WorldWideScience

Sample records for waste feed batch

  1. Low-activity waste feed delivery -- Minimum duration between successive batches

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.

    1998-08-25

    The purpose of this study is to develop a defensible basis for establishing what ``minimum duration`` will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates.

  2. Optimized Batch Fermentation of Cheese Whey-Supplemented Feedlot Waste Filtrate to Produce a Nitrogen-Rich Feed Supplement for Ruminants †

    OpenAIRE

    Erdman, M D; Reddy, C. Adinarayana

    1986-01-01

    An optimized batch fermentation process for the conversion of cattle feedlot waste filtrate, supplemented with cheese whey, into a nitrogenous feed supplement for ruminants is described. Feedlot waste filtrate supplemented with cheese whey (5 g of whey per 100 ml) was fermented by the indigenous microbial flora in the feedlot waste filtrate. Ammonium hydroxide was added to the fermentation not only to maintain a constant pH but also to produce ammonium salts of organic acids, which have been ...

  3. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    Science.gov (United States)

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    Science.gov (United States)

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge.

  5. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  6. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    2000-01-06

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  7. Low-level waste feed staging plan

    Energy Technology Data Exchange (ETDEWEB)

    Certa, P.J.; Grams, W.H.; McConville, C.M.; L. W. Shelton, L.W.; Slaathaug, E.J., Westinghouse Hanford

    1996-08-12

    The `Preliminary Low-Level Waste Feed Staging Plan` was updated to reflect the latest requirement in the Tank Waste Remediation Privatization Request for Proposals (RFP) and amendments. The updated plan develops the sequence and transfer schedule for retrieval of DST supernate by the management and integration contractor and delivery of the staged supernate to the private low-activity waste contractors for treatment. Two DSTs are allocated as intermediate staging tanks. A transfer system conflict analysis provides part of the basis for determining transfer system upgrade requirements to support both low-activity and high-level waste feed delivery. The intermediate staging tank architecture and retrieval system equipment are provided as a planning basis until design requirements documents are prepared. The actions needed to successfully implement the plan are identified. These include resolution of safety issues and changes to the feed envelope limits, minimum order quantities, and desired batch sizes.

  8. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  9. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  10. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  11. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  12. Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process

    National Research Council Canada - National Science Library

    Danilo Gomes Moriel; Miriam Blumel Chociai; Iara Maria Pereira Machado; José Domingos Fontana; Tania Maria Bordin Bonfim

    2005-01-01

    The effect of feeding methods on the production of astaxanthin by the yeast Phaffia rhodozyma ATCC 24202 was studied, using continuous and pulsed fed-batch processes and low cost materials as substrates...

  13. Environmental Hazard Assessment of Jarosite Waste Using Batch Leaching Tests

    Directory of Open Access Journals (Sweden)

    M. Kerolli – Mustafa

    2018-01-01

    Full Text Available Jarosite waste samples from Trepça Zinc Industry in Kosovo were subjected to two batch leaching tests as an attempt to characterize the leaching behavior and mobility of minor and major elements of jarosite waste. To achieve this, deionized water and synthetic acidic rain leaching tests were employed. A two-step acidic treatment in microwave digestion system were used to dissolve jarosite waste samples, followed by determination of Al, Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Si, Sr, and Zn by inductively coupled plasma optical emission spectrometry (ICP-OES. The validation of the procedure was performed by the analysis of two geochemical reference materials, S JR-3 and S Jsy-1. Two toxicity leaching tests revealed a high metal releasing of Cd, Cu, Ni, Mn, Pb, Zn, and As, and the metal release risk for these elements is still very high due the low pH and acid rain. The statistical analysis showed useful data information on the relationship between elements in jarosite samples in two different extraction conditions (deionized water and synthetic acid rain.

  14. HLW Feed Delivery AZ101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements [Initial Release at Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, G.P.

    2000-02-28

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

  15. Evaluation of Various Feeding Regimens in A Multiple-Batch Cropping System of Channel Catfish Production

    Science.gov (United States)

    A four-year pond study was conducted to compare gross production, feed conversion, processing yield, and body composition of channel catfish Ictalurus punctatus fed once daily or every other day to satiation, or # 110 kg/ha per day in a multiple-batch cropping system. The greatest amount of feed fed...

  16. Waste feed delivery planning at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Certa, Paul J.; West, Elizha B.; Rodriguez, Juissepp S.; Hohl, Ted M.; Larsen, Douglas C.; Ritari, Jaakob S.; Kelly, James W.

    2013-01-10

    The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades.

  17. Application of different feeding strategies in fed batch culture for pullulanase production using sago starch.

    Science.gov (United States)

    R, Shankar; M S, Madihah; E M, Shaza; K O, Nur Aswati; A A, Suraini; K, Kamarulzaman

    2014-02-15

    The production of pullulanase by Bacillus flavothermus KWF-1 in batch and fed batch culture were compared using 2L bioreactor. In batch culture, 0.0803 U/mL of pullulanase activity with specific activity of 0.0213 U/mg was produced by controlling the agitation speed and temperature at 200 rpm and 50 °C, respectively. Fed batch production was studied by feeding the culture with different sago starch concentrations in various feeding modes for enhanced pullulanase production. Exponential feeding mode at dilution rate of 0.01/h was the preeminent strategy for enhanced pullulanase production of 0.1710 U/mL with specific activity of 0.066 U/mg. It had shown an increment of pullulanase production and specific activity by 2.1 and 3.1-fold, respectively when compared to batch culture. Increment of pullulanase activity in exponential feeding mode improved hydrolyzation of sago starch into maltotriose and panose by 4.5 and 2.5-fold respectively compared to batch system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Ahmed, El Hadi; Christensen, Claus H.

    2011-01-01

    Hydrodeoxygenation of waste fats and oils is a viable method for producing renewable diesel oil. In this study a model feed consisting of oleic acid and tripalmitin in molar ratio 1:3 was hydrotreated at 325°C with 20bars H2 in a stirred batch autoclave with a 5wt% Pt/γ-Al2O3 catalyst, and sample...

  19. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  20. Low Activity Waste Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  1. Fed-Batch Feeding Strategies for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John

    2014-01-01

    of the differences in the interfacial and bulk concentrations of the enzyme. The model is then used to evaluate various feeding strategies to improve the enzymatic biodiesel production. The feeding strategies investigated, gave insight into how the methanol should be fed to potentially mitigate enzyme deactivation......In this work a kinetic model for the enzymatic transesterification of rapeseed oil using a solubilised lipase (Callera Trans L-Thermomyces lanuginos us) was developed from first principles. The model is based on a Ping-Pong Bi-Bi mechanism, with methanol inhibition, along with consideration...... while improving the biodiesel yield. The best experimental results gave a yield of 703 .76 g FAME L-1 and a reactor productivity of 28.12 g FAME L-1 h-1. In comparison, to reach the same yield, the optimised two step feeding strategy took 6.25 hours less, which equates to an increase the reactor...

  2. MECHANISMS GOVERNING TRANSIENTS FROM THE BATCH INCINERATION OF LIQUID WASTES IN ROTARY KILNS

    Science.gov (United States)

    When "containerized" liquid wastes, bound on sorbents. are introduced into a rotary kiln in a batch mode, transient phenomena in-volving heat transfer into, and waste mass transfer out of, the sorbent can oromote the raoid release of waste vaoor into the kiln environment. This ra...

  3. Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Kuthiala, Sidhant

    2018-01-01

    This study investigates the co-digestion of source separated municipal organic waste (SSMOW), pretreated using a biopulper, and cattle manure both in batch and continuous stirred tank reactors. The optimum co-digestion feeding mixture was consisted of 90% SSMOW and 10% cattle manure on organic...

  4. Optimal Feeding Trajectories Design for E. coli Fed-batch Fermentations

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2010-08-01

    Full Text Available In this paper optimal control algorithms for two E. coli fed-batch fermentations are developed. Fed-batch fermentation processes of E. coli strain MC4110 and E. coli strain BL21(DE3pPhyt109 are considered. Simple material balance models are used to describe the E. coli fermentation processes. The optimal feed rate control of a primary metabolite process is studied and a biomass production is used as an example. The optimization of the considered fed-batch fermentation processes is done using the calculus of variations to determine the optimal feed rate profiles. The problem is formulated as a free final time problem where the control objective is to maximize biomass at the end of the process. The obtained optimal feed rate profiles consist of sequences of maximum and minimum feed rates. The resulting profiles are used for optimization of the E. coli fed-batch fermentations. Presented simulations show a good efficiency of the developed optimal feed rate profiles.

  5. Green, Eco, Innovative Design, and Manufacturing Technology of a 1-Ton per Batch Municipal Solid Waste Incinerator

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The thermal treatment of waste by incineration is considered an ultimate solution in order to get rid of waste properly by using the combustible properties of waste and transforming them into inert form and gaseous emission, with the main advantage of a huge reduction in mass and volume of treated waste, destruction of the dangerous components in waste, and obtaining green and clean energy from the exothermal reaction from the completed combustion process. In order to achieve the main goal of incineration, a good design, construction, supervision, and intensive operation and maintenance must be taken into account, especially for the small-scale incinerator. This research will deal with the green, innovative, and eco design and manufacturing technology of a 1-ton per batch municipal solid waste (MSW incinerator. The concept design of the incinerator will focus on the design of the feeding process where only one batch of waste will be discharged into the combustion chamber at one time instead of the semi-feed process, as found in the conventional incinerator. This will ease the operation of the operator and reduce the operating cost. Moreover, the innovative design includes the redesign of combustion air injection into either the primary or secondary combustion chamber in order to achieve the 3Ts of combustion (time, temperature. and turbulence. This design can eliminate the use of an auxiliary burner in the primary combustion chamber. Rethinking the innovative design of using recirculation hot flue gas for preheating of wet garbage in order to pre-dry the waste before combustion is also taken into account. The manufacturing process of the wall composition as well as other parts of the incinerator are also examined.

  6. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  7. Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes.

    Science.gov (United States)

    Rymowicz, Waldemar; Fatykhova, Alina R; Kamzolova, Svetlana V; Rywińska, Anita; Morgunov, Igor G

    2010-07-01

    Yarrowia lipolytica A-101-1.22 produces high citric acid (112 g l(-1)) with a yield of 0.6 g g(-1) and a productivity of 0.71 g l(-1) h(-1) during batch cultivation in the medium with glycerol-containing waste of biodiesel industry. However, it was observed that the specific citric acid production rate, which was maximal at the beginning of the biosynthesis, gradually decreases in the late production phase and it makes continuation of the process over 100 h pointless. The cell recycle and the repeated batch regimes were performed as ways for prolongation of citric acid synthesis by yeast. Using cell recycle, the active citric acid biosynthesis (96-107 g l(-1)) with a yield of 0.64 g g(-1) and a productivity of 1.42 g l(-1) h(-1) was prolongated up to 300 h. Repeated batch culture remained stable for over 1000 h; the RB variant of 30% feed every 3 days showed the best results: 124.2 g l(-1) citric acid with a yield of 0.77 g g(-1) and a productivity of 0.85 g l(-1) h(-1).

  8. Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes

    Energy Technology Data Exchange (ETDEWEB)

    Rymowicz, Waldemar; Rywinska, Anita [Wroclaw Univ. of Environmental and Life Sciences (Poland). Dept. of Biotechnology and Food Microbiology; Fatykhova, Alina R.; Kamzolova, Svetlana V.; Morgunov, Igor G. [Russian Academy of Sciences, Pushchino (Russian Federation). G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms

    2010-07-15

    Yarrowia lipolytica A-101-1.22 produces high citric acid (112 g l{sup -1}) with a yield of 0.6 g g{sup -1} and a productivity of 0.71 g l{sup -1} h{sup -1} during batch cultivation in the medium with glycerol-containing waste of biodiesel industry. However, it was observed that the specific citric acid production rate, which was maximal at the beginning of the biosynthesis, gradually decreases in the late production phase and it makes continuation of the process over 100 h pointless. The cell recycle and the repeated batch regimes were performed as ways for prolongation of citric acid synthesis by yeast. Using cell recycle, the active citric acid biosynthesis (96-107 g l{sup -1}) with a yield of 0.64 g g{sup -1} and a productivity of 1.42 g l{sup -1} h{sup -1} was prolongated up to 300 h. Repeated batch culture remained stable for over 1000 h; the RB variant of 30% feed every 3 days showed the best results: 124.2 g l{sup -1} citric acid with a yield of 0.77 g g{sup -1} and a productivity of 0.85 g l{sup -1} h{sup -1}. (orig.)

  9. Optimal feed rate profiles for fed-batch culture in penicillin production

    Directory of Open Access Journals (Sweden)

    Murray Moo-Young

    2005-09-01

    Full Text Available The fed-batch optimization of penicillin productivity was applied as an example of optimization algorithm verification. The objective function of this problem was to optimize penicillin productivity by determination of feed rate trajectory. This study compared the optimized results derived from the proposed algorithm and from the iterative dynamic programming. Three decision variables for the proposed algorithm comprised ts (switching time from exponential to linear feeding schedules, K (constant in feed rate equation, and ε (a multiplier on substrate requirement. Estimation of this set of decision variables employed Markov chain Monte Carlo procedures (the Gibbs parameter sampling and the Metropolis-Hasting algorithm using an originally given set of initial values. The optimization procedure was divided into two time periods as follows: i the time period of exponential feeding policy, t ts. The calculation procedure of the first period of fermentation time had been proposed by integrating Pontryagin’s optimum principle and Luedeking-Piret equation. The feed rate profile during the later period was obtained from the direct substitution of desired substrate requirement derived from Monod equation. The optimal feed-rate profile corresponded to the values of decision variables as follows [ts K ε] = [35.9370.096 2.087]. The proposed algorithm was appropriate for determination of optimal feed-rate trajectories in any fed-batch problems provided that the product formation rate agrees with a Luedecking-Piret model.

  10. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains.

    Science.gov (United States)

    Dietzsch, Christian; Spadiut, Oliver; Herwig, Christoph

    2011-10-27

    The microorganism Pichia pastoris is a commonly used microbial host for the expression of recombinant proteins in biotechnology and biopharmaceutical industry. To speed up process development, a fast methodology to determine strain characteristic parameters, which are needed to subsequently set up fed batch feeding profiles, is required. Here, we show the general applicability of a novel approach to quantify a certain minimal set of bioprocess-relevant parameters, i.e. the adaptation time of the culture to methanol, the specific substrate uptake rate during the adaptation phase and the maximum specific substrate uptake rate, based on fast and easy-to-do batch cultivations with repeated methanol pulses in a batch culture. A detailed analysis of the adaptation of different P. pastoris strains to methanol was conducted and revealed that each strain showed very different characteristics during adaptation, illustrating the need of individual screenings for an optimal parameter definition during this phase. Based on the results obtained in batch cultivations, dynamic feeding profiles based on the specific substrate uptake rate were employed for different P. pastoris strains. In these experiments the maximum specific substrate uptake rate, which had been defined in batch experiments, also represented the upper limit of methanol uptake, underlining the validity of the determined process-relevant parameters and the overall experimental strategy. In this study, we show that a fast approach to determine a minimal set of strain characteristic parameters based on easy-to-do batch cultivations with methanol pulses is generally applicable for different P. pastoris strains and that dynamic fed batch strategies can be designed on the specific substrate uptake rate without running the risk of methanol accumulation.

  11. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains

    Directory of Open Access Journals (Sweden)

    Herwig Christoph

    2011-10-01

    Full Text Available Abstract Background The microorganism Pichia pastoris is a commonly used microbial host for the expression of recombinant proteins in biotechnology and biopharmaceutical industry. To speed up process development, a fast methodology to determine strain characteristic parameters, which are needed to subsequently set up fed batch feeding profiles, is required. Results Here, we show the general applicability of a novel approach to quantify a certain minimal set of bioprocess-relevant parameters, i.e. the adaptation time of the culture to methanol, the specific substrate uptake rate during the adaptation phase and the maximum specific substrate uptake rate, based on fast and easy-to-do batch cultivations with repeated methanol pulses in a batch culture. A detailed analysis of the adaptation of different P. pastoris strains to methanol was conducted and revealed that each strain showed very different characteristics during adaptation, illustrating the need of individual screenings for an optimal parameter definition during this phase. Based on the results obtained in batch cultivations, dynamic feeding profiles based on the specific substrate uptake rate were employed for different P. pastoris strains. In these experiments the maximum specific substrate uptake rate, which had been defined in batch experiments, also represented the upper limit of methanol uptake, underlining the validity of the determined process-relevant parameters and the overall experimental strategy. Conclusion In this study, we show that a fast approach to determine a minimal set of strain characteristic parameters based on easy-to-do batch cultivations with methanol pulses is generally applicable for different P. pastoris strains and that dynamic fed batch strategies can be designed on the specific substrate uptake rate without running the risk of methanol accumulation.

  12. Utilizing waste activated sludge for animal feeding

    Energy Technology Data Exchange (ETDEWEB)

    Beszedits, S.

    1981-01-01

    Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.

  13. Redirection of metabolism during nutrient feeding in fed-batch cultures of Bacillus thuringiensis.

    Science.gov (United States)

    López-y-López, V E; de la Torre, Mayra

    2005-04-01

    During sporulation, Bacillus thuringiensis produces insecticidal crystal inclusions (Cry proteins) encoded by cry genes. In fed-batch cultures (FBCs), spores and Cry protein yields are usually low, so we therefore studied the pattern of metabolic changes occurring in batch cultures and FBCs of a B. thuringiensis strain having a cry1Aa promoter-lacZ fusion, and their effect on sporulation and cry1A gene expression. In FBCs, there was a redirection of bacterial metabolism and a reduction in the specific growth rate during feeding, even when the nutrient concentration was higher than at the beginning of batch culture. These physiological changes suggest that the transition state is set up during feeding and this set-up seems to have a negative effect on both sporulation and cry1Aa expression. When the filtrate of a culture in the transition state was added to a batch culture early in the first exponential growth phase, it delayed sporulation and cry1Aa expression, thus suggesting that a soluble cellular factor that blocked sporulation might be excreted during the transition state. Citrate production usually started during the transition state but, when a medium rich in free amino acids was fed, citrate was produced from the first growth phase and sporulation was nearly blocked.

  14. Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Connie C.

    2013-09-30

    The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the

  15. A Genetic Algorithm for Feeding Trajectory Optimisation of Fed-batch Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2009-03-01

    Full Text Available In this work a genetic algorithm is proposed with the purpose of the feeding trajectory optimization during a fed-batch fermentation of E. coli. The feed rate profiles are evaluated based on a number of objective functions. Optimization results obtained for different feeding trajectories demonstrate that the genetic algorithm works well and shows good computational performance. Developed optimal feed profiles meet the defined criteria. The ration of the substrate concentration and the difference between actual cell concentration and theoretical maximum cell concentration is defined as the most appropriate objective function. In this case the final cell concentration of 43 g·l-1 and final product concentration of 125 g·l-1 are achieved and there is not significant excess of substrate.

  16. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Sin, Gürkan

    2017-01-01

    A majority of industrial fermentation processes are operated in fed-batch mode. In this case, the rate of feed addition to the system is a focus for optimising the process operation, as it directly impacts metabolic activity, as well as directly affecting the volume dynamics in the system....... This review covers a range of strategies which have been employed to use the feed rate as a manipulated variable in a control strategy. The feed rate is chosen as the focus for this review, as it is seen that this variable may be used towards many different objectives depending on the process of interest......, the characteristics of the strain, or the product being produced, which leads to different drivers for process optimisation. This review summarises the methods, as well as focusing on the different objectives for the controllers, and the choice of measured variables involved in the strategy. The discussion includes...

  17. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-23

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  18. Biodegradation kinetics of tobacco-waste leachate by activated sludge in a sequencing batch reactor

    National Research Council Canada - National Science Library

    Vukovic, M; Cosic, I; Kucic, D; Kopcic, N; Briski, F

    2012-01-01

    .... In this work, biodegradation of the organic fraction in tobacco waste leachate was studied. Experiments were carried out in a sequencing batch reactor at initial concentrations of activated sludge of 3.03 and 5.95 g [L.sup.-1...

  19. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    OpenAIRE

    Schwarzb?ck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternati...

  20. On-Site Field-Feeding Waste to Energy Converter

    Science.gov (United States)

    2008-12-01

    operator’s duty is to feed relatively dry paper and plastic trash into the OFWEC’s shredder, having previously se- parated cans, glass bottles , and...ON-SITE FIELD- FEEDING WASTE TO ENERGY CONVERTER L. Knowlton* and D. Pickard U.S. Army Natick Soldier Research, Development and Engineering...field- feeding generates tons of solid waste that is a costly logistic burden, requiring personnel, vehi- cles, and fuel that could otherwise be used for

  1. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  2. Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process

    Directory of Open Access Journals (Sweden)

    Danilo Gomes Moriel

    2005-05-01

    Full Text Available The effect of feeding methods on the production of astaxanthin by the yeast Phaffia rhodozyma ATCC 24202 was studied, using continuous and pulsed fed-batch processes and low cost materials as substrates (sugar cane juice and urea. In continuous fed-batch processes, a cellular astaxanthin concentration of 383.73 µg/g biomass was obtained. But in pulsed fed-batch processes a reduction in the cellular astaxanthin concentration (303.34 µg/g biomass was observed. Thus the continuous fed-batch processes could be an alternative to industrial production of astaxanthin, allowing an increase in the biomass productivity without losses on astaxanthin production by the yeast.O efeito da alimentação na produção de astaxantina pela levedura Phaffia rhodozyma ATCC 24202 foi estudado, utilizando processos descontínuo alimentado com alimentação contínua e intermitente, e matérias-primas de baixo custo como substratos (caldo de cana de açúcar e uréia. Em processos descontínuo alimentado com alimentação contínua, uma concentração celular de astaxantina de 383,73 µg/g biomassa foi obtida. Entretanto, em processos descontínuo alimentado com alimentação intermitente, uma redução na concentração celular de astaxantina (303,34 µg/g biomassa foi observada. Desta forma, processos descontínuo alimentado com alimentação contínua poderiam ser uma alternativa na produção industrial de astaxantina, permitindo um aumento na produtividade de biomassa sem perdas na produção de astaxantina pela levedura.

  3. Bioethanol Production from Liquid Waste of Rice Flour with Batch Process

    Directory of Open Access Journals (Sweden)

    Ketut Sari Ni

    2016-01-01

    Full Text Available Liquid waste rice flour is abundant liquid wastes but it is still underutilized. So far, it is only used for process water in factory production, wastewater, and even regarded as environment pollution. Rice flour liquid waste has higher levels of glucose, starch and protein which can be used as one of ethanol producers. This study aims to assess the process of hydrolysis, fermentation, and batch distillation process, as well as to search for alternative raw materials products of bioethanol. There are three processes of making bioethanol, namely biological hydrolysis process done by using bacillus; the process of fermentation by using Saccharomyces cerevisiae (SC; and batch distillation. After the third process was done, the results were: glucose is 5% - 10% in the process of hydrolysis; ethanol content is 11% - 16% in the fermentation process; and the levels are high enough for bio-ethanol, which is 95% - 96% in the batch distillation process. So it can be concluded that the liquid waste of rice flour can be used as raw materials for the manufacture of alternative bioethanol.

  4. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  5. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems.

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-12-02

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield.

  6. DRYING KINETICS OF OIL PALM FROND WASTE USING SIMPLE BATCH OVEN DRYER

    Directory of Open Access Journals (Sweden)

    Abdul Halim

    2016-06-01

    Full Text Available Drying phenomena of oil palm frond waste as agriculture waste was observed using simple batch oven dryer. The operation temperatures were 50, 80 and 120 °C. The sample of oil palm frond was weighed periodically every 30 minutes. Moisture content, shrinkage phenomena and drying kinetic model were investigated to the difference operation temperature. Experimental result exhibited that temperature influent significantly to the drying rate. The water transport controlled by diffuse mechanism. Shrinkage occurred in radial direction and decreased the size to almost 65% from initial size. In longitudinal direction almost is not change of size.

  7. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H{sub 2}S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H{sub 2}S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H{sub 2}S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H{sub 2}S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H{sub 2}S by base adsorption was effective for mitigating inhibition. H{sub 2}S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H{sub 2}S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H{sub 2}S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H{sub 2}S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H{sub 2}S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating

  8. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    Science.gov (United States)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production

  9. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  10. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    OpenAIRE

    Patrick T. Sekoai; Kelvin O. Yoro; Michael O. Daramola

    2016-01-01

    This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS), was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale b...

  11. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  12. Anaerobic co-digestion of hatchery waste and wastewater to produce energy and biofertilizer - Batch phase

    Directory of Open Access Journals (Sweden)

    Juliana M. Matter

    Full Text Available ABSTRACT Aiming to evaluate different wastewaters in the anaerobic co-digestion (ACoD of hatchery wastes, a batch test was conducted in bench horizontal digesters. At the end of the process, the potential production of biogas and methane was calculated as well as the chemical composition (macro- and micronutrients of the effluent and the concentrations of methane and carbon dioxide gas at 60 days. The monitoring of the process included observations of the reduction of the organic carbon, chemical oxygen demand, and total (TS and volatile solids (VS, as well as the variation of pH and electrical conductivity (EC. The results showed that the mixing between the hatchery fresh waste and swine wastewater (T4 and among fresh hatchery waste, water from the first anaerobic pond of the hatchery and swine wastewater (T5 represent significant sources of renewable energy and thereby greater potential for biogas production (192.50 and 205.0 L biogas per kg of VS added to T4 and T5, respectively. The average concentration of methane in the biogas varied from 72 to 77% among the treatments. For all treatments, reductions were observed in TS and VS and increases in pH and EC. It was concluded that the energy recovery from hatchery wastes is favoured by the addition of swine wastewater in the ACoD process.

  13. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus

    Directory of Open Access Journals (Sweden)

    Aicha Nancib

    2015-09-01

    Full Text Available The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h. The highest volumetric productivity (1.3 g/L.h and lactic acid yield (1.7 g/g were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L, and a maximum lactic acid production level (89.2 g/L was obtained.

  14. High Level Waste (HLW) Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  15. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste.

    Science.gov (United States)

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Jinhui

    2018-03-01

    Information on the anaerobic digestion (AD) of food waste (FW) with different waste cooking oil contents is limited in terms of the effect of the initial substrate concentrations. In this work, batch tests were performed to evaluate the combined effects of waste cooking oil content (33-53%) and feed/inoculum (F/I) ratios (0.5-1.2) on biogas/methane yield, process stability parameters and organics reduction during the FW AD. Both waste cooking oil and the inoculation ratios were found to affect digestion parameters during the AD process start-up and the F/I ratio was the predominant factor affecting AD after the start-up phase. The possible inhibition due to acidification caused by volatile fatty acids accumulation, low pH values and long-chain fatty acids was reversible. The characteristics of the final digestate indicated a stable anaerobic system, whereas samples with F/I ratios ranging from 0.8 to 1.2 display higher propionic and valeric acid contents and high amounts of total ammonia nitrogen and free ammonia nitrogen. Overall, F/I ratios higher than 0.70 caused inhibition and resulted in low biogas/methane yields from the FW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although

  17. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    Science.gov (United States)

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap-1. In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap-1 a-1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  18. Effect of operational pH on biohydrogen production from food waste using anaerobic batch reactors.

    Science.gov (United States)

    Lee, Chaeyoung; Lee, Sewook; Han, Sun-Kee; Hwang, Sunjin

    2014-01-01

    This study was performed to investigate the influence of operational pH on dark H(2) fermentation of food waste by employing anaerobic batch reactors. The highest maximum H(2) yield was 1.63 mol H(2)/mol hexoseadded at operational pH 5.3, whereas the lowest maximum H(2) yield was 0.88 mol H(2)/mol hexoseadded at operational pH 7.0. With decreasing operational pH values, the n-butyrate concentration tended to increase and the acetate concentration tended to decrease. The highest hydrogen conversion efficiency of 11.3% was obtained at operational pH 5.3, which was higher than that (8.3%) reported by a previous study (Kim et al. (2011) 'Effect of initial pH independent of operational pH on hydrogen fermentation of food waste', Bioresource Technology 102 (18), 8646-8652). The new result indicates that the dark fermentation of food waste was stable and efficient in this study. Fluorescence in situ hybridization (FISH) analysis showed that Clostridium species Cluster I accounted for 84.7 and 13.3% of total bacteria at operational pH 5.3 and pH 7.0, respectively, after 48 h operation.

  19. Waste Feed Delivery Environmental Permits and Approvals Plan

    Energy Technology Data Exchange (ETDEWEB)

    TOLLEFSON, K.S.

    2000-01-18

    This plan describes the environmental permits approvals, and other requirements that may affect establishment of a waste feed delivery system for the Hanford Site's River Protection Project. This plan identifies and screens environmental standards for potential applicability, outlines alternatives for satisfying applicable standards, and describes preferred permitting and approval approaches.

  20. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  1. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.

  2. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  3. Glass fabrication and analysis literature review and method selection for WTP waste feed qualification

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) safety basis, technical basis, and design by assuring waste acceptance requirements are met for each staged waste feed Campaign prior to transfer from the Hanford Tank Farm to the WTP.

  4. Development and validation of a standard test method for sequential batch extraction of waste with acidic extraction fluid

    Energy Technology Data Exchange (ETDEWEB)

    Sorini, S.S.

    1993-08-01

    Subject is characterization of waste materials. Since acid rain is increasingly prevalent throughout the world, a sequential batch extraction method was developed which uses a dilute acid solution as the extraction fluid. A collaborative study was conducted in which the draft method was used to treat a spray dryer waste from a clean coal technology process and a composite mining waste. Effects of filter pore size and digestion vs nondigestion on analytical concentrations in extracts were also studied. Elements determined included Al, Ba, B, Ca, Cr, Si, Na, Sr, Pb, Mg, Mn, Si, Zn. The draft method will be published as ASTM Method D5284-92.

  5. Ecofeed, animal feed produced from recycled food waste

    Directory of Open Access Journals (Sweden)

    Katsuaki Sugiura

    2009-09-01

    Full Text Available Due to the price hike of imported grains for feed, the production of Ecofeed, feed produced from recycled food waste, has increased in recent years. Food dregs from the food and beverage processing industry and out-of-date food from supermarkets and convenience stores are most often used as raw materials for Ecofeed. As food waste usually contains a lot of moisture and is easily spoiled, guidelines prescribing measures to be taken when collecting, transporting and storing raw materials, and for the production, shipment, storage and use of Ecofeed products, have been developed to ensure the safety of Ecofeed. The guidelines also include measures that should be taken to prevent the spread of bovine spongiform encephalopathy when producing and using Ecofeed. A certification system was introduced in March 2009 to ensure the quality and safety of Ecofeed and thus promote its use.

  6. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  7. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  8. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options.

    Science.gov (United States)

    Salemdeeb, Ramy; Zu Ermgassen, Erasmus K H J; Kim, Mi Hyung; Balmford, Andrew; Al-Tabbaa, Abir

    2017-01-01

    The disposal of food waste is a large environmental problem. In the United Kingdom (UK), approximately 15 million tonnes of food are wasted each year, mostly disposed of in landfill, via composting, or anaerobic digestion (AD). European Union (EU) guidelines state that food waste should preferentially be used as animal feed though for most food waste this practice is currently illegal, because of disease control concerns. Interest in the potential diversion of food waste for animal feed is however growing, with a number of East Asian states offering working examples of safe food waste recycling - based on tight regulation and rendering food waste safe through heat treatment. This study investigates the potential benefits of diverting food waste for pig feed in the UK. A hybrid, consequential life cycle assessment (LCA) was conducted to compare the environmental and health impacts of four technologies for food waste processing: two technologies of South Korean style-animal feed production (as a wet pig feed and a dry pig feed) were compared with two widespread UK disposal technologies: AD and composting. Results of 14 mid-point impact categories show that the processing of food waste as a wet pig feed and a dry pig feed have the best and second-best scores, respectively, for 13/14 and 12/14 environmental and health impacts. The low impact of food waste feed stems in large part from its substitution of conventional feed, the production of which has substantial environmental and health impacts. While the re-legalisation of the use of food waste as pig feed could offer environmental and public health benefits, this will require support from policy makers, the public, and the pig industry, as well as investment in separated food waste collection which currently occurs in only a minority of regions.

  9. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of

  10. Effect of the concentration of essential oil on orange peel waste biomethanization: Preliminary batch results.

    Science.gov (United States)

    Calabrò, P S; Pontoni, L; Porqueddu, I; Greco, R; Pirozzi, F; Malpei, F

    2016-02-01

    The cultivation of orange (Citrus×sinensis) and its transformation is a major industry in many countries in the world, it leads to the production of about 25-30Mt of orange peel waste (OPW) per year. Until now many options have been proposed for the management of OPW but although they are technically feasible, in many cases their economic/environmental sustainability is questionable. This paper analyse at lab scale the possibility of using OPW as a substrate for anaerobic digestion. Specific objectives are testing the possible codigestion with municipal biowaste, verifying the effect on methane production of increasingly high concentration of orange essential oil (EO, that is well known to have antioxidant properties that can slower or either inhibit biomass activity) and obtaining information on the behaviour of d-limonene, the main EO component, during anaerobic digestion. The results indicate that OPW can produce up to about 370LnCH4/kgVS in mesophilic conditions and up to about 300LnCH4/kgVS in thermophilic conditions. The presence of increasingly high concentrations of EO temporary inhibits methanogenesis, but according to the results of batch tests, methane production restarts while d-limonene is partially degraded through a pathway that requires its conversion into p-cymene as the main intermediate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies.

    Science.gov (United States)

    Figueiredo, S A; Loureiro, J M; Boaventura, R A

    2005-10-01

    In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials' adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents' behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials' bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500-1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20 degrees C), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments.

  12. A simple substrate feeding strategy using a pH control trigger in fed-batch fermentation.

    Science.gov (United States)

    Ting, Tiong-Ee; Thoma, Gregory J; Beitle, Robert R; Davis, Ralph K; Perkins, Rugkiat; Karim, Khursheed; Liu, Hui-Min

    2008-04-01

    A simple automated glucose feeding strategy based on pH control was developed to produce high-cell-density fed-batch fermentation. In this strategy, the pH control scheme utilized an acidified concentrated glucose solution to lower the pH. The frequency of glucose addition to the fermentor is determined by the culture's growth kinetics. To demonstrate the effectiveness of the coupled pH and glucose control strategy in biomass and/or secondary metabolite production, several fed-batch fermentations of indigenous Escherichia coli and recombinant E. coli were carried out. Both strains produced biomass with optical density of greater than 40 at 600 nm. We also tested the glucose control strategy using two types of pH controller: a less sophisticated portable pH controller and a more sophisticated online proportional-integral-derivative (PID) controller. Our control strategy was successfully applied with both controllers, although better control was observed using the PID controller. We have successfully demonstrated that a glucose feeding strategy based on a simple pH control scheme to indirectly control the glucose concentration can be easily achieved and adapted to conventional bioreactors in the absence of online glucose measurement and control.

  13. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2000-09-15

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR).

  14. Sequencing Batch Reactor pilot plant in waste water treatment plants; Impiego di un impianto pilota del tipo Seguencing Batch Reactor (SBR) come strumento di gestione di impianti di depurazione in aree sensibili : Indagine preliminare

    Energy Technology Data Exchange (ETDEWEB)

    Musacco, Alessandro; Beccari, Mario [Rome, Univ. La Sapienza (Italy). Dip. di Chimica; Cecchi, Franco [Aquila, Univ. (Italy). Dip. di Chimica, Ingegneria Chimica e Materiali]|[ASPIV, Venice (Italy)

    1997-07-01

    The flexibility of Sequencing Batch Reactors is ideally suited to provide useful guidelines for reliable operation of large waste water treatment plants such as the plant at Fusina (Venice). This paper shows the preliminary results of experimental investigations carried out in a pilot scale Sequencing Batch Reactor plant. The main purpose has been to verify the effect of the addition of readily biodegradable COD from the acidogenic fermentation of the organic fraction of municipal solid wastes. This has to be considered an external carbon source for denitrification. The results underline the advantages of an integration between solid waste management and wastewater treatment.

  15. Waste Receiving and Processing, Module 2A, feed specification: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, O.L.; Sheriff, M.L.

    1994-11-14

    Detailed descriptions of the various mixed low-level waste feed streams that will be processed in the Waste Receiving and Processing Facility, Module 2A (WRAP 2A) are provided. Feed stream descriptions are based on available reports, the solid waste information tracking system database, and the 1993 solid waste forecast data. Available chemical and physical attributes, radionuclide data, waste codes, and packaging information are shown for 15 feed streams. The information sources and methodology for obtaining projections for WRAP 2A expected feed stream volumes also are described.

  16. Upgrading of oil palm wastes to animal feeds

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1994-01-01

    A huge amount of agricultural wastes are discarded or burned causing the serious environmental pollution problems in the world. Upgrading of these wastes into useful end-products is suggested not only to recycle the agro-resources but also to reduce pollution. Empty fruit bunch (EFB), stalk material after fruit stripping, is a major cellulosic waste of the palm oil industry. The current availability of EFB in Malaysia is estimated to be 3 million tones per year. EFB is normally incinerated to produce bunch ash. Burning and incineration processes emit considerable amount of smokes and pollutants thus affecting surrounding areas. Recently, it has been realized that there is a need to utilize these by-products effectively in order to improve the economic situation of the oil palm industry as well as to reduce pollution problems. EFB is a valuable and useful biomass. This paper describes the production of animal feed and mushroom from oil palm wastes by radiation and fermentation treatment. The process is as follows: decontamination of microorganisms in fermentation media of EFB by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 30 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, Coprinus cinereus and Pleurotus sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased and the crude fiber content decreased after solid state fermentation. P.sajor-caju was suitable for the mushroom production on EFB with rich bran and the residue can be used as the ruminant animal feeds. It is expected that the process is applicable to other cellulosic wastes such as sugar cane bagasse, rice straw, etc. produced in other Asian countries, and contribute to reduce the environmental pollution problems. (author).

  17. Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation.

    Science.gov (United States)

    Huang, Renliang; Cao, Ming; Guo, Hong; Qi, Wei; Su, Rongxin; He, Zhimin

    2014-05-21

    Pomelo peel is an abundant pectin-rich biomass waste in China and has the potential to serve as a source of fuels and chemicals. This study reports a promising way to deal with pomelo peel waste and to utilize it as raw material for ethanol production via simultaneous saccharification and fermentation (SSF). An integrated strategy, incorporating hydrothermal treatment, multienzyme formulation, and fed-batch operation, was further developed to enhance the ethanol production. The results show that hydrothermal treatment (120 °C, 15 min) could significantly reduce the use of cellulase (from 7 to 3.8 FPU g(-1)) and pectinase (from 20 to 10 U g(-1)). A multienzyme complex, which consists of cellulase, pectinase, β-glucosidase, and xylanase, was also proven to be effective to improve the hydrolysis of pretreated pomelo peel, leading to higher concentrations of fermentative sugars (36 vs 14 g L(-1)) and galacturonic acid (23 vs 9 g L(-1)) than those with the use of a single enzyme. Furthermore, to increase the final ethanol concentration, fed-batch operation by adding fresh substrate was employed in the SSF process. A final solid loading of 25% (w/v), which is achieved by adding 15% fresh substrate to the SSF system at an initial solid loading of 10%, produced 36 g L(-1) ethanol product in good yield (73.5%). The ethanol concentration is about 1.73-fold that at the maximum solid loading of 14% for batch operation, whereas both of them have a closed ethanol yield. The results indicate that the use of the fed-batch mode could alleviate the decrease in ethanol yield at high solid loading, which is caused by significant mass transfer limitation and increased inhibition of toxic compounds in the SSF process. The integrated strategy demonstrated in this work could open a new avenue for dealing with pectin-rich biomass wastes and utilization of the wastes to produce ethanol.

  18. Feeding strategies for the enhanced production of α-arbutin in the fed-batch fermentation of Xanthomonas maltophilia BT-112.

    Science.gov (United States)

    Liu, Chunqiao; Zhang, Peng; Zhang, Shurong; Xu, Tao; Wang, Fang; Deng, Li

    2014-02-01

    To develop a cost-effective method for the enhanced production of α-arbutin using Xanthomonas maltophilia BT-112 as a biocatalyst, different fed-batch strategies such as constant feed rate fed-batch, constant hydroquinone (HQ) concentration fed-batch, exponential fed-batch and DO-control pulse fed-batch (DPFB) on α-arbutin production were investigated. The research results indicated that DPFB was an effective method for α-arbutin production. When fermentation with DO-control pulse feeding strategy to feed HQ and yeast extract was applied, the maximum concentrations of α-arbutin and cell dry weight were 61.7 and 4.21 g/L, respectively. The α-arbutin production was 394% higher than that of the control (batch culture) and the molar conversion yield of α-arbutin reached 94.5% based on the amount of HQ supplied (240 mM). Therefore, the results in this work provide an efficient and easily controlled method for industrial-scale production of α-arbutin.

  19. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    Energy Technology Data Exchange (ETDEWEB)

    BERRY J; GALLAHER BN

    2011-01-13

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  20. On-Line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor

    OpenAIRE

    Ferge, Thomas

    2005-01-01

    On-Line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor / R. Zimmermann ... - In: Environmental science & technology. 39. 2005. S. 1393-1402

  1. Increased Coal Replacement in a Cement Kiln Burner by Feeding a Mixture of Solid Hazardous Waste and Shredded Plastic Waste

    OpenAIRE

    Ariyaratne, W.K. Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    The present study aims to find the maximum possible replacement of coal by combined feeding of plastic waste and solid hazardous waste mixed with wood chips (SHW) in rotary kiln burners used in cement kiln systems. The coal replacement should be achieved without negative impacts on product quality, emissions or overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement kiln by varying SHW and plastic waste feeding rates. Experimental result...

  2. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  3. Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: A laboratory scale study

    Energy Technology Data Exchange (ETDEWEB)

    Matamoros, Víctor, E-mail: victor.matamoros@idaea.csic.es; Rodríguez, Yolanda

    2016-05-15

    Highlights: • The effect of microalgae on the removal of pesticides has been evaluated. • Continuous feeding operational mode is more efficient for removing pesticides. • Microalgae increased the removal of some pesticides. • Pesticide TPs confirmed that biodegradation was relevant. - Abstract: Microalgae-based water treatment technologies have been used in recent years to treat different water effluents, but their effectiveness for removing pesticides from agricultural run-off has not yet been addressed. This paper assesses the effect of microalgae in pesticide removal, as well as the influence of different operation strategies (continuous vs batch feeding). The following pesticides were studied: mecoprop, atrazine, simazine, diazinone, alachlor, chlorfenvinphos, lindane, malathion, pentachlorobenzene, chlorpyrifos, endosulfan and clofibric acid (tracer). 2 L batch reactors and 5 L continuous reactors were spiked to 10 μg L{sup −1} of each pesticide. Additionally, three different hydraulic retention times (HRTs) were assessed (2, 4 and 8 days) in the continuous feeding reactors. The batch-feeding experiments demonstrated that the presence of microalgae increased the efficiency of lindane, alachlor and chlorpyrifos by 50%. The continuous feeding reactors had higher removal efficiencies than the batch reactors for pentachlorobenzene, chlorpyrifos and lindane. Whilst longer HRTs increased the technology’s effectiveness, a low HRT of 2 days was capable of removing malathion, pentachlorobenzene, chlorpyrifos, and endosulfan by up to 70%. This study suggests that microalgae-based treatment technologies can be an effective alternative for removing pesticides from agricultural run-off.

