale DSTs. The results of these demonstrations will be used to estimate full-scale DST mixing performance and provide the key input to a programmatic decision on the need to build a dedicated feed certification facility. This paper discusses the results from initial mixing demonstration activities and presents data evaluation techniques that allow insight into the performance relationships of the two small tanks. The next steps, sampling and batch transfers, of the small scale demonstration activities are introduced. A discussion of the integration of results from the mixing, sampling, and batch transfer tests to allow estimating full-scale DST performance is presented.

  11. BatchJS: Implementing Batches in JavaScript

    NARCIS (Netherlands)

    D. Kasemier

    2014-01-01

    htmlabstractNone of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to

  12. Feed and organic matter

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang

    2011-01-01

    impact on the receiving water body by reducing dissolved oxygen concentrations and increasing sedimentation. Within aquaculture systems, a high organic load may affect fish health and performance directly (e.g., gill disease) as well as indirectly (proliferation of pathogenic bacteria and parasites......, reduction of dissolved oxygen concentrations, etc.). In recirculating aquaculture systems (RAS), a high organic load caused by limited water exchange may affect biofilter performance by favouring heterotrophic bacteria at the expense of autotrophic, nitrifying bacteria. Organic waste in RAS primarily...... originates from undigested feed, but also metabolic losses, mucus, dead tissue, feed waste and intake water may contribute. The nutrient composition of the feed affects the quantity and composition of the organic (undigested) waste, and including for example plant protein ingredients may affect...

  13. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  14. Testing and evaluation of alternative process systems for immobilizing radioactive mixed particulate waste in cement

    International Nuclear Information System (INIS)

    Weingardt, K.M.; Weber, J.R.

    1994-03-01

    Radioactive and Hazardous Mixed Wastes have accumulated at the Department of Energy (DOE) Hanford Site in south-central Washington State. Ongoing operations and planned facilities at Hanford will also contribute to this waste stream. To meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions most of this waste will need to be treated to permit disposal. In general this treatment will need to include stabilization/solidification either as a sole method or as part of a treatment train. A planned DOE facility, the Waste Receiving and Processing (WRAP) Module 2A, is scoped to provide this required treatment for containerized contact-handled (CH), mixed low-level waste (MLLW) at Hanford. An engineering development program has been conducted by Westinghouse Hanford Company (WHC) to select the best system for utilizing a cement based process in WRAP Module 2A. Three mixing processes were developed for analysis and testing; in-drum mixing, continuous mixing, and batch mixing. Some full scale tests were conducted and 55 gallon drums of solidified product were produced. These drums were core sampled and examined to evaluate mixing effectiveness. Total solids loading and the order of addition of waste and binder constituents were also varied. The highest confidence approach to meet the WRAP Module 2A waste immobilization system needs appears to be the out-of-drum batch mixing concept. This system is believed to offer the most flexibility and efficiency, given the highly variable and troublesome waste streams feeding the facility

  15. Simulated Batch Production of Penicillin

    Science.gov (United States)

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  16. Batching System for Superior Service

    Science.gov (United States)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  17. Utilization of agro-resources by radiation treatment -production of animal feed and mushroom from oil palm wastes

    Science.gov (United States)

    Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji; Awang, Mat Rasol; Hamdini, Hassan; Saitoh, Hideharu

    1993-10-01

    The production of animal feeds and mushrooms from oil palm cellulosic wasres by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EFB) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13 % and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30°C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran.

  18. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  19. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  20. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  1. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    Science.gov (United States)

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures

    Directory of Open Access Journals (Sweden)

    Diego Jorge Baruque

    2011-01-01

    Full Text Available Polygalacturonases (PG; EC 3.2.1.15 catalyze the hydrolysis of pectin and/or pectic acid and are useful for industrial applications such as juice clarification and pectin extraction. Growth and heterologous expression of recombinant Saccharomyces cerevisiae which expresses an acidic PG from Aspergillus kawachii has been studied in batch and fed-batch cultures. Kinetics and stoichiometric parameters of the recombinant yeast were determined in batch cultures in a synthetic medium. In these cultures, the total biomass concentration, protein concentration, and enzyme activity achieved were 2.2 g/L, 10 mg/L, and 3 U/mL, respectively, to give a productivity of 0.06 U/(mL·h. In fed-batch cultures, various strategies for galactose feeding were used: (i after a glucose growth phase, the addition of a single pulse of galactose which gave a productivity of 0.19 U/(mL·h; (ii after a glucose growth phase, a double pulse of galactose at the same final concentration was added, resulting in a productivity of 0.21 U/(mL·h; (iii a simultaneous feeding of glucose and galactose, yielding a productivity of 1.32 U/(mL·h. Based on these results, the simultaneous feeding of glucose and galactose was by far the most suitable strategy for the production of this enzyme. Moreover, some biochemical characteristics of the recombinant enzyme such as a molecular mass of ~60 kDa, an isoelectric point of 3.7 and its ability to hydrolyze polygalacturonic acid at pH=2.5 were determined.

  3. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation.

    Science.gov (United States)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2015-12-15

    Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of "sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil" was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na2CO3) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In vivo assessment of an industrial waste product as a feed additive in dairy cows: Effects of larch (Larix decidua L.) sawdust on blood parameters and milk composition.

    Science.gov (United States)

    Tedesco, D; Garavaglia, L; Spagnuolo, M S; Pferschy-Wenzig, E M; Bauer, R; Franz, C

    2015-12-01

    When larch (Larix spp.) is processed in the wood industry, the sawdust is currently disposed of as waste or used as combustible material, even though it is rich in biologically active compounds. In this study the effect of larch sawdust supplementation on blood parameters as well as milk composition was examined in healthy mid-lactating dairy cows. Twenty-four multiparous Italian Friesian dairy cows were assigned to groups receiving either 300 g/day/cow of larch sawdust or a control diet, and treatments were continued for a 20 day period. Milk parameters were unaffected by treatment. A lower plasma total protein concentration was observed and can be attributed to a decrease in globulin concentration. A lower plasma urea concentration was also detected in the larch group. Moreover, biomarkers of liver function were influenced by the treatment. Total bilirubin was lower in larch-treated animals, and cholesterol tended to be lower. In addition, an interaction between day and treatment was observed for very low density lipoprotein. The concentration of other parameters, including reactive oxygen metabolites, superoxide dismutase, glutathione peroxidase and nitrotyrosine, did not differ between treatments. The observed benefits, together with the good palatability, make larch sawdust a promising candidate for the development of beneficial feed supplements for livestock. Further studies will be useful, particularly to evaluate its efficacy in different health conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PEMANFAATAN LIMBAH BULU AYAM MENJADI BAHAN PAKAN IKAN DENGAN FERMENTASI Bacillus subtilis (Utilization of Waste Chicken Feather to Fish Feed Ingredients Material with Fermentation of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Dini Siswani Mulia

    2016-02-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk memanfaatkan limbah bulu ayam menjadi bahan pakan ikan dengan fermentasi Bacillus subtilis. Penelitian menggunakan metode eksperimen dengan Rancangan Acak Lengkap (RAL 4 perlakuan, 3 kali ulangan, yaitu P0 : tepung bulu ayam non fermentasi; P1 : fermentasi dengan inokulum B. subtilis 5 mL/2 g tepung bulu ayam; P2 : fermentasi dengan inokulum B. subtilis 10 mL/2 g tepung bulu ayam; P3 : fermentasi dengan inokulum B. subtilis 15 mL/2 g tepung bulu ayam. Parameter yang diamati adalah hasil uji proksimat meliputi kadar protein kasar, kadar air, kadar abu, kadar lemak kasar, kadar serat kasar, dan parameter pendukung yaitu uji organoleptik, berupa sifat fisik tepung bulu ayam, meliputi warna, tekstur, dan bau. Data berupa hasil uji proksimat dianalisis menggunakan ANAVA dan Duncan Multiple Range Test (DMRT dengan taraf uji 5%, sedangkan untuk data hasil organoleptik dianalisis secara deskriptif kualitatif. Hasil penelitian menunjukkan bahwa pemanfaatan limbah bulu ayam menjadi bahan pakan ikan dapat dilakukan dengan fermentasi B. subtilis. Fermentasi tepung bulu ayam menggunakan B. subtillis dapat meningkatkan kualitas bahan baku pakan ikan. Perlakuan P2 (inokulum 10 mL/2 g tepung bulu ayamadalah perlakuan yang paling efektif karena menghasilkan protein tertinggi yaitu 80,59%, dengan perubahan sifat fisik menjadi putih sampai putih kekuningan (warna, lembut (tekstur, dan khas kurang menyengat (bau.   ABSTRACT This study aims to utilize waste chicken feathers into fish feed ingredients by fermentation of Bacillus subtilis. The research has done by experimental methods with completely randomized design (CRD 4 treatments, 3 repetitions, ie P0: non-fermented chicken feather meal; P1: fermentation with B. subtilis 5 mL inoculum/2 g chicken feather meal; P2: 10 mL/2 g chicken feather meal; P3: 15 mL/2 g chicken feather meal. Parameters measured were the proximate test results include the levels of crude protein

  6. PROOF on a Batch System

    International Nuclear Information System (INIS)

    Behrenhoff, W; Ehrenfeld, W; Samson, J; Stadie, H

    2011-01-01

    The 'parallel ROOT facility' (PROOF) from the ROOT framework provides a mechanism to distribute the load of interactive and non-interactive ROOT sessions on a set of worker nodes optimising the overall execution time. While PROOF is designed to work on a dedicated PROOF cluster, the benefits of PROOF can also be used on top of another batch scheduling system with the help of temporary per user PROOF clusters. We will present a lightweight tool which starts a temporary PROOF cluster on a SGE based batch cluster or, via a plugin mechanism, e.g. on a set of bare desktops via ssh. Further, we will present the result of benchmarks which compare the data throughput for different data storage back ends available at the German National Analysis Facility (NAF) at DESY.

  7. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    Science.gov (United States)

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  9. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran.

    Science.gov (United States)

    Tada, Shiori; Katakura, Yoshio; Ninomiya, Kazuaki; Shioya, Suteaki

    2007-06-01

    In a batch coculture of kefiran-producing lactic acid bacteria Lactobacillus kefiranofaciens and lactate-assimilating yeast Saccharomyces cerevisiae, lactate accumulation in the medium was observed, which inhibited kefiran production. To enhance kefiran productivity by preventing lactate accumulation, we conducted lactose-feeding batch operation with feedforward/feedback control during the coculture, so that the lactate production rate of L. kefiranofaciens was balanced with the lactate consumption rate of S. cerevisiae. The lactate concentration was maintained at less than 6 g l(-1) throughout the fed-batch coculture using a 5 l jar fermentor, although the concentration reached 33 g l(-1) in the batch coculture. Kefiran production was increased to 6.3 g in 102 h in the fed-batch coculture, whereas 4.5 g kefiran was produced in 97 h in the batch coculture. The kefiran yield on lactose basis was increased up to 0.033 g g(-1) in the fed-batch coculture, whereas that in the batch coculture was 0.027 g g(-1).