  4. Quality assessment of corn batches received at a feed mill in the brazilian cerrado

    Directory of Open Access Journals (Sweden)

    SIFC Rodrigues

    2014-09-01

    Full Text Available This study aimed at investigating factors that contribute to changes in the quality of corn used in compound poultry feeds. Samples were collected from 6488 bulk cargos received at a feed mill located close to Brasília, Brazil. The parameters studied were divided into two groups: those related to corn chemical composition, including crude protein (% CP, ether extract (% EE, crude fiber (% CF, nitrogen-free extract (% NFE, and estimated metabolizable energy (ME, and corn physical characteristics, including density, moisture, and grain physical damage. High coefficients of determination (R² and low coefficients of variation (CV were determined for the chemical and physical parameters. The analysis of variance showed low to medium R². Month, year, supplier, and their interactions influenced (p <0.05 all chemical properties, as well as density, moisture, and ME. Physical characteristics were less affected by those factors, except for quantity of damaged grains. The principal component analysis separated the physical and chemical factors. The coefficients of the first component explained 54% of the total variation between variables. The first principal component showed that NFE and ME increased as humidity decreased. The second component also showed a decrease of physical problems due to reduction in humidity. Results indicate that the feed mills should take preventive measures when selecting suppliers, and diets should be formulated according to the differences in chemical and physical composition of corn supplied in different months and years.

  5. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system.

    Science.gov (United States)

    Zhang, Cunsheng; Su, Haijia; Tan, Tianwei

    2013-10-01

    To avoid the inhibition from both of waste oil and high concentrations of cationic elements, anaerobic digestion of food waste in a dual solid-liquid (ADSL) system was examined in this present paper. Results from batch test indicated that a higher methane yield could be obtained in the ADSL system. The methane yield of food solid waste (FSW), food liquid waste (FLW) and raw food waste (RFW) were 643, 659 and 581 mL/g-VS, respectively. In semi-continuous anaerobic digestion, the optimum organic loading rates (OLR) for FSW, FLW and RFW were 9, 4 and 7 g-VS/L/d, respectively. The total methane production of RFW and ADSL systems, based on 1 kg-VS(RFW), were 405 and 460 L, respectively, indicating that the methane production increased by 13.6% in the ADSL system. The optimum C/N ratio, redistribution of metal element and lower content of waste oil in FSW explain the higher methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR).

    Science.gov (United States)

    Yuan, Yue; Liu, Jinjin; Ma, Bin; Liu, Ye; Wang, Bo; Peng, Yongzhen

    2016-12-01

    This study presents a novel strategy to improve the removal efficiency of nitrogen and phosphorus from municipal wastewater by feeding sequencing batch reactor (SBR) with sludge alkaline fermentation products as carbon sources. The performances of two SBRs treating municipal wastewater (one was fed with sludge fermentation products; F-SBR, and the other without sludge fermentation products; B-SBR) were compared. The removal efficiencies of total nitrogen (TN) and phosphorus (PO43--P) were found to be 82.9% and 96.0% in F-SBR, while the corresponding values in B-SBR were 55.9% (TN) and -6.1% (PO43--P). Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonadaceae and Nitrosomonas) and denitrifying polyphosphate accumulating organisms (Dechloromonas) were enriched in F-SBR, which resulted in NO2--N accumulation and denitrifying phosphorus removal via nitrite (DPRN). Moreover, feeding of sludge fermentation products reduced 862.1mg VSS/d of sludge in the F-SBR system (volume: 10L). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of glucose feeding on the glycosylation quality of antibody produced by a human cell line, F2N78, in fed-batch culture.

    Science.gov (United States)

    Seo, Jin Seok; Min, Byung Sup; Kim, Yeon Jung; Cho, Jong Moon; Baek, Eric; Cho, Myung Sam; Lee, Gyun Min

    2014-04-01

    The human cell line rF2N78 produces an antibody with a high galactosylation ratio which resembles human IgG. However, it has been observed that the aglycosylated antibody starts to appear when glucose is depleted. To determine whether glucose depletion is a main cause for aglycosylation of the antibody, fed-batch cultures of rF2N78 cells were performed using different feeding cocktails (glucose only, nutrient feeding cocktail without glucose, and nutrient feeding cocktail with glucose). In the fed-batch culture with nutrient feeding cocktail without glucose, aglycosylated antibody was produced in a later phase of culture, when glucose was depleted. Approximately 44 % of antibodies produced were aglycosylated at the end of culture. In contrast, aglycosylated antibody was not produced in cultures with glucose feeding. The expression levels of oligosaccharyl transferases determined by Western blot analysis were similar among the cultures, suggesting that aglycosylation of the antibody was not due to altered expression of oligosaccharyl transferases under glucose-deficient conditions. Thus, it is likely that glucose deficiency led to insufficiency of the precursor for glycosylation and induced aglycosylation of the antibody. Taken together, glucose feeding in fed-batch cultures successfully prevented occurrence of aglycosylated antibody during the cultures, confirming that glucose depletion is a main cause for aglycosylation of antibody.

  8. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed

    DEFF Research Database (Denmark)

    Tippmann, Stefan; Scalcinati, Gionata; Siewers, Verena

    2016-01-01

    with maximal final titers of 4 mg/L using α-farnesene synthase from Malus domestica. By employing two existing platform strains optimized for sesquiterpene production, final titers could be raised up 170 mg/L in fed-batch fermentations with RQ-controlled exponential feeding. Based on these experiments...

  9. Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: A laboratory scale study.

    Science.gov (United States)

    Matamoros, Víctor; Rodríguez, Yolanda

    2016-05-15

    Microalgae-based water treatment technologies have been used in recent years to treat different water effluents, but their effectiveness for removing pesticides from agricultural run-off has not yet been addressed. This paper assesses the effect of microalgae in pesticide removal, as well as the influence of different operation strategies (continuous vs batch feeding). The following pesticides were studied: mecoprop, atrazine, simazine, diazinone, alachlor, chlorfenvinphos, lindane, malathion, pentachlorobenzene, chlorpyrifos, endosulfan and clofibric acid (tracer). 2L batch reactors and 5L continuous reactors were spiked to 10 μg L(-1) of each pesticide. Additionally, three different hydraulic retention times (HRTs) were assessed (2, 4 and 8 days) in the continuous feeding reactors. The batch-feeding experiments demonstrated that the presence of microalgae increased the efficiency of lindane, alachlor and chlorpyrifos by 50%. The continuous feeding reactors had higher removal efficiencies than the batch reactors for pentachlorobenzene, chlorpyrifos and lindane. Whilst longer HRTs increased the technology's effectiveness, a low HRT of 2 days was capable of removing malathion, pentachlorobenzene, chlorpyrifos, and endosulfan by up to 70%. This study suggests that microalgae-based treatment technologies can be an effective alternative for removing pesticides from agricultural run-off. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tank waste remediation system high-level waste feed processability assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L. [Westinghouse Hanford Co., Richland, WA (United States); Kim, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-01

    This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050{degrees}C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150{degrees}C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150{degrees}C to 1400{degrees}C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site`s high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit.

  11. Pre-treatment of desalination feed seawater by Jordanian Tripoli, Pozzolana and Feldspar: batch experiments

    Directory of Open Access Journals (Sweden)

    AIMAN E. AL-RAWAJFEH

    2011-06-01

    Full Text Available In this research, composites of layered double hydroxide (LDH with three Jordanian natural raw materials: Tripoli (T, Pozzolana (P and Feldspar (F were prepared by co-precipitation and have been used for feed seawater pre-treatment. The data reveals that percent adsorption decreased with increase in initial concentration, but the actual amount of adsorbed ions per unit mass of LDH/T-P-F increased with increase in metal ion concentrations. The values of ΔG were negative and within 21 to 26 kJ/mol, while the values of and ΔS were positive, with ΔH within the range of 0.1 to 25 kJ/mol. The values of ΔH, ΔS and ΔG indicate the favorability of physisorption and show that the LDH/T-P-F composites have a considerable potential as adsorbents for the removal of ions from seawater.

  12. Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes

    Energy Technology Data Exchange (ETDEWEB)

    Montalvo, S. [Centro de Estudio de Tecnologias Energeticas Renovables (CETER), Instituto Superior Politecnico Jose Antonio Echeverria (ISPJAE), Avenida 127 s/n, CUJAE, Marianao, Ciudad de la Habana (Cuba); Guerrero, L. [Departamento de Procesos Quimicos, Biotecnologicos y Ambientales, Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Borja, R.; Travieso, L.; Sanchez, E. [Instituto de la Grasa, CSIC, Avda Padre Garcia Tejero 4, 41012, Sevilla (Spain); Diaz, F. [Facultad de Ingenieria Quimica, ISPJAE, Avenida 127 s/n, CUJAE, Marianao, Ciudad de la Habana (Cuba)

    2006-05-15

    The aim of the present work was to study the behavior of conventional digesters working while adding natural zeolite to the anaerobic treatment of swine wastes. High nitrogen concentrations (3g/l) were also applied when synthetic media was used as feed in anaerobic reactors operating in batch mode. Three sets of experiments were carried out. The first experiment was carried out in batch mode, in order to find the most appropriate zeolite doses for the digester operation. One gram per litre of zeolite was found to be the dose that produced the best reactor performance. The second experiment was carried out using three reactors operating with swine wastes at three different hydraulic retention times (HRT): 10, 20 and 30 days. From this experiment, an HRT of 20 days was selected for the following continuous experiments. For the third experiment, the digesters operated in four different ways using synthetic waste and a zeolite dose of 1g/l, with different procedures for zeolite addition: (1) not adding natural zeolite; (2) adding zeolite at the start-up of anaerobic digestion; (3) adding natural zeolite at the start-up of the anaerobic digestion and again when the steady-state was reached; (4) adding natural zeolite on a daily basis. Finally, from these results, a fourth experiment was carried out using swine waste and the same zeolite doses and digesters, operating: (1) without adding natural zeolite; (2) adding natural zeolite at the start-up of the digestion; (3) adding natural zeolite on a daily basis. It was found that the application of natural zeolite allowed for a 17-20% increase in organic matter removal with respect to the experiments carried out where natural zeolite was not added. A daily methane production increase of 11.1-30.8% with respect to the reactors working where no natural zeolite was added. The daily addition of zeolite with the influent fed to the digesters was found to be the most appropriate procedure for dosage of this material on the basis

  13. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  14. Thermal and Fluid Dynamic Analysis within a Batch Micro-Reactor for Biodiesel Production from Waste Vegetable Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2017-12-01

    Full Text Available Biofuels represent an alternative solution to petroleum-based fuels. In particular, biodiesel is very interesting, especially if it is produced from waste vegetable oil. Biodiesel can be used in diesel engines. The aim of this work is to implement a 2D numerical analysis in Comsol Multiphysics in order to verify an uniform temperature field within a non-isothermal batch mixed micro-reactor. An immersion heater system has been studied as a suitable solution to increase the temperature of WVO (Waste Vegetable Oil before the start of the transesterification reaction. Thus, the efficiency of the immersion heating system has been investigated. The results show that the temperature field is not uniform within the fluid domain, because of the convective flux with the external environment. These conditions could lead to a low overall conversion rate.

  15. Pengaruh Pengadukan Dan Variasi Feeding Terhadap Pembentukan Biogas Dari Sampah Dapur Rumah Makan Pada Reaktor Batch Dengan Aktivator Feses Sapi (Bos Taurus)

    OpenAIRE

    Tri Utomo, Doron; Hadiwidodo, Mochtar; Sudarno, Sudarno

    2014-01-01

    Food waste is organic waste that is quite lot and have not good treatment now. Food waste in anaerobic treatment have potential to produce biogas with addition cow feces as an activator. Stirring is one effort to increase the production of biogas. Research has been conducted in a batch system but the results have not been produced an optimal biogas. This research use two big reactors (19 liter) and 16 small reactors (600 ml dan 500 ml). There are four parameters that were observed the biogas...

  16. The effect of feed made from fish processing waste silage on the ...

    African Journals Online (AJOL)

    The effect of feed made from fish processing waste silage on the growth of rainbow trout ( Oncorhynchus mykiss ) ... Four different experimental groups were formed; feed without silage (control) and pellets with 25, 50 and 100% silage. Fish were fed ... Key words: Fish meal, fish silage, growth, feed efficiency, rainbow trout.

  17. Anaerobic co-digestion of agro-food waste mixtures in a fed-batch basis.

    Science.gov (United States)

    Hidalgo, Dolores; Martín-Marroquín, Jesús M; Nieto, Pedro

    2016-10-01

    The agro-food industry (including livestock) generates millions of tonnes of waste products. A solution to this sector's waste disposal challenges was explored by a joint treatment model of organic waste products from several industries. An inventory of agro-food industry organic waste streams with high potential for biogas production was carried out in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as those with the higher potential for this study: livestock, dairy and beverage. The kinetics of anaerobic degradation and methane production of four mixtures of selected waste streams were investigated. The specific methane production at five different substrate-to-inoculum ratios (0.50, 0.75, 1.00, 1.50 and 2.00) showed a slightly decreasing trend at the higher ratios. Some hints of a synergistic effect have been observed in mixtures with higher content in milled apple waste, while antagonistic symptoms were noted in mixtures mainly composed of dairy wastes. The estimation of fluxes of waste and methane potentials in the Cider Region suggests centralised anaerobic digestion as a sustainable solution for the valorisation of livestock and agro-food wastes generated in this area. Sector-specific waste streams (livestock and agro-food industry) could cover up to 12% of regional total energy demand.

  18. On-line monitoring of responses to nutrient feed additions by multi-frequency permittivity measurements in fed-batch cultivations of CHO cells.

    Science.gov (United States)

    Ansorge, Sven; Esteban, Geoffrey; Schmid, Georg

    2010-04-01

    Changes in the nutrient availability of mammalian cell cultures are reflected in the beta-dispersion parameter characteristic frequency (f ( C )) and the on-line dual frequency permittivity signal. Multi-frequency permittivity measurements were therefore evaluated in fed-batch cultivations of two different CHO cell lines. Similar responses to nutrient depletions and discontinuous feed additions were monitored in different cultivation phases and experimental setups. Sudden increases in permittivity and f ( C ) occurred when feed additions were conducted. A constant or declining permittivity value in combination with a decrease in f ( C ) indicated nutrient limitations. f ( C ) correlated well with changes in oxygen uptake rate when cell diameter remained constant, indicating that metabolic activity is reflected in the value of f ( C ). When significant cell size changes occurred during the cultivations, the analysis of the beta-dispersion parameters was rendered complex. For the application of our findings in other systems it will be hence required to conduct additional off-line measurements. Based on these results, it is hypothesized that multi-frequency permittivity measurements can give information on the intracellular or physiological state in fed-batch mode. Similar observations were made when using different cell lines and feeding strategies, indicating that the findings are transferable to other cell lines and systems. The results should lead to an improved understanding of routine fed-batch processes. Additional studies are, however, required to explore how these observations can be used for fed-batch process development and optimization.

  19. DETERMINATION OF BIOGAS VALUES FOR TOMATO WASTES USING HOHENHEIM BATCH TEST METHOD

    OpenAIRE

    ÜÇOK, Serdar; Aybek, Ali

    2016-01-01

    Nowadays, biogas technology applications are gradually increasing worldwide due to the economic and environmental benefits. Many researches and studies related to the determination of the biogas potential of waste organic materials have been carried out in the recent years. Studies to determine the specific methane potential of organic waste materials have a great importance for both design and economical operation of the biogas plants.Energy potential that will be recovered from organic wast...

  20. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed.

    Science.gov (United States)

    Tippmann, Stefan; Scalcinati, Gionata; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Terpenes have various applications as fragrances, cosmetics and fuels. One of the most prominent examples is the sesquiterpene farnesene, which can be used as diesel substitute in its hydrogenated form farnesane. Recent metabolic engineering efforts have enabled efficient production of several terpenes in Saccharomyces cerevisiae and Escherichia coli. Plant terpene synthases take on an essential function for sesquiterpene production as they catalyze the specific conversion of the universal precursor farnesyl diphosphate (FPP) to the sesquiterpene of interest and thereby impose limitations on the overall productivity. Using farnesene as a case study, we chose three terpene synthases with distinct plant origins and compared their applicability for farnesene production in the yeast S. cerevisiae. Differences regarding the efficiency of these enzymes were observed in shake flask cultivation with maximal final titers of 4 mg/L using α-farnesene synthase from Malus domestica. By employing two existing platform strains optimized for sesquiterpene production, final titers could be raised up 170 mg/L in fed-batch fermentations with RQ-controlled exponential feeding. Based on these experiments, the difference between the selected synthases was not significant. Lastly, the same fermentation setup was used to compare these results to production of the fragrance sesquiterpene santalene, and almost equivalent titers were obtained with 163 mg/L, using the highest producing strain expressing a santalene synthase from Clausena lansium. However, a reduction of the product yield on biomass by 50% could indicate a higher catalytic efficiency of the farnesene synthase. © 2015 Wiley Periodicals, Inc.

  1. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production.

    Science.gov (United States)

    Han, Wei; Ye, Min; Zhu, Ai Jun; Zhao, Hong Ting; Li, Yong Feng

    2015-09-01

    A combination bioprocess of solid-state fermentation (SSF) and dark fermentative hydrogen production from food waste was developed. Aspergillus awamori and Aspergillus oryzae were utilized in SSF from food waste to generate glucoamylase and protease which were used to hydrolyze the food waste suspension to get the nutrients-rich (glucose and free amino nitrogen (FAN)) hydrolysate. Both glucose and FAN increased with increasing of food waste mass ratio from 4% to 10% (w/v) and the highest glucose (36.9 g/L) and FAN (361.3mg/L) were observed at food waste mass ratio of 10%. The food waste hydrolysates were then used as the feedstock for dark fermentative hydrogen production by heat pretreated sludge. The best hydrogen yield of 39.14 ml H2/g food waste (219.91 ml H2/VSadded) was achieved at food waste mass ratio of 4%. The proposed combination bioprocess could effectively accelerate the hydrolysis rate, improve raw material utilization and enhance hydrogen yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    OpenAIRE

    Dolianitis Ioannis; Giannakopoulos Dionysios; Hatzilau Christina-Stavrula; Karellas Sotirios; Kakaras Emmanuil; Nikolova Evelina; Skarpetis Georgios; Christodoulou Nikolaos; Giannoulas Nikolaos; Zitounis Theodoros

    2016-01-01

    A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized containe...

  3. The effect of antibiotic and Morinda citrifolia waste bioactive as feed additive in layer ration

    Directory of Open Access Journals (Sweden)

    I.A. K Bintang

    2008-06-01

    Full Text Available A study on the use of zinc bacitracin antibiotic (ZnB and Morinda citrifolia waste as feed additive in layer ration was conducted. One hundred and twenty pullet of Isa Brown strain were allocated into 5 treatments with 6 replications with 4 birds/replication. The treatment were: control, control + antibiotic (50 ppm Zinc bacitracin and control + M. citrifolia waste at 3 levels (5, 10 and 15 g/kg ration. Analysis of variance was conducted in a completely randomized design. Variables measured were: feed intake, hen day (% HD, egg weight and feed conversion ratio (FCR. The results showed that feed intake of hens with M. citrifolia waste 5g/kg for 6 month was significantly (P0.05. The percentage of HD with antibiotic and M. citrifolia waste did not significantly (P>0.05 differ, but tent to be higher than that of the control. Egg weight with M. citrifolia waste 5 g/kg was significantly (P0.05.differ. FCR with antibiotic and M. citrifolia waste 5 g/kg was significantly lower than that of control. Between antibiotic and M. citrifolia waste was not significantly different (P<0.05, but FCR with antibiotic and M. citrifolia waste 5 g/kg tent to be lower than that of M. citrifolia waste 10 and 15g/kg. It is concluded that the use of M. citrifolia waste 5 g/kg can substituted antibiotic in layer ration.

  4. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  5. Modeling and Performance of Waste Tires as Media in Fixed Bed Sequence Batch Reactor

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2016-12-01

    Results: The maximum removal efficiencies of dissolved chemical oxygen demand for FBSBR and SBR reactors were 98.3 % and 97.9 %, respectively. In addition, Stover-Kincannon model provided a very suitable fitness (R2   > 0.99 for loading the bioreactor FBSBR. Conclusion: According to the results, not only waste tires can be reused, but also these wastes can be employed as a proper biological bed in wastewater refineries to improve their efficiency.

  6. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    DYKES, A.A.

    2000-10-11

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O&M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis.

  7. Recycle food wastes into high quality fish feeds for safe and quality fish production.

    Science.gov (United States)

    Wong, Ming-Hung; Mo, Wing-Yin; Choi, Wai-Ming; Cheng, Zhang; Man, Yu-Bon

    2016-12-01

    The amount of food waste generated from modern societies is increasing, which has imposed a tremendous pressure on its treatment and disposal. Food waste should be treated as a valuable resource rather than waste, and turning it into fish feeds would be a viable alternative. This paper attempts to review the feasibility of using food waste to formulate feed pellets to culture a few freshwater fish species, such as grass carp, grey mullet, and tilapia, under polyculture mode (growing different species in the same pond). These species occupy different ecological niches, with different feeding modes (i.e., herbivorous, filter feeding, etc.), and therefore all the nutrients derived from the food waste could be efficiently recycled within the ecosystem. The problems facing environmental pollution and fish contamination; the past and present situation of inland fish culture (focusing on South China); upgrade of food waste based feed pellets by adding enzymes, vitamin-mineral premix, probiotics (yeast), prebiotics, and Chinese medicinal herbs into feeds; and potential health risks of fish cultivated by food waste based pellets are discussed, citing some local examples. It can be concluded that appropriate portions of different types of food waste could satisfy basic nutritional requirements of lower trophic level fish species such as grass carp and tilapia. Upgrading the fish pellets by adding different supplements mentioned above could further elevated the quality of feeds, leading to higher growth rates, and enhanced immunity of fish. Health risk assessments based on the major environmental contaminants (mercury, PAHs and DDTs) in fish flesh showed that fish fed food waste based pellets are safer for consumption, when compared with those fed commercial feed pellets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Kinetic of pH control in anaerobic digestion of organic fraction of municipal solid waste in a batch reactor].

    Science.gov (United States)

    Liu, Cun-Fang; Yuan, Xing-Zhong; Zeng, Guang-Ming; Li, Wen-Wei; Meng, You-Ting; Fu, Mu-Xing

    2006-08-01

    Using a material and ionization balance analysis of anaerobic digestion process, a kinetic model of pH control in a batch anaerobic digestion of organic fraction of municipal solid waste was established on the basis of substrate decay and microbial growth kinetics, and a corresponding computer soft ware was created. The optimal pH in different anaerobic digestion can be predicted by this model. Consequently the maximal methane production can be obtained in anaerobic system by controlling the pH in optimal value. Comparative experiments were conducted to validate the model. The experiments demonstrated that the methane production of anaerobic system under optimal pH was steadier than the same condition under uncontrolled pH, and the cumulative methane production had an average increment about 20%.

  9. Use of slaughter house waste as a feed for shrimps and prawns

    Digital Repository Service at National Institute of Oceanography (India)

    Sumitra-Vijayaraghavan; Royan, J.P.; Krishnakumari, L.

    Feeding experiments with some shrimps and fishes (Metapenaeus monoceros, Metapenaeus dobsoni, Sarotherodon mossambicus and Etroplus suratensis) using slaughter house waste as food, showed that the shrimps and arotherodon were able to utilize...

  10. Phase I high-level waste pretreatment and feed staging plan

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, A.F.

    1996-02-05

    This document provides the preliminary planning basis for the U.S. Department of Energy (DOE) to provide a sufficient quantity of high-level waste feed to the privatization contractor during Phase I. By this analysis of candidate high-level waste feed sources, the initial quantity of high-level waste feed totals more than twice the minimum feed requirements. The flexibility of the current infrastructure within tank farms provides a variety of methods to transfer the feed to the privatization contractor`s site location. The amount and type of pretreatment (sludge washing) necessary for the Phase I processing can be tailored to support the demonstration goals without having a significant impact on glass volume (i.e., either inhibited water or caustic leaching can be used).

  11. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 6 QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Click, D.; Jones, M.; Edwards, T.

    2010-06-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) confirms applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples.1 DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem (CC) Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICPAES). In addition to the CC method confirmation, the DWPF lab's mercury (Hg) digestion method was also evaluated for applicability to SB6 (see DWPF procedure 'Mercury System Operating Manual', Manual: SW4-15.204. Section 6.1, Revision 5, Effective date: 12-04-03). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 6 (SB6) SRAT Receipt and SB6 SRAT Product samples. For validation of the DWPF lab's Hg method, only SRAT receipt material was used and compared to AR digestion results. The SB6 SRAT Receipt and SB6 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB6 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 5 (SB5), to form the SB6 Blend composition. In addition to the 16 elements currently measured by the DWPF, this report includes Hg and thorium (Th) data (Th comprising {approx}2.5 - 3 Wt% of the total solids in SRAT Receipt and SRAT Product, respectively) and provides specific details of ICP-AES analysis of Th. Thorium was found to interfere with the U 367.007 nm emission line, and an inter-element correction (IEC) had to be applied to U

  12. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation.

    Science.gov (United States)

    Dubey, Swati; Singh, Jyoti; Singh, R P

    2017-09-15

    Herein, sweet lime pulp waste (SLPW) was utilized as a low- or no-cost feedstock for the production of bacterial nanocellulose (BNC) alone and in amalgamation with other nutritional supplements by the isolate K. europaeus SGP37 under static batch and static intermittent fed-batch cultivation. The highest yield (26.2±1.50gL-1) was obtained in the hot water extract of SLPW supplemented with the components of HS medium, which got further boosted to 38±0.85gL-1 as the cultivation strategy was shifted from static batch to static intermittent fed-batch. BNC obtained from various SLPW medium was similar or even superior to that obtained with standard HS medium in terms of its physicochemical properties. The production yields of BNC thus obtained are significantly higher and fit well in terms of industrial scale production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor.

    Science.gov (United States)

    Nopharatana, Annop; Pullammanappallil, Pratap C; Clarke, William P

    2007-01-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 degrees C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

  14. Supplementary feeding in the care of the wasted HIV infected patient

    African Journals Online (AJOL)

    more rapid restoration of BMI. Further research is urgently needed concerning the widespread practice of supplementary feeding in. HIV/ AIDS care to most effectively utilize this intervention. Wasting and the supplementary food commonly used in ART care. The prevalence of wasting, defined as a body mass index.

  15. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  16. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  17. Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste.

    Science.gov (United States)

    Chaudhary, Rubina; Pati, Anupama

    2016-04-01

    Leather industry generates huge amount of chrome-containing leather solid waste which creates major environment problems to tanners worldwide. Chrome-tanned leather solid waste is primarily chromium complex of collagen protein. The presence of chromium limits its protein application in animal feed industry. The purified protein hydrolysate with zero chromium could be used in poultry feed. In this study, an attempt has been made to assess performance of poultry with purified protein hydrolysate as a feed derived from chrome-tanned leather waste as partial replacement of soyabean meal as a sole source of protein for growing broiler chickens. Growth study was conducted to evaluate the effect of feeding protein hydrolysate on performance and physiochemical characteristics of meat of broiler chickens. Two experimental diets containing various levels of protein hydrolysate (EI-20 % and EII-30 %) were evaluated. The comparative study was performed as control with soyabean meal. Daily feed intake, body weight gain and feed conversion ratio were measured from day 8 to day 35. At the end of the study, birds were randomly selected and slaughtered to evaluate for physiochemical characteristics of meat. Diet had significant effects on feed intake and body weight gain. Birds fed with 20 and 30 % protein hydrolysate consumed 9.5 and 17.5 % higher amount of feed and gained 6.5 and 16.6 % higher than soyabean meal-fed birds. The current study produced evidence that protein hydrolysate can replace up to 75 % of soyabean meal in broiler diets without affecting either growth performance or meat characteristics.

  18. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    Science.gov (United States)

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety.

  19. Analysis of Tank 38H (HTF-38-15-119, 127) Surface, Subsurface and Tank 43H (HTF-43-15-116, 117 and 118) Surface, Feed Pump Suction and Jet Suction Subsurface Supernatant Samples in Support of Enrichment, Corrosion Control and Salt Batch Planning Programs

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-17

    Compositional feed limits have been established to ensure that a nuclear criticality event for the 2H and 3H Evaporators is not possible. The Enrichment Control Program (ECP) requires feed sampling to determine the equivalent enriched uranium content prior to transfer of waste other than recycle transfers (requires sampling to determine the equivalent enriched uranium at two locations in Tanks 38H and 43H every 26 weeks) The Corrosion Control Program (CCP) establishes concentration and temperature limits for key constituents and periodic sampling and analysis to confirm that waste supernate is within these limits. This report provides the results of analyses on Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the ECP, the CCP, and the Salt Batch 10 Planning Program.

  20. Combined anaerobic degestion and composting of source-separated biodegradable municipal solid waste in batch plants; Kombineret bioforgasning og kompostering af kildesorteret organisk dagrenovation i batch-anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This project presents results from the development, establishment and evaluation of a full-scale plant for anaerobic digestion and composting of solid biodegradable waste, including source-separated biodegradable municipal solid waste. At a full-scale level the project showed that it is possible to undertake combined anaerobic digestion and composting of biowaste without screening out impurities prior to the biological process. This implies that pre-treatment costs are reduced, and the production of waste with a high content of biodegradable matter can be avoided. The products of the biological process are energy, in the form of biogas and compost. (BA)

  1. Proximate analyses - Utilization of Marine Process Waste for Aquaculture Feeds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Limited amounts of forage fish are available as an ingredient in feeds for the expanding aquaculture industry. Work is being conducted on a variety of underutilized...

  2. Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature.

    Science.gov (United States)

    Beltrán, Carolina; Jeison, David; Fermoso, Fernando G; Borja, Rafael

    2016-08-23

    The microalgae Chlorella sorokiniana are used as co-substrate for waste activated sludge (WAS) anaerobic digestion. The specific objective of this research was to evaluate the feasibility of improving methane production from anaerobic digestion of WAS in co-digestion with this microalga, based on an optimized mixture percentage. Thus, the anaerobic co-digestion of both substrates aims to overcome the drawbacks of the anaerobic digestion of single WAS, simultaneously improving its management. Different co-digestion mixtures (0% WAS-100% microalgae; 25% WAS-75% microalgae; 50% WAS-50% microalgae; 75% WAS-25% microalgae; 100% WAS-0% microalgae) were studied. The highest methane yield (442 mL CH4/g VS) was obtained for the mixture with 75% WAS and 25% microalgae. This value was 22% and 39% higher than that obtained in the anaerobic digestion of the sole substrates WAS and microalgae, respectively, as well as 16% and 25% higher than those obtained for the co-digestion mixtures with 25% WAS and 75% microalgae and 50% WAS and 50% microalgae, respectively. The kinetic constant of the process increased 42%, 42% and 12%, respectively, for the mixtures with 25%, 50% and 75% of WAS compared to the substrate without WAS. Anaerobic digestion of WAS, together with C. sorokiniana, has been clearly improved by ensuring its viability, suitability and efficiency.

  3. Hybrid solid anaerobic digestion batch: biomethane production and mass recovery from the organic fraction of solid waste.

    Science.gov (United States)

    Di Maria, Francesco; Gigliotti, Giovanni; Sordi, Alessio; Micale, Caterina; Zadra, Claudia; Massaccesi, Luisa

    2013-08-01

    An experimental apparatus was constructed to perform hybrid solid anaerobic digestion batch processing of the organic fraction of municipal solid waste. The preliminary process was carried out with a high total solids concentration of about 33% w w(-1) and with an initial organic load of about 340 kg VS kg(-1). The fresh organic fraction to inoculum ratio used to enhance the anaerobic process start-up was 0.910 kg VS kg VS(-1). The process was conducted by spreading the percolate on top of the mixture. The percolate was stored in a separate section of the apparatus with a mean hydraulic retention time of about 1 day. During the process, acetate, butyrate and propionate in the percolate reached concentrations ranging from 3000 to 11 000 mg L(-1). In spite of these high concentrations, the biomethane produced from both the solid and the percolate was quite high, at about 210 NL kg VS(-1). The digestate obtained at the end of the run showed rather good features for being classified as an organic fertilizer according to Italian law. However, a residual phytotoxicity level was detected by a standardized test showing a germination index of about 50%.

  4. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    Energy Technology Data Exchange (ETDEWEB)

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles.

  5. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol.

    Science.gov (United States)

    Celik, Eda; Calik, Pinar; Oliver, Stephen G

    2009-09-01

    Batch-wise sorbitol addition as a co-substrate at the induction phase of methanol fed-batch fermentation by Pichia pastoris (Mut(+)) was proposed as a beneficial recombinant protein production strategy and the metabolic responses to methanol feeding rate in the presence of sorbitol was systematically investigated. Adding sorbitol batch-wise to the medium provided the following advantages over growth on methanol alone: (a) eliminating the long lag-phase for the cells and reaching 'high cell density production' at t = 24 h of the process (C(X) = 70 g CDW/l); (b) achieving 1.8-fold higher recombinant human erythropoietin (rHuEPO) (at t = 18 h); (c) reducing specific protease production 1.2-fold; (d) eliminating the lactic acid build-up period; (e) lowering the oxygen uptake rate two-fold; and (f) obtaining 1.4-fold higher overall yield coefficients. The maximum specific alcohol oxidase activity was not affected in the presence of sorbitol, and it was observed that sorbitol and methanol were utilized simultaneously. Thus, in the presence of sorbitol, 130 mg/l rHuEPO was produced at t = 24 h, compared to 80 mg/l rHuEPO (t = 24 h) on methanol alone. This work demonstrates not only the ease and efficiency of incorporating sorbitol to fermentations by Mut(+) strains of P. pastoris for the production of any bio-product, but also provides new insights into the metabolism of the methylotrophic yeast P. pastoris.

  6. Valorisation of food waste to produce new raw materials for animal feed.

    Science.gov (United States)

    San Martin, D; Ramos, S; Zufía, J

    2016-05-01

    This study assesses the suitability of vegetable waste produced by food industry for use as a raw material for animal feed. It includes safety and nutritional viability, technical feasibility and environmental evaluation. Vegetable by-products were found to be nutritionally and sanitarily appropriate for use in animal feed. The drying technologies tested for making vegetable waste suitable for use in the animal feed market were pulse combustion drying, oven and microwave. The different meal prototypes obtained were found to comply with all the requirements of the animal feed market. An action plan that takes into account all the stages of the valorisation process was subsequently defined in agreement with local stakeholders. This plan was validated in a pilot-scale demonstration trial. Finally, the technical feasibility was studied and environmental improvement was performed. This project was funded by the European LIFE+ program (LIFE09 ENV/ES/000473). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  8. Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong.

    Science.gov (United States)

    Cheng, Jack Y K; Lo, Irene M C

    2016-04-01

    Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities.

  9. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes.

    Science.gov (United States)

    Kim, Hyun-Woo; Nam, Joo-Youn; Kang, Seok-Tae; Kim, Dong-Hoon; Jung, Kyung-Won; Shin, Hang-Sik

    2012-04-01

    Extracellular enzymes offer active catalysis for hydrolysis of organic solid wastes in anaerobic digestion. To evidence the quantitative significance of hydrolytic enzyme activities for major waste components, track studies of thermophilic and mesophilic anaerobic sequencing-batch reactors (TASBR and MASBR) were conducted using a co-substrate of real organic wastes. During 1day batch cycle, TASBR showed higher amylase activity for carbohydrate (46%), protease activity for proteins (270%), and lipase activity for lipids (19%) than MASBR. In particular, the track study of protease identified that thermophilic anaerobes degraded protein polymers much more rapidly. Results revealed that differences in enzyme activities eventually affected acidogenic and methanogenic performances. It was demonstrated that the superior nature of enzymatic capability at thermophilic condition led to successive high-rate acidogenesis and 32% higher CH(4) recovery. Consequently, these results evidence that the coupling thermophilic digestion with sequencing-batch operation is a viable option to promote enzymatic hydrolysis of organic particulates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Reduce Food Waste and Feed People, Not Landfills

    Science.gov (United States)

    DALLAS - (Nov. 10, 2015) Imagine 37 million tons of food. Think of how many people that amount could feed, the money it cost to buy, and the resources needed to produce it. Then imagine almost every pound of that sitting in a landfill or incinerator

  11. Feed Additives Production Out of Dairy Industry Waste

    Science.gov (United States)

    Ulrikh, EV

    2017-05-01

    Application of macro- and microelements in animal feed is the most effective in the case of their industrial brining in mixed feeds, feed mixes, and protein-vitamin supplements in the form of various complex salts. Application of the product contributes to the body’s needs of broiler chickens in vitamins and minerals, normalization of metabolism, and ensures a high rate of growth and development. The composition of the premix can be adjusted depending on the actual proportion of biologically active substances in the feed used by a consumer. It is possible to include in the premix other biologically active substances. Assessing the slaughter qualities of experimental pigs, it was found (Table. 2) that the pigs of group II has a tendency toward greater weight of hot carcass (4.5 kg), of slaughter yelts (by 3.83%) and toward a smaller thickness of fat over the spinous processes of the 6-7th thoracic vertebrae (1.67 mm). The performed investigations have established that there is no significant difference between groups I and II in the content of certain amino acids, however, group I shows poorer results in the content of valine, isoleucine, leucine and lysine by 0.16 g / 100 g of protein (P> 0.999) 0.2 (P> 0.90), 0.46 (P> 0.999) and 0.39 (P> 0.999) g / 100 g protein respectively.

  12. Trade study for the feed tank fill status issue for low-activity waste feed issue 19D

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J.

    1998-05-18

    This document identifies and evaluates alternatives that will provide DOE-RL sufficient information from which a decision can be negotiated regarding the Project Hanford Management Contractor team`s use of tanks 241-AP-106 and -108 versus the private contractors need to upgrade them for their purposes. The desired alternatives to be evaluated and the measures for comparison were selected in a separate meeting with the customer (RL). These are defined in the sections that follow. The following summarizes the results of this study. More detailed explanations of the results can be found later in Section 6.0 of the document. Relinquishing the use of tanks early increases the programmatic risk when compared to the baseline via the following areas: (1) Tank Space -- The amount of usable tank space decreases. This also impacts the amount of spare and contingency space available. (2) Waste Transfer Complexity -- The complexity of tankfarm transfers increases. As double-shell tank (DST) space becomes limited, the number and interdependency of waste transfers increases. (3) Float -- Float time for low-activity waste (LAW) feed staging operations decreases. (4) Waste Segregation -- The segregation of tank wastes may be violated.

  13. Supplementation of olive mill wastes in broiler chicken feeding

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... Olive mill wastes (OMW), sub-product extracted from olives, remains largely unexploited in Algeria and repre- sents a significant environmental problem because of its great availability as a result of the large agricultural surfa- ces devoted to the cultivation of olive-tree. This product contains high phenol ...

  14. ENHANCED PRODUCTION OF POLYHYDROXYBUTYRATE (PHB FROM AGRO-INDUSTRIAL WASTES; FED-BATCH CULTIVATION AND STATISTICAL MEDIA OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Berekaa

    2016-06-01

    Full Text Available Bacillus megaterium SW1-2 showed enhanced growth and polyhydroxybutyrate (PHB production during cultivation on date palm syrup (DEPS or sugar cane molasses. FT-IR and NMR spectroscopic analyses of the polymer accumulated during growth on DEPS revealed specific absorption peaks characteristic for PHB. 1.65 g/L of PHB (56.9% CDW was produced during growth on medium supplemented with 2 g/L of DEPS. Approximately, 36.1% CDW of PHB were recorded during growth on sugar cane molasses. Six runs of different fed-batch cultivation strategies were tested, the optimal run showed approximately 6.87-fold increase. Modified E2 medium was prefered recording 10.11 and 11.34 g/L of total PHB produced for runs 1 and 2, at the end of 96 h incubation period, respectively. Decrease in PHB was recorded during growth on complex medium (run 3 and run 4. In another independent optimization strategy, ten variables were concurrently examined for their significance on PHB production by Plackett-Burman statistical design for the first time. Among variables, DEPS-II and inoculum concentration followed by KH2PO4 and (NH42SO4 were found to be the most significant variables encourage PHB production. Indeed, DEPS-II or Fresh syrup is more significant than commercial syrup DEPS-I (p-value= 0.05. RPM, incubation period have highly negative effect on PHB production. Role of ago-industrial wastes, especially DEPS, in enhancement of PHB production was closely discussed.

  15. Backcasting to identify food waste prevention and mitigation opportunities for infant feeding in maternity services.

    Science.gov (United States)

    Ryan-Fogarty, Yvonne; Becker, Genevieve; Moles, Richard; O'Regan, Bernadette

    2017-03-01

    Food waste in hospitals is of major concern for two reasons: one, healthcare needs to move toward preventative and demand led models for sustainability and two, food system sustainability needs to seek preventative measures such as diet adaptation and waste prevention. The impact of breast-milk substitute use on health services are well established in literature in terms of healthcare implications, cost and resourcing, however as a food demand and waste management issue little has been published to date. This paper presents the use of a desk based backcasting method to analyse food waste prevention, mitigation and management options within the Irish Maternity Service. Best practice in healthcare provision and waste management regulations are used to frame solutions. Strategic problem orientation revealed that 61% of the volume of ready to use breast-milk substitutes purchased by maternity services remains unconsumed and ends up as waste. Thirteen viable strategies to prevent and manage this waste were identified. Significant opportunities exist to prevent waste and also decrease food demand leading to both positive health and environmental outcomes. Backcasting methods display great promise in delivering food waste management strategies in healthcare settings, especially where evidenced best practice policies exist to inform solution forming processes. In terms of food waste prevention and management, difficulties arise in distinguishing between demand reduction, waste prevention and waste reduction measures under the current Waste Management Hierarchy definitions. Ultimately demand reduction at source requires prioritisation, a strategy which is complimentary to health policy on infant feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Optimizing Nutrient Utilization and Reducing Waste Through Diet Composition and Feeding Strategies

    Science.gov (United States)

    This document summarizes the findings of the Southern Regional Aquaculture Center project Optimizing Nutrient Utilization and Reducing Waste through Diet Composition and Feeding Strategies. The primary objectives of the project were to determine the effects of diet composition on fish production, n...

  17. One Step In-Situ Formed Magnetic Chitosan Nanoparticles as an Efficient Sorbent for Removal of Mercury Ions From Petrochemical Waste Water: Batch and Column Study

    Directory of Open Access Journals (Sweden)

    Rahbar

    2015-10-01

    Full Text Available Background In the recent years, mercury contamination has attracted great deal of attention due to its serious environmental threat. Objectives The main goal of this study was application of one-step synthesized magnetic (magnetite chitosan nanoparticles (MCNs in the removal of mercury ions from petrochemical waste water. Materials and Methods This study was performed in batch and column modes. Effects of various parameters such as pH, adsorbent dose, contact time, temperature and agitation speed for the removal of mercury ions by MCNs investigated in batch mode. Afterwards, optimum conditions were exploited in column mode. Different kinetic models were also studied. Results An effective Hg (II removal (99.8% was obtained at pH 6, with 50 mg of MCNs for an initial concentration of this ion in petrochemical waste water (5.63 mg L-1 and 10 minutes agitation of the solution. The adsorption kinetic data was well fitted to the pseudo-second-order model. Conclusions Experimental results showed that MCNs is an excellent sorbent for removal of mercury ions from petrochemical waste water. In addition, highly complex matrix of this waste does not affect the adsorption capability of MCNs.

  18. Co-digestion of food waste in a municipal wastewater treatment plant: Comparison of batch tests and full-scale experiences.

    Science.gov (United States)

    Koch, Konrad; Plabst, Markus; Schmidt, Andreas; Helmreich, Brigitte; Drewes, Jörg E

    2016-01-01

    The effects of co-digestion of food waste in a municipal wastewater treatment plant (WWTP) were studied in batch tests. The results obtained were compared with the mass balance of a digester at a full-scale WWTP for a one-year period without and with the addition of co-substrate. The specific methane yield calculated from the balance was 18% higher than the one in the batch tests, suggesting a stimulation of methane generation by co-digestion. It was hypothesized that this increase was caused by shifting the C/N ratio of raw sludge (8.8) to a more favourable ratio of the added food waste (17.7). In addition, potential benefits by adding food waste for energy autarky was investigated. While just 25% of the total energy demand of the plant could be recovered by biogas generation when no co-substrate was fed, this percentage has more than doubled when food waste was added at a ratio of 10% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fly larvae as sustainable bioconverters of waste for feed in the future

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Aabo, Søren

    2014-01-01

    conversion rate compared to conventionallivestock, low use of water and energy, and with at much lower requirements for production area.Furthermore the emission of greenhouse gases and ammonia compared to production with pigs and cattleis much lower. Harvested insects may be used direct as food or feed......How to provide enough food and feed for the growing population is a major challenge for the nextgeneration. Improved economy in many developing countries increases the demand for protein from meator fish. This may lead to depletion of the seas and overexploitation of agricultural land...... in the in search ofobtaining sufficient food.Traditional food production creates large amount of organic waste streams which are dumped or used forbiogas production. Although some of these waste categories have large potential for upcycling to feed foranimals or food for humans, then drivers for change have been...

  20. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulated waste feeds from Hanford, Savannah River, and Germany were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600{degrees}C--1000{degrees}C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO{sub 2}), and palladium (Pd), as well as their alloys, were seen. the majority of particles and agglomerates were generally less than 10 microns; however, large agglomerations (up to 1 mm) were found in the German feed. Detailed particle distribution and characterization was performed for a Hanford waste to provide input to computer modeling of particle settling in the melter.

  1. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy.

    Science.gov (United States)

    Fan, Jinlin; Liang, Shuang; Zhang, Bo; Zhang, Jian

    2013-04-01

    Oxygen and carbon source supply are usually insufficient in subsurface flow constructed wetlands. Simultaneous removal of organic pollutants and nitrogen in five batch-operated vertical flow constructed wetlands under different operating conditions was investigated. Alternate aerobic and anaerobic regions were created well with intermittent aeration. Four-month experiments showed that the wetland-applied intermittent aeration combined with step feeding strategy (reactor E) greatly improved the removal of organics, ammonium nitrogen (NH4-N), and total nitrogen (TN) simultaneously, which were 97, 96, and 82%, respectively. It was much better than non-aerated reactors A and B and outperformed intermittently aerated reactor D without step feeding. Continuous aeration (reactor C) significantly enhanced the organics removal and nitrification, but it limited the TN removal (29%) seriously as a result of low denitrification level, and the high operation cost remained a question. The effect of plants was confirmed in this study, and the monitoring data showed that the plants could grow normally. Intermittent aeration as well as step feeding had no obvious influence on the growth of wetland plants in this study.

  2. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

    2011-03-14

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

  3. Anaerobic digestion of solid waste in RAS: Effect of reactor type on the biochemical acidogenic potential (BAP) and assessment of the biochemical methane potential (BMP) by a batch assay

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Letelier-Gordo, Carlos Octavio; Lund, Ivar

    2015-01-01

    Anaerobic digestion is a way to utilize the potential energy contained in solid waste produced in recirculating aquaculture systems (RASs), either by providing acidogenic products for driving heterotrophic denitrification on site or by directly producing combustive methane. In this study...... the biochemical acidogenic potential of solid waste from juvenile rainbow trout was evaluated by measuring the yield of volatile fatty acids (VFA) during anaerobic digestion by batch or fed-batch reactor operation at hydrolysis time (HT) / hydraulic retention time (HRT) of 1, 5, or 10 days (and for batch...

  4. A simple kinetic analysis of syngas during steam hydrogasification of biomass using a novel inverted batch reactor with instant high pressure feeding.

    Science.gov (United States)

    Fan, Xin; Liu, Zhongzhe; Norbeck, Joseph M; Park, Chan S

    2016-01-01

    A newly designed inverted batch reactor equipped with a pressure-driven feeding system was built for investigating the kinetics of syngas during the steam hydrogasification (SHR) of biomass. The system could instantly load the feedstock into the reactor at high temperature and pressure, which simulated the way to transport the feedstock into a hot and pressurized gasifier. Experiments were conducted from 600°C to 700°C. The inverted reactor showed very high heating rate by enhancing the carbon conversion and syngas production. The kinetic study showed that the rates of CH4, CO and CO2 formation during SHR were increased when the gasification temperature went up. SHR had comparatively lower activation energy for CH4 production. The activation energies of CH4, CO and CO2 during SHR were 42.8, 51.8 and 14kJ/mol, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    Science.gov (United States)

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Infant feeding practices among mildly wasted children: a retrospective study on Nias Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Inayati Dyah

    2012-03-01

    Full Text Available Abstract Background This study investigated the infant feeding practices of participating mothers who were recruited into a research project aimed at improving the nutritional status of mildly wasted children (-scores aged ≥ 6 to Methods Cross-sectional, questionnaire-based interview of mothers of the index children (n = 215 who were admitted to the community program for mildly wasted children in the study area. Four focus groups and twenty in-depth interviews were conducted to explore further information on infant feeding practices in the study area. Results Retrospective results indicated that 6% of the mothers never breastfed. Fifty two percent of mothers initiated breastfeeding within six hours of birth, but 17% discarded colostrum. Exclusive breastfeeding until 6 months of age was practiced by 12%. Seventy-four percent of the mothers offered supplementary liquids besides breast milk within the first 7 days of life, and 14% of infants received these supplementary liquids from 7 days onwards until 6 months of age. Moreover, 79% of the infants were given complementary foods (solid, semi-solid, or soft foods before 6 months of age. About 9% of the children were breastfed at least two years. Less than one in five of the mildly wasted children (19% were breastfed on admission to the community program. Qualitative assessments found that inappropriate infant feeding practices were strongly influenced by traditional beliefs of the mothers and paternal grandmothers in the study areas. Conclusion Generally, suboptimal infant feeding was widely practiced among mothers of mildly wasted children in the study area on Nias Island, Indonesia. To promote breastfeeding practices among mothers on Nias Island, appropriate nutrition training for community workers and health-nutrition officers is needed to improve relevant counseling skills. In addition, encouraging public nutrition education that promotes breastfeeding, taking into account social

  7. Preliminary Assessment of the Hanford Tank Waste Feed Acceptance and Product Qualification Programs

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C. C.; Adamson, Duane J.; Herman, D. T.; Peeler, David K.; Poirier, Micheal R.; Reboul, S. H.; Stone, M. E.; Peterson, Reid A.; Chun, Jaehun; Fort, James A.; Vienna, John D.; Wells, Beric E.

    2013-04-01

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL) have been chartered to implement a science and technology program addressing Hanford Tank waste feed acceptance and product qualification. As a first step, the laboratories examined the technical risks and uncertainties associated with the planned waste feed acceptance and qualification testing for Hanford tank wastes. Science and technology gaps were identified for work associated with 1) feed criteria development with emphasis on identifying the feed properties and the process requirements, 2) the Tank Waste Treatment and Immobilization Plant (WTP) process qualification program, and 3) the WTP HLW glass product qualification program. Opportunities for streamlining the accetpance and qualification programs were also considered in the gap assessment. Technical approaches to address the science and technology gaps and/or implement the opportunities were identified. These approaches will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Pursuing the identified approaches will have immediate and long-term benefits to DOE in reducing risks and uncertainties associated with tank waste removal and preparation, transfers from the tank farm to the WTP, processing within the WTP Pretreatment Facility, and in producing qualified HLW glass products. Additionally, implementation of the identified opportunities provides the potential for long-term cost savings given the anticipated

  8. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Tamer [Department of Chemistry, Faculty of Arts and Science, Eskisehir Osmangazi University, Campus of Meselik, 26480 Eskisehir (Turkey)], E-mail: takar@ogu.edu.tr; Kaynak, Zerrin; Ulusoy, Sefika; Yuvaci, Dilek; Ozsari, Guldem; Akar, Sibel Tunali [Department of Chemistry, Faculty of Arts and Science, Eskisehir Osmangazi University, Campus of Meselik, 26480 Eskisehir (Turkey)

    2009-04-30

    Batch and dynamic flow biosorption studies were carried out using the waste biomass entrapped in silica-gel matrix for the removal of nickel(II) ions from synthetic solutions and real wastewater. Batch biosorption conditions were examined with respect to initial pH, S/L ratio, contact time, and initial nickel ion concentration. Zeta potential measurements showed that immobilized biosorbent was negatively charged in the pH range of 3.0-8.0. The immobilized biomass was found to possess relatively high biosorption capacity (98.01 mg g{sup -1}), and biosorption equilibrium was established in a short time of operation (5 min). The equilibrium data were followed by Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Scanning electron microscope analysis was used to screen the changes on the surface structure of the waste biomass after immobilization and nickel(II) biosorption. Sorbent-sorbate interactions were confirmed by Fourier transform infrared spectroscopy. The applicability of sorbent system was investigated in a continuous mode, and column studies were performed under different flow rate, column size, and biosorbent dosage. Also, the proposed sorbent system was successfully used to remove the nickel ions from industrial wastewater in dynamic flow treatment mode. The results showed that silica-immobilized waste biomass was a low-cost promising sorbent for sequester of nickel(II) ions from synthetic and real wastewater.

  9. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    Energy Technology Data Exchange (ETDEWEB)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  10. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.

    Science.gov (United States)

    Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo

    2013-10-15

    Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Glutathione accumulation in ethanol-stat fed-batch culture of Saccharomyces cerevisiae with a switch to cysteine feeding.

    Science.gov (United States)

    Nisamedtinov, Ildar; Kevvai, Kaspar; Orumets, Kerti; Rautio, Jari J; Paalme, Toomas

    2010-06-01

    Shot-wise supplementation of cysteine to a yeast culture is a common means of promoting glutathione (GSH) production. In the present work, we study the accumulation kinetics of cysteine, gamma-glutamylcysteine, and GSH and the expression of genes involved in GSH and sulfur metabolism in ethanol-stat fed-batch cultures as a result of switching to a medium enriched with cysteine and glycine. Supplementation in this fashion resulted in a rapid but short-term increase in the rate of GSH synthesis, while the expression of GSH1 decreased. Expression of GSH1 and GSH synthesis rate were observed to revert close to the base level after a few hours. These results indicate that, under such conditions, the control of GSH synthesis at higher concentrations occurred at the enzymatic, rather than the transcriptional level. The incorporation of cysteine into GSH was limited to approximately 40% of the theoretical yield, due to its requirement as a source of sulfur for protein synthesis under conditions whereby the sulfate assimilation pathway is down-regulated. This was supported by the expression profiles of genes involved in cysteine and homocysteine interconversion.

  12. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    Science.gov (United States)

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source.

  13. Alternatives generation and analysis for the Phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Claghorn, R.D., Fluor Daniel Hanford

    1997-02-06

    This alternatives generation and analysis (AGA) addresses the question: What is the design basis for the facilities required to stage low-level waste (LLW) feed to the Phase I private contractors? Alternative designs for the intermediate waste feed staging system were developed, analyzed, and compared. Based on these analyses, this document recommends installing mixer pumps in the central pump pit of double-shell tanks 241-AP-102 and 241-AP-104. Also recommended is installing decant/transfer pumps at these tanks. These recommendations have clear advantages in that they provide a low shedule impact/risk and the highest operability of all the alternatives investigated. This revision incorporates comments from the decision board.

  14. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    Energy Technology Data Exchange (ETDEWEB)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-03-18

    This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.

  15. Feeding schemes and C/N ratio of a laboratory-scale step-fed sequencing batch reactor for liquid swine manure treatment.

    Science.gov (United States)

    Wu, Sarah Xiao; Zhu, Jun; Chen, Lide

    2017-07-03

    This study was undertaken to investigate the effect of two split feeding schemes (600 mL/200 mL and 400 mL/400 mL, designated as FS1 and FS2, respectively) on the performance of a step-fed sequencing batch reactor (SBR) in treating liquid swine manure for nutrient removal. The SBR was run on an 8-h cycle with a repeated pattern of anaerobic/anoxic/aerobic phases in each cycle and the two feedings always occurred at the beginning of each anaerobic phase. A low-level aeration was used (1.0 L/m(3).sec) for the anoxic/aerobic phase to facilitate nitrification and phosphorus uptake while reducing the energy consumption. The results showed that FS1 reduced NH4(+)-N by 98.7% and FS2 by 98.3%. FS1 had 12.3 mg/L NO3-N left in the effluent, while FS2 had 4.51 mg/L. For soluble phosphorus removal, FS1 achieved 95.2%, while FS2 reached only 68.5%. Both feeding schemes achieved ≥ 95% removal of COD. A good power regression was observed between total nitrogen (sum of all three nitrogen species) and the carbon to nitrogen (C/N) ratio, with the correlation coefficients of 0.9729 and 0.9542 for FS1 and FS2, respectively, based on which it was concluded that higher C/N ratios were required to achieve higher nitrogen removal efficiencies.

  16. FEED POTENTIAL OF AGRICULTURE WASTE FOR BEEF CATTLE DEVELOPMENT IN KUNINGAN REGENCY, WEST JAVA

    Directory of Open Access Journals (Sweden)

    F. T. Farda

    2016-02-01

    Full Text Available The aims of research were to identify and analyze potential agricultural waste used as feed, examines the characteristics of beef cattle ranchers and estimate the ability of the addition of beef cattle population in Kuningan Regency. The primary data were taken from interviews with 30 respondents beef cattle farmers selected by purposive sampling in three districts based on the largest beef cattle population as a recommendation by local government of Kuningan Regency Agricultural. Waste samples taken randomly three times to analyze of nutrient composition by proksimat analyze was the type of the most widely used for feed. Secondary data was obtained from Kuningan Regency Veterinary Office, Department of Food Crops and the Central Statistics Agency. The results showed that the type of agricultural waste used in Kuningan Regency from highest to lowest production is rice straw, hay sweet potatoes, peanuts and hay with traditional animal husbandry systems. Districts that can improve beef cattle population from the highest to lowest number was Luragung, Cibingbin, Ciwaru, Subang, Maleber, Cibeureum, Cilebak, Karangkancana and Cimahi. In conclusion, the highest agricultural waste production was rice straw and the highest potential for the development of beef cattle in the Kuningan Regency was Luragung District.

  17. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  18. PHYSICAL CHARACTERIZATION OF VITREOUS STATE LABORATORY AY102/C106 AND AZ102 HIGH LEVEL WASTE MELTER FEED SIMULANTS (U)

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E

    2005-03-31

    The objective of this task is to characterize and report specified physical properties and pH of simulant high level waste (HLW) melter feeds (MF) processed through the scaled melters at Vitreous State Laboratories (VSL). The HLW MF simulants characterized are VSL AZ102 straight hydroxide melter feed, VSL AZ102 straight hydroxide rheology adjusted melter feed, VSL AY102/C106 straight hydroxide melter feed, VSL AY102/C106 straight hydroxide rheology adjusted melter feed, and Savannah River National Laboratory (SRNL) AY102/C106 precipitated hydroxide processed sludge blended with glass former chemicals at VSL to make melter feed. The physical properties and pH were characterized using the methods stated in the Waste Treatment Plant (WTP) characterization procedure (Ref. 7).

  19. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.

  20. Waste Feed Delivery System Phase 1 Preliminary Reliability and Availability and Maintainability Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CARLSON, A.B.

    1999-11-11

    The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed.

  1. SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED

    Energy Technology Data Exchange (ETDEWEB)

    Cercy, M.; Peeler, D.; Stone, M.

    2013-09-25

    This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

  2. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  3. Utilization of potato starch processing wastes to produce animal feed with high lysine content.

    Science.gov (United States)

    Li, Ying; Liu, Bingnan; Song, Jinzhu; Jiang, Cheng; Yang, Qian

    2015-02-01

    This work aims to utilize wastes from the potato starch industry to produce single-cell protein (SCP) with high lysine content as animal feed. In this work, S-(2-aminoethyl)-L-cysteine hydrochloride-resistant Bacillus pumilus E1 was used to produce SCP with high lysine content, whereas Aspergillus niger was used to degrade cellulose biomass and Candida utilis was used to improve the smell and palatability of the feed. An orthogonal design was used to optimize the process of fermentation for maximal lysine content. The optimum fermentation conditions were as follows: temperature of 40°C, substrate concentration of 3%, and natural pH of about 7.0. For unsterilized potato starch wastes, the microbial communities in the fermentation process were determined by terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes. Results showed that the dominant population was Bacillus sp. The protein quality as well as the amino acid profile of the final product was found to be significantly higher compared with the untreated waste product at day 0. Additionally, acute toxicity test showed that the SCP product was non-toxic, indicating that it can be used for commercial processing.

  4. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  5. Reduction of Phosphorus Pollution from Broilers Waste through Supplementation of Wheat Based Broilers Feed with Phytase

    Directory of Open Access Journals (Sweden)

    Ahmed Abdel-Megeed

    2015-01-01

    Full Text Available The present study was conducted to reduce phosphorus pollution from broilers waste by supplementing phytase enzyme in broilers fee. Two hundred two-week-old broilers (Hubbard were selected and randomly allocated to three dietary treatment groups, one control group (without phytase and two trial groups (group A with 300 U/kg phytase and group B with 600 U/kg phytase. Each group was composed of 5 replicates with 10 chicks. Broilers fed the control diet (without phytase gained weight slower (P 0.05 reduces excreta P and Ca level. Phytase addition did not affect excreta pH. The presence of phytase in feed mixtures significantly (P > 0.05 improves the body weight gain and feed intake of broiler chickens.

  6. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, R.G.

    1995-06-07

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  7. SPS batch spacing optimisation

    CERN Document Server

    Velotti, F M; Carlier, E; Goddard, B; Kain, V; Kotzian, G

    2017-01-01

    Until 2015, the LHC filling schemes used the batch spac-ing as specified in the LHC design report. The maximumnumber of bunches injectable in the LHC directly dependson the batch spacing at injection in the SPS and hence onthe MKP rise time.As part of the LHC Injectors Upgrade project for LHCheavy ions, a reduction of the batch spacing is needed. In thisdirection, studies to approach the MKP design rise time of150ns(2-98%) have been carried out. These measurementsgave clear indications that such optimisation, and beyond,could be done also for higher injection momentum beams,where the additional slower MKP (MKP-L) is needed.After the successful results from 2015 SPS batch spacingoptimisation for the Pb-Pb run [1], the same concept wasthought to be used also for proton beams. In fact, thanksto the SPS transverse feed back, it was already observedthat lower batch spacing than the design one (225ns) couldbe achieved. For the 2016 p-Pb run, a batch spacing of200nsfor the proton beam with100nsbunch spacing wasreque...

  8. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  9. Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation.

    Science.gov (United States)

    Khattak, Waleed Ahmad; Khan, Taous; Ha, Jung Hwan; Ul-Islam, Mazhar; Kang, Min-Kyung; Park, Joong Kon

    2013-10-10

    Malt hydrolyzing enzymes and yeast glycolytic and fermentation enzymes in the waste from beer fermentation broth (WBFB) were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A new 'one-pot consecutive batch strategy' was developed for efficient bio-ethanol production by simultaneous saccharification and fermentation (SSF) using WBFB without additional enzymes, microbial cells, or carbohydrates. Bio-ethanol production was conducted in batches using WBFB supernatant in the first phase at 25-67°C and 50rpm, followed by the addition of 3% WBFB solid residue to the existing culture broth in the second phase at 67°C. The ethanol production increased from 50 to 102.5g/L when bare supernatant was used in the first phase, and then to 219g ethanol/L in the second phase. The amount of ethanol obtained using this strategy was almost equal to that obtained using the original WBFB containing 25% solid residue at 33°C, and more than double that obtained when bare supernatant was used. Microscopic and gel electrophoresis studies revealed yeast cell wall degradation and secretion of cellular material into the surrounding medium. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) supported the existence of enzymes in WBFB involved in bioethanol production at elevated temperatures. The results of this study will provide insight for the development of new strategies for biofuel production. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Science.gov (United States)

    Lin, Chiu-Yue

    2014-01-01

    We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L∗d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L∗d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR. PMID:24672398

  11. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  12. Isomaltulose production using free cells: optimisation of a culture medium containing agricultural wastes and conversion in repeated-batch processes.

    Science.gov (United States)

    Kawaguti, Haroldo Y; Buzzato, Michele F; Sato, Hélia H

    2007-04-01

    The enzyme glucosyltransferase is an industrially important enzyme since it produces non-cariogenic isomaltulose (6-O-alpha-D-glucopyronosyl-1-6-D-fructofuranose) from sucrose by intramolecular transglucosylation. The experimental designs and response surface methodology (RSM) were applied for the optimisation of the nutrient concentrations in the culture medium for the production of glucosyltransferase by Erwinia sp. D12 in shaken flasks at 200 rpm and 30 degrees C. A statistical analysis of the results showed that, in the range studied, the factors had a significant effect (P rate of 200 rpm and an aeration rate of 1 vvm. Fermentation time, cellular growth, medium pH and glucosyltransferase production were observed. The greatest glucosyltransferase activity was 22.49 U/ml, obtained after 8 h of fermentation. The isomaltulose production from sucrose was performed using free Erwinia sp. D12 cells in a batch process using an orbital shaker. The influence of the parameters sucrose concentration, temperature, pH, and cell concentration on the conversion of sucrose into isomaltulose was studied. The free cells showed a high conversion rate of sucrose into isomaltulose using batch fermentation, obtaining an isomaltulose yield of 72.11% from sucrose solution 35% at 35 degrees C.

  13. User's guide for West Valley feed preparation code (RECIPE)

    Energy Technology Data Exchange (ETDEWEB)

    Faletti, D.W.; Erb, T.A.; Harty, H.; LoPresti, C.A.

    1988-02-01

    The RECIPE code was developed by Pacific Northwest Laboratory under the West Valley Support Task of the Nuclear Waste Treatment Program. Additional chemicals must be added to the high-level wastes to produce an acceptable glass. To maintain the composition of the glass within the targeted compositional region, the chemical additions must be carefully controlled. The amounts and kinds of chemicals that will be required will vary from waste batch to waste batch because the composition and amount of waste will vary among batches, and because the composition of the additives will vary among additive batches. The RECIPE code was developed: to enable accurate computation of the amounts of additives required for a given batch of waste; and to determine whether a batch of slurry will indeed give an acceptable glass composition when mixed with the batch of waste created from the additives. In addition, RECIPE can conduct computations necessary for determining the amount and type of additives required to return an off-specification batch of feed or the melter contents to tolerance levels. This report provides the user with an overview of the glass-making process and RECIPE's role in it, and sufficient information that, when combined with the extensive documentation within the source code, the RECIPE code can be used, maintained, and modified. 3 tabs.

  14. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  15. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to the LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF

  16. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    Science.gov (United States)

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  17. A summary report on feed preparation offgas and glass redox data for Hanford waste vitrification plant: Letter report

    Energy Technology Data Exchange (ETDEWEB)

    Merz, M.D.

    1996-03-01

    Tests to evaluate feed processing options for the Hanford Waste Vitrification Plant (HWVP) were conducted by a number of investigators, and considerable data were acquired for tests of different scale, including recent full-scale tests. In this report, a comparison was made of the characteristics of feed preparation observed in tests of scale ranging from 57 ml to full-scale of 28,000 liters. These tests included Pacific Northwest Laboratory (PNL) laboratory-scale tests, Kernforschungszentrums Karlsruhe (KfK) melter feed preparation, Research Scale Melter (RSM) feed preparation, Integrated DWPF Melter System (IDMS) feed preparation, Slurry Integrated Performance Testing (SIPT) feed preparation, and formic acid addition to Hanford Neutralized Current Acid Waste (NCAW) care samples.` The data presented herein were drawn mainly from draft reports and include system characteristics such as slurry volume and depth, sweep gas flow rate, headspace, and heating and stirring characteristics. Operating conditions such as acid feed rate, temperature, starting pH, final pH, quantities and type of frit, nitrite, nitrate, and carbonate concentrations, noble metal content, and waste oxide loading were tabulated. Offgas data for CO{sub 2}, NO{sub x}, N{sub 2}O, NO{sub 2}, H{sub 2} and NH{sub 3} were tabulated on a common basis. Observation and non-observation of other species were also noted.

  18. Review--animal waste used as livestock feed: dangers to human health.

    Science.gov (United States)

    Haapapuro, E R; Barnard, N D; Simon, M

    1997-01-01

    Foodborne illness remains a common and serious problem, despite efforts to improve slaughterhouse inspection and food preparation practices. A potential contributor to this problem that has heretofore escaped serious public health scrutiny is the feeding of animal excrement to livestock, a common practice in some parts of the United States. In 1994, 18% of poultry producers in Arkansas collectively fed more than 1,000 tons of poultry litter to cattle, and the procedure is also common in some other geographic areas as a means of eliminating a portion of the 1.6 million tons of livestock wastes produced in the United States annually. While heat processing reliably kills bacterial pathogens, its use is limited by expense and other factors. Deep-stacking and ensiling are commonly used by farmers to process animal wastes, but the maximal temperatures achieved in stacked poultry litter are typically in the range of 43 to 60 degrees C (110 to 140 degrees F), below the inactivation temperatures of pathogenic salmonella and Escherichia coli species, and far below the USDA's recommended cooking temperatures of 71 to 77 degrees C (160 to 170 degrees F) for potentially manure-tainted meat products. In addition to the spread of potential pathogens, using animal wastes as feed presents the possibility that antibiotic-resistant bacteria may spread from one animal to another and that antibiotics or other chemicals may be passed between animals. Few research reports have addressed the safety of this practice, and those studies that have been published have generally been in controlled and artificial environments, rather than in on-farm conditions. Further microbiological studies are recommended to assess the extent of risk.

  19. Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery - Effects of process conditions during batch tests.

    Science.gov (United States)

    Girotto, Francesca; Lavagnolo, Maria Cristina; Pivato, Alberto; Cossu, Raffaello

    2017-12-01

    The problem of fossil fuels dependency is being addressed through sustainable bio-fuels and bio-products production worldwide. At the base of this bio-based economy there is the efficient use of biomass as non-virgin feedstock. Through acidogenic fermentation, organic waste can be valorised in order to obtain several precursors to be used for bio-plastic production. Some investigations have been done but there is still a lack of knowledge that must be filled before moving to effective full scale plants. Acidogenic fermentation batch tests were performed using food waste (FW) and cheese whey (CW) as substrates. Effects of nine different combinations of substrate to inoculum (S/I) ratio (2, 4, and 6) and initial pH (5, 7, and 9) were investigated for metabolites (acetate, butyrate, propionate, valerate, lactate, and ethanol) productions. Results showed that the most abundant metabolites deriving from FW fermentation were butyrate and acetate, mainly influenced by the S/I ratio (acetate and butyrate maximum productions of 21.4 and 34.5g/L, respectively, at S/I=6). Instead, when dealing with CW, lactate was the dominant metabolite significantly correlated with pH (lactate maximum production of 15.7g/L at pH = 9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    Science.gov (United States)

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: Focusing on mixing ratios and digestate stability.

    Science.gov (United States)

    Huang, Xinlei; Yun, Sining; Zhu, Jiang; Du, Tingting; Zhang, Chen; Li, Xue

    2016-10-01

    Anaerobic co-digestion of aloe peel waste (APW) with dairy manure (DM) was evaluated in terms of biogas and methane yield, volatile solids (VS) removal rate, and the stability of digestate. Batch experiments were performed under mesophilic condition (36±1°C) at five different APW/DM wet weight ratios (1:0, 3:1, 1:1, 1:3, and 0:1). Experimental methane yield from the mixtures was higher than the yield from APW or DM alone, indicating the synergistic effect and benefits of co-digestion of APW with DM. The optimal mixing ratio of APW/DM was found to be 3:1. The cumulative methane yield was 195.1mL/g VS and the VS removal rate was 59.91%. The characteristics of the digestate were investigated by the thermal analysis which indicated the high stability in the samples of the co-digestion. The co-digestion can be an efficient way to improve the degradation efficiency of the bio-wastes and increase the energy output. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3.

    Science.gov (United States)

    Pandian, Sureshbabu RamKumar; Deepak, Venkatraman; Kalishwaralal, Kalimuthu; Rameshkumar, Neelamegam; Jeyaraj, Muniyandi; Gurunathan, Sangiliyandi

    2010-01-01

    A gram positive bacterium (designated strain SRKP-3) that potentially accumulated polyhydroxyalkanoates (PHAs) was isolated from brackish water. From its morphological and physiological properties and nucleotide sequence of its 16S rRNA, it was suggested that strain SRKP-3 was similar to Bacillus megaterium. A four-factor central composite rotary design (CCRD) was employed to optimize the medium and to find out the interactive effects of four variables, viz. concentrations of dairy waste, rice bran, sea water and pH on PHB production. Using response surface methodology (RSM), a second-order polynomial equation was obtained by multiple regression analysis and a yield of 6.37 g/L of PHB dry weight was achieved from the optimized medium at pH 9. The same medium was utilized for fermentor studies by fed-batch culture. The dairy waste is fed at three different time intervals at 0 th, 12th and 24th hour to keep the carbon source as excess and PHB production was checked for every 3h. Maximum production of PHB (11.32 g/L) occurred at 36th hour. Dissolved oxygen was found to be major limiting nutrient that affected the PHB synthesis.

  3. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    Czech Academy of Sciences Publication Activity Database

    Hujová, Miroslava; Pokorný, R.; Kloužek, Jaroslav; Dixon, D.R.; Cutforth, D.A.; Lee, S.; McCarthy, B.P.; Schweiger, M. J.; Kruger, A.A.; Hrma, P.

    2017-01-01

    Roč. 100, č. 11 (2017), s. 5096-5106 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : foams * glassmelting * modelling/model * thermal conductivity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.841, year: 2016

  4. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Hrma, Pavel R.; Washton, Nancy M.; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  5. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kearn P.; Thien, Michael G.

    2013-11-07

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased.

  6. The effects of Bacillus subtilis on nitrogen recycling from aquaculture solid waste using heterotrophic nitrogen assimilation in sequencing batch reactors.

    Science.gov (United States)

    Lu, Lu; Tan, Hongxin; Luo, Guozhi; Liang, Wenyan

    2012-11-01

    A sequencing batch reactor (SBR) supplied with Bacillus subtilis (treatment group) was employed to treat the sludge from a re-circulating aquaculture system (RAS). The crude protein content of bio-flocs from the treatment group increased from 21.52%±1.5% to 29.65%±13.34%, which was 23.97%±11.62% greater than that of the SBRs without B. subtilis (control group). The removal rate of dissolved inorganic nitrogen (RR(DIN)) for the treatment group was 0.41±0.079 mg L(-1)d(-1), which was 1.17 times greater than that of the control group. The utility rate of total organic nitrogen (UR(TON)) for the treatment group was 1.42±0.33 mg L(-1)d(-1), which was 1.71 times greater than the control. The removal rate of dissolved organic carbon (RR(DOC)) for the treatment group was 138.39±7.77 mg L(-1)d(-1), which was 1.95 times greater than the control. The extra-cellular polymer substance (EPS) was primarily composed of polysaccharides. The flocs volume after 5 min (FV-5 min) reached 22.67%±2.08% at 19 days. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Villarroel, M.; Alvarino, J. M. R.; Duran, J. M.

    2011-07-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3{sup -}, Cl{sup -}, NH{sup +}{sub 4}, NO{sub 2}{sup -}, NO{sub 3}{sup -}, H{sub 2}PO{sub 4}{sup -}, SO{sub 4}{sup 2}-, Na{sup +}, K{sup +}, Ca{sup 2}+ and Mg{sup 2}+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO{sub 3}{sup -}, followed, in decreasing order, by Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -}, K{sup +}, Mg{sup 2}+ and SO{sub 4}{sup 2}-. The total amount of feed required per mEq ranged from 1.61 - 13.1 kg for the four most abundant ions (NO{sub 3}{sup -}, Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -} and K{sup +}) at a density of 2 kg fish m{sup -3}, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  8. Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed.

    Science.gov (United States)

    Yan, Jinyong; Han, Bingnan; Gui, Xiaohua; Wang, Guilong; Xu, Li; Yan, Yunjun; Madzak, Catherine; Pan, Dujie; Wang, Yaofeng; Zha, Genhan; Jiao, Liangcheng

    2018-01-15

    Lipases are scarcely exploited as feed enzymes in hydrolysis of lipids for increasing energy supply and improving nutrient use efficiency. In this work, we performed homologous overexpression, in vitro characterization and in vivo assessment of a lipase from the yeast Yarrowia lipolytica for feed purpose. Simultaneously, a large amount of yeast cell biomass was produced, for use as single cell protein, a potential protein-rich feed resource. Three kinds of low cost agro-industrial wastes were tested as substrates for simultaneous production of lipase and single cell protein (SCP) as feed additives: sugarcane molasses, waste cooking oil and crude glycerol from biodiesel production. Sugarcane molasses appeared as the most effective cheap medium, allowing production of 16420 U/ml of lipase and 151.2 g/L of single cell protein at 10 liter fermentation scale. In vitro characterization by mimicking a gastro-intestinal environment and determination of essential amino acids of the SCP, and in vivo oral feeding test on fish all revealed that lipase, SCP and their combination were excellent feed additives. Such simultaneous production of this lipase and SCP could address two main concerns of feed industry, poor utilization of lipid and shortage of protein resource at the same time.

  9. A biotechnological process for treatment and recycling poultry wastes manure as a feed ingredient

    Energy Technology Data Exchange (ETDEWEB)

    El Jalil, M.H. [Faculty of Sciences, Kenitra (Morocco). Biology Dept.; Hassan II Inst. of Agronomy and Veterinary Medicine, Rabat-Instituts (Morocco); Faid, M. [Hassan II Inst. of Agronomy and Veterinary Medicine, Rabat-Instituts (Morocco); Elyachioui, M. [Faculty of Sciences, Kenitra (Morocco)

    2001-07-01

    Poultry wastes manure was diluted by adding the same amount of water 50-50 (w/v). They were then mixed with 10% molasses. The mixture was inoculated with a starter culture of Lactobacillus plantarum and Pediococcus acidolactici, and incubated at 30{sup o}C for 10 days. Changes in nutritional quality and biochemical properties (pH, total nitrogen, total volatile nitrogen, non protein nitrogen, carbohydrates and ash) were determined for the raw and the transformed product. In parallel, microbiological analyses, including standard plant count, enterobacteria and enterococci, were performed. Results indicated that the product obtained from the wastes fermentation showed low counts of enterobacteria and enterococci. Chemical determinations showed a net decrease of the pH to around 4.0 and the growth curve of the lactic acid bacteria showed the success of the acidification process. The total nitrogen was conserved in the product and the total volatile nitrogen was totally eliminated. The product was used for substituting some protein sources in a conventional formula used in laying feeding of three lots. Two formulae containing, respectively, 20% and 40% of the product was compared to the control (0%). The food consumption and laying performances were monitored for 30 days. The nutritional test indicted that the incorporation of the poultry manure silage of up to 40% gave laying performances similar to those obtained with the conventional formula. These results show that it is possible to transform poultry manure by controlled fermentation and that the product has an added value as a feed ingredient. (Author)

  10. Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste.

    Science.gov (United States)

    Zhang, Wanqin; Lang, Qianqian; Fang, Ming; Li, Xin; Bah, Hamidou; Dong, Hongmin; Dong, Renjie

    2017-05-01

    The mesophilic anaerobic digestion (AD) characteristics of food waste (FW) with different crude fat (CF) contents and four initial substrate concentrations (4, 6, 8, and 10gVS/L) were investigated. The maximum methane yields of FW with CF contents of 15%, 20%, 25%, 30%, and 35% were 565.0, 580.2, 606.0, 630.2 and 573.0mLCH4/gVSadded, respectively. An acidification trend with a drop in pH (0.4) were found for CF contents of 30% (10gVS/L) and 35% (8 and 10gVS/L). A 35% CF content in FW led to decrease in the first-order degradation constant of approximately by 40%. The modified Gompertz model showed that the lag phase (λ) was prolonged from 0.4 to 7.1days when the CF content in FW and initial substrate concentration were increased to 35% and 10gVS/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    Science.gov (United States)

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-01-09

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Mesophilic anaerobic co-digestion of pulp and paper sludge and food waste for methane production in a fed-batch basis.

    Science.gov (United States)

    Lin, Yunqin; Wang, Dehan; Liang, Jiajin; Li, Guangpeng

    2012-12-01

    Co-digestion of pulp and paper sludge (PPS) and food waste (FW) in a batch-fed digestion system was conducted on a laboratory scale. Three reactors named A1, A2, and A3 were tested. PPS and FW mixed at different mass ratios of 1:3, 1:1, and 3:1, respectively, were loaded in the reactors. Bioconversion at high efficiency was obtained in the system. The accumulative methane yield of each reactor was 144mLg(-1)VSfed (A1), 256 mL g(-1) VSfed (A2), and 123 mL g(-1)VSfed (A3). The soluble chemical oxygen demand (COD) removal efficiencies reached 73.2% (Al), 93.9% (A2), and 79.6% (A3). A pH in the range 5.8-8.4 was obtained in the three reactors without adjustment due to the high buffer capacity of the mixing feedstock. No toxicity inhibitions of volatile fatty acids and NH3-N occurred in reactor A2. This study showed that it was good for co-digestion of PPS and FW in a mass ratio of 1:1 for methane production, which resulted in higher methane yield, a greater buffer capacity, a higher organics removal efficiency, and a more stable process.

  13. Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste.

    Science.gov (United States)

    Muñoz-Páez, Karla M; Ríos-Leal, Elvira; Valdez-Vazquez, Idania; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-03-01

    In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added. After the fourth cycle, no more H(2) could be harvested. Interestingly, accumulated hydrogen in 4 cycles was 100% higher than that produced in the first cycle alone. At the end of incubation, partial pressure of H(2) was near zero whereas high concentrations of organic acids and solvents remained in the spent solids. So, since approximate mass balances indicated that there was still a moderate amount of biodegradable matter in the spent solids we hypothesized that the organic metabolites imposed some kind of inhibition on further fermentation of digestates. Spent solids were washed to eliminate organic metabolites and they were used in a second SSAHF-IV. Two more cycles of H(2) production were obtained, with a cumulative production of ca. 2.4 mmol H(2)/mini-reactor. As a conclusion, washing of spent solids of a previous SSAHF-IV allowed for an increase of hydrogen production by 15% in a second run of SSAHF-IV, leading to the validation of our hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The transesterification of rapeseed and waste sunflower oils: Mass-transfer and kinetics in a laboratory batch reactor and in an industrial-scale reactor/separator setup.

    Science.gov (United States)

    Klofutar, B; Golob, J; Likozar, B; Klofutar, C; Zagar, E; Poljansek, I

    2010-05-01

    We have investigated the transesterification of rapeseed (RO) and waste sunflower (SO) oils with methanol in the presence of potassium hydroxide as a catalyst. The transesterification of tri-acylglycerols was first conducted in a batch reactor. The effect of the temperature on the reaction rates was studied at a constant molar ratio of the alcohol to tri-acylglycerols (6:1) and for a constant concentration of the catalyst (1.0wt%). Size-exclusion chromatography and (1)H NMR spectroscopy were used to quantitatively monitor the transesterification reaction. The mass-transfer coefficients of the tri-acylglycerols during the initial transesterification stage were found to be 0.2-1.2x10(-5)mmin(-1), depending on the type of oil and the temperature. Calculated activation energies implied that at higher temperatures the formation of mono-acylglycerols and glycerole was favored for the SO (93kJ/mol for the forward and 48kJ/mol for the backward reaction) and the RO (47kJ/mol for the forward and 36kJ/mol for the backward reaction), respectively. For the continuous industrial reactor/separator setup, the optimum methanol recycle ratio was established as 0.0550. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds.

    Science.gov (United States)

    Di Maria, Francesco; Barratta, Martino; Bianconi, Francesco; Placidi, Pisana; Passeri, Daniele

    2017-01-01

    Solid anaerobic digestion batch (SADB) with liquid digestate recirculation and wet anaerobic digestion of organic waste were experimentally investigated. SADB was operated at an organic loading rate (OLR) of 4.55kgVS/m3day, generating about 252NL CH4/kgVS, whereas the wet digester was operated at an OLR of 0.9kgVS/m3day, generating about 320NL CH4/kgVS. The initial total volatile fatty acids concentrations for SADB and wet digestion were about 12,500mg/L and 4500mg/L, respectively. There were higher concentrations of ammonium and COD for the SADB compared to the wet one. The genomic analysis performed by high throughput sequencing returned a number of sequences for each sample ranging from 110,619 to 373,307. More than 93% were assigned to the Bacteria domain. Seven and nine major phyla were sequenced for the SADB and wet digestion, respectively, with Bacteroidetes, Firmicutes and Proteobacteria being the dominant phyla in both digesters. Taxonomic profiles suggested a methanogenic pathway characterized by a relevant syntrophic acetate-oxidizing metabolism mainly in the liquid digestate of the SADB. This result also confirms the benefits of liquid digestate recirculation for improving the efficiency of AD performed with high solids (>30%w/w) content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  17. Application of wet waste from shrimp ( Litopenaeus vannamei) with or without sea mud to feeding sea cucumber ( Stichopus monotuberculatus)

    Science.gov (United States)

    Chen, Yanfeng; Hu, Chaoqun; Ren, Chunhua

    2015-02-01

    In the present study, the applicability of the wet waste collected from shrimp ( Litopenaeus vannamei) to the culture of sea cucumber ( Stichopus monotuberculatus) was determined. The effects of dietary wet shrimp waste on the survival, specific growth rate (SGR), fecal production rate (FPR), ammonia- and nitrite-nitrogen productions of sea cucumber were studied. The total organic matter (TOM) level in the feces of sea cucumber was compared with that in corresponding feeds. Diet C (50% wet shrimp waste and 50% sea mud mash) made sea cucumber grow faster than other diets. Sea cucumber fed with either diet D (25% wet shrimp waste and 75% sea mud mash) or sole sea mud exhibited negative growth. The average lowest total FPR of sea cucumber occurred in diet A (wet shrimp waste), and there was no significant difference in total FPR between diet C and diet E (sea mud mash) ( P > 0.05). The average ammonia-nitrogen production of sea cucumber in different diet treatments decreased gradually with the decrease of crude protein content in different diets. The average highest nitrite-nitrogen production occurred in diet E treatment, and there was no significant difference in nitrite-nitrogen production among diet A, diet B (75% wet shrimp waste and 25% sea mud mash) and diet C treatments ( P > 0.05). In each diet treatment, the total organic matter (TOM) level in feces decreased to different extent compared with that in corresponding feeds.