  11. Sludge Batch 5 Slurry Fed Melt Rate Furnace Test with Frits 418 and 550

    International Nuclear Information System (INIS)

    Miller, Donald; Pickenheim, Bradley

    2009-01-01

    Based on Melt Rate Furnace (MRF) testing for the Sludge Batch 5 (SB5) projected composition and assessments of the potential frits with reasonable operating windows, the Savannah River National Laboratory (SRNL) recommended Slurry Fed Melt Rate Furnace (SMRF) testing with Frits 418 and 550. DWPF is currently using Frit 418 with SB5 based on SRNL's recommendation due to its ability to accommodate significant sodium variation in the sludge composition. However, experience with high boron containing frits in DWPF indicated a potential advantage for Frit 550 might exist. Therefore, SRNL performed SMRF testing to assess Frit 550's potential advantages. The results of SMRF testing with SB5 simulant indicate that there is no appreciable difference in melt rate between Frit 418 and Frit 550 at a targeted 34 weight % waste loading. Both batches exhibited comparable behavior when delivered through the feed tube by the peristaltic pump. Limited observation of the cold cap during both runs showed no indication of major cold cap mounding. MRF testing, performed after the SMRF runs due to time constraints, with the same two Slurry Mix Evaporator (SME) dried products led to the same conclusion. Although visual observations of the cross-sectioned MRF beakers indicated differences in the appearance of the two systems, the measured melt rates were both ∼0.6 in/hr. Therefore, SRNL does not recommend a change from Frit 418 for the initial SB5 processing in DWPF. Once the actual SB5 composition is known and revised projections of SB5 after the neptunium stream addition and any decants is provided, SRNL will perform an additional compositional window assessment with Frit 418. If requested, SRNL can also include other potential frits in this assessment should processing of SB5 with Frit 418 result in less than desirable melter throughput in DWPF. The frits would then be subjected to melt rate testing at SRNL to determine any potential advantages

  12. Optimization of heat-liberating batches for ash residue stabilization

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlackova, G.A.; Ojovan, M.I.; Tivansky, V.M.; Dmitriev, S.A.

    1999-01-01

    The ash residue obtained after incineration of solid radioactive waste is a dusting poly-dispersed powder like material that contains radioactive nuclides ( 137 Cs, 90 Sr, 239 Pu, hor ( ellipsis)). Specific radioactivity of the ash can be about 10 5 --10 7 Bq/kg. In order to dispose of the ash, residue shall be stabilized by producing a monolith material. The ash residue can be either vitrified or stabilized into a ceramic matrix. For this purpose the ash residue is mixed with fluxing agents followed by melting of obtained composition in the different type melters. As a rule this requires both significant energy consumption and complex melting equipment. A stabilization technology of ash residue was proposed recently by using heat liberating batches-compositions with redox properties. The ash residue is melted due to exothermic chemical reactions in the mixture with heat-liberating batch that occur with considerable release of heat. Stabilization method has three stages: (1) preparation of a mixture of heating batch and ash residue with or without glass forming batch (frit); (2) ignition and combustion of mixed composition; (3) cooling (quenching) of obtained vitreous material. Combustion of mixed composition occurs in the form of propagation of reacting wave. The heat released during exothermic chemical reactions provides melting of ash residue components and production of glass-like phase. The final product consists of a glass like matrix with embedded crystalline inclusions of infusible ash residue components

  13. Comparison of neptunium sorption results using batch and column techniques

    International Nuclear Information System (INIS)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases

  14. ADM1 applications for a hybrid up-flow anaerobic sludge-filter bed reactor performance and for a batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge

    Directory of Open Access Journals (Sweden)

    lván Ramirez

    2012-01-01

    Full Text Available Los procesos de la digestión anaerobia comprenden una red completa de reacciones bioquimicas y fisicoquímicas, secuenciales y paralelas. Los digestores anaerobios a menudo exhiben importantes problemas de estabilidad que sólo pueden ser evitados a través de apropiadas estrategias de control. Tales estrategias requieren, en general, para su implementación, del desarrollo de modelos matemáticos cuya finalidad es el de permitirnos mejor comprensión y optimización de los procesos de la digestión anaerobia, describiendo estas reacciones de una manera estructurada. Este trabajo revisa el modelo ADMI de la IWAy discute dos aplicaciones del modelo: la digestión anaerobia de las aguas residuales vinazas de las destilerias de vino corno sustrato en un reactor hibrido (UASFB y la digestión anaerobia termófila en batch de lodos activados con pre-tratamiento térmico. Las predicciones del modelo, usando los parámetros establecidos en este estudio, concuerdan bien con los resultados de las mediciones en las diferentes condiciones ensayadas. Los modelos resultantes explicaron la evolución dinámica de las principales variables, tanto en la fase liquida corno la fase gaseosa.

  15. A comparison of process performance during the anaerobic mono- and co-digestion of slaughterhouse waste through different operational modes.