  18. The technology of fish-vegetable feed production

    Directory of Open Access Journals (Sweden)

    Mukatova M. D.

    2016-09-01

    Full Text Available Perspective direction of the Volga-Caspian basin fisheries is increasing the productivity of aquaculture production which requires the availability of sufficient quantities of feed. The cutting waste of carp and crucian carp, crayfish processing (cephalothorax, wheat bran, soy isolate, freshwater plants – pondweed perfoliate, fish-vegetable ration, produced feeding staffs have been investigated. In researching samples of manufactured pelleted feeds the standard methods adopted in the animal feed industry have been used. The number of nitrogen-free extractives and energy value has been determined by calculation. The composition of fish-vegetable ration has been worked out. Some manufacturing inspection of fish-vegetable feed technology using proofing process has been carried out. The possibility of manufacturing on the basis of crushed fish waste of the company LLC "VES" and dry ingredients of fish-vegetable feed has been determined; the output of feed at water content of not more than 10 % is 43 % of feed mix based on the mass of directed waste equal to 84 %. The pilot batch of dry fish-vegetable feed has been investigated to establish quality indicators. It has been determined that fish-vegetable feed meets the requirements of GOST 10385–2014 "Combined feeding staffs for fishes. General specifications" as for main quality indicators and refers to economic grower for catfish and carp fish weighing more than 50 g. This reveals good palatability of the experimental batch of floating feed by carp fish species and African catfish. Thus, fish-vegetable feed manufacturing technology can be implemented in the production for processing secondary raw materials: waste from butchering fish by grinding, cooking, mixing with selected vegetable fillings which is waste of flour or grain processing industries and freshwater plants mowed annually during the reclamation works on the Volga delta.

  19. Appropriate Usage Level of Shrimp Waste Meal as Chitin Source for Feeding Young Crayfish (Astacus leptodactylus Esch. 1823

    Directory of Open Access Journals (Sweden)

    Seval Bahadır Koca*, Nalan Ozgur Yigit, Arife Dulluc, Gonca Erol1, Nihal Cılbız1 and Ramazan Kucukkara1

    2011-06-01

    Full Text Available This study was conducted to determine effects of shrimp waste meal as natural chitin source at different rates (0 (control, 10, 20, 30 and 40% on growth, feed conversion ratio (FCR, survival of young crayfish (1.61±0.04 g and 3.74±0.03 cm for 60 days. Fifteen glass aquariums (70x30x40 cm were used in the experiment and 20 individuals were stocked per aquarium (95/m2. The highest of final weight and weight gain were obtained in feed with 10% shrimp waste meal group (3.29±0.23 and 1.66±0.23 g, while the lowest of final weight and weight gain was obtained in fed with 40% shrimp waste meal group (2.75±0.35 and 1.18±0.37 g, respectively. However, non-significant differences were found between final weight, weight gain, specific growth rate, final total length, feed conversion ratio, survival percentage among groups at the end of experimental period. It was concluded that shrimp waste meal as natural chitin source can be used in young crayfish diets up to 40% without adverse effect influence on growth.

  20. EFFECT OF FEEDING DINNING ROOM AND KITCHEN WASTE ON GROWTH PERFORMANCE OF GROWING PIGS

    Directory of Open Access Journals (Sweden)

    Guadalupe Ramírez Zúñiga

    2014-08-01

    Full Text Available This research used 41 growing backyard piglets (11.47 ± 1.2 kg BW fed for 22 d and assigned at random to three treatment (T groups, respectively (T1 to T3 with three repetitions. The proportion of commercial concentrate (CC to kitchen waste (DW was: T1, 100:0; T2, 50:50 and T3, 0:100. Diets contained: T1, 17.3, 13.6 and 16.3% CP and 3,321, 3,526 and 4,011 McCall/kg of ME, respectively. Weight gain, carcass characteristics, minerals and metabolites in blood serum were evaluated. The weight gain, slaughter weight, hot and cold carcass weight, hot and cold carcass yield, rib eye area and back fat thickness were not affected by DW (P> 0.05. The cuts of leg shoulder and rib were not affected by treatment (P> 0.05 for dry matter, ash and crude protein content. The increase in DW reduced ether extract content of leg and rib (P 0.05. The concentration of Ca decreased with DW inclusion (P 0.05. It is concluded that feeding with DW the backyard growing pig do not affect growth performance or quality of meat.

  1. Use of dried waste of cassava starch extraction for feeding lactating cows

    Directory of Open Access Journals (Sweden)

    TATIANE FERNANDES

    2015-06-01

    Full Text Available The aim of this study was to determine the best level of utilization of dried waste of cassava starch extraction (WCSEd as a substitute for corn for lactating cows. Four lactating cows were fed diets with increasing levels (0%, 33%, 66% and 100% of WCSEd as a substitute for corn. The intake and digestibility of dry matter and nutrients, milk production and composition, blood parameters of glucose and urea and microbial synthesis of the diets were evaluated. There was a reduction in dry matter intake, organic matter, ether extract and total carbohydrate, and increased intake of acid detergent fiber. Nutrient digestibility was not affected while the synthesis of microbial protein increased. These changes resulted in reduced milk production, without altering the efficiency of production or the constituents of milk, with a decreasing effect on daily production of lactose, solids and minerals. Metabolic parameters, glucose and urea nitrogen in plasma, remained within appropriate levels. The dried residue from the extraction of cassava starch can be used as feed for dairy cows to replace up to 100% of the corn ration. However, its use promotes a reduction in intake of dry matter and nutrients as well as a reduction in the production of milk, with impacts on the profitability of the product.

  2. Anaerobic treatment of palm oil mill effluent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization

    Science.gov (United States)

    Setyowati, Paulina Adina Hari; Halim, Lenny; Mellyanawaty, Melly; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Palm oil mill effluent (POME) is the wastewater discharged from sludge separation, sterilization, and clarification process of palm oil industries. Each ton of palm oil produces about half ton of high organic load wastewater. Up to now, POME treatment is done in lagoon, leaving major problems in land requirement and greenhouse gasses release. The increasing of palm oil production provokes the urgency of appropriate technology application in treating POME to prevent the greenhouse gasses emission while exploit POME as renewable energy source. The purposes of this study were firstly to test the effectiveness of using the digested biodiesel waste as the inoculum and secondly to evaluate the effectiveness of natural zeolite addition in minimizing the inhibitory effect in digesting POME. It was expected that the oil-degrading bacteria in the inoculum would shorten the adaptation period in digesting POME. Furthermore, the consortium formation of anaerobic bacteria accelerated by natural zeolite powder addition would increase the microbial resistance to the inhibitors contained in the POME. The batch digesters, containing 0 (control); 17; 38; and 63 g natural zeolite/g sCOD substrate were observed for 43 days. The result showed that zeolite addition did not give significant effect on sCOD reduction (97.3-98.6% of initial sCOD). Moreover, addition of immobilization media up to 17 g natural zeolite/g stimulated the acidification and biogas production up to 10% higher than control. The purity of methane produced with various amount of immobilization media did not differ for each variation, i.e. 50-54% v/v methane. The increasing amount of natural zeolite up to 63 g/g sCOD did not significantly enhance biogas product rate nor methane content.

  3. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste.

    Science.gov (United States)

    Charles, W; Walker, L; Cord-Ruwisch, R

    2009-04-01

    In this study, a short pre-aeration step was investigated as pre-treatment for thermophilic anaerobic digestion of the organic fraction of municipal solid waste (OFMSW). It was found that pre-aeration of 48 h generated enough biological heat to increase the temperature of bulk OFMSW to 60 degrees C. This was sufficient self-heating of the bulk OFMSW for the start-up of thermophilic anaerobic digestion without the need for an external heat source. Pre-aeration also reduced excess easily degradable organic compounds in OFMSW, which were the common cause of acidification during the start-up of the batch system. Careful consideration however must be taken to avoid over aeration as this consumes substrate, which would otherwise be available to methanogens to produce biogas. To accelerate methane production and volatile solids destruction, the anaerobic digestion in this study was operated as a wet process with the anaerobic liquid recycled through the OFMSW. Appropriate anaerobic liquid inoculum was found to be particularly beneficial. It provided high buffer capacity as well as suitable microbial inoculum. As a result, acidification during start-up was kept to a minimum. With volatile fatty acids (VFAs-acetate in particular) and H2 accumulation typical of hydrolysis and fermentation of the easily degradable substrates during start-up, inoculum with high numbers of hydrogenotrophic methanogens was critical to not only maximise CH4 production but also reduce H2 partial pressure in the system to allow VFAs degradation. In a lab-scale bioreactor, the combined pre-aeration and wet thermophilic anaerobic digestion was able to stabilise the OFMSW within a period of only 12 days. The stabilised inert residual material can be used as a soil amendment product.

  4. A survey of antimicrobial usage on dairy farms and waste milk feeding practices in England and Wales.

    Science.gov (United States)

    Brunton, L A; Duncan, D; Coldham, N G; Snow, L C; Jones, J R

    2012-09-22

    The cause for the high prevalence of cefotaximase-producing Escherichia coli reported in dairy calves is unknown but may be partly due to the selective pressure of antimicrobial residues in waste milk (milk unfit for human consumption) fed to the calves. Antimicrobial use and waste milk feeding practices were investigated in 557 dairy farms in 2010/2011 that responded to a randomised stratified postal survey. The mean number of cases of mastitis per herd in the previous year was 47, and 93 per cent of respondents used antibiotic intra-mammary tubes to treat mastitis. The most frequently used lactating cow antibiotic tubes contained dihydrostreptomycin, neomycin, novobiocin, and procaine penicillin (37 per cent), and cefquinome (29 per cent). Ninety-six per cent of respondents used antibiotic tubes at the cessation of lactation ('drying off'). The most frequently used dry cow antibiotic tube (43 per cent) contained cefalonium. Frequently used injectable antibiotics included tylosin (27 per cent), dihydrostreptomycin and procaine penicillin (20 per cent) and ceftiofur (13 per cent). Eighty-three per cent of respondents (413) fed waste milk to calves. Of these 413, 87 per cent fed waste milk from cows with mastitis, and only one-third discarded the first milk after antibiotic treatment. This survey has shown that on more than 90 per cent of the farms that feed waste milk to calves, waste milk can contain milk from cows undergoing antibiotic treatment. On some farms, this includes treatment with third- and fourth-generation cephalosporins. Further work is underway to investigate the presence of these antimicrobials in waste milk.

  5. Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

    1996-02-01

    High-level radioactive waste stored in tanks at the U.S. Department of Energy`s (DOE`s) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomenal Because H{sub 2} and NH{sub 3} may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H{sub 2} generation rate and the NH{sub 3} generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste.

  6. Assessment of Available Particle Size Data to Support an Analysis of the Waste Feed Delivery System Transfer System

    Energy Technology Data Exchange (ETDEWEB)

    JEWETT, J.R.

    2000-08-10

    Available data pertaining to size distribution of the particulates in Hanford underground tank waste have been reviewed. Although considerable differences exist between measurement methods, it may be stated with 95% confidence that the median particle size does not exceed 275 {micro}m in at least 95% of the ten tanks selected as sources of HLW feed for Phase 1 vitrification in the RPP. This particle size is recommended as a design basis for the WFD transfer system.

  7. Comparison of fermented animal feed and mushroom growth media as two value-added options for waste Cassava pulp management.

    Science.gov (United States)

    Trakulvichean, Sivalee; Chaiprasert, Pawinee; Otmakhova, Julia; Songkasiri, Warinthorn

    2017-12-01

    Cassava is one of the main processed crops in Thailand, but this generates large amounts (7.3 million tons in 2015) of waste cassava pulp (WCP). The solid WCP is sold directly to farmers or pulp-drying companies at a low cost to reduce the burden of on-site waste storage. Using an integrated direct and environmental cost model, fermented animal feed and mushroom growth media were compared as added-value waste management alternatives for WCP to mitigate environmental problems. Primary and secondary data were collected from the literature, field data, and case studies. Data boundaries were restricted to a gate-to-gate scenario with a receiving capacity of 500 t WCP/d, and based on a new production unit being set up at the starch factory. The total production cost of each WCP utilization option was analyzed from the economic and environmental costs. Fermented animal feed was an economically attractive scenario, giving a higher net present value (NPV), lower investment cost and environmental impact, and a shorter payback period for the 10-year operational period. The selling price of mushrooms was the most sensitive parameter regarding the NPV, while the NPV for the price of fermented animal feed had the highest value in the best-case scenario.

  8. Effects of feeding polyphenol‐rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers

    National Research Council Canada - National Science Library

    Ishida, Kyohei; Kishi, Yosuke; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2015-01-01

    Four wethers were used in a 4 × 4 L atin square design experiment to evaluate the availability of two types of winery wastes, winery sediment and grape pomace, as ruminant feeds possessing antioxidant activities...

  9. Waste feed from coastal fish farms: A trophic subsidy with compositional side-effects for wild gadoids

    Science.gov (United States)

    Fernandez-Jover, Damian; Martinez-Rubio, Laura; Sanchez-Jerez, Pablo; Bayle-Sempere, Just T.; Lopez Jimenez, Jose Angel; Martínez Lopez, Francisco Javier; Bjørn, Pål-Arne; Uglem, Ingebrigt; Dempster, Tim

    2011-03-01

    Aquaculture of carnivorous fish species in sea-cages typically uses artificial feeds, with a proportion of these feeds lost to the surrounding environment. This lost resource may provide a trophic subsidy to wild fish in the vicinity of fish farms, yet the physiological consequences of the consumption of waste feed by wild fish remain unclear. In two regions in Norway with intensive aquaculture, we tested whether wild saithe ( Pollachius virens) and Atlantic cod ( Gadus morhua) associated with fish farms (F assoc), where waste feed is readily available, had modified diets, condition and fatty acid (FA) compositions in their muscle and liver tissues compared to fish unassociated (UA) with farms. Stomach content analyses revealed that both cod and saithe consumed waste feed in the vicinity of farms (6-96% of their diet was composed of food pellets). This translated into elevated body and liver condition compared to fish caught distant from farms for cod at both locations and elevated body condition for saithe at one of the locations. As a consequence of a modified diet, we detected significantly increased concentrations of terrestrial-derived fatty acids (FAs) such as linoleic (18:2ω6) and oleic (18:1ω9) acids and decreased concentrations of DHA (22:6ω3) in the muscle and/or liver of F assoc cod and saithe when compared with UA fish. In addition, the ω3:ω6 ratio clearly differed between F assoc and UA fish. Linear discriminant analysis (LDA) correctly classified 97% of fish into F assoc or UA origin for both cod and saithe based on the FA composition of liver tissues, and 89% of cod and 86% of saithe into F assoc or UA origin based on the FA composition of muscle. Thus, LDA appears a useful tool for detecting the influence of fish farms on the FA composition of wild fish. Ready availability of waste feed with high protein and fat content provides a clear trophic subsidy to wild fish in coastal waters, yet whether the accompanying side-effect of altered fatty

  10. Solid-state fermentation of industrial solid wastes from the fruits of milk thistle Silybum marianum for feed quality improvement.

    Science.gov (United States)

    Li, Fang; Li, Feng; Zhao, Ting; Mao, Guanghua; Zou, Ye; Zheng, Daheng; Takase, Mohammed; Feng, Weiwei; Wu, Xiangyang; Yang, Liuqing

    2013-08-01

    The industrial solid wastes generated during the production of silymarin from the fruits of milk thistle Silybum marianum was used as the substrate. Preparation and evaluation of the feeds produced by solid-state fermentation (SSF) of the industrial solid wastes was carried out. The protein content of the fermented feed (FF) from a combination of Aspergillus niger and Candida tropicalis was the highest among the examined strains. The optimal process parameters for protein enrichment with SSF using A. niger and C. tropicalis included incubation temperature of 30.8 °C, fermentation time of 87.0 h, and initial moisture content of 59.7 %. Under these conditions, the value additions of FF occurred. The fiber of FF was decreased by 25.07 %, while the digestibility of protein, protein content, and the ratio of total essential amino acids to total amino acids were increased by 79.85, 16.22, and 8.21 %, respectively. The analysis indicated that FF contained 1.44 mg/kg flavonoids and 0.5 mg/kg silybin, which significantly increased by 2.42 and 1.63 times, respectively than those in unfermented substrates. FF recorded reduced molecular weight of proteins from 20.1 to 44.3 kDa to below 14.3 kDa. The results of feeding trial of FF replacement with soybean meal in broilers diets for 8 weeks showed that FF significantly improved carcass characteristics including abdominal fat rate, serum biochemical parameters including aspartate transaminase, blood urea nitrogen and high density lipoprotein cholesterol, and immune responses of broilers. A potential feed quality improvement was achieved through mixed strains SSF of industrial solid wastes of S. marianum fruits.

  11. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    Science.gov (United States)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  12. Formulation of a fish feed for goldfish with natural astaxanthin extracted from shrimp waste

    National Research Council Canada - National Science Library

    Weeratunge, W K. O. V; Perera, B G. K

    2016-01-01

    .... An attempt was made towards optimization of astaxanthin extraction conditions using three different extraction conditions and a solvent series, from uncooked, cooked and acid-treated shrimp waste...

  13. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.; Rodriguez, Carmen P.; Schweiger, Michael J.

    2014-04-30

    In the vitrification of nuclear wastes, the melter feed (a mixture of nuclear waste and glass-forming and modifying additives) experiences multiple gas-evolving reactions in an electrical glass-melting furnace. We employed the thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) combination to perform evolved gas analysis (EGA). Apart from identifying the gases evolved, we performed quantitative analysis relating the weighed sum of intensities of individual gases linearly proportional with the differential themogravimetry. The proportionality coefficients were obtained by three methods based on the stoichiometry, least squares, and calibration. The linearity was shown to be a good first-order approximation, in spite of the complicated overlapping reactions.

  14. Site-specific economic and ecological analysis of enhanced production, upgrade and feed-in of biomethane from organic wastes.

    Science.gov (United States)

    Lindorfer, J; Schwarz, M M

    2013-01-01

    The present study analyses the cost structure and ecological performance of biomethane production and feed-in from organic wastes and manure in a site-specific approach for Upper Austria. The theoretically available quantities of biowaste and manure can feed representative biogas plant capacities resulting in relatively high biomethane full costs in the natural gas grid of at least 9.0 €-cents/kWh, which shows strong economies of scale when feed-in flows of methane from 30 to 120 Nm(3)/h are considered. From the ecological point of view small plant capacities are to be preferred since the environmental effect, i.e. the global warming potential (up to -22% of CO(2eq)), is lower in comparison to higher capacities as a consequence of reduced transport in the evaluated scenarios. To enforce the combined energetic use of the biowaste fraction, co-operation between compost facility, gas grid and biogas plant operators is necessary to use existing infrastructure, logistics and knowledge to promote the production, upgrade and feed-in of biomethane from biowastes at attractive locations in Upper Austria and in the whole of Europe.

  15. Worm-it: converting organic wastes into sustainable fish feed by using aquatic worms

    NARCIS (Netherlands)

    Elissen, H.J.H.; Hendrickx, T.L.G.; Temmink, H.; Laarhoven, B.; Buisman, C.J.N.

    2015-01-01

    Due to overfishing and the use of one-third of wild fish catches for feeding farmed fish and livestock, there is a strong need for alternative sources of suitable proteins and lipids in fish feeds. Small freshwater worms of the species Lumbriculus variegatus can be such a source based on their high

  16. From environmental nuisance to environmental opportunity: housefly larvae convert waste to livestock feed

    NARCIS (Netherlands)

    Zanten, van H.H.E.; Mollenhorst, H.; Oonincx, D.G.A.B.; Bikker, P.; Meerburg, B.G.; Boer, de I.J.M.

    2015-01-01

    The livestock sector is in urgent need for more sustainable feed sources, because of the increased demand for animal-source food and the already high environmental costs associated with it. Recent developments indicate environmental benefits of rearing insects for livestock feed, suggesting that

  17. Effect of feeding different levels of corn snack waste on broiler ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effect of using corn snack waste on growth performance, carcass traits and economical efficiency of broiler chicks. Five hundred Ross 308 day-old broiler chicks were divided randomly into 20 pens. There were 25 chicks in each pen which consists of 4 treatments (4 levels of waste ...

  18. Agro-industrial waste: a low cost adsorbent for effective removal of 4-chloro-2-methylphenoxyacetic acid herbicide in batch and packed bed modes.

    Science.gov (United States)

    Deokar, Sunil K; Mandavgane, Sachin A; Kulkarni, Bhaskar D

    2016-08-01

    The present work describes the aqueous phase removal of 4-chloro-2-methylphenoxyacetic acid herbicide by rice husk ash (RHA) using batch and packed bed adsorption techniques. The effects of dosage, initial concentration, time, pH, temperature, and particle size of adsorbent in batch compared with effects of influent concentration, flow rate, and bed height in packed bed were studied. The particle size effect reveals that the removal is dependent on chemical composition (silica and carbon content) together with BET surface area of RHA. The aptness of Langmuir isotherm to batch data indicates the favorable adsorption whereas that of Temkin isotherm informs the heterogeneous nature of RHA. The kinetics of adsorption follows the pseudo-second order and Elovich models while thermodynamics of process indicates the exothermic adsorption. Among the models applied in packed bed study, the deactivation kinetic, Yoon-Nelson and bed depth service time (BDST) models are suitable to explain the packed bed adsorption. The adsorption capacity of RHA in packed bed study is found greater than that in batch. The adsorption capacity of RHA determined by the BDST model is 3019 mg/L for 90 % saturation of bed. The adsorption capacity of RHA based on weight is ∼2.3 times and that based on surface area is ∼55.55 times greater than that of granular activated carbon.

  19. Food wastes as fish feeds for polyculture of low-trophic-level fish: bioaccumulation and health risk assessments of heavy metals in the cultured fish.

    Science.gov (United States)

    Cheng, Zhang; Lam, Cheung-Lung; Mo, Wing-Yin; Nie, Xiang-Ping; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The major purpose of this study was to use different types of food wastes which serve as the major sources of protein to replace the fish meal used in fish feeds to produce quality fish. Two types of food waste-based feed pellets FW A (with cereals) and FW B (with cereals and meat products) and the commercial feed Jinfeng® were used to culture fingerlings of three low-trophic-level fish species: bighead carp, grass carp, and mud carp (in the ratio of 1:3:1) for 1 year period in the Sha Tau Kok Organic Farm in Hong Kong. Heavy metal concentrations in all of the fish species fed with food waste pellets and commercial pellets in Sha Tau Kok fish ponds were all below the local and international maximum permissible levels in food. Health risk assessments indicated that human consumption of the fish fed with food waste feed pellets was safe for the Hong Kong residents. The present results revealed that recycling of food waste for cultivating low-trophic-level fish (mainly herbivores and detritus feeders) is feasible, and at the same time will ease the disposal pressure of food waste, a common problem of densely populated cities like Hong Kong.

  20. Potential Human Health Risks of Tannery Waste-contaminated Poultry Feed

    National Research Council Canada - National Science Library

    Bari, Mohammad Latiful; Simol, Hasina Akhter; Khandoker, Nusrat; Begum, Rokeya; Sultana, Ummay Nasrin

    2015-01-01

    ...) may enter the edible parts of poultry through feed. Therefore, there is a chance that Cr and other heavy metals may be present in the edible portion of poultry and consequently transfer to humans upon poultry consumption. Objectives...

  1. Potential Human Health Risks of Tannery Waste-contaminated Poultry Feed

    Directory of Open Access Journals (Sweden)

    Mohammad Latiful Bari

    2015-01-01

    Conclusions. The estimated daily intake value, THQ, along with the aggregate hazard index value, indicated a potential risk to consumers through consumption of contaminated chicken. Therefore, the study results clearly demonstrate heavy metals accumulation in chicken due to feeding SCW-based feed. The contaminated chicken further transfers these heavy metals to humans through ingestion. Hence, there is a potential human health risk through consumption of contaminated chicken meat.

  2. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD

  3. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    Energy Technology Data Exchange (ETDEWEB)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  4. Quality Evaluation of Complete Feed with Ramie Waste Added With Different Protein Source in Nutrient Composition and Ensilage Parameter

    Directory of Open Access Journals (Sweden)

    Emmy Susanti

    2015-01-01

    Full Text Available Abstract.  The objective of this research was to evaluate the effect of ensilage technology (with and without ensilage and protein sources (plant and animal in complete feed with ramie-waste on nutrient composition and ensilage parameter. Ensilage process decreased significantly dry matter (DM, organic matter (OM and neutral detergent fiber (NDF, but it increased  ensilage parameter i.e. acetate acid (C2, propionic acid (C3, butyric acid (C4, lactic acid (LA, and decreased pH. It also had non-significant effect on crude fibre (CP, acid detergent fiber (ADF and ammonia (NH3-N. Animal protein source in silage making decreased nutrient composition i.e. OM and CP and ensilage parameter i.e. C2, but it increased NH3-N.  Interaction between ensilage treatment and protein sources affected CP and pH also ensilage parameter of C2 and C3. In conclusion, plant protein used in silage of complete feed with ramie waste was better than animal protein, despite that both ensilage were not better due to pH over 4.5.   Key words: ramie, ensilage technology, protein source, nutrient composition, ensilage parameter   Abstrak. Penelitian ini bertujuan mengevaluasi pengaruh teknologi ensilage (dengan dan tanpa ensilage dan sumber protein (nabati dan hewani pada complete feed menggunakan limbah rami terhadap komposisi nutrien dan parameter ensilage. Perlakuan teknologi ensilage menurunkan komposisi nutrien pada bahan kering (BK, bahan organik (BO dan neutral detergent fiber (NDF, meningkatkan kuantitas parameter ensilage pada asam asetat (C2, asam propionat (C3, asam butirat (C4 dan asam laktat (LA dan menurunkan pH serta tidak nyata pada protein kasar (PK, acid detergent fiber (ADF dan ammonia (NH3-N.  Perlakuan sumber protein menurunkan nutrien BO dan PK dan C2 serta meningkatkan konsentrasi NH3-N secara sangat nyata pada complete feed dengan protein hewani. Interaksi kedua perlakuan berpengaruh pada PK dan pH serta C2 dan C3. Kesimpulannya adalah penggunaan

  5. The Effects of Amofer Palm Oil Waste-based Complete Feed to Blood Profiles and Liver Function on Local Sheep

    Directory of Open Access Journals (Sweden)

    Hamdi Mayulu

    2012-04-01

    Full Text Available Amoniation-Fermentation (amofer technology should be conducted in order to improve the low quality of by product produced from palm oil plantations and mills (palm oil waste which is used for constituent of feed ingredients in complete feed (CF. This technology also reforms the feed material into edible form. Before broadly applicable, it must be ensured that the feed does not have toxic effects on livestock. This research was peformed to evaluate the effects of amofer palm oil waste-based CF to blood profile and liver function on local sheep. Completely Randomly Design (CRD was used with 4 treaments and 4 replications. The observed variables were the levels of hemoglobin, hematocrit, blood glucose, ALT and AST was analyzed by ANOVA. The average value of blood glucose levels at T1= 80.68 mg/dl, T2=79.08 mg/dl, T3=81.18 mg/dl and T4=73.70 mg/dl. The average value of hemoglobin levels at T1=10.80 g/dl, T2=10.30 g/dl, T3=11.23 g/dl and T4=10.25 g/dl. The average value of hematocrit levels at T1=31.00%, T2=31.00%, T3=33.75% and T4=30%. The average value of ALT levels at T1=17.90 ml, T2=13.83 ml, T3=18.75 ml and, T4=13.40 ml. The average value of AST level at T1=106.20 ml, T2=88.98 ml, T3=104.40 ml and T4=91.25 ml. There was no significant difference among four treatments (p>0.05. The administration CF did not cause hematological disorders which showed by the blood profiles and liver function were in normal range, so that suggested the CF was appropriate and safe for local sheep. [Keywords––amofer, complete feed, hemoglobin, hematocrit, glucose, liver function

  6. Batch and Fed-Batch Fermentation System on Ethanol Production from Whey using Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2013-10-01

    Full Text Available Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to  find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was  to compare the operation modes (batch and fed-batch of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The result showed that the fermentation process for ethanol production by fed-batch system was higher at some point of parameters compared with batch system. Growth rate and ethanol yield (YP/S of fed-batch fermentation were 0.122/h and 0.21 gP/gS respectively; growth rate and ethanol yield (YP/S of batch fermentation were 0.107/h, and 0.12 g ethanol/g substrate, respectively. Based on the data of biomass and ethanol concentrations, the fermentation process for ethanol production by fed-batch system were higher at some point of parameters compared to batch system. Periodic substrate addition performed on fed-batch system leads the yeast growth in low substrate concentrations and consequently  increasing their activity and ethanol productivity. Keywords: batch; ethanol; fed-batch; fermentation;Kluyveromyces marxianus, whey

  7. INTERNATIONAL STUDIES OF ENHANCED WASTE LOADING AND IMPROVED MELT RATE FOR HIGH ALUMINA CONCENTRATION NUCLEAR WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; David Peeler, D; James Marra, J

    2008-09-11

    The goal of this study was to determine the impacts of glass compositions with high aluminum concentrations on melter performance, crystallization and chemical durability for Savannah River Site (SRS) and Hanford waste streams. Glass compositions for Hanford targeted both high aluminum concentrations in waste sludge and a high waste loading in the glass. Compositions for SRS targeted Sludge Batch 5, the next sludge batch to be processed in the Defense Waste Processing Facility (DWPF), which also has a relatively high aluminum concentration. Three frits were selected for combination with the SRS waste to evaluate their impact on melt rate. The glasses were melted in two small-scale test melters at the V. G. Khlopin Radium Institute. The results showed varying degrees of spinel formation in each of the glasses. Some improvements in melt rate were made by tailoring the frit composition for the SRS feeds. All of the Hanford and SRS compositions had acceptable chemical durability.

  8. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  9. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    Czech Academy of Sciences Publication Activity Database

    Lee, S.M.; Hrma, P.; Kloužek, Jaroslav; Pokorný, R.; Hujová, Miroslava; Dixon, D.R.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 43, č. 16 (2017), s. 13113-13118 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : oxygen mass balance * feed-to- glass conversion * evolved gas * oxygen partial pressure * Fe redox ratio Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.986, year: 2016

  10. Effect of feeding graded levels of biscuit waste based diet on non ...

    African Journals Online (AJOL)

    100%) were formulated with combined biscuit waste and Leucaena leucocephala meals and fed to 20 Yankasa rams for 91 days to evaluate their effects on non-carcass components of the rams. The rams were slaughtered at the expiration of ...

  11. Effect of feeding graded levels of biscuit waste based diet on non ...

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... internal offals, blood, bones and diaphragm. The results revealed that there were significant (P < 0.05) differences in the non-carcass components of all the rams fed different diets. It was further observed that diets B1 (25%) and B2 (50%) biscuit waste inclusion had the best (P < 0.05) effects on non-carcass.

  12. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    Czech Academy of Sciences Publication Activity Database

    Harris, W.H.; Guillen, D.P.; Kloužek, Jaroslav; Pokorný, P.; Yano, T.; Lee, S.; Schweiger, M. J.; Hrma, P.

    2017-01-01

    Roč. 100, č. 9 (2017), s. 3883-3894 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : borosilicate glass * computed tomography * glass melting * morphology * nuclear waste * X-ray Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.841, year: 2016

  13. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  14. Waste Feed Delivery Strategy for Tanks 241-AN-102 and 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    BLACKER, S.M.

    2000-04-13

    This engineering study establishes the detailed retrieval strategy, equipment requirements, and key parameters for preparing detailed process flowsheets; evaluates the technical and programmatic risks associated with processing, certifying, transferring, and delivering waste from Tanks 241-AN-102 and 241-AN-107 to BNFL; and provides a list of necessary follow-on actions so that program direction from ORP can be successfully implemented.

  15. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in the TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.

  16. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  17. Study on upgrading of oil palm wastes to animal feeds by radiation and fermentation processing

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Matsuhashi, Shinpei; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    1998-03-01

    Upgrading of oil palm empty fruit bunch (EFB), which is a main by-product of palm oil industry, to animal feeds by radiation pasteurization and fermentation was investigated for recycling the agro-resources and reducing the environmental pollution. The following results were obtained: (1) The necessary dose for pasteurization of EFB contaminated by various microorganisms including aflatoxin producing fungi was determined as 10 kGy. The chemical and biological properties of EFB were changed little by irradiation up to 50 kGy. (2) In the fermentation process, Pleurotus sajor-caju was selected as the most effective fungi and the optimum condition for fermentation was clarified. The process of fermentation in suspension was also established for the liquid seed preparation. (3) The digestibility and nutritional value of fermented products were evaluated as ruminant animal feeds and the mushroom can be produced as by-product. (4) The pilot plant named Sterifeed was built at MINT and a large volume production has been trying for animal feeding test and economical evaluation. It is expected to develop the process for the commercial use in Malaysia and to expand the technique to Asian region through UNDP/RCA/IAEA project. (author)

  18. The effect of feed made from fish processing waste silage on the ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... A large number of studies have been carried out in recent years on alternative ingredients that can be used .... 14.22. Feed flour. 11.46. 11.46. 11.46. 11.46. Corn gluten. 4.46. 4.46. 4.46. 4.46. Sunflower seed meal. 3.00. 3.00. 3.00. 3.00. Wheat gluten. 1.00. 1.00. 1.00. 1.00. Vitamin premix. 0.40. 0.40. 0.40.

  19. Biodegradation of agroindustrial wastes by Pleurotus spp for its use as ruminant feed

    OpenAIRE

    Alborés,Silvana; Pianzzola,María Julia; Soubes,Matilde; Cerdeiras,María Pía

    2006-01-01

    The increasing expansion of agro-industrial activity has led to the accumulation of a large quantity of lignocellulosic residues all over the world. In particular, large quantities of rice straw (300.000 t) and citric bagasse (50.000 t) are annually produced in Uruguay. In this work we present the study of the bioconversion of these substrates with the edible mushroom Pleurotus spp so as to increase nutritional values and digestibility for its use as animal feed. The SSF process was optimized...

  20. EFFECT OF FEEDING EXTRUDED HATCHERY WASTE ON THE PERFORMANCE OF SOVIET CHINCHILLA RABBITS.

    OpenAIRE

    Handa, M.C.; Sapra, K.L.; Shingari, B.K.

    1996-01-01

    [EN] Seventy five, Soviet Chinchilla 6 week-old rabbits just weaned were divided into 5 treatments, H1 , H2, H3, H4 and H5. Each group was further divided into 5 replications of 3 rabbits raised in the same cages and fed with extruded hatchery waste mixed with soja meal (40:60) at O, 1.5, 3.0, 4.5 or 6% level replacing fish meal from rabbits diet at O, 25, 50, 75 or 100% level. The body wt. gains were 978, 998, 1030, 899 and 908 g in H1, H2, H3, H4 and H5 treatments, r...

  1. EFFECT OF FEEDING COOKED HATCHERY WASTE ON THE PERFORMANCE OF BROILERS

    Directory of Open Access Journals (Sweden)

    Sohail Hassan Khan and Bashir Mahmood Bhatti

    2002-01-01

    Full Text Available Raw hatchery waste was cooked with water at 2:1 ratio for 15 minutes and then oven dried at 65C and ground. Hatchery waste meal (HWM thus prepared contained 32% crude protein, 16% ether extract, 0.9% crude fibre, 40% total ash, 11.1% nitrogen free extract, 20% calcium and 0.6 % available phosphorous with no E.Coli and Salmonella. In biological evaluation trail, non significant differences was observed among rations in which HWM replaced the fish meal at 0(A, 25(B, 50(C and 75 (D levels in broiler rations. These rations showed that protein efficiency ratios were 1.68, 1.79, 1.65,and 1.64 apparent biological value 59.96, 60.25, 59.75 and 58.32% respectively, indicating better balance of amino acid in HWM to be replaced with fish meal,. In 6 weeks performance trail, the body weight gains were 1807.69, 1916.39, 1788.39 and 1635.66 gm in A, B, C and D rations, respectively. Whereas, FCR values were 2.59, 2.32, 2.43 and 2.63 in the corresponding groups, which shows no significant difference among all rations. The cost per chick to market age was lowest in ration containing high level of HWM (7.5% and highest in ration containing high level of fish meal (10% indicating maximum replacement of fish meal by HWM in broiler ration is economical. Similarly, slaughtering data revealed no significant difference among all rations in all parameters. It may be concluded that the HWM can completely replace fish meal in commercial broiler rations.

  2. Batch and Fed-Batch Fermentation System on Ethanol Production from Whey using Kluyveromyces marxianus

    OpenAIRE

    H Hadiyanto; Ariyanti, D; Aini, A.P; D.S. Pinundi

    2013-01-01

    Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to  find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey) using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was  to compare the operation modes (batch and fed-batch) of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The r...

  3. On-line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor.

    Science.gov (United States)

    Ferge, T; Maguhn, J; Hafner, K; Mühlberger, F; Davidovic, M; Warnecke, R; Zimmermann, R

    2005-03-15

    The emission of particulate matter and gaseous compounds during combustion of wood and refuse-derived fuel in a small batch reactor is investigated by laser mass-spectrometric on-line measurement techniques for gas-phase analysis and simultaneous registration of physical aerosol properties (number size distribution). The gas-phase composition is addressed by a laser-based mass spectrometric method, namely, vacuum-UV single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS). Particle-size distributions are measured with a scanning mobility particle sizer. Furthermore, a photoelectric aerosol sensor is applied for detection of particle-bound polycyclic aromatic hydrocarbons. The different phases of wood combustion are distinguishable by both the chemical profiles of gas-phase components (e.g., polycyclic aromatic hydrocarbons, PAH) and the particle-size distribution. Furthermore, short disturbances of the combustion process due to air supply shortages are investigated regarding their effect on particle-size distribution and gas-phase composition, respectively. It is shown that the combustion conditions strongly influence the particle-size distribution as well as on the emission of particle-bound polycyclic aromatic hydrocarbons.

  4. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats.

    Science.gov (United States)

    Chanjula, Pin; Pongprayoon, Sahutaya; Kongpan, Sirichai; Cherdthong, Anusorn

    2016-06-01

    This experiment was evaluation of the effects of increasing concentrations of crude glycerin from waste vegetable oil (CGWVO) in diets on feed intake, digestibility, ruminal fermentation characteristics, and nitrogen balance of goats. Four crossbred male (Thai Native × Anglo Nubian) goats, with an average initial body weight (BW) of 31.5 ± 1.90 kg, were randomly assigned according to a 4 × 4 Latin square design. The dietary treatments contained 0, 2, 4, and 6 % of dietary dry matter (DM) of CGWVO. Based on this experiment, there were significantly different (P > 0.05) among treatment groups regarding DM intake and digestion coefficients of nutrients (DM, OM, CP, EE, NDF, and ADF), which goats receiving 6 % of CGWVO had lower daily DMI and nutrient intake than those fed on 0, 2, and 4 % of CGWVO. Ruminal pH, NH3-N, and blood urea nitrogen (BUN) concentration were unchanged by dietary treatments, except that for 6 % of CGWVO supplementation, NH3-N, and BUN were lower (P < 0.05) than for the diets 0 % of CGWVO, while the differences between the diets 0, 2, and 4 % of CGWVO were not significant. The amounts of N absorption and retention were similar among treatments, except that for 6 % of CGWVO which N absorption was lower (P < 0.05) than among treatments while the difference between the diets 0, 2, and 4 % of CGWVO were not significant. Based on this study, CGWVO levels up to 4 % in total mixed ration could be efficiently utilized for goats. This study was a good approach in exploiting the use of biodiesel production from waste vegetable oil for goat production.

  5. Migration of Hazardous Substances through Soil. Part 4. Development of a Serial Batch Extraction Method and Application to the Accelerated Testing of Seven Industrial Wastes

    Science.gov (United States)

    1987-09-01

    waste originated from the production of elemental phosphorus by theI electric furnace method whereby phosphorus is produced through the reduction of...presence of competing ions, the previous history of the solid, its current surface energy and effective surface area, in short, the total conditions must...DISTRIBUTION COgFFICIENTS THT. - hIS EXT. I . RETM. THIS TOTAL’ PENETI. INCL SUIL SOWN ONLY46. LAYO W X 0G"I I j; U" hG/C U"/C EXTRw, 0" CM- LG

  6. Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation.

    Science.gov (United States)

    Zahan, Zubayeda; Othman, Maazuza Z; Muster, Tim H

    2017-08-23

    Anaerobic digestion (AD) of different agro-industrial wastes and their co-digestion potential has been exhaustively studied in this research. It explores variation of feedstock characteristics such as biodegradability and methane potential during AD and anaerobic co-digestion (ACoD) of chicken litter (CL) with yoghurt whey (YW), organic fraction of municipal solid waste (OFMSW), hay grass (HG) and wheat straw (WS) under mesophilic conditions. Comparative performance was made at different loading concentrations (2%, 3% and 4% VS) with 1:2g/g VS of substrate to inoculum and carrying C/N ratio. Among different kinetic models, the AD of single substrates showed better fit to the modified Gompertz model (R(2): 0.93-0.997) indicating variation in lag phase and methane production rate depend on the substrate characteristics. During ACoD, the methane yield improved by 9-85% through the addition of two, three or four substrates due to the synergistic effect asa result of increased biodegradability and optimum conditions (such asC/N ratio). A surface (optimisation) model indicated that maximum methane production can be achieved by blending chicken litter (30-35%) and a (65-70%) mixture of yoghurt whey, hay and wheat straw with aC/N ratio of (26-27.5). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparison of batch leaching tests and influence of pH on the release of metals from construction and demolition wastes.

    Science.gov (United States)

    Galvín, Adela P; Ayuso, Jesús; Jiménez, Jose Ramón; Agrela, Francisco

    2012-01-01

    Construction and demolition wastes are suitable for use in road construction. However, leaching characterization of recycled materials is required to determine their pollutant potential and the consequence of their application in different scenarios. The motivation of this paper is derived from the increasing use of different leaching test methods. In Europe, the confusion resulting from the wide variety of tests used to evaluate environmental properties of construction materials implies that an evaluation of the current practices and the attempt to consolidate the approaches are required. Two equilibrium-based leaching tests (the Dutch test and the European standard) were conducted to assess the environmental impact of four recycled aggregates. Three natural limestone aggregates were used as controls. Both tests measure the potential release of hazardous elements under extreme conditions using different leaching parameters (L/S ratio, pH value and contact time). The results proved that pH is the most relevant factor on the assessment of the differences between leaching methods due to its strong control on the pollutant release. To classify the materials according to their environmental effects, the concentration limit values of the metals imposed by Council Decision 2003/33/EC were used as a reference. The comparison allowed the classification of the recycled aggregates as inert wastes, with the exception of the MR-2 aggregate, which was classified as non-hazardous material. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Bypass chromatography--design and analysis of an improved strategy for operating batch chromatography processes.

    Science.gov (United States)

    Siitonen, Jani; Sainio, Tuomo; Rajendran, Arvind

    2012-03-23

    The possibility to improve the performance of batch chromatographic separations by using so-called bypass method is analyzed for the first time. In bypass chromatography, only a part of the feed is introduced into the column and purified to purity larger than the desired value. The resulting fractions are then blended with fresh feed to match the given purity constraints. A general approach is presented for designing bypass batch chromatography. Analytical design equations, based on equilibrium theory of chromatography, are presented for the case of binary systems with linear or competitive Langmuir adsorption isotherms under ideal conditions. The approach allows direct calculation of optimal loading and amount of bypass so that arbitrary purity requirements are satisfied without waste streams. It is shown that the bypass strategy enhances productivity of batch chromatography without an increase in the eluent consumption. In the case of a Langmuir isotherm, maximum productivity and minimum eluent consumption are always obtained when the less retained component is collected from the column at 100% purity. In contrast, the optimal purity of the second fraction from the column is typically less than 100% and depends on the purity constraint of the more retained component. In the case of linear isotherms, operation with touching bands is preferred. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Batch sorption-desorption of As(III) from waste water by magnetic palm kernel shell activated carbon using optimized Box-Behnken design

    Science.gov (United States)

    Anyika, Chinedum; Asri, Nur Asilayana Mohd; Majid, Zaiton Abdul; Jaafar, Jafariah; Yahya, Adibah

    2017-09-01

    In this study, we converted activated carbon (AC) into magnetic activated carbon (MAC), which was established to have removed arsenic (III) from wastewater. Arsenic (III) is a toxic heavy metal which is readily soluble in water and can be detrimental to human health. The MAC was prepared by incorporating Fe3O4 into the AC by using Fe3O4 extracted from a ferrous sulfate solution, designated: magnetic palm kernel shell from iron suspension (MPKSF). Batch experiments were conducted using two methods: (1) one-factor-at-a-time and (2) Box-Behnken statistical analysis. Results showed that the optimum conditions resulted in 95% of As(III) removal in the wastewater sample. The adsorption data were best fitted to the Langmuir isotherm. The adsorption of As(III) onto the MPKSF was confirmed by energy dispersive X-ray spectrometry analysis which detected the presence of As(III) of 0.52% on the surface of the MPKSF. The Fourier transform infrared spectroscopy analysis of the MPKSF-As presented a peak at 573 cm-1, which was assigned to M-O (metal-oxygen) bending, indicating the coordination of As(III) with oxygen through the formation of inner-sphere complexation, thereby indicating a covalent bonding between the MPKSF functional groups and As(III). The findings suggested that the MPKSF exhibited a strong capacity to efficiently remove As(III) from wastewater, while the desorption studies showed that the As(III) was rigidly bound to the MPKSF thereby eliminating the possibility of secondary pollution.

  10. Cultivation of Arthrospira (Spirulina platensis using confectionary wastes for aquaculture feeding

    Directory of Open Access Journals (Sweden)

    Hala Y. El-Kassas

    2015-12-01

    Full Text Available The microalga biomass production from confectionary effluent is a possible solution for the urgent need for a live food in aquaculture. Arthrospira (Spirulina platensis was the dominant alga in effluent of “Biscomisr a confectionary factory”, in Alexandria–Egypt. Therefore, it was isolated from the effluent samples and used throughout the study. The cyanobacterium, A. platensis was grown on the effluent using 22 Central Composite Design (22 CCD. This work addresses the best effluent dilution (WC, % as well as sodium bicarbonate concentration (SBC on the alga growth and biochemical composition. Total protein, carbohydrate, lipid contents and fatty acid profiles of the produced algal biomass were highly improved. The statistical analyses suggested that the main effect of (WC, % is significant negative influences on the algal contents of proteins, lipids and carbohydrates (p > 0.01. Although it had a significant positive influence on chlorophyll (p > 0.01, no significant effect on algal β carotenes (p > 0.05 had been reported. The inter action effect of SBC together with WC, % exerted a significant negative influence on the algal proteins (p > 0.01 and no significant effect on the other responses (p > 0.05. The produced alga biomass was used for feeding the rotifer, Brachionus plicatilis for further application in aquaculture. Growth rate, reproductive rate and fecundity attributes, fatty acid content of B. plicatilis were amended. The Pearson correlation test indicated that β carotenes displayed a highly positive significant correlation with the growth rate of B. plicatilis (r = 0.733, p < 0.01 and the carbohydrates showed significant positive correlations with Egg % (r = 0.657, p < 0.05.

  11. Mathematical modelling of biological processor for waste water treatment i sequencing batch reactors; Modellazione matematica di processi biologici per il trattamento delle acque reflue in reattori SBR

    Energy Technology Data Exchange (ETDEWEB)

    Spagni, A.; Bortone, E. [ENEA Centro Ricerche Bologna, Bologna (Italy). Sez. Depurazione e Ciclo dell' Acqua; Ratini, P. [SPES s.r.l., Fabriano, AN (Italy); Marsilli Libelli, S. [Florence Univ., Florence (Italy). Dipt. dei Sistemi e di Informatica

    2000-01-01

    The work shows a mathematical model based on the activated sludge model 2d of the IAWQ (International Association on Water Quality) for biological waste water treatment simulation. Ammonia inhibition and nitrite intermediate in the nitrification and denitrification processes have been added to the ASM2d. The modified model was calibrated and validated with experimental data of a lab scale SBR plant. The modified model is able to precisely fit experimental data. [Italian] Viene presentato un modello matematico sviluppato a partire dall'activated sludge model 2d dell'IAWQ (International Association on Water Quality) per il trattamento biologico dei reflui. Il modello viene integrato dall'introduzione delle cinetiche dell'inibizione nella nitrificazione e denitrificazione. Il modello e' stato calibrato e validato utilizzando dati sperimentali provenienti da un impianto SBR da laboratorio. Il modello e' in grado di prevedere in modo ragionevole le cinetiche degli inquinanti monitorati nella varie prove.

  12. Performance of metal compound on thermolysis and electrolysis on sugar industries waste water treatment: COD and color removal with sludge analysis (batch-experiment)

    Science.gov (United States)

    Sahu, Omprakash

    2017-10-01

    The sugar cane industry is one of the most water demanding industries. Sugar industries consume and generate excess amount of water. The generated water contains organic compounds, which would cause pollution. The aim of this research work is to study the effectiveness of metal compound for treatment of sugar industry waste water by thermolysis and electrolysis process. The result shows ferrous metal catalyst shows 80 and 85 % chemical oxygen demand and color removal at pH 6, optimum mass loading 4 kg/m3, treatment temperature 85 °C and treatment time 9 h. When ferrous material was used as electrode, maximum 81 % chemical oxygen demand and 84 % color removal at pH 6, current density 156 Am-2, treatment time 120 min and anode consumption 0.7 g for 1.5 L wastewater were obtained.

  13. Chemical composition of alfalfa silage with waste date and its feeding effect on ruminal fermentation characteristics and microbial protein synthesis in sheep.

    Science.gov (United States)

    Rajabi, R; Tahmasbi, R; Dayani, O; Khezri, A

    2017-06-01

    This study was conducted to evaluate the effect of feeding ensiled alfalfa with waste date on ruminal fermentation characteristics, microbial protein synthesis, protozoa population and blood parameters in sheep. Eight rams were used in a 2 × 2 change over design. Each experimental period consisted of 21 days including 16 days for adaptation and 5 days for sampling. For ensiling, fresh alfalfa (Medicago sativa L.) with different levels of waste date (Phoenix dactylifera L.) were mixed together and ensiled in 100-l containers for 45 days. Chemical composition of silages such as dry matter (DM), crude protein, NH3 -N, organic matter, NDF, ADF and pH were determined. Then, it was used as 30% (DM basis) in diets. The experimental diets were as follows: (i) control (diet containing alfalfa silage without waste date), (ii) diet containing alfalfa silage with 5 g waste date/95 g DM, (iii) diet containing alfalfa silage with 10 g waste date/90 g DM, and (iv) diet containing alfalfa silage with 15 g waste date/85 g DM. The results of this experiment showed that adding waste date to alfalfa during ensiling, improved silage quality, DM and energy level. Total protozoa population and all of holotrich, cellulolytic and entodinia in rumen fluid were increased linearly by increasing the level of waste date. Nitrogen (N) intake, urinary N excretion and nitrogen retention were affected by dietary treatments. Also, allantoin, uric acid, total purine derivatives, microbial protein synthesis, cholesterol level and blood urea nitrogen were significantly different. In conclusion, direct ensilage of alfalfa can be attained by mixing 15 g waste date/85 g DM and positive associative effects such as increased metabolizable energy (ME) and silage quality occurred. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  14. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  15. Replacing fish meal by food waste in feed pellets to culture lower trophic level fish containing acceptable levels of organochlorine pesticides: health risk assessments.

    Science.gov (United States)

    Cheng, Zhang; Mo, Wing-Yin; Man, Yu-Bon; Nie, Xiang-Ping; Li, Kai-Bing; Wong, Ming-Hung

    2014-12-01

    The present study used food waste (collected from local hotels and restaurants) feed pellets in polyculture of low-trophic level fish [bighead (Aristichtys nobilis), grass carp (Ctenopharyngodon idellus), and mud carp (Cirrhina molitorella)] aiming at producing safe and quality products for local consumption. The results indicated that grass carp (hexachlorocyclohexanes (HCHs) food waste feed pellets were relatively free of organochlorine pesticides (OCPs). The experimental ponds (water and sediment) were relatively free of OCPs, lowering the possibility of biomagnification of OCPs in the food chains within the ponds. The raw concentrations of OCPs extracted from the fish were not in the bioavailable form, which would ultimately reach bloodstream and exert adverse effects on human body. Health risk assessments based on digestible concentrations are commonly regarded as a more accurate method. The results of health risk assessments based on raw and digestible concentrations showed that the fish fed with food waste feed pellets were safe for consumption from the OCP perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  17. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2009-03-25

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  18. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  19. Sorption behaviour of nanocrystalline MOR type zeolite for Th(IV) and Eu(III) removal from aqueous waste by batch treatment.

    Science.gov (United States)

    Sharma, Pankaj; Tomar, Radha

    2011-10-01

    The nanocrystalline mordenite (MOR) type zeolite materials with initial chemical composition Na(2)O:Al(2)O(3):10SiO(2):48H(2)O have been synthesized under hydrothermal conditions. MOR1 and MOR2 are spherically shaped nanocrystals, whereas MOR3 and MOR4 have rod-like morphology. This paper reports the sorption characteristics of MOR analogues for Th(IV) and Eu(III) removal from aqueous nuclear waste. Sorption of Th(IV) and Eu(III) on MOR1, MOR2, MOR3 and MOR4 in a single component system with varying initial metal ion concentration, solution pH, contact times, sorbent dose and temperatures has also been investigated. Further, the Langmuir and Freundlich sorption models have been applied to describe equilibrium isotherms at different temperatures. The adsorption capacity increases largely with increasing solution pH and temperature of the system. Specific surface area and pore volume have been investigated by Brunauer-Emmett-Teller (BET) method. The N(2) adsorption isotherm presents a type IV isotherm with narrow hysteresis loop which indicates the presence of mesopores related to inter-particle voids. Thermodynamic results indicate that the sorption follows an endothermic physisorption process. It has been found that these exchangers have good sorption capacity and out of which MOR4 has highest sorption capacity. Thus, nanocrystalline MOR4 is proved to be good sorbent for both Th(IV) and Eu(III). Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    Science.gov (United States)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  1. A newly isolated Pseudomonas putida S-1 strain for batch-mode-propanethiol degradation and continuous treatment of propanethiol-containing waste gas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong-Zhi, E-mail: cdz@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Sun, Yi-Ming; Han, Li-Mei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen, Jing [College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316004 (China); Ye, Jie-Xu; Chen, Jian-Meng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2016-01-25

    Highlights: • A novel strain capable of effectively degrading 1-propanethiol (PT) was isolated. • Cells could be feasibly cultured in nutrition-rich media for PT degradation. • A possible pathway for PT degradation was proposed. • Pseudomonas putida S-1 could degrade mixed pollutants with diauxic growth. • Continuous removal of gaseous PT with or without isopropanol was demonstrated. - Abstract: Pseudomonas putida S-1 was isolated from activated sludge. This novel strain was capable of degrading malodorous 1-propanethiol (PT). PT degradation commenced with no lag phase by cells pre-grown in nutrition-rich media, such as Luria–Bertani (LB), and PT-contained mineral medium at specific growth rates of 0.10–0.19 h{sup −1}; this phenomenon indicated the operability of a large-scale cell culture. A possible PT degradation pathway was proposed on the basis of the detected metabolites, including dipropyl disulfide, 3-hexanone, 2-hexanone, 3-hexanol, 2-hexanol, S{sup 0}, SO{sub 4}{sup 2−}, and CO{sub 2}. P. putida S-1 could degrade mixed pollutants containing PT, diethyl disulfide, isopropyl alcohol, and acetaldehyde, and LB-pre-cultured cells underwent diauxic growth. Waste gas contaminated with 200–400 mg/m{sup 3} PT was continuously treated by P. putida S-1 pre-cultured in LB medium in a completely stirred tank reactor. The removal efficiencies exceeded 88% when PT stream was mixed with 200 mg/m{sup 3} isopropanol; by contrast, the removal efficiencies decreased to 60% as the empty bed residence time was shortened from 40 s to 20 s.

  2. Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production.

    Science.gov (United States)

    Mark Ibekwe, A; Murinda, Shelton E; Murry, Marcia A; Schwartz, Gregory; Lundquist, Trygve

    2017-02-15

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. However, there is very limited knowledge on bacterial communities that may play significant roles with algae in the bioconversion of manure nutrients to animal feed. In this study, water samples were collected during winter, spring, summer, and fall from the dairy lagoon effluent (DLE), high rate algae ponds (HRAP) that were fed with diluted DLE, and municipal waste water treatment plant (WWTP) effluent which was included as a comparison system for the analysis of total bacteria, Cyanobacteria, and microalgae communities using MiSeq Illumina sequencing targeting the 16S V4 rDNA region. The main objective was to examine dynamics in microbial community composition in the HRAP used for the production of algal biomass. DNA was extracted from the different sample types using three commercially available DNA extraction kits; MoBio Power water extraction kit, Zymo fungi/bacterial extraction kit, and MP Biomedicals FastDNA SPIN Kit. Permutational analysis of variance (PERMANOVA) using distance matrices on each variable showed significant differences (P=0.001) in beta-diversity based on sample source. Environmental variables such as hydraulic retention time (HRT; P<0.031), total N (P<0.002), total inorganic N (P<0.002), total P (P<0.002), alkalinity (P<0.002), pH (P<0.022), total suspended solid (TSS; P<0.003), and volatile suspended solids (VSS; P<0.002) significantly affected microbial communities in DLE, HRAP, and WWTP. Of the operational taxonomic units (OTUs) identified to phyla level, the dominant classes of bacteria identified were: Cyanobacteria, Alpha-, Beta-, Gamma-, Epsilon-, and Delta-proteobacteria, Bacteroidetes, Firmicutes, and Planctomycetes. Our data suggest that microbial communities were significantly affected in HRAP by different environmental variables, and care must be taken in extraction procedures when evaluating specific groups of microbial communities for

  3. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor.

    Science.gov (United States)

    Lim, Seong-Jin; Kim, Byoung Jin; Jeong, Chang-Moon; Choi, Jin-dal-rae; Ahn, Yeong Hee; Chang, Ho Nam

    2008-11-01

    Acidogenesis of food waste was studied in a 2-L reactor with semi-continuous mode operation (once-a-day feeding and draw-off) for maximum 65 days to examine optimal volatile acid compositions for biological nitrogen removal (BNR) and enhanced biological phosphorus removal (ENPR). Various operational parameters of hydraulic retention time (HRT), organic loading rate (ORL), pH and temperature were investigated for soluble chemical oxygen demand (SCOD), volatile fatty acid composition, nitrogen and phosphate. The yields (gTVFA/g VS) and the volumetric productivity (gTVFA/d L) increased with HRT from 0.26-0.32, 1.25-1.50 (at 4 days) to 0.36-0.39, 1.71-1.83 (at 12 days). However, the acetate fraction (%) decreased with HRT from 35.7-37.5 at 4 days to 23.5-25 at 12 days. The yields decreased with increase of organic loading from 0.34-0.37 at 5 g/L d to 0.29-0.30 at 13 g/L d and the productivity increased from 1.63-1.65 to 3.61-3.75. The yield and productivity were highest at 35 degrees C among 25, 35 and 45 degrees C. The yield and productivity at pH 5.5 and 6.0 were best and very similar to each other. The condition of 35 degrees C, pH 6.0, HRT 8 days, ORL 9 g/L d resulted in TVFA, SCOD, acetate and butyrate of 25, 39.5, 12 and 5.25 g/L, respectively.

  4. Kinnow madarin (Citrus nobilis lour × Citrus deliciosa tenora fruit waste silage as potential feed for small ruminants

    Directory of Open Access Journals (Sweden)

    B. A. Malla

    2015-01-01

    Full Text Available Aim: Study was conducted to ascertain the quality of Kinnow mandarin waste (KMW silage and its utilization by adult male goats. Materials and Methods: KMW was collected, dried to 30% dry matter level and ensiled in silo pit after addition of disodium hydrogen orthophosphate as source of phosphorus as KMW is deficient in phosphorus. Oat was collected at milking stage, chopped finely and ensiled in a silo pit for 2 months. Twelve nondescript local adult male goats of about 8-10 months age and mean body weight of 23.00±0.90 kg were selected. The goats were randomly allotted on body weight as per randomized block design into two equal groups, six animals in each group (n=6 namely “oat silage (OS” and “Kinnow silage.” Goats were offered weighed quantities of respective silage on ad libitum basis. The silages were evaluated for proximate principles and silage quality attributes. Results: Differences were found between chemical composition of both silages with higher organic matter, ether extracts, nitrogen free extract (p0.05 for CP and possess comparable (2.23 vs. 2.06; p>0.05 calcium content. The pH, ammonia nitrogen (percent of total nitrogen and soluble carbohydrate content were lower (4.20 vs. 3.30; 4.14 vs. 3.80; 2.73 vs. 1.86; p0.05 among the two dietary groups. Conclusion: It can be concluded that KMW can be used to prepare good quality silage for feeding of goats.

  5. Tratamento de resíduos sólidos de centrais de abastecimento e feiras livres em reator anaeróbio de batelada Treatment of solid waste from supply centers and free markets in batch anaerobic reactor

    Directory of Open Access Journals (Sweden)

    Valderi D. Leite

    2003-08-01

    Full Text Available Em feiras livres e centrais de abastecimento são produzidas quantidades bastante significativas de resíduos sólidos, com características favoráveis ao aproveitamento integral em processo de bioestabilização anaeróbia. O processo de bioestabilização é realizado em reatores anaeróbios de batelada (RAB, com tempo de detenção de sólidos variando de 250 a 300 dias originando, como produtos finais, o biogás, com cerca de 60% de gás metano, além de composto orgânico parcialmente bioestabilizado. Neste trabalho, foram utilizados resíduos sólidos orgânicos tipicamente vegetais, advindos de centrais de abastecimento, feiras livres e lodo de esgoto sanitário. O sistema experimental utilizado era constituído basicamente por um reator anaeróbio de batelada, com capacidade unitária de 2200 litros, além de outros dispositivos complementares. O sistema experimental foi instalado e monitorado na Estação Experimental de Tratamento Biológico de Esgoto Sanitário, situada no Bairro do Tambor, na cidade de Campina Grande, Estado da Paraíba, no período de janeiro a setembro de 2001. No processo de monitoração foram realizadas caracterizações sistemáticas das frações sólidas, líquidas e gasosas. Após análise dos dados, ficou evidenciada a viabilidade desta alternativa de tratamento, restando ser investigada ainda a viabilidade econômica, quando comparada com outras alternativas tecnológicas de tratamento de resíduos sólidos orgânicos.Significant quantity of organic solid waste with favorable characteristics for integral utilization in anaerobic biostabilization is produced in free markets and supply centers. The process is conducted in anaerobic batch reactors (ABR, with detention time of solids varying from 250 to 300 days, producing biogas with about 60% of methane, besides the partially biostabilized organic compost as the final product. In this study, the organic solid waste used was typically of vegetables

  6. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Bioestabilização anaeróbia de resíduos sólidos orgânicos em reatores de batelada Anaerobic biostabilization of organic solid waste in batch reactors

    Directory of Open Access Journals (Sweden)

    Valderi D. Leite

    2001-04-01

    Full Text Available O processo de bioestabilização anaeróbio pode ser empregado para o tratamento de uma grande variedade de substratos, dentre os quais pode-se destacar os resíduos sólidos orgânicos. Neste trabalho, o processo de bioestabilização anaeróbio foi utilizado, quando do tratamento de resíduos sólidos orgânicos putrescíveis de origem urbana e rural. Os resíduos de origem urbana eram constituídos, basicamente, de restos de fruta, verduras e folhagens, enquanto o rúmen bovino era o resíduo rural utilizado. As proporções de rúmen empregadas foram de 5, 10 e 15% (percentagem em peso.O trabalho foi realizado em um sistema experimental, constituído basicamente por quatro reatores anaeróbios de batelada, com capacidade unitária de 20 L. A eficiência do processo foi determinada tomando-se, como parâmetros avaliativos, os sólidos totais voláteis (STV, a demanda química de oxigênio (DQO e o nitrogênio total Kjedhal (NTK. Salienta-se que este processo de tratamento bioestabiliza os resíduos orgânicos putrescíveis, tornando-os biodisponíveis de aplicação nos solos, além de produzir metano, que pode ser utilizado como fonte alternativa de energia para fins domésticos e industriais. A análise dos dados deste trabalho demonstra que o desempenho do processo de bioestabilização foi função do percentual de rúmen utilizado.The anaerobic biostabilization process can be employed for the treatment of a large variety of substrates, among which the organic solid waste can be cited. In this work, the anaerobic biostabilization process was employed to treat the putrescible organic solid waste of urban and rural origin. The urban origin waste basically consisted of fruits peelings, vegetables and foliage, whereas the rural solid waste was only the bovine rumen. The proportions of rumen used were 5, 10 and 15% (weight basis. The work was carried out on an experimental scale, basically consisting of four anaerobic batch reactors, each with

  8. Limiting factors in Escherichia colifed-batch production of recombinant proteins

    DEFF Research Database (Denmark)

    Sanden, A.M.; Prytz, I.; Tubelekas, I.

    2003-01-01

    recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation......recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation...

  9. Strategy for addressing composition uncertainties in a Hanford high-level waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.

    1996-03-01

    Various requirements will be imposed on the feed material and glass produced by the high-level waste (HLW) vitrification plant at the Hanford Site. A statistical process/product control system will be used to control the melter feed composition and to check and document product quality. Two general types of uncertainty are important in HLW vitrification process/product control: model uncertainty and composition uncertainty. Model uncertainty is discussed by Hrma, Piepel, et al. (1994). Composition uncertainty includes the uncertainties inherent in estimates of feed composition and other process measurements. Because feed composition is a multivariate quantity, multivariate estimates of composition uncertainty (i.e., covariance matrices) are required. Three components of composition uncertainty will play a role in estimating and checking batch and glass attributes: batch-to-batch variability, within-batch uncertainty, and analytical uncertainty. This document reviews the techniques to be used in estimating and updating composition uncertainties and in combining these composition uncertainties with model uncertainty to yield estimates of (univariate) uncertainties associated with estimates of batch and glass properties.

  10. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  11. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-07-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  12. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  13. Low-temperature catalytic gasification of food processing wastes. 1995 topical report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.

    1996-08-01

    The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previous interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.

  14. Effects of feeding pasteurized waste milk to dairy calves on phenotypes and genotypes of antimicrobial resistance in fecal Escherichia coli isolates before and after weaning.

    Science.gov (United States)

    Maynou, G; Migura-Garcia, L; Chester-Jones, H; Ziegler, D; Bach, A; Terré, M

    2017-10-01

    The aim of this study was to evaluate the effects of feeding pasteurized waste milk (pWM) to calves on antimicrobial resistance of fecal Escherichia coli at both phenotypic and genotypic levels. Fifty-two Holstein female calves (3 ± 1.3 d of age) were fed 1 of the 2 different types of milk: milk replacer (MR) without antimicrobials or pWM with β-lactam residues until weaning at 49 d of age. Fecal swabs of all calves were obtained on d 0, 35, and 56 of the study and 3 E. coli isolates per sample were studied. Phenotypic resistance was tested by the disk diffusion method against a panel of 12 antimicrobials. A total of 13 resistance genes consisting of β-lactam, sulfonamide, tetracycline, and aminoglycoside families were examined by PCR. Feeding pWM to calves increased the presence of phenotypic resistance to ampicillin, cephalotin, ceftiofur, and florfenicol in fecal E. coli compared with MR-fed calves. However, the presence of resistance to sulfonamides, tetracyclines, and aminoglycosides was common in dairy calves independent of their milk-feeding source, suggesting other factors apart from the feeding source are involved in the emergence of antimicrobial resistance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  16. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States); Brandenburg, C. H. [Savannah River Site (SRS), Aiken, SC (United States); Luther, M. C. [Savannah River Site (SRS), Aiken, SC (United States); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States); Woodham, W. H. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-11-01

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processing conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.

  17. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    Science.gov (United States)

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Revisiting Verhulst and Monod models: analysis of batch and fed-batch cultures.

    Science.gov (United States)

    Shirsat, Nishikant; Mohd, Avesh; Whelan, Jessica; English, Niall J; Glennon, Brian; Al-Rubeai, Mohamed

    2015-05-01

    The paper re-evaluates Verhulst and Monod models. It has been claimed that standard logistic equation cannot describe the decline phase of mammalian cells in batch and fed-batch cultures and in some cases it fails to fit somatic growth data. In the present work Verhulst, population-based mechanistic growth model was revisited to describe successfully viable cell density (VCD) in exponential and decline phases of batch and fed-batch cultures of three different CHO cell lines. Verhulst model constants, K, carrying capacity (VCD/ml or μg/ml) and r, intrinsic growth factor (h(-1)) have physical meaning and they are of biological significance. These two parameters together define the course of growth and productivity and therefore, they are valuable in optimisation of culture media, developing feeding strategies and selection of cell lines for productivity. The Verhulst growth model approach was extended to develop productivity models for batch and fed-batch cultures. All Verhulst models were validated against blind data (R(2) > 0.95). Critical examination of theoretical approaches concluded that Monod parameters have no physical meaning. Monod-hybrid (pseudo-mechanistic) batch models were validated against specific growth rates of respective bolus and continuous fed-batch cultures (R(2) ≈ 0.90). The reduced form of Monod-hybrid model CL/(KL + CL) describes specific growth rate during metabolic shift (R(2) ≈ 0.95). Verhulst substrate-based growth models compared favourably with Monod-hybrid models. Thus, experimental evidence implies that the constants in the Monod-hybrid model may not have physical meaning but they behave similarly to the biological constants in Michaelis-Menten enzyme kinetics, the basis of the Monod growth model.

  19. Demonstrating compliance with WAPS 1.3 in the Hanford waste vitrification plant process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to immobilize transuranic and high-level radioactive waste in borosilicate glass. This document describes the statistical procedure to be used in verifying compliance with requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS, USDOE 1993). WAPS 1.3 is a specification for ``product consistency,`` as measured by the Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium, and boron. Properties of a process batch and the resulting glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values, including PCT results, from data on feed composition. These models will be used in conjunction with measurements of feed composition to control the HLW vitrification process and product.

  20. GIDEP Batching Tool

    Science.gov (United States)

    Fong, Danny; Odell,Dorice; Barry, Peter; Abrahamian, Tomik

    2008-01-01

    This software provides internal, automated search mechanics of GIDEP (Government- Industry Data Exchange Program) Alert data imported from the GIDEP government Web site. The batching tool allows the import of a single parts list in tab-delimited text format into the local JPL GIDEP database. Delimiters from every part number are removed. The original part numbers with delimiters are compared, as well as the newly generated list without the delimiters. The two lists run against the GIDEP imports, and output any matches. This feature only works with Netscape 2.0 or greater, or Internet Explorer 4.0 or greater. The user selects the browser button to choose a text file to import. When the submit button is pressed, this script will import alerts from the text file into the local JPL GIDEP database. This batch tool provides complete in-house control over exported material and data for automated batch match abilities. The batching tool has the ability to match capabilities of the parts list to tables, and yields results that aid further research and analysis. This provides more control over GIDEP information for metrics and reports information not provided by the government site. This software yields results quickly and gives more control over external data from the government site in order to generate other reports not available from the external source. There is enough space to store years of data. The program relates to risk identification and management with regard to projects and GIDEP alert information encompassing flight parts for space exploration.

  1. Feeding untreated and pasteurized waste milk and bulk milk to calves: effects on calf performance, health status and antibiotic resistance of faecal bacteria.

    Science.gov (United States)

    Aust, V; Knappstein, K; Kunz, H-J; Kaspar, H; Wallmann, J; Kaske, M

    2013-12-01

    Non-saleable milk (waste milk, WM) is contaminated with an undefined spectrum of potentially harmful pathogens and antimicrobial residues. The objective of this study was to determine the impact of feeding bulk milk (BM) or WM - both pasteurized or not - on calf performance, health and the antibiotic resistance of specific faecal bacteria. A total of 114 calves from a large-scale dairy were housed outdoors in individual hutches and were randomly assigned to one of four feeding groups. The calves were fed either WM, pasteurized WM (pWM), BM or pasteurized BM (pBM) from day 3 to 56 of life. Milk samples taken from the pasteurizer and calves' nipple buckets were investigated at regular intervals for total plate count and counts of thermoduric bacteria, coliforms and mastitis pathogens. Faecal samples were taken on days 2, 14, 28 and 56 of life from randomly selected calves of the WM, pWM and BM groups (each N = 8-9) and processed to obtain from each sample preferably two isolates of Escherichia (E.) coli and Enterococcus spp. respectively. Isolates were tested for their antimicrobial susceptibility to 25 antimicrobial agents by broth microdilution. Daily weight gain, milk and calf starter intake and health parameters did not differ significantly between the calves of the four feeding groups. The proportion of resistant E. coli isolates was significantly higher in calves fed WM and in calves fed pWM (most pronounced for cephalosporins) than in calves receiving BM. No differences in resistance were found for Enterococus spp. Thus, the concerns for selecting resistant faecal bacteria by feeding WM seem to be justified. Nonetheless, pasteurized WM of cows not treated with antimicrobials represents an acceptable feed for young calves. © 2012 Blackwell Verlag GmbH.

  2. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford site low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shade, J.W.

    1996-05-03

    Commercially available melter technologies were tested for application to vitrification of Hanford site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW simulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO{sub x} generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented.

  3. OPTIMATION OF TIME AND CATALYST/FEED RATIO IN CATALYTIC CRACKING OF WASTE PLASTICS FRACTION TO GASOLINE FRACTION USING Cr/NATURAL ZEOLITE CATALYST

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Optimation of time and catalyst/feed ratio in catalytic cracking of waste plastics fraction to gasoline fraction using Cr/Natural Zeolite catalyst has been studied.The natural zeolite was calcined by using nitrogen gas at 500 oC for 5 hours. The chromium supported on to the zeolite was prepared by ion exchange methode with Cr(NO33.9H2O solution with chromium/zeolite concentration of 1% (w/w. The zeolite samples were then calcined  with nitrogen gas at 500 oC for 2 hours, oxidyzed with oxygen gas and reduced with hydrogen at 400 oC for 2 hours. The characterization of the zeolite catalyst by means of Si/Al ratio by UV-Vis spectroscopy, acidity with pyridine vapour adsorption and Na, Ca and Cr contents by atomic adsorption spectroscopy (AAS. The catalyst activity test was carried out in the cracking process of waste plastics fraction with boiling point range of 150 - 250 °C (consisted of C12 - C16 hydrocarbons at 450 oC for 30 min, 60 min and 90 min, and catalyst/feed ratio 1/1, 1/2, 1/3, ¼ (w/w. The result of catalyst activity test  showed  that  the maximum number  conversion of gasoline fraction (C5-C11 is 53,27% with relatively low coke formation using 1/3 catalyst/feed ratio and the cracking time of 60 min.. This  catalyst has  Si/Al ratio = 1,21 (w/w , acidity = 0,16 mmol/g and Na content = 0,81%, Ca content = 0,15% and Cr content 0,24%.   Keywords: zeolite, catalytic cracking, gasoline, chromium.

  4. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste.

    Science.gov (United States)

    Kwan, Tsz Him; Pleissner, Daniel; Lau, Kin Yan; Venus, Joachim; Pommeret, Aude; Lin, Carol Sze Ki

    2015-12-01

    A techno-economic study of food waste valorization via fungal hydrolysis, microalgae cultivation and production of plasticizer, lactic acid and animal feed was simulated and evaluated by Super-Pro Designer®. A pilot-scale plant was designed with a capacity of 1 metric ton day(-1) of food waste with 20 years lifetime. Two scenarios were proposed with different products: Scenario (I) plasticizer & lactic acid, Scenario (II) plasticizer & animal feed. It was found that only Scenario I was economically feasible. The annual net profits, net present value, payback period and internal rate of return were US$ 422,699, US$ 3,028,000, 7.56 years and 18.98%, respectively. Scenario II was not economic viable due to a deficit of US$ 42,632 per year. Sensitivity analysis showed that the price of lactic acid was the largest determinant of the profitability in Scenario I, while the impact of the variables was very close in Scenario II. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The policy effects of feed-in tariff and renewable portfolio standard: A case study of China's waste incineration power industry.

    Science.gov (United States)

    Xin-Gang, Zhao; Yu-Zhuo, Zhang; Ling-Zhi, Ren; Yi, Zuo; Zhi-Gong, Wu

    2017-10-01

    Among the regulatory policies, feed-in tariffs (FIT) and renewable portfolio standards (RPS) are the most popular to promote the development of renewable energy power industry. They can significantly contribute to the expansion of domestic industrial activities in terms of sustainable energy. This paper uses system dynamics (SD) to establish models of long-term development of China's waste incineration power industry under FIT and RPS schemes, and provides a case study by using scenario analysis method. The model, on the one hand, not only clearly shows the complex logical relationship between the factors but also assesses policy effects of the two policy tools in the development of the industry. On the other hand, it provides a reference for scholars to study similar problems in different countries, thereby facilitating an understanding of waste incineration power's long-term sustainable development pattern under FIT and RPS schemes, and helping to provide references for policy-making institutions. The results show that in the perfect competitive market, the implementation of RPS can promote long-term and rapid development of China's waste incineration power industry given the constraints and actions of the mechanisms of RPS quota proportion, the TGC valid period, and fines, compared with FIT. At the end of the paper, policy implications are offered as references for the government. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  7. Reconfirmation of frit 803 based on the January 2016 sludge batch 9 reprojection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-10

    On January 11, 2016, Savannah River Remediation (SRR) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 9 (SB9) reprojection that was developed from the analyzed composition of a Tank 51 sample. This sample was collected after field washing had been completed in Tank 51 to support the alternate reductant task. Based on this reprojection, Frit 803 is still a viable option for the processing of SB9 under sludge-only operations and coupled (Actinide Removal Process (ARP) product with and without monosodium titanate (MST)) operations. The maximum projected volumes of ARP product that can be transferred from the Precipitate Reactor Feed Tank (PRFT) per Sludge Receipt and Adjustment Tank (SRAT) batch and the resulting Na2O concentrations in the SRAT for coupled operations were determined. The Na2O concentrations in the SRAT resulting from the maximum projected ARP product transfer volumes are consistent with those from the previous assessments that were based on the August 2015 projections. Regardless of the presence or absence of MST in the ARP product, the contribution of Na2O to the resulting glass will be similar at the same waste loading (WL). These projected volumes of ARP product are not anticipated to be an issue for SB9. The actual transfer volumes from the PRFT to the SRAT are determined based upon the analyzed Na2O concentrations in the PRFT samples, which has resulted in larger transfer volumes than those allowed by the projections for Sludge Batch 8 (SB8). An operating window of 32-40% WL around the nominal WL of 36% is achievable for both sludge-only and coupled operations; however, each of the glass systems studied does become limited by waste form affecting constraints (durability) at higher volumes of ARP product and WLs of 41-42%.

  8. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  9. Microbial community structures in algae cultivation ponds for bioconversion of agricultural wastes from livestock industry for feed production

    Science.gov (United States)

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. There is very limited knowledge on community compositions that may play significant roles in the bioconversion of manure nu¬trients to animal feed. Algae production is an alternative where land area for pro...

  10. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator.

    Science.gov (United States)

    Verlinden, Rob Aj; Hill, David J; Kenward, Melvin A; Williams, Craig D; Piotrowska-Seget, Zofia; Radecka, Iza K

    2011-06-10

    Polyhydroxyalkanoates (PHAs) are biopolymers, which can replace petrochemical plastics in many applications. However, these bioplastics are currently far more expensive than petrochemical plastics. Many researchers are investigating the use of inexpensive substrates derived from waste streams. Waste frying oil is abundant and can be used in PHA production without filtration.Cupriavidus necator (formerly known as Ralstonia eutropha) is a versatile organism for the production of PHAs. Small-scale batch fermentation studies have been set up, using different concentrations of pure vegetable oil, heated vegetable oil and waste frying oil. These oils are all rapeseed oils.It has been shown that Cupriavidus necator produced the homopolymer polyhydroxybutyrate (PHB) from the rapeseed oils. The achieved PHB concentration from waste frying oil was 1.2 g/l, which is similar to a concentration that can be obtained from glucose. The PHB harvest from pure oil and heated oil was 0.62 g/l and 0.9 g/l respectively. A feed of waste frying oil could thus achieve more biopolymer than pure vegetable oil. While the use of a waste product is beneficial from a life-cycle perspective, PHB is not the only product that can be made from waste oil. The collection of waste frying oil is becoming more widespread, making waste oil a good alternative to purified oil or glucose for PHB production.

  11. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Heinz J.

    2013-06-24

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  12. Feeding of waste milk to Holstein calves affects antimicrobial resistance of Escherichia coli and Pasteurella multocida isolated from fecal and nasal swabs.

    Science.gov (United States)

    Maynou, G; Bach, A; Terré, M

    2017-04-01

    The use of milk containing antimicrobial residues in calf feeding programs has been shown to select for resistant fecal Escherichia coli in dairy calves. However, information is scarce about the effects of feeding calves waste milk (WM) on the prevalence of multidrug-resistant bacteria. The objective of this study was to determine the antimicrobial resistance patterns of fecal E. coli and nasal Pasteurella multocida isolates from calves fed either milk replacer (MR) or WM in 8 commercial dairy farms (4 farms per feeding program). Fecal and nasal swabs were collected from 20 ± 5 dairy calves at 42 ± 3.2 d of age, and from 10 of these at approximately 1 yr of age in each study farm to isolate the targeted bacteria. Furthermore, resistance of E. coli isolates from calf-environment and from 5 calves at birth and their dams was also evaluated in each study farm. Resistances were tested against the following antimicrobial agents: amoxicillin-clavulanic acid, ceftiofur, colistin, doxycycline (DO), enrofloxacin (ENR), erythromycin, florfenicol, imipenem, and streptomycin. A greater number of fecal E. coli resistant to ENR, florfenicol, and streptomycin and more multidrug-resistant E. coli phenotypes were isolated in feces of calves fed WM than in those fed MR. However, the prevalence of fecal-resistant E. coli was also influenced by calf age, as it increased from birth to 6 wk of age for ENR and DO and decreased from 6 wk to 1 yr of age for DO regardless of the feeding program. From nasal samples, an increase in the prevalence of colistin-resistant P. multocida was observed in calves fed WM compared with those fed MR. The resistance patterns of E. coli isolates from calves and their dams tended to differ, whereas similar resistance profiles among E. coli isolates from farm environment and calves were observed. The findings of this study suggest that feeding calves WM fosters the presence of resistant bacteria in the lower gut and respiratory tracts of dairy calves

  13. Solid waste digestors: process performance and practice for municipal solid waste digestion.

    Science.gov (United States)

    Lissens, G; Vandevivere, P; De Baere, L; Biey, E M; Verstrae, W

    2001-01-01

    The most common types of anaerobic digesters for solid wastes have been compared based on biological and technical performance and reliability. Batch systems have the most simple designs and are the least expensive solid waste digesters. They have high potential for application in developing countries. Two-stage systems are the most complex and most expensive systems. Their greatest advantage lies in the equalisation of the organic loading rate in the first stage, allowing a more constant feeding rate of the methanogenic second stage. Two-stage systems with biomass accumulation devices in the second stage display a larger resistance toward toxicants and inhibiting substances such as ammonia. However, the large majority of industrial applications use one-stage systems and these are evenly split between "dry" systems (wastes are digested as received) and "wet" systems (wastes are slurried to about 12% total solids). Regarding biological performance, this study compares the different digester systems in terms of organic loading rates and biogas yields considering differences in input waste composition. As a whole, "dry" designs have proven reliable due to their higher biomass concentration, controlled feeding and spatial niches. Moreover, from a technical viewpoint the "dry" systems are more robust and flexible than "wet' systems.

  14. Sludge Washing and Demonstration of the DWPF Nitric/Formic Flowsheet in the SRNL Shielded Cells for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-01

    Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to qualify the next batch of sludge – Sludge Batch 9 (SB9). Current practice is to prepare sludge batches in Tank 51 by transferring sludge to Tank 51 from other tanks. The sludge is washed and transferred to Tank 40, the current Defense Waste Process Facility (DWPF) feed tank. Prior to sludge transfer from Tank 51 to Tank 40, the Tank 51 sludge must be qualified. SRNL qualifies the sludge in multiple steps. First, a Tank 51 sample is received, then characterized, washed, and again characterized. SRNL then demonstrates the DWPF Chemical Process Cell (CPC) flowsheet with the sludge. The final step of qualification involves chemical durability measurements of glass fabricated in the DWPF CPC demonstrations. In past sludge batches, SRNL had completed the DWPF demonstration with Tank 51 sludge. For SB9, SRNL has been requested to process a blend of Tank 51 and Tank 40 at a targeted ratio of 44% Tank 51 and 56% Tank 40 on an insoluble solids basis.