    Science.gov (United States)

    Pagés-Díaz, Jhosané; Pereda-Reyes, Ileana; Sanz, Jose Luis; Lundin, Magnus; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-02-01

    The use of consecutive feeding was applied to investigate the response of the microbial biomass to a second addition of substrates in terms of biodegradation using batch tests as a promising alternative to predict the behavior of the process. Anaerobic digestion (AD) of the slaughterhouse waste (SB) and its co-digestion with manure (M), various crops (VC), and municipal solid waste were evaluated. The results were then correlated to previous findings obtained by the authors for similar mixtures in batch and semi-continuous operation modes. AD of the SB failed showing total inhibition after a second feeding. Co-digestion of the SB+M showed a significant improvement for all of the response variables investigated after the second feeding, while co-digestion of the SB+VC resulted in a decline in all of these response variables. Similar patterns were previously detected, during both the batch and the semi-continuous modes. Copyright © 2017. Published by Elsevier B.V.

  16. TRUEX partitioning from radioactive ICPP sodium bearing waste

    International Nuclear Information System (INIS)

    Herbst, R.S.; Brewer, K.N.; Tranter, T.J.; Todd, T.A.

    1995-03-01

    The Idaho Chemical Processing Plant (ICPP) located at the Idaho National Engineering Laboratory in Southeast Idaho is currently evaluating several treatment technologies applicable to waste streams generated over several decades of-nuclear fuel reprocessing. Liquid sodium bearing waste (SBW), generated primarily during decontamination activities, is one of the waste streams of interest. The TRansUranic EXtraction (TRUEX) process developed at Argonne National Laboratory is currently being evaluated to separate the actinides from SBW. On a mass basis, the amount of the radioactive species in SBW are low relative to inert matrix components. Thus, the advantage of separations is a dramatic decrease in resulting volumes of high activity waste (HAW) which must be dispositioned. Numerous studies conducted at the ICPP indicate the applicability of the TRUEX process has been demonstrated; however, these studies relied on a simulated SBW surrogate for the real waste. Consequently, a series of batch contacts were performed on samples of radioactive ICPP SBW taken from tank WM-185 to verify that actual waste would behave similarly to the simulated waste. The test results with SBW from tank WM-185 indicate the TRUEX solvent effectively extracts the actinides from the samples of actual waste. Gross alpha radioactivity, attributed predominantly to Pu and Am, was reduced from 3.14E+04 dps/mL to 1.46 dps/mL in three successive batch contacts with fresh TRUEX solvent. This reduction corresponds to a decontamination factor of DF = 20,000 or 99.995% removal of the gross a activity in the feed. The TRUEX solvent also extracted the matrix components Zr, Fe, and Hg to an appreciable extent (D Zr > 10, D Fe ∼ 2, D Hg ∼6). Iron co-extracted with the actinides can be successfully scrubbed from the organic with 0.2 M HNO 3 . Mercury can be selectively partitioned from the actinides with either sodium carbonate or nitric acid (≥ 5 M HNO 3 ) solutions

  17. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    International Nuclear Information System (INIS)

    Swita, W.R.

    1998-01-01

    This document provides a summary of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost), developed to demonstrate Readiness-to-Proceed (RTP) in support of the TWRS Phase 1B mission. This Updated Baseline is the proposed TWRS plan to execute and measure the mission work scope. This document and other supporting data demonstrate that the TWRS Project Hanford Management Contract (PHMC) team is prepared to fully support Phase 1B by executing the following scope, schedule, and cost baseline activities: Deliver the specified initial low-activity waste (LAW) and high-level waste (HLW) feed batches in a consistent, safe, and reliable manner to support private contractors' operations starting in June 2002; Deliver specified subsequent LAW and HLW feed batches during Phase 1B in a consistent, safe, and reliable manner; Provide for the interim storage of immobilized HLW (IHLW) products and the disposal of immobilized LAW (ILAW) products generated by the private contractors; Provide for disposal of byproduct wastes generated by the private contractors; and Provide the infrastructure to support construction and operations of the private contractors' facilities

  18. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  19. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  20. Volatile fatty acid formation and utilization in anaerobic sulphidogenic batch reactors

    CSIR Research Space (South Africa)

    Greben, HA

    2006-05-01

    Full Text Available four stirred batch-test reactors (2 l) were operated, fed with artificial SO4 rich (1700 mg/l) feed water and tap water (controls). The reactors received sulphate reducing bacteria, compost bacteria and grass cuttings. The experimental period was 25...

  1. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  2. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    Science.gov (United States)

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  3. Recommendation of ruthenium source for sludge batch flowsheet studies

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-13

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate, conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.

  4. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing; Tang, Wei; Xia, Ru; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Song, Changjiang

    2015-01-01

    experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight

  5. Yields from pyrolysis of refinery residue using a batch process

    Directory of Open Access Journals (Sweden)

    S. Prithiraj

    2017-12-01

    Full Text Available Batch pyrolysis was a valuable process of assessing the potential of recovering and characterising products from hazardous waste materials. This research explored the pyrolysis of hydrocarbon-rich refinery residue, from crude oil processes, in a 1200 L electrically-heated batch retort. Furthermore, the off-gases produced were easily processed in compliance with existing regulatory emission standards. The methodology offers a novel, cost-effective and environmentally compliant method of assessing recovery potential of valuable products. The pyrolysis experiments yielded significant oil (70% with high calorific value (40 MJ/kg, char (14% with carbon content over 80% and non-condensable gas (6% with significant calorific value (240 kJ/mol. The final gas stream was subjected to an oxidative clean-up process with continuous on-line monitoring demonstrating compliance with South African emission standards. The gas treatment was overall economically optimal as only a smaller portion of the original residue was subjected to emission-controlling steps. Keywords: Batch pyrolysis, Volatiles, Oil yields, Char, Emissions, Oil recovery

  6. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review.