  15. Kitchen waste as pig feed sustains transmission of Taenia solium cysticercosis in Mbeya, Tanzania

    DEFF Research Database (Denmark)

    Braae, Uffe Christian; Harrison, Wendy; Lekule, Faustin

    . This resulted in 43 farmers in the case group and 50 farmers in the control group from 20 villages. Potato peels were said to be given to pigs either raw or boiled by 46% of the farmers. Based on logistic regression porcine cysticercosis could be associated with absence or a completely open latrine (p=0.......035, OR 5.98, CI: 1.33- 43.02) compared to an enclosed latrine, and feeding potato peels to pigs (P=0.007, OR 3.45, CI: 1.43-8.79). Logistic analysis including management indicated pigs kept in elevated pens (p=0.049, OR 5.33, CI: 1.08-32.27) and on earthen floors (P=0.041, OR 9.87, CI: 1...

  16. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    Science.gov (United States)

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  18. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates.

    Science.gov (United States)

    Wiebe, Marilyn G; Koivuranta, Kari; Penttilä, Merja; Ruohonen, Laura

    2012-05-30

    Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Lipid production was most efficient with glucose (up to 25 g lipid L(-1), 48 to 75% lipid in the biomass, at up to 0.21 g lipid L(-1) h(-1)) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L(-1), with 49% lipid in the biomass) and fed-batch (35 to 47 g L(-1), with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid

  19. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  20. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    Science.gov (United States)

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun

    2011-01-01

    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  2. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  3. Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins.

    Science.gov (United States)

    Crolla, A; Kennedy, K J

    2004-05-13

    This study reports on the effects of fermentor agitation and fed-batch mode of operation on citric acid production from Candida lipolytica using n-paraffin as the carbon source. An optimum range of agitation speeds in the 800-1000 rpm range corresponding to Reynolds numbers of 50000-63000 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Application of multiple fed-batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. The three-cycle fed-batch system increased overall citric acid yields to 0.8-1.0 g citricacid/g n-paraffin, approximately a 100% improvement in product yield from those observed in the single cycle fed-batch system and a 200% improvement over normal batch operation. The three-cycle fed-batch mode of operation also increased the final citric acid concentration to 42 g/l from about 12 and 6g/l for single fed-batch cycle and normal batch modes of operation, respectively. Increased citric acid concentrations in three-cycle fed-batch mode was achieved at longer fermentation times.

  4. Utilization of agro-resources by radiation treatment -production of animal feed and mushroom from oil palm wastes

    Science.gov (United States)

    Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji; Awang, Mat Rasol; Hamdini, Hassan; Saitoh, Hideharu

    1993-10-01

    The production of animal feeds and mushrooms from oil palm cellulosic wasres by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EFB) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13 % and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30°C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran.

  5. BatchJS: Implementing Batches in JavaScript

    OpenAIRE

    Kasemier, D.

    2014-01-01

    htmlabstractNone of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to our favourite programming languages. This research proposes BatchJS as a JavaScript implementation of batches. Since server-side JavaScript has become a popular solution for data-heavy web applicatio...

  6. In vivo assessment of an industrial waste product as a feed additive in dairy cows: Effects of larch (Larix decidua L.) sawdust on blood parameters and milk composition.

    Science.gov (United States)

    Tedesco, D; Garavaglia, L; Spagnuolo, M S; Pferschy-Wenzig, E M; Bauer, R; Franz, C

    2015-12-01

    When larch (Larix spp.) is processed in the wood industry, the sawdust is currently disposed of as waste or used as combustible material, even though it is rich in biologically active compounds. In this study the effect of larch sawdust supplementation on blood parameters as well as milk composition was examined in healthy mid-lactating dairy cows. Twenty-four multiparous Italian Friesian dairy cows were assigned to groups receiving either 300 g/day/cow of larch sawdust or a control diet, and treatments were continued for a 20 day period. Milk parameters were unaffected by treatment. A lower plasma total protein concentration was observed and can be attributed to a decrease in globulin concentration. A lower plasma urea concentration was also detected in the larch group. Moreover, biomarkers of liver function were influenced by the treatment. Total bilirubin was lower in larch-treated animals, and cholesterol tended to be lower. In addition, an interaction between day and treatment was observed for very low density lipoprotein. The concentration of other parameters, including reactive oxygen metabolites, superoxide dismutase, glutathione peroxidase and nitrotyrosine, did not differ between treatments. The observed benefits, together with the good palatability, make larch sawdust a promising candidate for the development of beneficial feed supplements for livestock. Further studies will be useful, particularly to evaluate its efficacy in different health conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. PEMANFAATAN LIMBAH BULU AYAM MENJADI BAHAN PAKAN IKAN DENGAN FERMENTASI Bacillus subtilis (Utilization of Waste Chicken Feather to Fish Feed Ingredients Material with Fermentation of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Dini Siswani Mulia

    2016-02-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk memanfaatkan limbah bulu ayam menjadi bahan pakan ikan dengan fermentasi Bacillus subtilis. Penelitian menggunakan metode eksperimen dengan Rancangan Acak Lengkap (RAL 4 perlakuan, 3 kali ulangan, yaitu P0 : tepung bulu ayam non fermentasi; P1 : fermentasi dengan inokulum B. subtilis 5 mL/2 g tepung bulu ayam; P2 : fermentasi dengan inokulum B. subtilis 10 mL/2 g tepung bulu ayam; P3 : fermentasi dengan inokulum B. subtilis 15 mL/2 g tepung bulu ayam. Parameter yang diamati adalah hasil uji proksimat meliputi kadar protein kasar, kadar air, kadar abu, kadar lemak kasar, kadar serat kasar, dan parameter pendukung yaitu uji organoleptik, berupa sifat fisik tepung bulu ayam, meliputi warna, tekstur, dan bau. Data berupa hasil uji proksimat dianalisis menggunakan ANAVA dan Duncan Multiple Range Test (DMRT dengan taraf uji 5%, sedangkan untuk data hasil organoleptik dianalisis secara deskriptif kualitatif. Hasil penelitian menunjukkan bahwa pemanfaatan limbah bulu ayam menjadi bahan pakan ikan dapat dilakukan dengan fermentasi B. subtilis. Fermentasi tepung bulu ayam menggunakan B. subtillis dapat meningkatkan kualitas bahan baku pakan ikan. Perlakuan P2 (inokulum 10 mL/2 g tepung bulu ayamadalah perlakuan yang paling efektif karena menghasilkan protein tertinggi yaitu 80,59%, dengan perubahan sifat fisik menjadi putih sampai putih kekuningan (warna, lembut (tekstur, dan khas kurang menyengat (bau.   ABSTRACT This study aims to utilize waste chicken feathers into fish feed ingredients by fermentation of Bacillus subtilis. The research has done by experimental methods with completely randomized design (CRD 4 treatments, 3 repetitions, ie P0: non-fermented chicken feather meal; P1: fermentation with B. subtilis 5 mL inoculum/2 g chicken feather meal; P2: 10 mL/2 g chicken feather meal; P3: 15 mL/2 g chicken feather meal. Parameters measured were the proximate test results include the levels of crude protein

  8. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  9. Carry-over of veterinary drugs from medicated to non-medicated feeds in commercial feed manufacturing plants

    NARCIS (Netherlands)

    Stolker, A.A.M.; Zuidema, T.; Egmond, van H.J.; Deckers, E.R.; Herbes, R.; Hooglught, J.; Olde Heuvel, E.; Jong, de J.

    2013-01-01

    Different compound feeds have to be manufactured in the same production line. As a consequence, traces of the first produced feed may remain in the production and get mixed with the next feed batches. This "carry-over" is unavoidable, and so non-medicated feed can be contaminated with veterinary

  10. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  11. Adaptive Batch Mode Active Learning.

    Science.gov (United States)

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  12. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    Energy Technology Data Exchange (ETDEWEB)

    Swita, W.R.

    1998-01-09

    This document provides a summary of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost), developed to demonstrate Readiness-to-Proceed (RTP) in support of the TWRS Phase 1B mission. This Updated Baseline is the proposed TWRS plan to execute and measure the mission work scope. This document and other supporting data demonstrate that the TWRS Project Hanford Management Contract (PHMC) team is prepared to fully support Phase 1B by executing the following scope, schedule, and cost baseline activities: Deliver the specified initial low-activity waste (LAW) and high-level waste (HLW) feed batches in a consistent, safe, and reliable manner to support private contractors` operations starting in June 2002; Deliver specified subsequent LAW and HLW feed batches during Phase 1B in a consistent, safe, and reliable manner; Provide for the interim storage of immobilized HLW (IHLW) products and the disposal of immobilized LAW (ILAW) products generated by the private contractors; Provide for disposal of byproduct wastes generated by the private contractors; and Provide the infrastructure to support construction and operations of the private contractors` facilities.

  13. Feeding practices and factors contributing to wasting, stunting, and iron-deficiency anaemia among 3-23-month old children in Kilosa district, rural Tanzania.

    Science.gov (United States)

    Mamiro, Peter S; Kolsteren, Patrick; Roberfroid, Dominique; Tatala, Simon; Opsomer, Ann S; Van Camp, John H

    2005-09-01

    Infants in Tanzania are particularly vulnerable to under-nutrition during transition from breastmilk (as the only source of nourishment) to solid foods. A cross-sectional study was undertaken in Kilosa district in Tanzania to determine the feeding practices and the extent of wasting, stunting, and iron-deficiency anaemia. The study was done in two stages: in the first stage, a 24-hour dietary assessment was conducted to identify the type of complementary foods given and the eating habits according to age for 378 children aged 3-23 months. In the second stage, a progressive recruitment of 309 infants aged six months was made to measure weight, length, haemoglobin (Hb) concentration, zinc protoporphyrin concentration, and malaria parasitaemia. Birth-weight, the potential contributing factor to under-nutrition and iron-deficiency anaemia, was obtained from the children's clinic cards. The 24-hour dietary assessment revealed that children consumed mainly a thin porridge prepared from maize flour as complementary food. Carbohydrates contributed most energy (on average 69%), followed by fats (18.6%) and protein (on average 12.1%). The complementary food co-vered only 15%, 20%, and 27% of the recommended iron intake for children aged 6-8, 9-11 and 12-23 months respectively. The mean Hb concentration was 9.3 +/- 1.9 g/dL, 68% of the infants were moderately anaemic (7 or =11 g/dL). Equally, the mean zinc protoporphyrin concentration was 10.0 +/- 6.2 microg/g Hb, and 76% of the infants were iron-deficient (>5 microg/g Hb). The prevalence of stunting was 35%, while wasting was only 1.3%. Low birth-weight and low body mass index of mothers were the strong predictors of stunting, whereas low birth-weight and iron-deficiency were the strong predictors of anaemia. The prevalence of malaria parasitaemia was high, affecting 50% of the infants. Having malaria was the only independent predictor associated with stunting, anaemia, and iron-deficiency. There is an urgent need to improve

  14. Optimal control strategy for fed-batch enzymatic hydrolysis of lignocellulosic biomass based on epidemic modeling.

    Science.gov (United States)

    Tai, Chao; Keshwani, Deepak R; Voltan, Diego S; Kuhar, Pankaj S; Engel, Aaron J

    2015-07-01

    A mathematical optimal control strategy for feeding operation was developed for fed-batch enzymatic hydrolysis of dilute acid pretreated lignocellulosic biomass based on a modified epidemic model. Cellulose conversion was maximized and glucose concentration achieved highest possible value over a fixed hydrolysis time. Boundaries of feeding rate and lignin content were set for feasible controls. Using the optimal control feeding strategy, glucose concentration and accumulated cellulose conversion reached up to 77.31 g/L and 72.08% in 100 h, which are 108.76% and 37.50% higher than in batch hydrolysis with same amount of enzyme consumption. Solids content in feeding source has a significant interference on system mass transfer. Optimal control is a useful tool for guiding operations in fed-batch and continuous processes as it enables process optimization through clear objective functions and feasible controls. © 2015 Wiley Periodicals, Inc.

  15. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  16. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2006-09-01

    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  17. BatchJobs and BatchExperiments: Abstraction Mechanisms for Using R in Batch Environments

    Directory of Open Access Journals (Sweden)

    Bernd Bischl

    2015-03-01

    Full Text Available Empirical analysis of statistical algorithms often demands time-consuming experiments. We present two R packages which greatly simplify working in batch computing environments. The package BatchJobs implements the basic objects and procedures to control any batch cluster from within R. It is structured around cluster versions of the well-known higher order functions Map, Reduce and Filter from functional programming. Computations are performed asynchronously and all job states are persistently stored in a database, which can be queried at any point in time. The second package, BatchExperiments, is tailored for the still very general scenario of analyzing arbitrary algorithms on problem instances. It extends package BatchJobs by letting the user define an array of jobs of the kind apply algorithm A to problem instance P and store results. It is possible to associate statistical designs with parameters of problems and algorithms and therefore to systematically study their influence on the results. The packages main features are: (a Convenient usage: All relevant batch system operations are either handled internally or mapped to simple R functions. (b Portability: Both packages use a clear and well-defined interface to the batch system which makes them applicable in most high-performance computing environments. (c Reproducibility: Every computational part has an associated seed to ensure reproducibility even when the underlying batch system changes. (d Abstraction and good software design: The code layers for algorithms, experiment definitions and execution are cleanly separated and enable the writing of readable and maintainable code.

  18. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  19. Heterogeneous batch structures in throughput scheduling

    NARCIS (Netherlands)

    Weeda, P.J.; Weeda, P.J.

    1993-01-01

    Recently a few papers appeared on throughput scheduling, dealing with the relationship between batch structure and process structure in discrete batch production, while maximizing time-constrained throughput. Results have been concentrated on the class of homogeneous batch structures, i.e. batch

  20. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  1. ADM1 applications for a hybrid up-flow anaerobic sludge-filter bed reactor performance and for a batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge

    Directory of Open Access Journals (Sweden)

    lván Ramirez

    2012-01-01

    Full Text Available Los procesos de la digestión anaerobia comprenden una red completa de reacciones bioquimicas y fisicoquímicas, secuenciales y paralelas. Los digestores anaerobios a menudo exhiben importantes problemas de estabilidad que sólo pueden ser evitados a través de apropiadas estrategias de control. Tales estrategias requieren, en general, para su implementación, del desarrollo de modelos matemáticos cuya finalidad es el de permitirnos mejor comprensión y optimización de los procesos de la digestión anaerobia, describiendo estas reacciones de una manera estructurada. Este trabajo revisa el modelo ADMI de la IWAy discute dos aplicaciones del modelo: la digestión anaerobia de las aguas residuales vinazas de las destilerias de vino corno sustrato en un reactor hibrido (UASFB y la digestión anaerobia termófila en batch de lodos activados con pre-tratamiento térmico. Las predicciones del modelo, usando los parámetros establecidos en este estudio, concuerdan bien con los resultados de las mediciones en las diferentes condiciones ensayadas. Los modelos resultantes explicaron la evolución dinámica de las principales variables, tanto en la fase liquida corno la fase gaseosa.

  2. BatchJS: Implementing Batches in JavaScript

    NARCIS (Netherlands)

    D. Kasemier

    2014-01-01

    htmlabstractNone of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to

  3. Analysis of Adiabatic Batch Reactor

    Directory of Open Access Journals (Sweden)

    Erald Gjonaj

    2016-05-01

    Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.

  4. Physicochemical Characteristics of Transferon™ Batches.

    Science.gov (United States)

    Medina-Rivero, Emilio; Vallejo-Castillo, Luis; Vázquez-Leyva, Said; Pérez-Sánchez, Gilberto; Favari, Liliana; Velasco-Velázquez, Marco; Estrada-Parra, Sergio; Pavón, Lenin; Pérez-Tapia, Sonia Mayra

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.

  5. Physicochemical Characteristics of Transferon™ Batches

    Directory of Open Access Journals (Sweden)

    Emilio Medina-Rivero

    2016-01-01

    Full Text Available Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.

  6. Simulated Batch Production of Penicillin

    Science.gov (United States)

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  7. Keeping Quality of Strawberry Batches

    NARCIS (Netherlands)

    Schouten, R.E.; Kooten, van O.

    2001-01-01

    Post-harvest life of strawberries is largely limited by Botrytis cinerea infection. It is assumed that there are two factors influencing the batch keeping quality: the botrytis pressure and the resistance of the strawberry against infection. The latter factor will be discussed here. A model is

  8. SIMULATION INVESTIGATIONS TOWARDS THE DEVELOPMENT OF A BACTERIAL BIOPESTICIDE FED-BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    Cunha C.C.F. da

    1998-01-01

    Full Text Available In this work, the growth of Bacillus thuringiensis var. israelensis, a bioinsecticide producer, is investigated. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. The fed-batch mode allows more flexibility in the control of the substrate concentration in the culture medium. Different techniques, such as constant feeding, "bang-bang" control and model based control (exponential feeding and singular control, were compared. For the techniques based on a model, combinations of models with and without a substrate inhibition parameter were used to represent the simulated process and the internal model of the feeding controller. Singular control based on the model with an inhibition parameter proved to be the most robust controller.

  9. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48

    Science.gov (United States)

    Gamal, Rawia F.; Abdelhady, Hemmat M.; Khodair, Taha A.; El-Tayeb, Tarek S.; Hassan, Enas A.; Aboutaleb, Khadiga A.

    2013-01-01

    The present study aimed at developing a strategy to improve the volumetric production of PHAs by Pseudomonas fluorescens S48 using waste frying oil (WFO) as the sole carbon source. For this purpose, several cultivations were set up to steadily improve nutrients supply to attain high cell density and high biopolymer productivity. The production of PHAs was examined in a 14 L bioreactor as one-stage batch, two-stage batch, and high-cell-density fed-batch cultures. The highest value of polymer content in one-stage bioreactor was obtained after 60 h (33.7%). Whereas, the two-stage batch culture increased the polymer content to 50.1% after 54 h. High-cell-density (0.64 g/L) at continuous feeding rate 0.55 mL/l/h of WFO recorded the highest polymer content after 54 h (55.34%). Semi-scale application (10 L working volume) increased the polymer content in one-stage batch, two-stage batch and high cell density fed-batch cultures by about 12.3%, 5.8% and 11.3%, respectively, as compared with that obtained in 2 L fermentation culture. Six different methods for biopolymer extraction were done to investigate their efficiency for optimum polymer recovery. The maximum efficiency of solvent recovery of PHA was attained by chloroform–hypochlorite dispersion extraction. Gas chromatography (GC) analysis of biopolymer produced by Pseudomonas fluorescens S48 indicated that it solely composed of 3-hydrobutyric acid (98.7%). A bioplastic film was prepared from the obtained PHB. The isolate studied shares the same identical sequence, which is nearly the complete 16S rRNA gene. The identity of this sequence to the closest pseudomonads strains is about 98–99%. It was probably closely related to support another meaningful parsiomony analysis and construction of a phylogenetic tree. The isolate is so close to Egyptian strain named EG 639838. PMID:24294253

  10. Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures

    Directory of Open Access Journals (Sweden)

    Diego Jorge Baruque

    2011-01-01

    Full Text Available Polygalacturonases (PG; EC 3.2.1.15 catalyze the hydrolysis of pectin and/or pectic acid and are useful for industrial applications such as juice clarification and pectin extraction. Growth and heterologous expression of recombinant Saccharomyces cerevisiae which expresses an acidic PG from Aspergillus kawachii has been studied in batch and fed-batch cultures. Kinetics and stoichiometric parameters of the recombinant yeast were determined in batch cultures in a synthetic medium. In these cultures, the total biomass concentration, protein concentration, and enzyme activity achieved were 2.2 g/L, 10 mg/L, and 3 U/mL, respectively, to give a productivity of 0.06 U/(mL·h. In fed-batch cultures, various strategies for galactose feeding were used: (i after a glucose growth phase, the addition of a single pulse of galactose which gave a productivity of 0.19 U/(mL·h; (ii after a glucose growth phase, a double pulse of galactose at the same final concentration was added, resulting in a productivity of 0.21 U/(mL·h; (iii a simultaneous feeding of glucose and galactose, yielding a productivity of 1.32 U/(mL·h. Based on these results, the simultaneous feeding of glucose and galactose was by far the most suitable strategy for the production of this enzyme. Moreover, some biochemical characteristics of the recombinant enzyme such as a molecular mass of ~60 kDa, an isoelectric point of 3.7 and its ability to hydrolyze polygalacturonic acid at pH=2.5 were determined.

  11. Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry.

    Science.gov (United States)

    Vadapalli, V R K; Zvimba, J N; Mathye, M; Fischer, H; Bologo, L

    2015-01-01

    This study investigated the implications of using two grades of limestone from a paper and pulp industry for neutralization of acid mine drainage (AMD) in a pilot sequencing batch reactor (SBR). In this regard, two grades of calcium carbonate were used to neutralize AMD in a SBR with a hydraulic retention time (including settling) of 100 min and a sludge retention time of 360 min, by simultaneously monitoring the Fe(II) removal kinetics and overall assessment of the AMD after treatment. The Fe(II) kinetics removal and overall AMD treatment were observed to be highly dependent on the limestone grade used, with Fe(II) completely removed to levels lower than 50 mg/L in cycle 1 after 30 min using high quality or pure paper and pulp limestone. On the contrary, the other grade limestone, namely waste limestone, could only achieve a similar Fe(II) removal efficiency after four cycles. It was also noticed that suspended solids concentration plays a significant role in Fe(II) removal kinetics. In this regard, using pure limestone from the paper and pulp industry will have advantages compared with waste limestone for AMD neutralization. It has significant process impacts for the SBR configuration as it allows one cycle treatment resulting in a significant reduction of the feed stock, with subsequent generation of less sludge during AMD neutralization. However, the use of waste calcium carbonate from the paper and pulp industry as a feed stock during AMD neutralization can achieve significant cost savings as it is cheaper than the pure limestone and can achieve the same removal efficiency after four cycles.

  12. Production of savinase and population viability of Bacillus clausii during high-cell-density fed-batch cultivations

    DEFF Research Database (Denmark)

    Christiansen, Torben; Michaelsen, S.; Wumpelmann, M.

    2003-01-01

    The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all....... The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable...

  13. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  14. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.

    Science.gov (United States)

    Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut

    2011-10-01

    Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.

  15. Feed Materials Production Center. Final phase-in report volume 11 of 15 waste management, October 25, 1985--December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.E.

    1986-01-17

    This volume of the Transition Final Report provides the findings, recommendations and corrective actions for the Waste Management areas developed during the phase-in actions by Westinghouse Materials Company (WMCO). The objective is to provide a summary of the studies and investigations performed by the WMCO Company during the transition period. The Waste Management effort at FMPC was expanded in 1984 when a separate group was formed within the NLO organization. This is considered to be an area where significant increase in priority and effort must be applied to resolve waste management problems and to bring the site in conformity to regulations and the Environmental Health/Safety Standards. During the transition, there was a comprehensive investigation in all areas of air, liquid and solid waste management for nuclear, chemical and conventional wastes. Not all of these investigations are documented in this report, but the information gathered was used in the development of the budgets (cost accounts), programs, and organizational planning.

  16. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses.

    Science.gov (United States)

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-03-01

    Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose-xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h(-1). With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.

  17. Cold-cap reactions in vitrification of nuclear waste glass: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jaehun; Pierce, David A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pokorný, Richard [Department of Chemical Engineering, Institute of Chemical Technology in Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Hrma, Pavel, E-mail: pavelhrma@postech.ac.kr [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2013-05-10

    Highlights: ► We measured enthalpy-based conversion degree of overlapping reactions using DSC. ► We employed the run/rerun technique to obtain heat flow associated with reactions. ► Batch-to-glass conversion advances via multiple overlapping reactions. ► The kinetic model is intended for the source term in the energy transfer equation. ► The results are relevant for industrial glass making and nuclear waste vitrification. - Abstract: Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used simultaneous differential scanning calorimetry–thermogravimetry (DSC–TGA) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both the heat associated with the heat capacity of the feed and experimental artifacts, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by an nth order kinetic model, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model.

  18. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol.

    Science.gov (United States)

    Nilsson, A; Taherzadeh, M J; Lidén, G

    2001-07-26

    Optimization of fed-batch conversion of lignocellulosic hydrolyzates by the yeast Saccharomyces cerevisiae was studied. The feed rate was controlled using a step response strategy, in which the carbon dioxide evolution rate was used as input variable. The performance of the control strategy was examined using both an untreated and a detoxified dilute acid hydrolyzate, and the performance was compared to that obtained with a synthetic medium. In batch cultivation of the untreated hydrolyzate, only 23% of the hexose sugars were assimilated. However, by using the feed-back controlled fed-batch technique, it was possible to obtain complete conversion of the hexose sugars. Furthermore, the maximal specific ethanol productivity (q(E,max)) increased more than 10-fold, from 0.06 to 0.70 g g(-1) h(-1). In addition, the viability of the yeast cells decreased by more than 99% in batch cultivation, whereas a viability of more than 40% could be maintained during fed-batch cultivation. In contrast to untreated hydrolyzate, it was possible to convert the sugars in the detoxified hydrolyzate also in batch cultivation. However, a 50% higher specific ethanol productivity was obtained using fed-batch cultivation. During batch cultivation of both untreated and detoxified hydrolyzate a gradual decrease in specific ethanol productivity was observed. This decrease could largely be avoided in fed-batch cultivations.

  19. Optimal online-list batch scheduling

    NARCIS (Netherlands)

    Paulus, J.J.; Ye, Deshi; Zhang, Guochuan

    We consider the online-list batch scheduling problem. Jobs arrive one by one and have to be assigned upon arrival to a scheduled batch such that the makespan is minimized. Each batch can accommodate up to B jobs. We give a complete classification of the tractability of this online problem.

  20. Production of hydrogen from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.L.

    1995-11-01

    The Gasification of Municipal Solid Waste (MSW) includes gasification and the process for producing a gasificable slurry from raw MSW by using high pressures of steam. A potential energy source, MSW is a composite of organic materials such as: paper, wood, food waste, etc. There are different paper grades producing different results with low-quality paper forming better slurries than high-quality papers; making MSW a difficult feedstock for gasification. The objective of the bench-scale laboratory work has been to establish operating conditions for a hydrothermal pre-processing scheme for municipal solid waste (MSW) that produces a good slurry product that can be pumped and atomized to the gasifier for the production of hydrogen. Batch reactors are used to determine product yields as a function of hydrothermal treatment conditions. Various ratios of water-to-paper were used to find out solid product, gas product, and soluble product yields of MSW. Experimental conditions covered were temperature, time, and water to feed ratio. Temperature had the strongest effect on product yields.

  1. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.

    Science.gov (United States)

    Martín-González, L; Colturato, L F; Font, X; Vicent, T

    2010-10-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  3. Development of Fed-Batch Cultivation Strategy for Efficient Oxytetracycline Production by Streptomyces rimosus at Semi-Industrial Scale

    Directory of Open Access Journals (Sweden)

    Elsayed Ahmed Elsayed

    2015-10-01

    Full Text Available ABSTRACTOxytetracycline (OTC production byStreptomyces rimosus was studied in batch and fed-batch cultures in shake flask and bioreactor levels using semi-defined medium. First, the effect of glucose concentration on OTC production and growth kinetics was studied intensively. The optimal glucose concentration in the medium was 15 g/L. Higher glucose concentrations supported higher biomass production by less volumetric and specific antibiotic production. Based on these data, cultivations were carried out at semi-industrial scale 15 L bioreactor in batch culture. At bioreactor level, cell growth and OTC production were higher compared to the shake flask culture by about 18 and 38%, respectively. During the bioreactor cultivation, glucose was totally consumed after only 48 h. Thus, the fed-batch experiment was designed for mono-glucose feeding and complete medium feeding to increase the OTC production by overcoming carbon limitations. The results showed that the fed-batch culture using constant glucose feeding strategy with rate of 0.33 g/L/h produced 1072 mg/L. On the other hand, feeding with complete medium resulted in 45% higher biomass but less OTC production by about 26% compared to mono-glucose fed culture. A further improvement in this process was achieved in by keeping the dissolved oxygen (DO value at 60% saturation by cascading the glucose feeding pump with the DO controller. The later feeding strategy resulted in higher antibiotic production, reaching 1414 mg/L after 108 h.

  4. Effects of intermittent suckling and creep feed intake on pig performance from birth to slaughter

    OpenAIRE

    Kuller, W.I.; Soede, N. M.; Beers-Schreurs, van, H.M.G.; Langendijk, P.; Taverne, M.A.M.; Kemp, B.; Verheijden, J.H.M.

    2007-01-01

    An experiment was conducted to determine if the improved creep feed intake observed during intermittent suckling (IS) is important for postweaning performance. Therefore, creep feed intake of litters was assessed, and within litters, eaters and noneaters were distinguished using chromic oxide as an indigestible marker. Batches of sows were suckled intermittently (IS, 7 batches; n = 31) or continuously (control, 7 batches; n = 31). In the IS group, litters were separated from the sow for a per...

  5. Variations between post- and pre-harvest seasons in stunting, wasting, and Infant and Young Child Feeding (IYCF) practices among children 6-23 months of age in lowland and midland agro-ecological zones of rural Ethiopia.

    Science.gov (United States)

    Roba, Kedir Teji; O'Connor, Thomas Pacelli; Belachew, Tefera; O'Brien, Nora Mary

    2016-01-01

    Food availability and access are strongly affected by seasonality in Ethiopia. However, there are little data on seasonal variation in Infant and Young Child Feeding (IYCF) practices and malnutrition among 6-23 months old children in different agro-ecological zones of rural Ethiopia. Socio-demographic, anthropometry and IYCF indicators were assessed in post- and pre-harvest seasons among children aged 6-23 months of age randomly selected from rural villages of lowland and midland agro-ecological zones. Child stunting and underweight increased from prevalence of 39.8% and 26.9% in post-harvest to 46.0% and 31.8% in pre-harvest seasons, respectively. The biggest increase in prevalence of stunting and underweight between post- and pre-harvest seasons was noted in the midland zone. Wasting decreased from 11.6% post-harvest to 8.5% pre-harvest, with the biggest decline recorded in the lowland zone. Minimum meal frequency, minimum acceptable diet and poor dietary diversity increased considerably in pre-harvest compared to post-harvest season in the lowland zone. Feeding practices and maternal age were predictors of wasting, while women's dietary diversity and children age was predictor of child dietary diversity in both seasons. There is seasonal variation in malnutrition and IYCF practices among children 6-23 months of age with more pronounced effect in midland agro-ecological zone. A major contributing factor for child malnutrition may be poor feeding practices. Health information strategies focused on both IYCF practices and dietary diversity of mothers could be a sensible approach to reduce the burden of child malnutrition in rural Ethiopia.

  6. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa.

    Science.gov (United States)

    Shih, Ing-Lung; Chou, Bi-Wen; Chen, Chien-Cheng; Wu, Jane-Yii; Hsieh, Chienyan

    2008-03-01

    The fermentation of Grifola frondosa was investigated in the shake flasks and a 5-L jar fermenter in batch and fed-batch modes. In the shake-flask experiments, the preferable mycelial growth and exopolysaccharide (EPS) production was observed at relatively low pH; maltose and glucose were preferred carbon sources for high mycelial production. The EPS was doubled after 13 d of cultivation when glucose was increased from 2% to 4%. Yeast extract (YE) (0.4%) in combination with corn steep powder (CSP) (0.6%) and YE (0.8%) in combination with CSP (1.2%) were preferred nitrogen sources for high mycelial production and EPS production, respectively. All plant oils tested significantly stimulate cell growth of G. frondosa but they failed to enhance EPS production. The EPS products usually consisted of two fractions of different molecular sizes varied by the plant oils used. The fed-batch fermentation by glucose feeding was performed when the glucose concentration in the medium was lower than 0.5% (5g/L), which greatly enhanced the accumulation of mycelial biomass and EPS; the mycelial biomass and EPS were 3.97g/L and 1.04g/L before glucose feeding, which reached 8.23g/L and 3.88g/L at 13 d of cultivation. In contrast, the mycelial biomass and EPS in the batch fermentation were 6.7g/L and 3.3g/L at 13 d of cultivation.

  7. Recommendation of ruthenium source for sludge batch flowsheet studies

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-13

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate, conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.

  8. BATCH SETTLING IN VERTICAL SETTLERS

    OpenAIRE

    Lama Ramirez, R.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú; Condorhuamán Ccorimanya, C.; Universidad Nacional Mayor De San Marcos Facultad de Química e Ingeniería Química Departamento de Operaciones Unitarias Av. Venezuela cdra. 34 sin, Lima - Perú

    2014-01-01

    lt has been studied the batch sedimentation of aqueous suspensions of precipitated calcium carbonate, barium sulphate and lead oxide , in vertical thickeners of rectangular and circular cross sectional area. Suspensions vary in concentration between 19.4 and 617.9 g/I and the rate of sedimentation obtained between 0.008 and 7.70 cm/min. The effect of the specific gravity of the solid on the rate of sedimentation is the same for all the suspensions, that is, the greater the value of the specif...

  9. REPORTABLE RADIONUCLIDES IN DWPF SLUDGE BATCH 7A (MACROBATCH 8)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Diprete, D.; Click, D.; Bannochie, C.

    2011-12-20

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently

  10. Terminal reactions in the anaerobic digestion of animal waste.

    Science.gov (United States)

    Boone, D R

    1982-01-01

    An anaerobic mesophilic digestor was operated using beef cattle waste (diluted to 5.75% volatile solids) as substrate; retention time was 10 days with daily batch feed. Volatile solids destruction was 36%. Daily gas production rate was 1.8 liters of gas (standard temperature and pressure) per liter of digestor contents (0.99 liters of CH(4) per liter of digestor contents). Acetate turnover was measured, and it was calculated that 68% of the CH(4) was derived from the methyl group of acetate. When the methanogenic substrates acetic acid or H(2)/CO(2) were added to the digestor on a continuous basis, the microflora were able to adapt and convert them to terminal products while continuing to degrade animal waste to the same extent as without additions. The methanogenic substrates were added at a rate at least 1.5 times the microbial production rate which was measured in the absence of added substrates. Added acetate was converted directly to CH(4) by acetoclastic methanogens; H(2) addition greatly stimulated acetate production in the digestor. A method is described for the measurement of acetate turnover in batch-fed digestors.

  11. Terminal Reactions in the Anaerobic Digestion of Animal Waste

    Science.gov (United States)

    Boone, David R.

    1982-01-01

    An anaerobic mesophilic digestor was operated using beef cattle waste (diluted to 5.75% volatile solids) as substrate; retention time was 10 days with daily batch feed. Volatile solids destruction was 36%. Daily gas production rate was 1.8 liters of gas (standard temperature and pressure) per liter of digestor contents (0.99 liters of CH4 per liter of digestor contents). Acetate turnover was measured, and it was calculated that 68% of the CH4 was derived from the methyl group of acetate. When the methanogenic substrates acetic acid or H2/CO2 were added to the digestor on a continuous basis, the microflora were able to adapt and convert them to terminal products while continuing to degrade animal waste to the same extent as without additions. The methanogenic substrates were added at a rate at least 1.5 times the microbial production rate which was measured in the absence of added substrates. Added acetate was converted directly to CH4 by acetoclastic methanogens; H2 addition greatly stimulated acetate production in the digestor. A method is described for the measurement of acetate turnover in batch-fed digestors. PMID:16345928

  12. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  13. Rescuing Food from the Organics Waste Stream to Feed the Food Insecure: An Economic and Environmental Assessment of Australian Food Rescue Operations Using Environmentally Extended Waste Input-Output Analysis

    Directory of Open Access Journals (Sweden)

    Christian John Reynolds

    2015-04-01

    Full Text Available In this paper we investigate the economic and environmental efficiency of charities and NGO’s “rescuing” food waste, using a 2008 case study of food rescue organisations in Australia. We quantify the tonnages, costs, and environmental impact of food rescued, and then compare food rescue to other food waste disposal methods composting and landfill. To our knowledge this is the first manuscript to comprehend the psychical flows of charity within an Input-Output framework—treating the charity donations as a waste product. We found that 18,105 tonnes of food waste was rescued, and calculate that food rescue operations generate approximately six kilograms of food waste per tonne of food rescued, at a cost of US$222 per tonne of food rescued. This a lower cost than purchasing a tonne of comparable edible food at market value. We also found that per US dollar spent on food rescue, edible food to the value of US$5.71 (1863 calories was rescued. Likewise, every US dollar spent on food rescue redirected food that represented 6.6 m3 of embodied water, 40.13 MJ of embodied energy, and 7.5 kilograms of embodied greenhouse gasses (CO2 equivalents from being sent to landfill or composting, and into mouths of the food insecure. We find that food rescue—though more economically costly than landfill or composting—is a lower cost method of obtaining food for the food insecure than direct purchasing.

  14. REAL WASTE TESTING OF SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Duignan, M.

    2009-10-30

    This report presents data on batch contact and column testing tasks for spherical resorcinol-formaldehyde (sRF) resin. The testing used a non-radioactive simulant of SRS Tank 2F dissolved salt, as well as an actual radioactive waste sample of similar composition, which are both notably high in sodium (6 M). The resin was Microbeads batch 5E-370/641 which had been made on the hundred gallon scale. Equilibrium batch contact work focused on cesium at a temperature of 25 C due to the lack of such data to better benchmark existing isotherm models. Two campaigns were performed with small-scale ion exchange columns, first with Tank 2F simulant, then with actual dissolved salt in the Shielded Cells. An extrapolation of the batch contact results with radioactive waste over-predicted the cesium loaded onto the IX sRF resin bed by approximately 11%. This difference is not unexpected considering uncertainties from measurement and extrapolation and because the ion exchange that occurs when waste flows through a resin bed probably cannot reach the same level of equilibrium as when waste and resin are joined in a long term batch contact. Resin was also characterized to better understand basic chemistry issues such as holdup of trace transition metals present in the waste feed streams. The column tests involved using two beds of sRF resin in series, with the first bed referred to as the Lead column and the second bed as the Lag column. The test matrix included two complete IX cycles for both the simulant and actual waste phases. A cycle involves cesium adsorption, until the resin in the Lead column reaches saturation, and then regenerating the sRF resin, which includes eluting the cesium. Both the simulated and the actual wastes were treated with two cycles of operation, and the resin beds that were used in the Lead and Lag columns of simulant test phase were regenerated and reused in the actual waste test phase. This task is the first to demonstrate the treatment of SRS waste

  15. Techno-economic assessment of boiler feed water production by membrane distillation with reuse of thermal waste energy from cooling water

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Leerdam, R.C. van; Medevoort, J. van; Tongeren, W.G.J.M. van; Verhasselt, B.; Verelst, L.; Vermeersch, M.; Corbisier, D.

    2015-01-01

    The European KIC-Climate project Water and Energy for Climate Change (WE4CC) aims at the technical demonstration, business case evaluation and implementation of new value chains for the production of high-quality water using low-grade thermal waste energy from cooling water. A typical large-scale

  16. Recycling of food waste as nutrients in Chlorella vulgaris cultivation.

    Science.gov (United States)

    Lau, Kin Yan; Pleissner, Daniel; Lin, Carol Sze Ki

    2014-10-01

    Heterotrophic cultivation of Chlorella vulgaris was investigated in food waste hydrolysate. The highest exponential growth rate in terms of biomass of 0.8day(-1) was obtained in a hydrolysate consisting of 17.9gL(-1) glucose, 0.1gL(-1) free amino nitrogen, 0.3gL(-1) phosphate and 4.8mgL(-1) nitrate, while the growth rate was reduced in higher concentrated hydrolysates. C. vulgaris utilized the nutrients recovered from food waste for the formation of biomass and 0.9g biomass was produced per gram glucose consumed. The microalgal biomass produced in nutrient sufficient batch cultures consisted of around 400mgg(-1) carbohydrates, 200mgg(-1) proteins and 200mgg(-1) lipids. The conversion of nutrients derived from food waste and the balanced biomass composition make C. vulgaris a promising strain for the recycling of food waste in food, feed and fuel productions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Yields from pyrolysis of refinery residue using a batch process

    Directory of Open Access Journals (Sweden)

    S. Prithiraj

    2017-12-01

    Full Text Available Batch pyrolysis was a valuable process of assessing the potential of recovering and characterising products from hazardous waste materials. This research explored the pyrolysis of hydrocarbon-rich refinery residue, from crude oil processes, in a 1200 L electrically-heated batch retort. Furthermore, the off-gases produced were easily processed in compliance with existing regulatory emission standards. The methodology offers a novel, cost-effective and environmentally compliant method of assessing recovery potential of valuable products. The pyrolysis experiments yielded significant oil (70% with high calorific value (40 MJ/kg, char (14% with carbon content over 80% and non-condensable gas (6% with significant calorific value (240 kJ/mol. The final gas stream was subjected to an oxidative clean-up process with continuous on-line monitoring demonstrating compliance with South African emission standards. The gas treatment was overall economically optimal as only a smaller portion of the original residue was subjected to emission-controlling steps. Keywords: Batch pyrolysis, Volatiles, Oil yields, Char, Emissions, Oil recovery

  18. NDA BATCH 2008-05

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-03

    QC sample results (daily background check drums and 100-gram standard) were within acceptance criteria established by WIPPs Quality Assurance objectives for TRU Waste characterization. Replicate run was performed on the following drums LL85234292 and LL85101617. Replicate measurement results are acceptable at the 95% confidence level as established by WIPP criteria.

  19. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D. [and others

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

  20. DC graphite arc furnace, a simple system to reduce mixed waste volume

    Energy Technology Data Exchange (ETDEWEB)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J. [and others

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.

  1. 77 FR 38789 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Concentrator...

    Science.gov (United States)

    2012-06-29

    ... of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Concentrator Feed Makeup... concentrator feed makeup tank and melter feed hold tank (the vessels) which were used in conjunction with... waste packages in accordance with applicable waste acceptance criteria using specific waste profile...

  2. Biodesulphurization of coal: effect of pulse feeding and leachate recycle

    Energy Technology Data Exchange (ETDEWEB)

    Malik, A.; Dastidar, M.G.; Roychoudhury, P.K. [Indian Institute of Technology, New Delhi (India). Dept. of Biochemical Engineering and Biotechnology

    2001-07-01

    Biodesulphurization of coal was carried out under four modes of operation namely: conventional batch, constant volume pulse feeding (CVPF), increasing volume pulse feeding (IVPF) and leachate recycle. The effects of different pulse feeding strategies and leachate (product) recycle on biological performance were studied and compared with a conventional batch process. The sulphur removal rates for each of the four processes were 0.04 g/day (batch), 0.09 g/day (CVPF), 0.19 g/day (IVPF) and 0.05 g/day (leachate recycle). The values of iron solubilization rate also followed the same trend. The percentage sulphur removal on the 30th day using batch, CVPF, IVPF and leachate recycle processes was 72%, 93%, 97% and 90%, respectively. IVPF was found to be the best operational strategy for biodesulphurization process at enhanced rates for longer duration.

  3. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  4. Treatment of Diesel Waste by Sequencing Batch Bioreactor ...