    Science.gov (United States)

    Ÿztürk, Sibel; Ÿalık, Pınar; Ÿzdamar, Tunçer H

    2016-04-01

    Bacillus subtilis is a highly promising production system for various biomolecules. This review begins with the algorithm of fed-batch operations (FBOs) and then illustrates the approaches to design the initial production medium and/or feed stream. Additionally, the feeding strategies developed with or without feedback control for fed-batch B. subtilis fermentations were compiled with a special emphasis on recombinant protein (r-protein) production. For biomolecule production by wild-type B. subtilis, due to the different intracellular production patterns, no consensus exists on the FBO strategy that gives the maximum productivity, whereas for r-protein production appropriate feeding strategies vary depending on the promoter used. Thus, we conclude that the B. subtilis community is still seeking an approved strong promoter and generalized FBO strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Family based dispatching with batch availability

    NARCIS (Netherlands)

    van der Zee, D.J.

    2013-01-01

    Family based dispatching rules seek to lower set-up frequencies by grouping (batching) similar types of jobs for joint processing. Hence shop flow times may be improved, as less time is spent on set-ups. Motivated by an industrial project we study the control of machines with batch availability,

  8. SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)

    International Nuclear Information System (INIS)

    Smith, M; Timothy Jones, T; Donald02 Miller, D

    2007-01-01

    Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418, 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters

  9. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  10. Nuclear waste solidification

    International Nuclear Information System (INIS)

    Bjorklund, W.J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition

  11. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.

    Science.gov (United States)

    Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut

    2011-10-01

    Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.

  12. Process for the recovery of curium-244 from nuclear waste

    International Nuclear Information System (INIS)

    Posey, J.C.

    1980-10-01

    A process has been designed for the recovery of curium from purex waste. Curium and americium are separated from the lanthanides by a TALSPEAK extraction process using differential extraction. Equations were derived for the estimation of the economically optimum conditions for the extraction using laboratory batch extraction data. The preparation of feed for the extraction involves the removal of nitric acid from the Purex waste by vaporization under reduced pressure, the leaching of soluble nitrates from the resulting cake, and the oxalate precipitation of a pure lanthanide-actinide fraction. Final separation of the curium from americium is done by ion-exchange. The steps of the process, except ion-exchange, were tested on a laboratory scale and workable conditions were determined

  13. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    Science.gov (United States)

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  14. Feed Materials Production Center. Final phase-in report volume 11 of 15 waste management, October 25, 1985--December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.E.

    1986-01-17

    This volume of the Transition Final Report provides the findings, recommendations and corrective actions for the Waste Management areas developed during the phase-in actions by Westinghouse Materials Company (WMCO). The objective is to provide a summary of the studies and investigations performed by the WMCO Company during the transition period. The Waste Management effort at FMPC was expanded in 1984 when a separate group was formed within the NLO organization. This is considered to be an area where significant increase in priority and effort must be applied to resolve waste management problems and to bring the site in conformity to regulations and the Environmental Health/Safety Standards. During the transition, there was a comprehensive investigation in all areas of air, liquid and solid waste management for nuclear, chemical and conventional wastes. Not all of these investigations are documented in this report, but the information gathered was used in the development of the budgets (cost accounts), programs, and organizational planning.

  15. Uneven batch data alignment with application to the control of batch end-product quality.

    Science.gov (United States)

    Wan, Jian; Marjanovic, Ognjen; Lennox, Barry

    2014-03-01

    Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Determination of uranium distribution in the evaporation of simulated Savannah River Site waste

    International Nuclear Information System (INIS)

    Barnes, M.J.; Chandler, G.T.

    1995-01-01

    The results of an experimental program addressing the distribution of uranium in saltcake and supernate for two Savannah River Site waste compositions are presented. Successive batch evaporations were performed on simulated H-Area Modified Purex low-heat and post-aluminum dissolution wastes spiked with depleted uranium. Waste compositions and physical data were obtained for supernate and saltcake samples. For the H-Area Modified Purex low-heat waste, the product saltcake contained 42% of the total uranium from the original evaporator feed solution. However, precipitated solids only accounted for 10% of the original uranium mass; the interstitial liquid within the saltcake matrix contained the remainder of the uranium. In the case of the simulated post-aluminum dissolution waste; the product saltcake contained 68% of the total uranium from the original evaporator feed solution. Precipitated solids accounted for 52% of the original uranium mass; again, the interstitial liquid within the saltcake matrix contained the remainder of the uranium. An understanding of the distribution of uranium between supernatant liquid, saltcake, and sludge is required to develop a material balance for waste processing operations. This information is necessary to address nuclear criticality safety concerns

  17. Demonstration of the Defense Waste Processing Facility vitrification process for Tank 42 radioactive sludge -- Glass preparation and characterization

    International Nuclear Information System (INIS)

    Bibler, N.E.; Fellinger, T.L.; Marshall, K.M.; Crawford, C.L.; Cozzi, A.D.; Edwards, T.B.

    1999-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is currently processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF has recently finished processing the first radioactive sludge batch, and is ready for the second batch of radioactive sludge. The second batch is primarily sludge from Tank 42. Before processing this batch in the DWPF, the DWPF process flowsheet has to be demonstrated with a sample of Tank 42 sludge to ensure that an acceptable melter feed and glass can be made. This demonstration was recently completed in the Shielded Cells Facility at SRS. An earlier paper in these proceedings described the sludge composition and processes necessary for producing an acceptable melter fee. This paper describes the preparation and characterization of the glass from that demonstration. Results substantiate that Tank 42 sludge after mixing with the proper amount of glass forming frit (Frit 200) can be processed to make an acceptable glass

  18. Change in hyphal morphology of Aspergillus Oryzae during fed-batch cultivation

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Olsson, Lisbeth; Hansen, K

    2006-01-01

    the batch phase from 2.8-2.9 up to 4.0-4.4 mu m. The diameter of the hyphal elements remained constant, around 4 mu m, after the feed was started. However, the diameter of the immediate hyphal tip, where the enzyme secretion is thought to take place, increased dramatically with up to a factor 2.5 during......Industrial enzymes are often produced by filamentous fungi in fed-batch cultivations. During cultivation, the different morphological forms displayed by the fungi have an impact on the overall production. The morphology of a recombinant lipase producing Aspergillus oryzae strain was investigated...

  19. Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Bomble, Yannick J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); St. John, Peter C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.

  20. LSF usage for batch at CERN

    CERN Multimedia

    Schwickerath, Ulrich

    2007-01-01

    Contributed poster to the CHEP07. Original abstract: LSF 7, the latest version of Platform's batch workload management system, addresses many issues which limited the ability of LSF 6.1 to support large scale batch farms, such as the lxbatch service at CERN. In this paper we will present the status of the evaluation and deployment of LSF 7 at CERN, including issues concerning the integration of LSF 7 with the gLite grid middleware suite and, in particular, the steps taken to endure an efficient reporting of the local batch system status and usage to the Grid Information System

  1. Sludge Batch Variability Study With Frit 418

    International Nuclear Information System (INIS)

    Johnson, F.; Edwards, T.

    2010-01-01

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO 2 resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass regardless of

  2. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferred option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.

  3. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  4. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  5. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    International Nuclear Information System (INIS)

    Martin-Gonzalez, L.; Colturato, L.F.; Font, X.; Vicent, T.

    2010-01-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 o C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 ± 0.02 L g VS feed -1 to 0.55 ± 0.05 L g VS feed -1 as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  6. Mixing Modeling Analysis For SRS Salt Waste Disposition

    International Nuclear Information System (INIS)

    Lee, S.

    2011-01-01

    Nuclear waste at Savannah River Site (SRS) waste tanks consists of three different types of waste forms. They are the lighter salt solutions referred to as supernate, the precipitated salts as salt cake, and heavier fine solids as sludge. The sludge is settled on the tank floor. About half of the residual waste radioactivity is contained in the sludge, which is only about 8 percentage of the total waste volume. Mixing study to be evaluated here for the Salt Disposition Integration (SDI) project focuses on supernate preparations in waste tanks prior to transfer to the Salt Waste Processing Facility (SWPF) feed tank. The methods to mix and blend the contents of the SRS blend tanks were evalutaed to ensure that the contents are properly blended before they are transferred from the blend tank such as Tank 50H to the SWPF feed tank. The work consists of two principal objectives to investigate two different pumps. One objective is to identify a suitable pumping arrangement that will adequately blend/mix two miscible liquids to obtain a uniform composition in the tank with a minimum level of sludge solid particulate in suspension. The other is to estimate the elevation in the tank at which the transfer pump inlet should be located where the solid concentration of the entrained fluid remains below the acceptance criterion (0.09 wt% or 1200 mg/liter) during transfer operation to the SWPF. Tank 50H is a Waste Tank that will be used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The modeling results will provide quantitative design and operation information during the mixing/blending process and the transfer operation of the blended

  7. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  8. MITS Feed and Withdrawal Subsystem: operating procedures

    International Nuclear Information System (INIS)

    Brown, W.S.

    1980-01-01

    This procedure details the steps required to provide continuous feed flow and withdrawal of process product and waste flows in support of thruput operation in the cascade or its elements. It particularly requires operator attention to safety considerations

  9. Xylitol production by Candida parapsilosis under fed-batch culture

    Directory of Open Access Journals (Sweden)

    Sandra A. Furlan

    2001-06-01

    Full Text Available Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose or mixed (xylose and glucose sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch cultivation.A produção de xylitol por Candida parapsilosis foi investigada em regime de batelada alimentada, usando substratos açucarados de composição simples (xilose ou composta (xilose e glicose. A presença de glicose no meio induziu a formação de etanol como metabólito secundário. A suplementação fracionada do meio de alimentação numa concentração fixa de açúcar não resultou em aumento da produtividade em relação àquela alcançada em batelada simples.

  10. Treatment of Diesel Waste by Sequencing Batch Bioreactor ...

    African Journals Online (AJOL)

    Nei

    2012-03-13

    Mar 13, 2012 ... Residues with high environmental risk have been efficiently treated by ex situ ... Petrobras Oil Company in Pernambuco, Brazil. Physical-chemical ..... Brazil, using embryonic development of the mangrove oyster. Crasssostrea ...