    African Journals Online (AJOL)

    Nei

    2012-03-13

    Mar 13, 2012 ... storage, distribution, distillation, exploitation, shipping, pipeline .... through a cellulose acetate membrane (0.22 µm). Filter membranes were dried at 80°C either for 24 h or until they achieved a constant weight. Hydrocarbon quantitation. Hydrocarbons present in the non-aqueous phase of samples were.

  5. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferred option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.

  6. Automatic endpoint determination for batch tea dryers

    NARCIS (Netherlands)

    Temple, S.J.; Boxtel, van A.J.B.

    2001-01-01

    A laboratory batch fluid-bed dryer was developed for handling small samples of tea for experimental batch manufacture, and this dryer required a means of stopping drying when the process was complete. A control system was devised which requires only the initial weight of the sample to be entered

  7. Batch and fed-batch bioreactor studies for the enhanced production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428.

    Science.gov (United States)

    Kumar, Sanjay; Prabhu, Ashish A; Dasu, V Venkata; Pakshirajan, Kannan

    2017-01-02

    The effect of dissolved oxygen (DO) level and pH (controlled/uncontrolled) was first studied to enhance the production of novel glutaminase-free L-asparaginase by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor. The optimum level of DO was found to be 20%. The production of L-asparaginase was found to be maximum when pH of the medium was maintained at 8.5 after 12 h of fermentation. Under these conditions, P. carotovorum produced 17.97 U/mL of L-asparaginase corresponding to the productivity of 1497.50 U/L/h. The production of L-asparaginase was studied in fed-batch bioreactor by feeding L-asparagine (essential substrate for production) and/or glucose (carbon source for growth) at the end of the reaction period of 12 h. The initial medium containing both L-asparagine and glucose in the batch mode and L-asparagine in the feeding stream was found to be the best combination for enhanced production of glutaminase-free L-asparaginase. Under this condition, the L-asparaginase production was increased to 38.8 U/mL, which corresponded to a productivity of 1615.8 U/L/h. The production and productivity were increased by 115.8% and 7.9%, respectively, both of which are higher than those obtained in the batch bioreactor experiments.

  8. Development of fed-batch profiles for efficient biosynthesis of catechol-O-methyltransferase

    Directory of Open Access Journals (Sweden)

    G.M. Espírito Santo

    2014-09-01

    Full Text Available Catechol-O-methyltransferase (COMT, EC 2.1.1.6 plays a crucial role in dopamine metabolism which has intimately linked this enzyme to some neurodegenerative diseases, such as Parkinson's disease. In recent years, in the attempt of developing new therapeutic strategies for Parkinson's disease, there has been a growing interest in the search for effective COMT inhibitors. In order to do so, large amounts of COMT in an active form are needed, and the best way to achieve this is by up-scaling its production through biotechnological processes. In this work, a fed-batch process for the biosynthesis of the soluble isoform of COMT in Escherichia coli is proposed. This final process was selected through the evaluation of the effect of different dissolved oxygen concentrations, carbon and nitrogen source concentrations and feeding profiles on enzymatic production and cell viability, while controlling various parameters (pH, temperature, starting time of the feeding and induction phases and carbon source concentration during the process. After several batch and fed-batch experiments, a final specific COMT activity of 442.34 nmol/h/mg with approximately 80% of viable cells at the end of the fermentation were achieved. Overall, the results described herein provide a great improvement on hSCOMT production in recombinant bacteria and provide a new and viable option for the use of a fed-batch fermentation with a constant feeding profile to the large scale production of this enzyme.

  9. Change in hyphal morphology of Aspergillus Oryzae during fed-batch cultivation

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Olsson, Lisbeth; Hansen, K

    2006-01-01

    the batch phase from 2.8-2.9 up to 4.0-4.4 mu m. The diameter of the hyphal elements remained constant, around 4 mu m, after the feed was started. However, the diameter of the immediate hyphal tip, where the enzyme secretion is thought to take place, increased dramatically with up to a factor 2.5 during......Industrial enzymes are often produced by filamentous fungi in fed-batch cultivations. During cultivation, the different morphological forms displayed by the fungi have an impact on the overall production. The morphology of a recombinant lipase producing Aspergillus oryzae strain was investigated...

  10. Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Bomble, Yannick J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); St. John, Peter C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.

  11. Microbial community dynamics in diesel waste biodegradation using ...

    African Journals Online (AJOL)

    The dynamic of molecular microbial community during diesel waste biodegradation was investigated. The waste was treated in bioreactors operated in sequencing batch operation mode (SBR) in four cycles of 72 h, using optimized setpoints (pH, initial waste load, C:N ratio, aeration). Optimal conditions allowed the system ...

  12. Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria: A vermicompost based assessment with vegetable market waste and rice straw feed mixtures.

    Science.gov (United States)

    Hussain, Nazneen; Singh, Archana; Saha, Sougata; Venkata Satish Kumar, Mattaparthi; Bhattacharyya, Pradip; Bhattacharya, Satya Sundar

    2016-12-01

    Vermicomposting is a dependable waste recycling technology which greatly augments N and P levels mainly through microbial action. This paper aims to identify efficient N-fixing (NFB) and P-solubilizing (PSB) bacteria from earthworm intestines. Various combinations of vegetable market waste, rice straw, and cowdung were fed to two earthworm species (Eisenia fetida and Perionyx excavatus). Total organic C decreased, pH shifted towards neutrality, and NPK availability, and microbial (NFB, PSB, and total bacteria) population increased remarkably during vermicomposting with E. fetida. Therefore, 45 NFB and 34 PSB strains isolated from Eisenia gut were initially screened, their inter-dominance assessed, and 8 prolific strains were identified through 16SrRNA sequencing. Interestingly, two novel N-fixing strains of Kluyvera ascorbata emerged as an efficient biofertilizer candidate. Moreover, both N-fixing and P-solubilizing strains of Serratia and Bacillus were isolated from earthworm gut. All the isolated strains significantly improved soil health and facilitated crop growth as compared to commercial biofertilizers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. LSF usage for batch at CERN

    CERN Multimedia

    Schwickerath, Ulrich

    2007-01-01

    Contributed poster to the CHEP07. Original abstract: LSF 7, the latest version of Platform's batch workload management system, addresses many issues which limited the ability of LSF 6.1 to support large scale batch farms, such as the lxbatch service at CERN. In this paper we will present the status of the evaluation and deployment of LSF 7 at CERN, including issues concerning the integration of LSF 7 with the gLite grid middleware suite and, in particular, the steps taken to endure an efficient reporting of the local batch system status and usage to the Grid Information System

  14. Development of immobilized cellulase through functionalized gold nano-particles for glucose production by continuous hydrolysis of waste bamboo chopsticks.

    Science.gov (United States)

    Cheng, Cheanyeh; Chang, Kuo-Chung

    2013-12-10

    Cellulase immobilized on silica through the assistance of l-cysteine functionalized gold nano-particle was applied for the continuous hydrolysis of waste bamboo chopsticks powder to produce glucose. The optimal conditions for the continuous hydrolysis were pH 8.0, 50°C. A 4-day reaction with an initial 0.3 gL⁻¹ waste bamboo chopsticks powder, a feed containing 0.2 gL⁻¹ waste bamboo chopsticks powder at a continuous feed and draw rate of 0.5 mLmin⁻¹, and an enzyme loading of 40 mgcellulase(gsilica)⁻¹, has 72.0-76.6% conversion rates of repeated hydrolyses that correspond to a total production of 630.5-671.2mg glucose and are much better than batch hydrolyses. At higher enzyme loading (117 mgcellulase(gsilica)⁻¹), higher initial concentration (0.5 gL⁻¹), and higher feed concentration (0.42 gL⁻¹) the conversion rate increases to 82.9% and a total amount of 1418 mgglucose. The immobilized cellulase can be recovered easily by filtration and used repeatedly at least 6 times over a period more than 90 days with a recovered activity approximately the same as or better than previous reactions. Thus the process is promising for scaling up. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Gregor Drago Zupančič

    2017-01-01

    Full Text Available Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day, and with a maximum achieved organic loading rate of 13.6 kg/(m3·day in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD inserted, and total COD removal efficiencies of over 90 % were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8 % (by volume. By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50 %.

  16. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Science.gov (United States)

    2017-01-01

    Summary Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day), and with a maximum achieved organic loading rate of 13.6 kg/(m3·day) in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8% (by volume). By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%. PMID:28867948

  17. Biological Treatment of Leachate using Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    WDMC Perera

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE TA Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill sites.   The study was conducted to assess the feasibility of the usage of the Sequencing Batch Reactor in the treatment of the landfill leachate up to the proposed levels in the draft report of “Proposed Sri Lankan standard for landfill leachate to be disposed to the inland waters". Leachate collected from the open dumpsite at Meethotamulla, Western Province, Sri Lanka was used for leachate characterization.   SBR was constructed with a 10-liter working volume operated in an 18 hour cycle mode and each cycle consists of 15hours of aerobic, 2h settle and 0.5 h of fill/decant stages. The Dissolved Oxygen level within the SBR was maintained at 2 mg/l through the aerobic stage. Infeed was diluted with water during the acclimatization period and a leachate to water ratio of 55:45 was maintained. The removal efficiencies for different parameters were; COD (90.5%, BOD (92.6%, TS (92.1%, Conductivity (83.9%, Alkalinity (97.4%, Hardness (82.2%, Mg (80.5%, Fe (94.2%, Zn (63.4%, Cr (31.69%, Pb (99.6%, Sulphate (98.9%, and Phosphorus (71.4% respectively. In addition Ni and Cd were removed completely during a single SBR cycle. Thus the dilution of leachate in the dumpsites using municipal wastewater, groundwater or rainwater was identified as the most cost effective dilution methods. The effluent from the Sequencing batch reactor is proposed to be further treated using a constructed wetland before releasing to surface water.

  18. CST Melter Feed Characterization in Support of the 1999 and 2000 Thermal Fluids Lab Hydragard Testing

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.C.

    2001-06-07

    The Immobilization Technology Section measured properties of the melter feed simulants used in the 1999 and 2000 Hydragard sample loop tests. These tests used simulated Sludge Batch 1B (Macrobatch 2) melter feeds. The melter feeds were characterized for wt. percent total and insoluble solids, pH, composition, particle size distribution, and rheology.

  19. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge.

    Science.gov (United States)

    Mo, Wing Yin; Man, Yu Bon; Wong, Ming Hung

    2018-02-01

    China's aquaculture industry is growing dramatically in recent years and now accounts for 60.5% of global aquaculture production. Fish protein is expected to play an important role in China's food security. Formulated feed has become the main diet of farmed fish. The species farmed have been diversified, and a large amount of 'trash fish' is directly used as feed or is processed into fishmeal for fish feed. The use of locally available food waste as an alternative protein source for producing fish feed has been suggested as a means of tackling the problem of sourcing safe and sustainable feed. This paper reviews the feasibility of using locally available waste materials, including fish waste, okara and food waste. Although the fishmeal derived from fish waste, okara or food waste is less nutritious than fishmeal from whole fish or soybean meal, most fish species farmed in China, such as tilapia and various Chinese carp, grow well on diets with minimal amounts of fishmeal and 40% digestible carbohydrate. It can be concluded that food waste is suitable as a component of the diet of farmed fish. However, it will be necessary to revise regulations on feed and feed ingredients to facilitate the use of food waste in the manufacture of fish feed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  1. Local feed resources for poultry

    NARCIS (Netherlands)

    Leenstra, F.R.

    2013-01-01

    In poultry ‘no input’, ‘low input’ and commercial production can be distinguished. ‘No input’ implies scavenging poultry with some kitchen waste or crop residues as supplemental feed. Input is negligible and economic efficiency is high, provided there is any output. Commercial production is capital

  2. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey

    Directory of Open Access Journals (Sweden)

    R. Rech

    2006-12-01

    Full Text Available Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify beta-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and beta-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW were tested and the best composition (containing DCW, supplemented with yeast extract 1 %, and peptone 3 % (w/v was chosen for bioreactor experiments. Batch, and fed-batch cultures with linear ascending feeding for 25 (FB25, 35 (FB35, and 50 (FB50 hours, were performed. FB35 and FB50 produced the highest beta-galactosidase specific activities (around 1,800 U/g cells, and also the best productivities (180 U/L.h. Results show the potential use of fed-batch cultures of recombinant S. cerevisiae on industrial applications using supplemented whey as substrate.

  3. Systematic Methodology for Reproducible Optimizing Batch Operation

    DEFF Research Database (Denmark)

    Bonné, Dennis; Jørgensen, Sten Bay

    2006-01-01

    This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...... contribution furthermore presents how the asymptotic convergence of Iterative Learning Control is combined with the closed-loop performance of Model Predictive Control to form a robust and asymptotically stable optimal controller for ensuring reliable and reproducible operation of batch processes...

  4. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    as pareto optimal solutions. These solutions gives flexibility in evaluating the trade-offs and selecting the most suitable operating policy. Here, ε-constraint approach was used to generate the pareto solutions for two objectives: product concentration and product per unit cost of media, for batch and fed...... batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g......$-1) for fed batch operations. One pareto solution each for batch and for fed batch mode was experimentally validated....

  5. Preparation of Simulated Waste Solutions for Solvent Extraction Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, R.A.

    2000-06-27

    Personnel will need to routinely prepare 0.5 to 10 L batches of salt solutions simulating Savannah River Site (SRS) soluble waste for solvent extraction testing. This report describes the compositions and preparation methods.

  6. 40 CFR 80.1126 - How are RINs generated and assigned to batches of renewable fuel by renewable fuel producers or...

    Science.gov (United States)

    2010-07-01

    ... from a chemical conversion process that uses another renewable fuel as a feedstock; and (B) The... imports a batch of cellulosic biomass ethanol or waste-derived ethanol having an equivalence value of 2.5, that party must assign at least one gallon-RIN to each gallon of cellulosic biomass ethanol or waste...

  7. Food and feed supply and waste disposal in the industrialising city of Vienna (1830-1913): a special focus on urban nitrogen flows.

    Science.gov (United States)

    Gierlinger, Sylvia

    Taking an urban metabolism perspective, this article investigates food and feed consumption as well as flows of nitrogen in the city of Vienna during the industrial transformation. It addresses the question of the amount of agricultural products consumed in the city and their nitrogen content, their origin and their fate after consumption. Changes in dietary nitrogen flows in nineteenth century Vienna are embedded in the context of a socio-ecological transition from an agrarian to an industrial socio-metabolic regime. Similarities and differences in the size and dynamics of urban nitrogen flows in Vienna and Paris are discussed. Critical reading of historical sources and historical material flow accounting are the methodological backbone of this study. Between 1830 and 1913, inflows of dietary nitrogen into the city increased fivefold. Throughout the time period under observation, the urban waterscape was the most important sink for human and animal excreta. The amount of nitrogen disposed of in the urban waterscape via urban excreta increased sevenfold. The average daily consumption of nitrogen per capita was very similar to that in Paris, but the composition of foodstuff differed. In Vienna, the share of meat in food consumption was considerably higher. Both cities had to face the challenge of increasing output flows. However, urban authorities in Vienna and Paris came to different solutions of how to deal with this challenge. Besides institutional settings, the specific geomorphology of the cities as well as biogeographic factors such as the absorption capacity of the Danube in Vienna and the Seine in Paris mattered.

  8. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor.

    Science.gov (United States)

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2015-10-28

    Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock.

  9. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    Science.gov (United States)

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse.

    Science.gov (United States)

    Zhang, Teng; Zhu, Ming-Jun

    2017-04-01

    A study on the fed-batch simultaneous saccharification and co-fermentation (SSCF) of Fenton reaction combined with NaOH pretreated sugarcane bagasse (SCB) at a high solid loading of 10-30% (w/v) was investigated. Enzyme feeding mode, substrate feeding mode and combination of both were compared with the batch mode under respective solid loadings. Ethanol concentrations of above 80g/L were obtained in batch and enzyme feeding modes at a solid loading of 30% (w/v). Enzyme feeding mode was found to increase ethanol productivity and reduce enzyme loading to a value of 1.23g/L/h and 9FPU/g substrate, respectively. The present study provides an economically feasible process for high concentration bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. SLUDGE BATCH 7B GLASS VARIABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Edwards, T.

    2011-10-25

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not

  12. Comparison of batch and continuous multi-column protein A capture processes by optimal design.

    Science.gov (United States)

    Baur, Daniel; Angarita, Monica; Müller-Späth, Thomas; Steinebach, Fabian; Morbidelli, Massimo

    2016-07-01

    Multi-column capture processes show several advantages compared to batch capture. It is however not evident how many columns one should use exactly. To investigate this issue, twin-column CaptureSMB, 3- and 4-column periodic counter-current chromatography (PCC) and single column batch capture are numerically optimized and compared in terms of process performance for capturing a monoclonal antibody using protein A chromatography. Optimization is carried out with respect to productivity and capacity utilization (amount of product loaded per cycle compared to the maximum amount possible), while keeping yield and purity constant. For a wide range of process parameters, all three multi-column processes show similar maximum capacity utilization and performed significantly better than batch. When maximizing productivity, the CaptureSMB process shows optimal performance, except at high feed titers, where batch chromatography can reach higher productivity values than the multi-column processes due to the complete decoupling of the loading and elution steps, albeit at a large cost in terms of capacity utilization. In terms of trade-off, i.e. how much the capacity utilization decreases with increasing productivity, CaptureSMB is optimal for low and high feed titers, whereas the 3-column process is optimal in an intermediate region. Using these findings, the most suitable process can be chosen for different production scenarios. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Kwon, Eun-Yeong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Beom Soo

    2011-09-01

    Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.

  14. Biogas production from steer manures in Vietnam: Effects of feed supplements and tannin contents.

    Science.gov (United States)

    Pham, Cuong H; Saggar, Surinder; Vu, Cuong C; Tate, Kevin R; Tran, Thao T T; Luu, Thi T; Ha, Hanh T; Nguyen, Huong L T; Sommer, Sven G

    2017-11-01

    In developing countries, the simple biogas digesters installed underground without heating or stirring are seen as a 'green' technology to convert animal waste into biogas, a source of bio-energy. However, quantitative estimates of biogas production of manures from steers fed local feed diets at actual incubation temperatures have yet to be carried out. The aim of this study was to determine the methane (CH4) production potential of manures from steers in Vietnam offered traditional feed rations or supplemental diets. Biochemical CH4 production (BMP) was measured in batch tests at 30°C using manures collected from two different experiments of steers fed diets containing feed supplements. BMP was 110.1 (NLkg-1VS) for manure from steers receiving a control diet, significantly lower 79.0 (NL kg-1VS) for manure from steers fed a diet containing 0.3% tannin (%DM), but then showed an increasing trend to 90.9 and 91.2 (NL kg-1VS) for manures from steers receiving 0.4 and 0.5% tannin (%DM) supplements, respectively. Similarly, the CH4 production (NL kg-1VS) of manure from steers was 174 for control, 142 for control supplemented concentrate (C), 143 for control added rice straw treated with urea (R), and 127 for control supplemented C and R. Our results show there was a decrease in CH4 emissions from steer manures through using supplemented rations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Stable isotopes as a useful tool for revealing the environmental fate and trophic effect of open-sea-cage fish farm wastes on marine benthic organisms with different feeding guilds.

    Science.gov (United States)

    Wai, Tak-Cheung; Leung, Kenneth M Y; Wu, Rudolf S S; Shin, Paul K S; Cheung, S G; Li, X Y; Lee, Joseph H W

    2011-01-01

    Environmental fate of fish farm wastes (FFW) released from an open-sea-cage farm at Kat O, Hong Kong was examined by measuring carbon and nitrogen stable isotope (SI) ratios in selected benthic organisms collected along a 2000 m transect from the farm. Our results showed that FFW significantly influenced the energy utilization profile of consumers near the fish farm. Although nitrogen enrichment effect on δ15N was anticipated in biota near the farm, the predicted patterns did not consistently occur in all feeding guilds. Two species of suspension-feeders, which relied on naturally δ15N-depleted sources, were δ15N-enriched near the fish farm. In contrast, both species of benthic grazer and deposit-feeder, which relied on naturally δ15N-enriched algal sources, were δ15N-depleted under the influence of FFW. The SI signatures of biota can, therefore, serve as feasible biomarkers for FFW discharges only when the trophic structure of the receiving environment is fully elucidated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Economic values of growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias gariepinus).

    Science.gov (United States)

    Besson, M; Komen, H; Aubin, J; de Boer, I J M; Poelman, M; Quillet, E; Vancoillie, C; Vandeputte, M; van Arendonk, J A M

    2014-12-01

    In fish farming, economic values (EV) of breeding goal traits are lacking, even though they are key parameters when defining selection objectives. The aim of this study was to develop a bioeconomic model to estimate EV of 2 traits representing production performances in fish farming: the thermal growth coefficient (TGC) and the feed conversion ratio (FCR). This approach was applied to a farm producing African catfish (Clarias gariepinus) in a recirculating aquaculture system (RAS). In the RAS, 2 factors could limit production level: the nitrogen treatment capacity of the biofilter or the fish density in rearing tanks at harvest. Profit calculation includes revenue from fish sales, cost of juveniles, cost of feed, cost of waste water treatment, and fixed costs. In the reference scenario, profit was modeled to zero. EV were calculated as the difference in profit per kilogram of fish between the current population mean for both traits (µt) and the next generation of selective breeding (µt+Δt) for either TGC or FCR. EV of TGC and FCR were calculated for three generations of hypothetical selection on either TGC or FCR (respectively 6.8% and 7.6% improvement per generation). The results show that changes in TGC and FCR can affect both the number of fish that can be stocked (number of batches per year and number of fish per batch) and the factor limiting production. The EV of TGC and FCR vary and depend on the limiting factors. When dissolved NH3-N is the limiting factor for both µt and µt+Δt, increasing TGC decreases the number of fish that can be stocked but increases the number of batches that can be grown. As a result, profit remains constant and EVTGC is zero. Increasing FCR, however, increases the number of fish stocked and the ratio of fish produced per kilogram of feed consumed ("economic efficiency"). The EVFCR is 0.14 €/kg of fish, and profit per kilogram of fish increases by about 10%. When density is the limiting factor for both µt and µt+Δt, the

  17. Application of Taguchi optimization on the cassava starch wastewater electrocoagulation using batch recycle method

    Science.gov (United States)

    Sudibyo, Hermida, L.; Suwardi

    2017-11-01

    Tapioca waste water is very difficult to treat; hence many tapioca factories could not treat it well. One of method which able to overcome this problem is electrodeposition. This process has high performance when it conducted using batch recycle process and use aluminum bipolar electrode. However, the optimum operation conditions are having a significant effect in the tapioca wastewater treatment using bath recycle process. In this research, The Taguchi method was successfully applied to know the optimum condition and the interaction between parameters in electrocoagulation process. The results show that current density, conductivity, electrode distance, and pH have a significant effect on the turbidity removal of cassava starch waste water.

  18. Activity of fuel batches processed through Hanford separations plants, 1944 through 1989

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, R.A.; Wootan, D.W.

    1997-07-29

    This document provides a printout of the ``Fuel Activity Database`` (version U6) generated by the Hanford DKPRO code and transmitted to the Los Alamos National Laboratory for input to their ``Hanford Defined Waste`` model of waste tank inventories. This fuel activity file consists of 1,276 records--each record representing the activity associated with a batch of spent reactor fuel processed by month (or shorter period) through individual Hanford separations plants between 1944 and 1989. Each record gives the curies for 46 key radionuclides, decayed to a common reference date of January 1, 1994.

  19. SALTSTONE BATCH 0 TCLP RCRA METAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A

    2007-06-14

    A saltstone waste form was prepared in the Savannah River National Laboratory from a Tank 50H sample and Z-Area premix material. After the prescribed 28 day cure, samples of the saltstone were collected, and the waste form was shown to meet the South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79.261.24 requirements for a nonhazardous waste form with respect to RCRA metals. These analyses met all quality assurance specifications of USEPA SW-846.

  20. Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption.

    Science.gov (United States)

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha

    2006-09-01

    An inexpensive adsorption method has been developed for the removal of indigo carmine, a highly toxic indigoid class of dye from wastewater. Waste materials--bottom ash, a power plant waste and de-oiled soya, an agricultural waste--have been used as adsorbents. Attempts have been made through batch and bulk removal of the dye and both the adsorbents have been found to exhibit good efficiency to adsorb indigo carmine. Under batch technique effect of temperature, pH, concentration, dosage of adsorbents, sieve size of adsorbents, etc. have been observed. The dye uptake on to both the adsorbents is found to validate Langmuir and Freundlich adsorption isotherms models. Different thermodynamic parameters, like Gibb's free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. Batch technique has also been employed for the kinetic measurements and the adsorption follows a first order rate kinetics for both the adsorbents. The kinetic investigations also reveal for both the adsorbents film diffusion and particle diffusion mechanisms are operative in the lower and higher concentration ranges, respectively. Under the bulk removal, indigo carmine has been adsorbed through the column beds of bottom ash and de-oiled soya and more than 90% of the dye material has been recovered by eluting dilute NaOH solution through exhausted columns.

  1. Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India)

    2006-09-01

    An inexpensive adsorption method has been developed for the removal of indigo carmine, a highly toxic indigoid class of dye from wastewater. Waste materials-bottom ash, a power plant waste and de-oiled soya, an agricultural waste have been used as adsorbents. Attempts have been made through batch and bulk removal of the dye and both the adsorbents have been found to exhibit good efficiency to adsorb indigo carmine. Under batch technique effect of temperature, pH, concentration, dosage of adsorbents, sieve size of adsorbents, etc. have been observed. The dye uptake on to both the adsorbents is found to validate Langmuir and Freundlich adsorption isotherms models. Different thermodynamic parameters, like Gibb's free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. Batch technique has also been employed for the kinetic measurements and the adsorption follows a first order rate kinetics for both the adsorbents. The kinetic investigations also reveal for both the adsorbents film diffusion and particle diffusion mechanisms are operative in the lower and higher concentration ranges, respectively. Under the bulk removal, indigo carmine has been adsorbed through the column beds of bottom ash and de-oiled soya and more than 90% of the dye material has been recovered by eluting dilute NaOH solution through exhausted columns.

  2. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Applying prior knowledge to model batch keeping-quality of cucumber batches

    NARCIS (Netherlands)

    Schouten, R.E.; Tijskens, L.M.M.; Kooten, van O.; Jongbloed, G.

    2004-01-01

    Keeping-quality of individual cucumbers is limited by the green colour; the keeping-quality of batches of cucumbers is limited by the time it takes before 5␘f the cucumbers in the batch reach a predefined colour limit. From literature concerning the synthesis and degradation of chlorophyll and a

  4. Breast-Feeding Twins: Making Feedings Manageable

    Science.gov (United States)

    ... breast-feed more than one baby? Here's help breast-feeding twins or other multiples, from getting positioned and ensuring an adequate milk supply to combining breast-feeding and formula-feeding. By Mayo Clinic Staff If ...

  5. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content.

    Science.gov (United States)

    Kuwae, Shinobu; Miyakawa, Ichiko; Doi, Tomohiro

    2018-01-11

    A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 10 6  cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 10 7 to 1.8 × 10 7  cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.

  6. REUSABLE ADSORBENTS FOR DILUTE SOLUTIONS SEPARATION. 6. BATCH AND CONTINUOUS REACTORS FOR ADSORPTION AND DEGRADATION OF 1,2-DICHLOROBENZENE FROM DILUTE WASTEWATER STREAMS USING TITANIA AS A PHOTOCATALYST. (R828598C753)

    Science.gov (United States)

    Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...

  7. Emerging issues in complementary feeding

    DEFF Research Database (Denmark)

    Michaelsen, Kim F.; Grummer-Strawn, Laurence; Bégin, France

    2017-01-01

    The complementary feeding period (6-24 months) is a window of opportunity for preventing stunting, wasting, overweight, and obesity and for improving long-term development and health. Because WHO published its guiding principles for complementary feeding in 2003, new knowledge and evidence have...... addressed these issues. There are several emerging research areas that are likely to provide a better understanding of how complementary feeding influences growth, development, and health. These include the effect of the young child's diet on body composition, gastrointestinal microbiota, and environmental...... enteric dysfunction. However, at present, findings from these research areas are not likely to influence guidelines. Several emerging issues will be relevant to address when complementary feeding guidelines will be updated. With the increasing prevalence of obesity globally, it is important...

  8. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48

    Directory of Open Access Journals (Sweden)

    Rawia F. Gamal

    2013-01-01

    Full Text Available The present study aimed at developing a strategy to improve the volumetric production of PHAs by Pseudomonas fluorescens S48 using waste frying oil (WFO as the sole carbon source. For this purpose, several cultivations were set up to steadily improve nutrients supply to attain high cell density and high biopolymer productivity. The production of PHAs was examined in a 14 L bioreactor as one-stage batch, two-stage batch, and high-cell-density fed-batch cultures. The highest value of polymer content in one-stage bioreactor was obtained after 60 h (33.7%. Whereas, the two-stage batch culture increased the polymer content to 50.1% after 54 h. High-cell-density (0.64 g/L at continuous feeding rate 0.55 mL/l/h of WFO recorded the highest polymer content after 54 h (55.34%. Semi-scale application (10 L working volume increased the polymer content in one-stage batch, two-stage batch and high cell density fed-batch cultures by about 12.3%, 5.8% and 11.3%, respectively, as compared with that obtained in 2 L fermentation culture. Six different methods for biopolymer extraction were done to investigate their efficiency for optimum polymer recovery. The maximum efficiency of solvent recovery of PHA was attained by chloroform-hypochlorite dispersion extraction. Gas chromatography (GC analysis of biopolymer produced by Pseudomonas fluorescens S48 indicated that it solely composed of 3-hydrobutyric acid (98.7%. A bioplastic film was prepared from the obtained PHB. The isolate studied shares the same identical sequence, which is nearly the complete 16S rRNA gene. The identity of this sequence to the closest pseudomonads strains is about 98-99%. It was probably closely related to support another meaningful parsiomony analysis and construction of a phylogenetic tree. The isolate is so close to Egyptian strain named EG 639838.

  9. Exploring the Transition From Batch to Online

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2010-01-01

    The transition from using computers in batch mode with punch cards, paper tape, piles of print, and lengthy response times to online mode by way of the video display terminal took place in most organizations in the 1970s and 1980s. The video display terminal was a significant forerunner of the tr......The transition from using computers in batch mode with punch cards, paper tape, piles of print, and lengthy response times to online mode by way of the video display terminal took place in most organizations in the 1970s and 1980s. The video display terminal was a significant forerunner...... structures, and acquire new skills. This work-in-progress paper extends an earlier study of the transition from batch to online, based on oral history interviews with (ex)-employees in two large Danish Service Bureaus. The paper takes the next step by ana-lyzing a particular genre: the commercial computer...

  10. AFTER: Batch jobs on the Apollo ring

    Energy Technology Data Exchange (ETDEWEB)

    Hofstadler, P.

    1987-07-01

    This document describes AFTER, a system that allows users of an Apollo ring to submit batch jobs to run without leaving themselves logged in to the ring. Jobs may be submitted to run at a later time or on a different node. Results from the batch job are mailed to the user through some designated mail system. AFTER features an understandable user interface, good on line help, and site customization. This manual serves primarily as a user's guide to AFTER although administration and installation are covered for completeness.

  11. Investigation the effect of olive oil feeding strategies on Yarrowia lipolytica lipase production

    Directory of Open Access Journals (Sweden)

    Farshad Darvishi

    2015-12-01

    Full Text Available Introduction: Lipase of the yeast Yarrowia lipolytica used in detergents, cosmetics, pharmaceuticals and food industries. This enzyme production depends on medium composition, especially carbon source.  The purpose of this study was to investigate the effect of olive oil different feeding strategies on Y. lipolytica lipase production. Materials and methods: The yeast strains Y. lipolytica FDY1390 was cultured in media with different feeding strategies. Three different models were used to fed-batch feeding method. The yeast growth is monitored by direct counting method with neubauer chamber. Lipase activity was measured using titration method. Results: All three models of fed-batch feeding increased lipase toward the batch culture. Fed3 was the best model of fed-batch feeding, in which the model leads to the production of lipase activity with 526 U/ml after 120 hours and the productivity reached to 4.38 U/ h. Discussion and conclusion: The results showed that feeding patterns of fed-batch culture increase production rate of lipase production towards batch culture. The best strategy is to add olive oil as the carbon source induction substrate in medium after 48 hours of inoculation.

  12. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith III, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how the varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.

  13. The use of food waste-based diets and Napier grass to culture grass carp: growth performance and contaminants contained in cultured fish.

    Science.gov (United States)

    Cheng, Zhang; Mo, Wing-Yin; Nie, Xiang-Ping; Li, Kai-Bing; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The present study used commercial feeds, food waste feeds, Napier grass, and mixed feeds (food waste feed to Napier grass ratio, 1:10) to feed grass carp (Ctenopharyngodon idellus). The results indicated that grass carp fed with food waste feeds and mix feeds achieved growth performance (based on specific growth rate and feed conversion ratio) that was similar to commercial feeds (p > 0.05). Concentrations of metalloid/metals in food waste feeds and polycyclic aromatic hydrocarbons (PAHs) in Napier grass were relatively higher than other types of fish feeds (p  0.05). These findings show that food waste feeds are suitable for using in the production of fish feed and Napier grass can be served as supplemental feeds for grass carp, and hence reducing the production cost.

  14. Application of statistical techniques for elucidating flow cytometric data of batch and fed-batch cultures.

    Science.gov (United States)

    Shirsat, Nishikant; Avesh, Mohd; English, Niall J; Glennon, Brian; Al-Rubeai, Mohamed

    2013-01-01

    The objective of this work is to develop structured, segregated stochastic models for bioprocesses using time-series flow cytometric (FC) data. To this end, mammalian CHO cells were grown in both batch and fed-batch cultures, and their viable cell numbers (VCDs), monoclonal antibody (MAb), cell cycle phases, mitochondria membrane potential/mitochondria mass, Golgi apparatus, and endoplasmic reticulum (ER) were analyzed. For the fed-batch mode, soy hydrolysate was introduced at 24-H intervals. The cytometric data were analyzed for early indicators of growth and productivity by multiple linear regression analysis, which involved taking into account multicollinearity diagnostics, Durbin-Watson statistics, and Houston tests to determine and refine statistically significant correlations between categorical variables (FC parameters) and response variables (yield parameters). The results indicate that the percentage of G1 cells and ER was significantly correlated with VCD and MAb in the case of batch culture, whereas for fed-batch culture, the percentage of G2 cells and ER was correlated significantly. There was a significant difference between cells in the batch and fed-batch cultures in their ER content, suggesting that the increase in protein synthesis as reflected by the ER content and consequent increase in growth rate and MAb productivity both can be monitored at the cellular level by FC analysis of ER content. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  15. Double Shell Tank (DST) Process Waste Sampling Subsystem Specification

    Energy Technology Data Exchange (ETDEWEB)

    RASMUSSEN, J.H.

    2000-05-03

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Process Waste Sampling Subsystem which supports the first phase of Waste Feed Delivery.

  16. Dynamic time warping of spectroscopic BATCH data

    NARCIS (Netherlands)

    Ramaker, H.J.; van Sprang, E.N.M.; Westerhuis, J.A.; Boelens, H.F.M.; Smilde, A.K.

    2004-01-01

    This paper discusses a method for warping spectral batch data. This method is a modification of a procedure proposed by Kassidas et al. [AIChE Journal 44 (1998) 864; Journal of Process Control 8 (1998) 381]. This iterative procedure is based on the dynamic time warping (DTW) algorithm. The symmetric

  17. Dynamic time warping of spectroscopic BATCH data

    NARCIS (Netherlands)

    Ramaker, H. J.; van Sprang, E. N. M.; Westerhuis, J. A.; Smilde, A. K.

    2003-01-01

    This paper discusses a method for warping spectral batch data. This method is a modification of a procedure proposed by Kassidas et al. [AlChE Journal 44 (1998) 864; Journal of Process Control 8 (1998) 381]. This iterative procedure is based on the dynamic time warping (DTW) algorithm. The symmetric

  18. Predictability of Keeping Quality for Strawberry Batches

    NARCIS (Netherlands)

    Schouten, R.E.; Kessler, D.; Orcaray, L.; Kooten, van O.

    2002-01-01

    Postharvest life of strawberries is largely limited by Botrytis cinerea infection. It is assumed that there are two factors influencing the batch keeping quality: the Botrytis pressure and the resistance of the strawberry to infection. The latter factor will be discussed in this article. A colour

  19. Kinetic characterization and fed-batch fermentation for maximal simultaneous production of esterase and protease from Lysinibacillus fusiformis AU01.

    Science.gov (United States)

    Divakar, K; Suryia Prabha, M; Nandhinidevi, G; Gautam, P

    2017-04-21

    The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking-Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820 × 10(3) U/L and extracellular protease activity of 172 × 10(3) U/L were obtained at the 16th hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.

  20. Batch testing for noroviruses in frozen raspberries.

    Science.gov (United States)

    De Keuckelaere, Ann; Li, Dan; Deliens, Bart; Stals, Ambroos; Uyttendaele, Mieke

    2015-01-02

    Berries, in particular raspberries, have been associated with multiple recalls due to norovirus contamination and were linked to a number of norovirus (NoV) outbreaks. In the present study a total of 130 samples of frozen raspberries were collected from 26 batches in four different raspberry processing companies. In two companies the samples consisted of bulk frozen raspberries serving as raw material for the production of raspberry puree (an intermediate food product in a business to business setting). In two other companies, the samples consisted of bulk individually quick frozen (IQF) raspberries serving as raw material for the production of frozen fruit mixes (as a final food product for consumer). Enumeration of Escherichia coli and coliforms was performed as well as real-time reverse transcription PCR (RT-qPCR) detection of GI and GII NoV (in 2 × 10 g). In addition, in cases where positive NoV GI or GII RT-qPCR signals were obtained, an attempt to sequence the amplicons was undertaken. Six out of 70 samples taken from the 14 batches of frozen raspberries serving raspberry puree production provided a NoV RT-qPCR signal confirmed by sequencing. Four of these six positive samples clustered in one batch whereas the other two positive samples clustered in another batch from the same company. All six positive samples showed NoV RT-qPCR signals above the limit of quantification of the RT-qPCR assay. These two positive batches of frozen raspberries can be classified as being of insufficient sanitary quality. The mean NoV level in 20 g of these raspberry samples was 4.3 log genomic copies NoV GI/20 g. The concern for public health is uncertain as NoV RT-qPCR detection is unable to discriminate between infectious and non-infectious virus particles. For the IQF raspberries, one batch out of 12 tested NoV positive, but only 1 out of the 5 samples analyzed in this batch showed a positive RT-qPCR GI NoV signal confirmed by sequencing. The RT-qPCR signal was below the

  1. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  2. A simple numerical model for predicting organic matter decomposition in a fed-batch composting operation.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Ohtaki, Akihito

    2002-01-01

    Using dog food as a model of the organic waste that comprises composting raw material, the degradation pattern of organic materials was examined by continuously measuring the quantity of CO2 evolved during the composting process in both batch and fed-batch operations. A simple numerical model was made on the basis of three suppositions for describing the organic matter decomposition in the batch operation. First, a certain quantity of carbon in the dog food was assumed to be recalcitrant to degradation in the composting reactor within the retention time allowed. Second, it was assumed that the decomposition rate of carbon is proportional to the quantity of easily degradable carbon, that is, the carbon recalcitrant to degradation was subtracted from the total carbon remaining in the dog food. Third, a certain lag time is assumed to occur before the start of active decomposition of organic matter in the dog food; this lag corresponds to the time required for microorganisms to proliferate and become active. It was then ascertained that the decomposition pattern for the organic matter in the dog food during the fed-batch operation could be predicted by the numerical model with the parameters obtained from the batch operation. This numerical model was modified so that the change in dry weight of composting materials could be obtained. The modified model was found suitable for describing the organic matter decomposition pattern in an actual fed-batch composting operation of the garbage obtained from a restaurant, approximately 10 kg d(-1) loading for 60 d.

  3. Complementary feeding

    DEFF Research Database (Denmark)

    Fewtrell, Mary; Bronsky, Jiri; Campoy, Cristina

    2017-01-01

    but should not be delayed beyond 6 months. Content: Infants should be offered foods with a variety of flavours and textures including bitter tasting green vegetables. Continued breast-feeding is recommended alongside CF. Whole cows' milk should not be used as the main drink before 12 months of age...

  4. Breast Feeding.

    Science.gov (United States)

    International Children's Centre, Paris (France).

    This set of documents consists of English, French, and Spanish translations of four pamphlets on breast-feeding. The pamphlets provide information designed for lay persons, academics and professionals, health personnel and educators, and policy-makers. The contents cover health-related differences between breast and bottle milk; patterns of…

  5. Transfer of Campylobacter from a Positive Batch to Broiler Carcasses of a Subsequently Slaughtered Negative Batch: A Quantitative Approach.

    Science.gov (United States)

    Seliwiorstow, Tomasz; Baré, Julie; Van Damme, Inge; Gisbert Algaba, Ignacio; Uyttendaele, Mieke; De Zutter, Lieven

    2016-06-01

    The present study was conducted to quantify Campylobacter cross-contamination from a positive batch of broiler chicken carcasses to a negative batch at selected processing steps and to evaluate the duration of this cross-contamination. During each of nine visits conducted in three broiler slaughterhouses, Campylobacter levels were determined on broiler carcasses originating from Campylobacter-negative batches processed immediately after Campylobacter-positive batches. Data were collected after four steps during the slaughter process (scalding, plucking, evisceration, and washing) at 1, 10, and 20 min after the start of the slaughter of the batches. Campylobacter levels in ceca of birds from Campylobacter-positive batches ranged from 5.62 to 9.82 log CFU/g. When the preceding positive batch was colonized at a low level, no (enumerable) carcass contamination was found in a subsequent negative batch. However, when Campylobacter levels were high in the positive batch, Campylobacter was found on carcasses of the subsequent negative batch but at levels significantly lower than those found on carcasses from the preceding positive batch. The scalding and the evisceration process contributed the least (Campylobacter transmission from a positive batch to a negative batch. Additionally, the number of Campylobacter cells transferred from positive to negative batches decreased over the first 20 min of sampling time. However, the reduction was slower than previously estimated in risk assessment studies, suggesting that pathogen transfer during crosscontamination is a complex process.

  6. Pretreatment of chicken feather waste for improved biogas production.

    Science.gov (United States)

    Forgács, Gergely; Lundin, Magnus; Taherzadeh, Mohammad J; Sárvári Horváth, Ilona

    2013-04-01

    This study deals with the utilization of chicken feather waste as a substrate for anaerobic digestion and improving biogas production by degradation of the compact structure of the feather keratin. In order to increase the digestibility of the feather, different pretreatments were investigated, including thermal pretreatment at 120 °C for 10 min, enzymatic hydrolysis with an alkaline endopeptidase [0.53-2.66 mL/g volatile solids (VS) feathers] for 0, 2, or 24 h at 55 °C, as well as a combination of these pretreatments. The effects of the treatments were then evaluated by anaerobic batch digestion assays at 55 °C. The enzymatic pretreatment increased the methane yield to 0.40 Nm(3)/kg VS(added), which is 122 % improvement compared to the yield of the untreated feathers. The other treatment conditions were less effective, increasing the methane yield by 11-50 %. The long-term effects of anaerobic digestion of feathers were examined by co-digestion of the feather with organic fraction of municipal solid waste performed with and without the addition of enzyme. When enzyme was added together with the feed, CH(4) yield of 0.485 Nm(3)/kg VS(-1) d(-1) was achieved together with a stable reactor performance, while in the control reactor, a decrease in methane production, together with accumulation of undegraded feather, was observed.

  7. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  8. Agricultural waste utilisation strategies and demand for urban waste compost: evidence from smallholder farmers in Ethiopia

    NARCIS (Netherlands)

    Nigatu, Abebe; Kuyper, T.W.; Neergaard, de A.

    2015-01-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste

  9. Optimization of glycerol fed-batch fermentation in different reactor states: a variable kinetic parameter approach.

    Science.gov (United States)

    Xie, Dongming; Liu, Dehua; Zhu, Haoli; Zhang, Jianan

    2002-05-01

    To optimize the fed-batch processes of glycerol fermentation in different reactor states, typical bioreactors including 500-mL shaking flask, 600-mL and 15-L airlift loop reactor, and 5-L stirred vessel were investigated. It was found that by reestimating the values of only two variable kinetic parameters associated with physical transport phenomena in a reactor, the macrokinetic model of glycerol fermentation proposed in previous work could describe well the batch processes in different reactor states. This variable kinetic parameter (VKP) approach was further applied to model-based optimization of discrete-pulse feed (DPF) strategies of both glucose and corn steep slurry for glycerol fed-batch fermentation. The experimental results showed that, compared with the feed strategies determined just by limited experimental optimization in previous work, the DPF strategies with VKPs adjusted could improve glycerol productivity at least by 27% in the scale-down and scale-up reactor states. The approach proposed appeared promising for further modeling and optimization of glycerol fermentation or the similar bioprocesses in larger scales.

  10. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions.

    Science.gov (United States)

    Prabhu, Rupal; Altman, Elliot; Eiteman, Mark A

    2012-12-01

    The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii.

  11. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    Science.gov (United States)

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  12. Experimental Verification of Dynamic Operation of Continuous and Multivessel Batch Distillation

    Energy Technology Data Exchange (ETDEWEB)

    Wittgens, Bernd

    1999-07-01

    This thesis presents a rigorous model based on first principles for dynamic simulation of the composition dynamics of a staged high-purity continuous distillation columns and experiments performed to verify it. The thesis also demonstrates the importance of tray hydraulics to obtain good agreement between simulation and experiment and derives analytic expressions for dynamic time constants for use in simplified and vapour dynamics. A newly developed multivessel batch distillation column consisting of a reboiler, intermediate vessels and a condenser vessel provides a generalization of previously proposed batch distillation schemes. The total reflux operation of this column was presented previously and the present thesis proposes a simple feedback control strategy for its operation based on temperature measurements. The feasibility of this strategy is demonstrated by simulations and verified by laboratory experiments. It is concluded that the multivessel column can be easily operated with simple temperature controllers, where the holdups are only controlled indirectly. For a given set of temperature setpoints, the final product compositions are independent of the initial feed composition. When the multivessel batch distillation column is compared to a conventional batch column, both operated under feedback control, it is found that the energy required to separate a multicomponent mixture into highly pure products is much less for the multivessel system. This system is also the simplest one to operate.

  13. A high-throughput media design approach for high performance mammalian fed-batch cultures.

    Science.gov (United States)

    Rouiller, Yolande; Périlleux, Arnaud; Collet, Natacha; Jordan, Martin; Stettler, Matthieu; Broly, Hervé

    2013-01-01

    An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame.

  14. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency.

  16. Using Forensics to Untangle Batch Effects in TCGA Data - TCGA

    Science.gov (United States)

    Rehan Akbani, Ph.D., and colleagues at the University of Texas MD Anderson Cancer Center developed a tool called MBatch to detect, diagnose, and correct batch effects in TCGA data. Read more about batch effects in this Case Study.

  17. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  18. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  19. Optimal temperature control for batch beer fermentation.

    Science.gov (United States)

    Gee, D A; Ramirez, W F

    1988-02-20

    Optimal control theory was applied to the process of batch beer fermentation. The performance functional considered was a weighted sum of maximum ethanol production and minimum time. Calculations were based on the model of Engasser et al. modified to include temperature effects. Model parameters were determined from isothermal batch fermentations. The fermentor cooling duty was the single available control. Temperature state variable constraints as well as control variable constraints were considered. The optimal control law is shown to be bang-bang control with the existence of a singular arc corresponding to isothermal operation at the maximum temperature constraint. An iterative algorithm is presented for computing appropriate switching times using a penalty-function-augmented performance functional.

  20. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop...... a model for cultivation behaviour. This model is validated against 13 data sets and demonstrated to explain a significant amount of variation in the data. The multivariate model may directly be used for process monitoring. With this method faults are detected in real time and the responsible measurements...... are directly identified. The fault detection and identification is enabled through inspection of a few simple plots. Thus, the presented methodology allows the process operator to actively monitor data from several cultivations simultaneously....

  1. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source...

  2. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  3. Batch Ingesting into EPrints Digital Repository Software

    Directory of Open Access Journals (Sweden)

    Tomasz Neugebauer

    2008-03-01

    Full Text Available This paper describes the batch importing strategy and workflow used for the import of theses metadata and PDF documents into the EPrints digital repository software. A two-step strategy of importing metadata in MARC format followed by attachment of PDF documents is described in detail, including Perl source code for scripts used.  The processes described were used in the ingestion of 6,000 theses metadata and PDFs into an EPrints institutional repository.

  4. Batch Covariance Relaxation (BCR) Adaptive Processing.

    Science.gov (United States)

    1981-08-01

    techniques dictates the need for processing flexibility which may be met most easily by a digital mechanization. The effort conducted addresses the...essential aspects of Batch Covariance Relaxation (BCR) adaptive processing applied to a digital adaptive array processing. In contrast to dynamic... libarary , RADAR:LIB. An extensive explanation as to how to use these programs is given. It is shown how the output of each is used as part of the input for

  5. On-line scheduling of multi-server batch operations

    NARCIS (Netherlands)

    Zee, Durk Jouke van der; Harten, Aart van; Schuur, Peter

    The batching of jobs in a manufacturing system is a very common policy in many industries. The main reasons for batching are the avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are the ovens that are found in the aircraft industry and in

  6. On-line Scheduling Of Multi-Server Batch Operations

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, A.; Schuur, P.C.

    1999-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  7. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  8. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  9. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    Science.gov (United States)

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  10. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  11. Repeated fed-batch fermentation using biosensor online control for citric acid production by Yarrowia lipolytica.

    Science.gov (United States)

    Moeller, Lucie; Grünberg, Mario; Zehnsdorf, Andreas; Aurich, Andreas; Bley, Thomas; Strehlitz, Beate

    2011-05-20

    Biosensor-controlled substrate feeding was used in a citric acid production process with the yeast strain Yarrowia lipolytica H222 with glucose as the carbon source. The application of an online glucose biosensor measurement facilitated the performance of long-time repeated fed-batch process with automated bioprocess control. Ten cycles of repeated fed-batch fermentation were carried out in order to validate both the stability of the microorganism for citric acid production and the robustness of the glucose biosensor in a long-time experiment. In the course of this fermentation with a duration of 553 h, a slight loss of productivity from 1.4 g/(L×h) to 1.1 g/(L×h) and of selectivity for citric acid from 91% to 88% was observed. The glucose biosensor provided 6,227 measurements without any loss of activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  13. Batch Model for Batched Timestamps Data Analysis with Application to the SSA Disability Program.

    Science.gov (United States)

    Yue, Qingqi; Yuan, Ao; Che, Xuan; Huynh, Minh; Zhou, Chunxiao

    2016-08-01

    The Office of Disability Adjudication and Review (ODAR) is responsible for holding hearings, issuing decisions, and reviewing appeals as part of the Social Security Administration's disability determining process. In order to control and process cases, the ODAR has established a Case Processing and Management System (CPMS) to record management information since December 2003. The CPMS provides a detailed case status history for each case. Due to the large number of appeal requests and limited resources, the number of pending claims at ODAR was over one million cases by March 31, 2015. Our National Institutes of Health (NIH) team collaborated with SSA and developed a Case Status Change Model (CSCM) project to meet the ODAR's urgent need of reducing backlogs and improve hearings and appeals process. One of the key issues in our CSCM project is to estimate the expected service time and its variation for each case status code. The challenge is that the systems recorded job departure times may not be the true job finished times. As the CPMS timestamps data of case status codes showed apparent batch patterns, we proposed a batch model and applied the constrained least squares method to estimate the mean service times and the variances. We also proposed a batch search algorithm to determine the optimal batch partition, as no batch partition was given in the real data. Simulation studies were conducted to evaluate the performance of the proposed methods. Finally, we applied the method to analyze a real CPMS data from ODAR/SSA.

  14. Hazardous Waste

    Science.gov (United States)

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  15. Feasibility of Batch Reactive Distillation with Equilibrium-Limited Consecutive Reactions in Rectifier, Stripper, or Middle-Vessel Column

    Directory of Open Access Journals (Sweden)

    T. Lukács

    2011-01-01

    Full Text Available A general overall feasibility methodology of batch reactive distillation of multireaction systems is developed to study all the possible configurations of batch reactive distillation. The general model equations are derived for multireaction system with any number of chemical equilibrium-limited reactions and for any number of components. The present methodology is demonstrated with the detailed study of the transesterification of dimethyl carbonate in two reversible cascade reactions in batch reactive distillation process. Pure methanol is produced as distillate, and pure diethyl carbonate is produced at the bottom simultaneously in middle-vessel column; in each section, continuous feeding of ethanol is necessary. The results of feasibility study are successfully validated by rigorous simulations.

  16. On the track of fish batches in three distribution networks

    DEFF Research Database (Denmark)

    Randrup, Maria; Wu, Haiping; Jørgensen, Bo M.

    2012-01-01

    the necessary information, it was possible to locate the end destinations of the fish batches. The batch sizes and the number of companies involved clearly rose when batch joining occurred. Thus, a fault in a small batch can potentially have widespread implications. The study also underlines the importance......Three fish products sampled in retail shops were traced back to their origin and fish from the same batch were tracked forward towards the retailer, thereby simulating a recall situation. The resulting distribution networks were very complex, but to the extent that companies were willing to provide...

  17. Determination of Reportable Radionuclides for DWPF Sludge Batch 3 (Macrobatch 4)

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C

    2005-05-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, IAEA Safeguards Reporting for HLW, requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The Defense Waste Processing Facility (DWPF) is receiving radioactive sludge slurry from High Level Waste Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 2) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Macrobatch 4 (also referred to as Sludge Batch 3). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of

  18. Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis

    Directory of Open Access Journals (Sweden)

    Lalk Michael

    2010-09-01

    Full Text Available Abstract Background Pseudoalteromonas haloplanktis is a cold-adapted γ-proteobacterium isolated from Antarctic sea ice. It is characterized by remarkably high growth rates at low temperatures. P. haloplanktis is one of the model organisms of cold-adapted bacteria and has been suggested as an alternative host for the soluble overproduction of heterologous proteins which tend to form inclusion bodies in established expression hosts. Despite the progress in establishing P. haloplanktis as an alternative expression host the cell densities obtained with this organism, which is unable to use glucose as a carbon source, are still low. Here we present the first fed-batch cultivation strategy for this auspicious alternative expression host. Results The key for the fed-batch cultivation of P. haloplanktis was the replacement of peptone by casamino acids, which have a much higher solubility and allow a better growth control. In contrast to the peptone medium, on which P. haloplanktis showed different growth phases, on a casamino acids-containing, phosphate-buffered medium P. haloplanktis grew exponentially with a constant growth rate until the stationary phase. A fed-batch process was established by feeding of casamino acids with a constant rate resulting in a cell dry weight of about 11 g l-1 (OD540 = 28 which is a twofold increase of the highest densities which have been obtained with P. haloplanktis so far and an eightfold increase of the density obtained in standard shake flask cultures. The cell density was limited in the fed-batch cultivation by the relatively low solubility of casamino acids (about 100 g l-1, which was proven by pulse addition of casamino acid powder which increased the cell density to about 20 g l-1 (OD540 = 55. Conclusion The growth of P. haloplanktis to higher cell densities on complex medium is possible. A first fed-batch fermentation strategy could be established which is feasible to be used in lab-scale or for industrial

  19. Enhanced submerged Aspergillus ficuum phytase production by implementation of fed-batch fermentation.

    Science.gov (United States)

    Coban, Hasan B; Demirci, Ali

    2014-12-01

    Phytase is an important feed and food additive, which is both used in animal and human diets. Phytase has been used to increase the absorption of several divalent ions, amino acids, and proteins in the bodies and to decrease the excessive phosphorus release in the manure to prevent negative effects on the environment. To date, microbial phytase has been mostly produced in solid-state fermentations with insignificant production volumes. There are only a few studies in the literature that phytase productions were performed in submerged bench-top reactor scale. In our previous studies, growth parameters (temperature, pH, and aeration) and important fermentation medium ingredients (glucose, Na-phytate, and CaSO4) were optimized. This study was undertaken for further enhancement of phytase production with Aspergillus ficuum in bench-top bioreactors by conducting fed-batch fermentations. The results showed that addition of 60 g of glucose and 10 g of Na-phytate at 96 h of fermentation increased phytase activity to 3.84 and 4.82 U/ml, respectively. Therefore, the maximum phytase activity was further enhanced with addition of glucose and Na-phytate by 11 and 40 %, respectively, as compared to batch phytase fermentations. It was also reported that phytase activity increased higher in early log stage additions than late log stage additions because of higher microbial activity. In addition, the phytase activity in fed-batch fermentation did not drop significantly as compared to the batch fermentation. Overall, this study shows that fungal phytase can be successfully produced in submerged fed-batch fermentations.

  20. Nutritive value of tea (Camellia sinensis, Linn) waste for cattle

    Energy Technology Data Exchange (ETDEWEB)

    Ananthasubramaniam, C.R.; Menachery, M.

    1977-01-01

    Tea waste, the residue of instant tea manufacturing, was subjected to feeding trails in cattle in order to find out its nutritive value. The material possesses a digestable crude protein of 9.7% and a total digestible N of 43.0%. The total tanins represented only 1.9%. Results indicated that tea waste is a potential feed source for livestock.

  1. Comparative Energy Values Of Sorghum Distillers Waste, Maize ...

    African Journals Online (AJOL)

    A balance trial aimed at determining the energy values of Sorghum Distiller's Wastes (SDW), Maize cob (MC) and Shea butter Waste (SBW) for barrows was conducted using a 4 x 4 Latin square cross- over experimental design. While feed intake was influenced (P < 0.05) by the test feed ingredients, the weight gained was ...

  2. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  3. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  4. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    Directory of Open Access Journals (Sweden)

    Yang Woo Shin

    1999-01-01

    Full Text Available We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the first passage time arguments for Markov chains.

  5. Fabrication of UO2 Porous Pellets on a Scale of 30 kg-U/Batch at the PRIDE Facility

    Directory of Open Access Journals (Sweden)

    Sang-Chae Jeon

    2015-01-01

    Full Text Available In the pyroprocess integrated inactive demonstration (PRIDE facility at the Korea Atomic Energy Research Institute (KAERI, UO2 porous pellets were fabricated as a feed material for electrolytic reduction on an engineering scale of 30 kg-U/batch. To increase the batch size, we designed and modified the corresponding equipment for unit processes based on ceramic processing. In the course of pellet fabrication, the correlation between the green density and sintered density was investigated within a compaction pressure range of 106–206 MPa, in terms of the optimization of processing parameters. Analysis of the microstructures of the produced UO2 porous pellets suggested that the pellets were suitable for feed material in the subsequent electrolytic reduction process in pyroprocessing. This research puts forth modifications to the process and equipment to allow the safe mass production of UO2 porous pellets; we believe these results will have immense practical interest.

  6. Techno-economic evaluation of a tandem dry batch, garage-style digestion-compost process for remote work camp environments.

    Science.gov (United States)

    Hayes, Alexander C; Enongene Ekwe, S; Mervin, Steve; Jenson, Earl

    2016-12-01

    The extraction of natural resources often involves housing workers in remote work camps far from population centres. These camps are prevalent in northern Alberta where they house approximately 40,000 workers involved in oil sands processing. The central, full-service cafeterias at these camps produce a significant quantity of food and cardboard waste. Due to their remote nature, these camps face high waste disposal costs associated with trucking waste long distances to the landfill. In this study, we investigated the techno-economic feasibility of on-site treatment of food and cardboard waste in a tandem dry batch, garage-style anaerobic digestion-compost process in which the waste material is converted into renewable energy used to heat the camp water supply and a nutrient-rich soil amendment for local land reclamation projects. Dry batch digestion and windrow composting pilot trials were performed on a simulated work camp waste in order to assess technical performance. The quality of the final compost was found to meet regulatory standards. A complete mass balance was then developed for a facility treating 3000 tonnes food waste and 435 tonnes waste cardboard annually. An economic assessment of such a facility was performed and, depending on the level of capital support and recognition of carbon credits for landfill methane mitigation, would require waste disposal costs to be between $115 and $195 CAD per tonne to meet financial criteria for project selection in Alberta's oil and gas industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimization of Substrate Feeding for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    Many traditional bio-processes are operated in semi-batch mode, in which, a feed stream containing substrate and or nutrients is fed into the reactor during the course of the reaction. One key advantage of a semi-batch operation is that regulation of the substrate concentration has been found...... (both the vegetable oil and alcohol) feed rate/concentration is manipulated simultaneously. The results of the simulation were tested in the laboratory and are sufficiently positive to suggest the implementation of a feeding strategy for large scale enzymatic biodiesel production....... to be effective in mitigating the effects of substrate inhibition. Using enzymatic biodiesel production as a case study, the volumetric productivity of the reactor is increased while minimizing inactivation of the enzyme due to the alcohol. This is done by using a simple optimization routine where the substrate...

  8. Optimization of Substrate Feeding for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    2013-01-01

    Many traditional bio-processes are operated in semi-batch mode, in which, a feed stream containing substrate and or nutrients is fed into the reactor during the course of the reaction. One key advantage of a semi-batch operation is that regulation of the substrate concentration has been found...... (both the vegetable oil and alcohol) feed rate/concentration is manipulated simultaneously. The results of the simulation were tested in the laboratory and are sufficiently positive to suggest the implementation of a feeding strategy for large scale enzymatic biodiesel production...... to be effective in mitigating the effects of substrate inhibition. Using enzymatic biodiesel production as a case study, the volumetric productivity of the reactor is increased while minimizing inactivation of the enzyme due to the alcohol. This is done by using a simple optimization routine where the substrate...

  9. Design and development of batch type acetifier for wine-vinegar production

    OpenAIRE

    Singh, R; Singh, S

    2007-01-01

    A batch type acetifier based on the principal of acetic acid fermentation was designed and tested for production of wine-vinegar from the pineapple peel waste. The pineapple peels along with starter solution was fed to the inner SS perforated peel-solid separator tank 130 mm dia having perforations of 50 mm size. The concentric perforated peel-solid separator circular tank was fitted inside the collecting tank having 255 mm dia. The pineapple peels and starter solution in perforated peel-soli...

  10. Analysis of Sludge Batch 3 (Macrobatch4) DWPF Pour Stream Glass Sample for Canister s02312

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C

    2005-09-01

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 3 (SB3), Macrobatch 4 (MB4) in March 2004 as part of Sludge Receipt and Adjustment Tank (SRAT) Batch 272. Sludge Batch 3 is a blend of the contents Tank 40 remaining from Sludge Batch 2 (SB2), the sludge that was transferred to Tank 40 from Tank 51 and Canyon Np solution additions made directly to Tank 40. The sludge transferred from Tank 51 contained sludges from Tanks 7, 18 and 19 along with precipitated solutions of U, Pu/Gd and Am/Cm from the F and H Canyons. The blend of sludge from Tank 51, Tank 40, and the Canyon additions defines SB3 (or MB4). The sludge slurry is received into the DWPF Chemical Processing Cell (CPC) and is processed through the SRAT and Slurry Mix Evaporator (SME) Tank and fed to the melter. During the processing of each sludge batch, the DWPF is required to take at least one glass sample. This glass sample is taken to meet the objectives of the Glass Product Control Program and complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Two glass samples were obtained while pouring Canisters S02312 and S02315 which were sent to the Savannah River National Laboratory's (SRNL) Shielded Cells Facility. Sample S02312 was designated for analysis, while sample S02315 was designated for archival storage. This report contains the visual observations of the as-received glass sample, results for the density, chemical composition, the Product Consistency Test (PCT) and the calculated and measured radionuclide results needed for the Production Record for Canister S02312. The following conclusions were drawn from the examination of this DWPF pour stream glass sample: (1) The glass sample taken during the filling of DWPF Canister S02312 weighed 41.69 g and was generally dark and reflective. (2) Minor inclusions, on the order of 1 {micro}m in size, of noble metals were seen in the glass via contained scanning electron

  11. SLUDGE BATCH 5 VARIABILITY STUDY WITH FRIT 418

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-09-29

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 5 (SB5) in early FY 2009. In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 as a transitional frit to initiate processing of SB5. This recommendation was based on the results of assessments on the compositional projections for SB5 available at that time from both the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of the Frit 418-SB5 system, SRNL executed a variability study to assess the acceptability of the Frit 418-SB5 glasses with respect to durability and the applicability of the current durability models. Twenty one glasses were selected for the variability study based on the available SB5 projections primarily spanning a waste loading (WL) range of 25-37%. In order to account for the addition of caustic to Tank 40, which occurred in July 2008, 3 wt% Na2O was added to the original Tank 40 heel projections. The addition of the Actinide Removal Process (ARP) stream to the blend composition was also included. Two of the glasses were fabricated at 25% and 28% WL in order to challenge the homogeneity constraint of the Product Composition Control System (PCCS) for SB5 coupled operations. These twenty one glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD) and the Product Consistency Test (PCT). The results of this study indicate that Frit 418 is a viable option for sludge-only and coupled operations. The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses. Based on the measured PCT response, all of the glasses were acceptable as compared to the Environmental Assessment (EA) reference glass regardless of the thermal history and were also predictable using the current PCCS model for durability. The homogeneity constraint can

  12. H(2) production through anaerobic mixed culture: effect of batch S(0)/X(0) and shock loading in CSTR.

    Science.gov (United States)

    Fan, Kuo-Shuh; Chen, Ya-Yun

    2004-12-01

    Biological production of H(2) has received considerable attention lately. The present study was undertaken to observe the effects of substrate/seeding ratios (S(0)/X(0)) on batch H(2) generation. The H(2)-producing seeding spores were obtained from the heat treatment (88 degrees C for 12h) of the compost from a grass composting facility. A dehydrated brewery mixture was used as feed substrate. The results indicate that the pattern of the cumulative H(2) production with time is similar to the growth curve with a typical lag, exponential and stationary phase; the results were successfully modeled with a modified Gompertz equation. It appears that maximum H(2) yield potential (27ml g(-1)COD(added)) occurs at an S(0)/X(0) ratio of about 4, whereas the maximum specific H(2) yield (205ml g(-1) VSSd(-1)) occurs at approximately S(0)/X(0)=3. The S(0)/X(0) ratios higher than 4 would inhibit H(2) production. An attempt was made to waste a certain amount of reactor content and replaced it with fresh substrate in order to enhance H(2) production. After this medium replacement, the H(2) production was initially inhibited and the system then exhibited a long lag before it reached an active H(2) production stage. For a continuous-stirred tank-reactor (CSTR) system, the results of replacing 25% of the reactor content indicate that there is still a lag time before a sudden increase in H(2) production after the addition of the new substrate feed. The major low molecular weight acids identified are HAc and HBu with total volatile acids of about 6000-8000mg l(-1). The ratio of HAc/HBu in the present study is relatively constant (about 5) and appears not significantly affected by the medium replacement. The concentration of total alcohols is about 2000mg l(-1). All in all, the CSTR system is able to recover to its previous performance after such a dramatic 25% medium replacement.

  13. Nutritional status, complementary feeding practices and feasible ...

    African Journals Online (AJOL)

    2012-02-03

    Feb 3, 2012 ... Objectives: The aim of this study was to assess the prevalence of underweight and wasting, feeding patterns, water use and sanitation patterns in children aged 6-23 months in returnee villages in northern Uganda, and then to identify feasible strategies to promote nutrition. Perceived understanding of the ...

  14. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete

    2003-01-01

    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein...

  15. Summary of Waste Calcination at INTEC

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Barry Henry; Newby, Bill Joe

    2000-10-01

    Fluidized-bed calcination at the Idaho Nuclear Technologies and Engineering Center (INTEC, formally called the Idaho Chemical Processing Plant) has been used to solidify acidic metal nitrate fuel reprocessing and incidental wastes wastes since 1961. A summary of waste calcination in full-scale and pilot plant calciners has been compiled for future reference. It contains feed compositions and operating conditions for all the processing campaigns for the original Waste Calcining Facility (WCF), the New Waste Calcining Facility (NWCF) started up in 1982, and numerous small scale pilot plant tests for various feed types. This summary provides a historical record of calcination at INTEC, and will be useful for evaluating calcinability of future wastes.

  16. Changes in complementary feeding practices and nutrition status in ...

    African Journals Online (AJOL)

    Objectives: Evaluate changes in underweight and wasting, feeding patterns, water use, sanitation, immunisation, disease episodes, deworming and vitamin A supplementation in children aged 6-23 months in returnee villages benefiting from a community-based supplementary feeding programme in northern Uganda.

  17. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  18. SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M; Russell Eibling, R; David Koopman, D; Dan Lambert, D; Paul Burket, P

    2007-09-04

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratio of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.

  19. Evaluation of dry feeding and liquid feeding to lactating sows under high temperature environment

    Directory of Open Access Journals (Sweden)

    J. S. Hong

    2016-10-01

    Full Text Available Abstract Background Liquid feeding system has been introduced to domestic swine farms, but negative cognition about liquid feeding system has been remained for feed waste decay related with poor management and microbial contamination. For these reasons, this study was conducted to evaluate the effects of feeding method in lactating sows. Methods A total of 30 mixed-parity (average 4.13 lactating sows (Yorkshire × Landrace with an initial BW of 218.8 ± 19.5kg was used in a 3 week trial. Sows were allotted to 1 of 2 treatments in a completely randomized design by their body weight, backfat thickness, parity and alive litter weight. One of treatments was dry feeding and the other was liquid feeding (water to feed ratio, 1:1. Experimental diets contained 3265 kcal ME/kg, 12.6 % CP, 5.76 % EE, 1.09 % total lysine, 0.25 % total methionine, as fed basis. Results Dry feeding treatment had high body weight loss rather than liquid feeding treatment (P = 0.04. Dry feeding treatment had tendency to increase litter weight at 21d of lactation (P = 0.06 and litter weight gain (P = 0.04 during lactation period (0–3 week. Sows fed dry feeding method made milk containing high content of casein and total solid rather than sows fed liquid feeding method (P = 0.04. In addition, dry feeding treatment had tendency to higher content of milk fat, protein and solid not fat on 21d of lactation (P = 0.07. Sows fed dry feeding type also showed higher milk energy content in milk of 21d lactation (P = 0.05. Furthermore, liquid feeding treatment showed high occurrence in feed waste during lactation period (P < 0.01. Conclusion Dry feeding method was more suitable feeding method to lactating sows under high temperature environment like lactating barn.

  20. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures.

    Science.gov (United States)

    Silva, Fernando; Campanari, Sabrina; Matteo, Stefania; Valentino, Francesco; Majone, Mauro; Villano, Marianna

    2017-07-25

    A sequencing batch reactor (SBR) is typically used for selecting mixed microbial cultures (MMC) for polyhydroxyalkanoate (PHA) production. Since many waste streams suitable as process feedstock for PHA production are nitrogen-deficient, a nutrient supply in the SBR is typically required to allow for efficient microbial growth. The scope of this study was to devise a nitrogen feeding strategy which allows controlling the nitrogen levels during the feast and famine regime of a lab-scale SBR, thereby selecting for PHA-storing microorganisms. At the beginning of the cycle the reactor was fed with a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5gCODL-1d-1 (i.e. 260CmmolL-1d-1), whereas nitrogen (in the form of ammonium sulphate) was added either simultaneously to the carbon feed (coupled feeding strategy) or after the end of the feast phase (uncoupled feeding strategy). As a main result, PHA production was more than doubled (up to about 1300±64mgCODL-1) when carbon and nitrogen were separately fed and the higher PHA production also corresponded to an 82% increase in the polymer HV content (up to 20±1%, wtwt-1). Three SBR runs were performed with the uncoupled carbon and nitrogen feeding at different carbon to nitrogen (C/N) ratios (of 14.3, 17.9, and 22.3CmolNmol-1, respectively) which were varied by progressively reducing the concentration of the nitrogen feeding. In spite of a comparable PHA storage yield at 14.3 and 17.9CmolNmol-1 (0.41±0.05 gCODPHA gCODVFA-1 and 0.38±0.05 gCODPHA gCODVFA-1, respectively), the storage response of the selected MMC significantly decreased when the C/N ratio was set at the highest investigated value. Notably, an increase in this parameter also resulted in a change in the HV content in the polymer regardless the composition of the organic acids solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fructose Production by Inulinase Covalently Immobilized on Sepabeads in Batch and Fluidized Bed Bioreactor

    Directory of Open Access Journals (Sweden)

    Gabriele Iorio

    2010-03-01

    Full Text Available The present work is an experimental study of the performance of a recently designed immobilized enzyme: inulinase from Aspergillus sp. covalently immobilized on Sepabeads. The aim of the work is to test the new biocatalyst in conditions of industrial interest and to assess the feasibility of the process in a fluidized bed bioreactor (FBBR. The catalyst was first tested in a batch reactor at standard conditions and in various sets of conditions of interest for the process. Once the response of the catalyst to different operating conditions was tested and the operational stability assessed, one of the sets of conditions tested in batch was chosen for tests in FBBR. Prior to reaction tests, preliminary fluidization tests were realized in order to define an operating range of admissible flow rates. As a result, the FBR was run at different feed flow rates in a closed cycle configuration and its performance was compared to that of the batch system. The FBBR proved to be performing and suitable for scale up to large fructose production.

  2. A discretized model for enzymatic hydrolysis of cellulose in a fed-batch process.

    Science.gov (United States)

    Tervasmäki, Petri; Sotaniemi, Ville; Kangas, Jani; Taskila, Sanna; Ojamo, Heikki; Tanskanen, Juha

    2017-03-01

    In the enzymatic hydrolysis of cellulose, several phenomena have been proposed to cause a decrease in the reaction rate with increasing conversion. The importance of each phenomenon is difficult to distinguish from batch hydrolysis data. Thus, kinetic models for the enzymatic hydrolysis of cellulose often suffer from poor parameter identifiability. This work presents a model that is applicable to fed-batch hydrolysis by discretizing the substrate based on the feeding time. Different scenarios are tested to explain the observed decrease in reaction rate with increasing conversion, and comprehensive assessment of the parameter sensitivities is carried out. The proposed model performed well in the broad range of experimental conditions used in this study and when compared to literature data. Furthermore, the use of data from fed-batch experiments and discretization of the model substrate to populations was found to be very informative when assessing the importance of the rate-decreasing phenomena in the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Repeated batch fermentation of immobilized E. coli expressing Vitreoscilla hemoglobin for long-term use.

    Science.gov (United States)

    Sar, Taner; Seker, Gamze; Erman, Ayse Gokce; Stark, Benjamin C; Yesilcimen Akbas, Meltem

    2017-09-03

    This study describes an efficient and reusable process for ethanol production from medium containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing (TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains were investigated regarding their ethanol production capacities over the course of 15 successive 96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production, with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15 or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8 successive batch fermentations; again strain TS3 maintained a substantial advantage over strain FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long periods of time and large numbers of repeated batch fermentations, including, as in this case, using media with food processing wastes as the carbon source.

  4. Screen-printed sensor for batch and flow injection potentiometric chromium(VI) monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, Raul A.; Gismera, M.J.; Sevilla, M.T.; Procopio, Jesus R. [Facultad de Ciencias, Universidad Autonoma de Madrid, Departamento de Quimica Analitica y Analisis Instrumental, Madrid (Spain)

    2010-05-15

    A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite-epoxy composite. The optimal graphite-epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 {+-} 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO{sub 3} solution at pH 3 as the carrier, a flow rate of 2.5 mL.min{sup -1}, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 x 10{sup -7} M) and online analysis (9.4 x 10{sup -7} M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills. (orig.)

  5. High-Level waste process and product data annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, G.E.

    1996-02-13

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references.

  6. Low-temperature catalytic gasification of wet industrial wastes. FY 1991--1992 interim report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Neuenschwander, G.G.; Hart, T.R.; Phelps, M.R.; Sealock, L.J. Jr.

    1993-07-01

    A catalytic gasification system operating in a pressurized water environment has been developed and refined at Pacific Northwest Laboratory (PNL) for over 12 years. Initial experiments were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. The combined use of alkali and metal catalysts was reported for gasification of biomass and its components at low temperatures (350{degrees}C to 450{degrees}C). From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous reactor system (CRS) testing were undertaken in the development of this system under sponsorship of the US Department of Energy. A wide range of biomass feedstocks were tested, and the importance of the nickel metal catalyst was identified. Specific use of this process for treating food processing wastes was also studied. The concept application was further expanded to encompass cleanup of hazardous wastewater streams, and results were reported for batch reactor tests and continuous reactor tests. Ongoing work at PNL focuses on refining the catalyst and scaling the system to long-term industrial needs. The process is licensed as the Thermochemical Environmental Energy System (TEES{reg_sign}) to Onsite*Ofsite, Inc., of Duarte, California. This report is a follow-on to the 1989--90 interim report [Elliott et al. 1991], which reviewed the results of the studies conducted with a fixed-bed, continuous-feed, tubular reactor. The discussion here provides an overview of experiments on the wide range of potential feedstock materials conducted in a batch reactor; development of new catalyst materials; and tests performed in continuous-flow reactors at three scales. The appendices contain the history and background of the process development, as well as more detailed descriptions and results of the recent studies.

  7. Feeding Your Baby

    Medline Plus

    Full Text Available ... care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your baby Common ... X Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in ...

  8. Biodegradable bioplastics from food wastes

    Science.gov (United States)

    An estimated 1.8 billion tons of waste are created annually from food processing in the US, including the peels, pulp, and pomace (PPP) generated from fruits and vegetables when they are converted into frozen or canned products or pressed into juice. PPP currently is sold as animal feed at low cost,...

  9. Batch sequential designs for computer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Leslie M [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; Loeppky, Jason L [UBC-OKANAGAN

    2009-01-01

    Computer models simulating a physical process are used in many areas of science. Due to the complex nature of these codes it is often necessary to approximate the code, which is typically done using a Gaussian process. In many situations the number of code runs available to build the Guassian process approximation is limited. When the initial design is small or the underlying response surface is complicated this can lead to poor approximations of the code output. In order to improve the fit of the model, sequential design strategies must be employed. In this paper we introduce two simple distance based metrics that can be used to augment an initial design in a batch sequential manner. In addition we propose a sequential updating strategy to an orthogonal array based Latin hypercube sample. We show via various real and simulated examples that the distance metrics and the extension of the orthogonal array based Latin hypercubes work well in practice.

  10. Batch Cultivation Model for Biopolymer Production

    Directory of Open Access Journals (Sweden)

    C. E. Torres-Cerna

    2017-04-01

    Full Text Available This paper presents a mathematical model to evaluate the kinetics of two different Pseudomonas putida strains, wild and mutant-type for the microbial production of polyhydroxyalkanoates (PHAs. Model parameters were estimated to represent adequately experimental data from the batch reactor using the differential evolution algorithm. Based on the mathematical model with the best-fit parameter values, simulations suggested that the high production of PHA by the mutant strain can be attributed not only to the higher production of PHA but also to a reduction in the consumption rate of the substrates of approximately 66 %. Remarkably, the cell growth rate value is higher for the wild type than the mutant type, suggesting that the PHA increase is not only to an increase in the production rate but also to the metabolism of the cells. This mathematical model advances comprehension of the PHA production capacity by P. putida paving the road towards environmentally friendly plastics.

  11. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gasser Brigitte

    2006-12-01

    Full Text Available Abstract Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  12. WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

    2009-03-20

    grouts for measurements. All of the cured grouts were measured for bleed and set. All of the cured grouts satisfied the bleed and set requirements, where no bleed water was observed on any of the grout samples after one day and all had set within 3 days of curing. This data indicates, for a well mixed product, bleed and set requirement are satisfied for the range of acidic feeds tested in this task. The yield stress measurements provide both an indication on the mixability of the salt solution with dry materials and an indication of how quickly the grout is starting to form structure. The inability to properly mix these two streams into a well mixed grout product will lead to a non-homogeneous mixture that will impact product quality. Product quality issues could be unmixed regions of dry material and hot spots having high concentrations of americium 241. Mixes that were more difficult to incorporate typically resulted in grouts with higher yield stresses. The mixability from these tests will provide Waste Solidification Building (WSB) an indication of which grouts will be more challenging to mix. The first yield stress measurements were statistically compared to a list of variables, specifically the batched chemicals used to make the acidic solutions. The first yield stress was also compared to the physical properties of the acidic solutions, physical and pH properties of the neutralized/pH adjusted solutions, and chemical and physical properties of the grout.

  13. Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification.

    Directory of Open Access Journals (Sweden)

    Charles Rocabert

    2017-03-01

    Full Text Available Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character

  14. Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification.

    Science.gov (United States)

    Rocabert, Charles; Knibbe, Carole; Consuegra, Jessika; Schneider, Dominique; Beslon, Guillaume

    2017-03-01

    Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character displacement, at the level of

  15. DEVELOPING A MODEL OF COOKING GRAIN BATCH

    Directory of Open Access Journals (Sweden)

    E. N. Konstantinov

    2014-01-01

    Full Text Available Summary. By batch cooking of grain accumulated considerable experimental and production material. However, the theory of this process has not been developed to the desired extent. It is shown that the mathematical modeling of the process of cooking the grain batch can be used as a basis for non-stationary diffusion equation and its numerical solution based on the grid method. It is shown that in addition to non-stationary diffusion process by using the grid method can take into account the temperature processes and the theory of swelling of the starch granules. The values of the activation energy of diffusion bound moisture in grains and the pre-exponential value were determined. To describe the swelling of the starch granules used solutions sufficiently numerous studies, and the selected model based on chemical reaction kinetics of the second order. Elaboration of the model of cooking done on experimental data for wheat grits, and concluded the need to address the gap of the starch granules during swelling and separation of layers of material adjacent to the liquid phase during the entire process until the complete cooking of cereal grits. An enlarged under a microscope photos edge dry and tenderized particles showing swelling of the starch granules and the isolation of the outer layer of the particle. Simultaneously taken into account in the model dynamics of temperature changes during heating and mixing the grain of cooking. The simulation results are identified according to a pilot study of cooking barley grits. Found that the developed model accurately describes the results of the pilot study. It is shown that the mathematical model based on the non-stationary diffusion equation, excluding the effects of temperature and swelling of the starch granulestheory gives too high of cooking time.

  16. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol.

    Science.gov (United States)

    de Swaaf, M E; Pronk, J T; Sijtsma, L

    2003-03-01

    The heterotrophic marine microalga Crypthecodinium cohnii produces docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications. So far, DHA production has been studied with glucose and acetic acid as carbon sources. This study investigates the potential of ethanol as an alternative carbon source for DHA production by C. cohnii. In shake-flask cultures, the alga was able to grow on ethanol. The specific growth rate was optimal with 5 g l(-1) ethanol and growth did not occur at 0 g l(-1) and above 15 g l(-1). By contrast, in fed-batch cultivations with a controlled feed of pure ethanol, cumulative ethanol addition could be much higher than 15 g l(-1), thus enabling a high final cell density and DHA production. In a representative fed-batch cultivation of C. cohnii with pure ethanol as feed, 83 g dry biomass l(-1), 35 g total lipid l(-1) and 11.7 g DHA l(-1) were produced in 220 h. The overall volumetric productivity of DHA was 53 mg l(-1 )h(-1), which is the highest value reported so far for this alga.

  17. Analytical Results from Salt Solution Feed Tank (SSFT) Samples HTF-16-6 and HTF-16-40

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-23

    Two samples from the Salt Solution Feed Tank (SSFT) were analyzed by SRNL, HTF-16-6 and HTF-16-40. Multiple analyses of these samples indicate a general composition almost identical to that of the Salt Batch 8-B feed and the Tank 21H sample results.

  18. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  19. TRUEX flowsheet development as applied to ICPP sodium-bearing waste using centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Law, J.D.; Herbst, R.S.

    1995-02-01

    Previous lab-scale work using batch contacts with sodium- bearing waste (SEW) simulant and samples of radioactive SEW from tank WM-185 suggested a potential flowsheet for partitioning actinides using solvent extraction (the TRUEX process). The suggested baseline flowsheet includes: an extraction section to remove actinides from liquid SEW into the TRUEX solvent (0.2 M CMP01 1.4 M TBP in Isopar-L); a dilute nitric acid scrub (0.07- 0.2 M HNO{sub 3}) to back extract co-extracted matrix materials (primarily Fe, Zr, and HNO{sub 3}) from the loaded solvent; thermally unstable complexants (TUCS) to back extract actinides; and a carbonate wash section for solvent cleanup. The purpose of the flowsheet development studies was to test and develop the baseline TRUEX flowsheet for ICPP SEW under continuous, countercurrent conditions using centrifugal contactors. All testing was performed using non-radioactive SEW simulant. Potential flowsheets were evaluated with regards to the behavior of the non-radioactive components known to be extracted by the TRUEX solvent. In general, the behavior of the individual components closely paralleled that anticipated from batch testing. The results indicate that eight extraction stages are more than sufficient to reduce the actinide content in the SEW to levels well below the NRC Class A LLW criteria of 10 nCi/g. Iron was effectively scrubbed from the organic and 5% ended up in the high-activity waste (HAW) fraction. Zirconium scrubbing was not as effective and as much as 60% of the Zr in the feed could end up in the HAW fraction. The TUCS strip was effective at quantitatively stripping all metals except mercury from the TRUEX solvent. Carbonate washing effectively back extracted mercury from the stripped solvent, resulting in 99.4% of the mercury selectively partitioned from the SEW.

  20. Food waste

    OpenAIRE

    Arazim, Lukáš

    2015-01-01

    This thesis looks into issues related to food waste and consists of a theoretical and a practical part. Theoretical part aims to provide clear and complex definition of wood waste related problems, summarize current findings in Czech and foreign sources. Introduction chapter explains important terms and legal measures related to this topic. It is followed by description of causes, implications and possibilities in food waste reduction. Main goal of practical part is analyzing food waste in Cz...