  11. Protein recovery from dairy industry wastes with aerobic biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wheatley, A D; Mitra, R I; Hawkes, H A

    1982-01-01

    Experiments were carried out to improve the economics of effluent treatment by the recovery of single cell protein. Field observations showed that acidic strong wastes, such as those from the dairy industry, produced a predominantly fungal biomass. Mixtures of dairy waste and domestic sewage did not produce fungal films. The most common fungi isolated were Fusarium and Geotrichum, but the species was affected by local conditions, i.e. creamery, yoghurt, milk or cheese wastes and the load to the plant. Batch culture was used to determine the growth requirements of Fusarium and Geotrichum and continuous culture, on vertical and horizontal fixed films, to determine growth and sloughing at different organic loads. The fungi grew well on acidic strong wastes which would discourage other organisms. A 1 cubic metre/hour pilot plant was built to treat the wastes from cheese, butter and cream production. The plant was run at pH 4-5 and at between 5 and 10 kg of BOD/day/cubic metres. BOD removal was between 30 and 50% and biomass production between 0.1 and 0.5 kg of dry solids/day. The filamentous fungal growth was separated from the tower effluent by an inclined screen. The amino acid content of the product was similar to other single-cell protein. Feeding trials are being carried out. (Refs. 14).

  12. DC plasma arc melter technology for waste vitrification

    International Nuclear Information System (INIS)

    Hamilton, R.A.; Wittle, J.K.; Trescot, J.

    1995-01-01

    This paper describes the features and benefits of a breakthrough DC Arc Melter for the permanent treatment of all types of solid wastes including nonhazardous, hazardous and radioactive. This DC Arc Furnace system, now commercially available, is the low cost permanent solution for solid waste pollution prevention and remediation. Concern over the effective disposal of wastes generated by the industrial society, worldwide, has prompted development of technologies to address the problem. For the most part these technologies have resulted in niche solutions with limited application. The only solution that has the ability to process almost all wastes, and to recover/recycle metallic and inorganic matter, is the group of technologies known as melters. Melters have distinct advantages over traditional technologies such as incineration because melters operate at higher temperatures, are relatively unaffected by changes in the waste stream, produce a vitrified stable product, and have the capability to recover/recycle slag, metals and gas. The system, DC Plasma Arc Melter, has the lowest capital, maintenance and operating cost of any melter technology because of its patented DC Plasma Arc with graphite electrode. DC Plasma Arc Melter systems are commercially available in sizes from 50 kg/batch or 250--3,000 kg/hr on a continuous feed basis. This paper examines the design and operating benefits of a DC Plasma Arc Melter System

  13. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  14. Biological Treatment of Leachate using Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    WDMC Perera

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE TA Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill sites.   The study was conducted to assess the feasibility of the usage of the Sequencing Batch Reactor in the treatment of the landfill leachate up to the proposed levels in the draft report of “Proposed Sri Lankan standard for landfill leachate to be disposed to the inland waters". Leachate collected from the open dumpsite at Meethotamulla, Western Province, Sri Lanka was used for leachate characterization.   SBR was constructed with a 10-liter working volume operated in an 18 hour cycle mode and each cycle consists of 15hours of aerobic, 2h settle and 0.5 h of fill/decant stages. The Dissolved Oxygen level within the SBR was maintained at 2 mg/l through the aerobic stage. Infeed was diluted with water during the acclimatization period and a leachate to water ratio of 55:45 was maintained. The removal efficiencies for different parameters were; COD (90.5%, BOD (92.6%, TS (92.1%, Conductivity (83.9%, Alkalinity (97.4%, Hardness (82.2%, Mg (80.5%, Fe (94.2%, Zn (63.4%, Cr (31.69%, Pb (99.6%, Sulphate (98.9%, and Phosphorus (71.4% respectively. In addition Ni and Cd were removed completely during a single SBR cycle. Thus the dilution of leachate in the dumpsites using municipal wastewater, groundwater or rainwater was identified as the most cost effective dilution methods. The effluent from the Sequencing batch reactor is proposed to be further treated using a constructed wetland before releasing to surface water.

  15. Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch.

    Science.gov (United States)

    Walther, Jason; Lu, Jiuyi; Hollenbach, Myles; Yu, Marcella; Hwang, Chris; McLarty, Jean; Brower, Kevin

    2018-05-30

    In this study, we compared the impacts of fed-batch and perfusion platforms on process and product attributes for IgG1- and IgG4-producing cell lines. A "plug-and-play" approach was applied to both platforms at bench scale, using commercially available basal and feed media, a standard feed strategy for fed-batch, and ATF filtration for perfusion. Product concentration in fed-batch was 2.5 times greater than perfusion, while average productivity in perfusion was 7.5 times greater than fed-batch. PCA revealed more variability in the cell environment and metabolism during the fed-batch run. LDH measurements showed that exposure of product to cell lysate was 7-10 times greater in fed-batch. Product analysis shows larger abundances of neutral species in perfusion, likely due to decreased bioreactor residence times and extracellular exposure. The IgG1 perfusion product also had higher purity and lower half-antibody. Glycosylation was similar across both culture modes. The first perfusion harvest slice for both product types showed different glycosylation than subsequent harvests, suggesting that product quality lags behind metabolism. In conclusion, process and product data indicate that intra-lot heterogeneity is decreased in perfusion cultures. Additional data and discussion is required to understand the developmental, clinical and commercial implications, and in what situations increased uniformity would be beneficial. This article is protected by copyright. All rights reserved.

  16. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Gregor Drago Zupančič

    2017-01-01

    Full Text Available Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day, and with a maximum achieved organic loading rate of 13.6 kg/(m3·day in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD inserted, and total COD removal efficiencies of over 90 % were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8 % (by volume. By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50 %.

  17. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Kwon, Eun-Yeong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Beom Soo

    2011-09-01

    Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.

  18. Techno-economic assessment of boiler feed water production by membrane distillation with reuse of thermal waste energy from cooling water

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Leerdam, R.C. van; Medevoort, J. van; Tongeren, W.G.J.M. van; Verhasselt, B.; Verelst, L.; Vermeersch, M.; Corbisier, D.

    2015-01-01

    The European KIC-Climate project Water and Energy for Climate Change (WE4CC) aims at the technical demonstration, business case evaluation and implementation of new value chains for the production of high-quality water using low-grade thermal waste energy from cooling water. A typical large-scale

  19. Waste treatment by selective mineral ion exchanger

    International Nuclear Information System (INIS)

    Polito, Aurelie

    2007-01-01

    STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

  20. ORNL grouting technologies for immobilizing hazardous wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon

  1. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    Science.gov (United States)

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  2. Results Of The Extraction-Scrub-Strip Testing Using An Improved Solvent Formulation And Salt Waste Processing Facility Simulated Waste

    International Nuclear Information System (INIS)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-01

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D Cs in an ESS test, using the baseline solvent formulation and the typical waste feed, is ∼15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under

  3. Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design.

    Science.gov (United States)

    Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup

    2010-10-01

    We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    This work was undertaken to investigate the effect of variations of the feed rate on a fed-batch set-up used to degrade xenobiotics. The mixture of substrates was composed of PCP, 2,4,6 TCP and 2,3,5,6 TeCP (pentachlorophenol, 2,4,6 trichlorophenol and 2,3,5,6 tetrachlorophenol respectively). Two acclimated bacteria ...

  5. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Meeting report: batch-to-batch variability in estrogenic activity in commercial animal diets--importance and approaches for laboratory animal research.

    Science.gov (United States)

    Heindel, Jerrold J; vom Saal, Frederick S

    2008-03-01

    We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research.

  7. Impressions and purchasing intentions of Japanese consumers regarding pork produced by 'Ecofeed,' a trademark of food-waste or food co-product animal feed certified by the Japanese government.

    Science.gov (United States)

    Sasaki, Keisuke; Aizaki, Hideo; Motoyama, Michiyo; Ohmori, Hideyuki; Kawashima, Tomoyuki

    2011-02-01

    Impressions and purchasing intentions of Japanese consumers regarding pork produced by 'Ecofeed', a trademark of food-waste or co-product animal feeds certified by the Japanese government, were investigated by a questionnaire on the Internet. 'Ecofeed' did not elicit specific impressions as compared to domestic, imported, Kurobuta (in Japan), and specific pathogen-free (SPF) pork. Purchasing intent for 'Ecofeed' pork was the second lowest of the five pork products. Knowledge and purchasing experience regarding 'Ecofeed' pork was the lowest of the five pork products. Respondents were classified into four categories according to their impressions of 'Ecofeed' pork. The largest category of respondents did not have any specific impression of 'Ecofeed' pork and had little knowledge of pork farming. A category that had a positive impression for 'Ecofeed' pork had high knowledge of the pork farming system. In order to establish 'Ecofeed' pork in Japan, our results suggest that information disclosure and education about 'Ecofeed', its certification system, environmental benefits and the current self-efficiency ratio of animal feed, are needed. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Animal Science.

  8. Modeling of Fusarium redolens Dzf2 mycelial growth kinetics and optimal fed-batch fermentation for beauvericin production.

    Science.gov (United States)

    Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong

    2011-09-01

    Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.

  9. History based batch method preserving tally means

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Choi, Sung Hoon

    2012-01-01

    In the Monte Carlo (MC) eigenvalue calculations, the sample variance of a tally mean calculated from its cycle-wise estimates is biased because of the inter-cycle correlations of the fission source distribution (FSD). Recently, we proposed a new real variance estimation method named the history-based batch method in which a MC run is treated as multiple runs with small number of histories per cycle to generate independent tally estimates. In this paper, the history-based batch method based on the weight correction is presented to preserve the tally mean from the original MC run. The effectiveness of the new method is examined for the weakly coupled fissile array problem as a function of the dominance ratio and the batch size, in comparison with other schemes available

  10. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  11. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  12. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content.

    Science.gov (United States)

    Kuwae, Shinobu; Miyakawa, Ichiko; Doi, Tomohiro

    2018-01-11

    A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 10 6  cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 10 7 to 1.8 × 10 7  cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.

  13. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop...... a model for cultivation behaviour. This model is validated against 13 data sets and demonstrated to explain a significant amount of variation in the data. The multivariate model may directly be used for process monitoring. With this method faults are detected in real time and the responsible measurements...

  14. Exploring the Transition From Batch to Online

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2010-01-01

    of the truly interactive use of computers known today. The transition invoked changes in a number of areas: technological, such as hybrid forms between batch and online; organisational such as decentralization; and personal as users and developers alike had to adopt new technology, shape new organizational...... structures, and acquire new skills. This work-in-progress paper extends an earlier study of the transition from batch to online, based on oral history interviews with (ex)-employees in two large Danish Service Bureaus. The paper takes the next step by ana-lyzing a particular genre: the commercial computer...

  15. Operational strategies for nitrogen removal in granular sequencing batch reactor

    International Nuclear Information System (INIS)

    Chen, Fang-yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2011-01-01

    This study investigated the effects of different operational strategies for nitrogen removal by aerobic granules with mean granule sizes of 1.5 mm and 0.7 mm in a sequencing batch reactor (SBR). With an alternating anoxic/oxic (AO) operation mode without control of dissolve oxygen (DO), the granular sludge with different size achieved the total inorganic nitr