WorldWideScience

Sample records for waste facility permit

  1. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  2. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  3. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  4. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  5. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  6. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  7. WIPP's Hazardous Waste Facility Permit Renewal Application

    International Nuclear Information System (INIS)

    Most, W.A.; Kehrman, R.F.

    2009-01-01

    Hazardous waste permits issued by the New Mexico Environment Department (NMED) have a maximum term of 10-years from the permit's effective date. The permit condition in the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit (HWFP) governing renewal applications, directs the Permittees to submit a permit application 180 days prior to expiration of the Permit. On October 27, 1999, the Secretary of the NMED issued to the United States Department of Energy (DOE), the owner and operator of WIPP, and to Washington TRU Solutions LLC (WTS), the Management and Operating Contractor and the cooperator of WIPP, a HWFP to manage, store, and dispose hazardous waste at WIPP. The DOE and WTS are collectively known as the Permittees. The HWFP is effective for a fixed term not to exceed ten years from the effective date of the Permit. The Permittees may renew the HWFP by submitting a new permit application at least 180 calendar days before the expiration date, of the HWFP. The Permittees are not proposing any substantial changes in the Renewal Application. First, the Permittees are seeking the authority to dispose of Contact-Handled and Remote-Handled TRU mixed waste in Panel 8. Panels 4 through 7 have been approved in the WIPP Hazardous Waste Facility Permit as it currently exists. No other change to the facility or to the manner in which hazardous waste is characterized, managed, stored, or disposed is being requested. Second, the Permittees also seek to include the Mine Ventilation Rate Monitoring Plan, as Attachment Q in the HWFP. This Plan has existed as a separate document since May 2000. The NMED has requested that the Plan be submitted as part of the Renewal Application. The Permittees have been operating to the Mine Ventilation Rate Monitoring Plan since the Plan was submitted. Third, some information submitted in the original WIPP RCRA Part B Application has been updated, such as demographic information. The Permittees will submit this information in the

  8. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  9. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  10. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations

  11. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  12. Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements

    International Nuclear Information System (INIS)

    French, Sean B.; Johns-Hughes, Kathryn W.

    2011-01-01

    Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

  13. Hanford facility dangerous waste permit application, general information portion. Revision 3

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1997-01-01

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy's contractors are identified as ''co-operators'' and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ''operator'' elsewhere in the application is not meant to conflict with the contractors' designation as co-operators but rather is based on the contractors' contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  14. Hanford facility dangerous waste permit application, general information portion. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  15. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  16. Hanford facility dangerous waste permit application, general information portion

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report)

  17. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 appendices covering engineering drawings and operating procedures

  18. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constitutents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 Appendices covering engineering drawings and operating procedures

  19. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 14 Appendices. Topics include Engineering Drawings, Maps, Roads, Toxicity Testing, and Pilot-Scale Testing

  20. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  1. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  2. Liquid effluent retention facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix to the Liquid Effluent Retention Facility Dangerous Waste Permit Application contains pumps, piping, leak detection systems, geomembranes, leachate collection systems, earthworks and floating cover systems

  3. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  4. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  5. Hanford facility dangerous waste permit application, PUREX storage tunnels

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997

  6. Hanford Facility dangerous waste permit application, general information

    International Nuclear Information System (INIS)

    1993-05-01

    The current Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, number DOE/RL-91-28) and a treatment, storage, and/or disposal Unit-Specific Portion, which includes documentation for individual TSD units (e.g., document numbers DOE/RL-89-03 and DOE/RL-90-01). Both portions consist of a Part A division and a Part B division. The Part B division consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. Documentation contained in the General Information Portion (i.e., this document, number DOE/RL-91-28) is broader in nature and applies to all treatment, storage, and/or disposal units for which final status is sought. Because of its broad nature, the Part A division of the General Information Portion references the Hanford Facility Dangerous Waste Part A Permit Application (document number DOE/RL-88-21), a compilation of all Part A documentation for the Hanford Facility

  7. Hanford Facility Dangerous Waste Permit Application, 222-S Laboratory Complex

    International Nuclear Information System (INIS)

    WILLIAMS, J.F.

    2000-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the 222-S Laboratory Complex (this document, DOE/RL-91-27). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the 222-S Laboratory Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this 222-S Laboratory Complex permit application documentation is current as of August 2000

  8. Hanford facility dangerous waste permit application, 242-A evaporator

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, 'operating' treatment, storage, and/or disposal units, such as the 242-A Evaporator (this document, DOE/RL-90-42)

  9. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-16

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  10. Resource conversation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume II contains attachments for Module II and Module III. Attachments for Module II are: part A permit application; examples of acceptable documentation; Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program; inspection schedule and monitoring schedule; inspection log forms; personnel training course outlines; hazardous waste job position training requirements; contingency plan; closure plan; and procedures for establishing background for the underground units. One attachment, facility process information, is included for Module III. Remaining attachments for this module are in Volume III

  11. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  12. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  13. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  14. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  15. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the low-level liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Hanford Site Maps, road evaluation for the grout treatment facility, Department of Ecology certificate of non-designation for centralia fly ash, double-shell tank waste compositional modeling, laboratory analysis reports for double-shell tank waste, stored in tanks 241-AN-103, 241-AN-106, and 241-AW-101, grout vault heat transfer results for M-106 grout formulation, test results for extraction procedure toxicity testing, test results for toxicity testing of double-shell tank grout, pilot-scale grout production test with a simulated low-level waste, characterization of simulated low-level waste grout produced in a pilot-scale test, description of the procedure for sampling nonaging waste storage tanks, description of laboratory procedures, grout campaign waste composition verification, variability in properties of grouted phosphate/sulfate N-reactor waste, engineering drawings, description of operating procedures, equipment list--transportable grout equipment, grout treatment facility--tank integrity assessment plan, long-term effects of waste solutions on concrete and reinforcing steel, vendor information, grout disposal facilities construction quality assurance plan, and flexible membrane liner/waste compatibility test results

  16. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  17. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  18. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments

  19. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  20. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  1. Hanford facility dangerous waste Part A, Form 3, and Part B permit application documentation for the Central Waste Complex (WA7890008967) (TSD: TS-2-4)

    International Nuclear Information System (INIS)

    Saueressig, D.G.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998

  2. Hanford Waste Vitrification Plant Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Facility currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. This Vitrification Plant Dangerous Waste Permit Application, Revision 2, consists of both a Part A and a Part B permit application. An explanation of the Part A revisions, including Revision 4 submitted with this application, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987)

  3. Race, wealth, and solid waste facilities in North Carolina.

    Science.gov (United States)

    Norton, Jennifer M; Wing, Steve; Lipscomb, Hester J; Kaufman, Jay S; Marshall, Stephen W; Cravey, Altha J

    2007-09-01

    Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. We used census block groups to obtain racial and economic characteristics, and information on solid waste facilities was abstracted from solid waste facility permit records. We used logistic regression to compute prevalence odds ratios for 2003, and Cox regression to compute hazard ratios of facilities issued permits between 1990 and 2003. The adjusted prevalence odds of a solid waste facility was 2.8 times greater in block groups with > or = 50% people of color compared with block groups with or = 100,000 dollars. Among block groups that did not have a previously permitted solid waste facility, the adjusted hazard of a new permitted facility was 2.7 times higher in block groups with > or = 50% people of color compared with block groups with waste facilities present numerous public health concerns. In North Carolina solid waste facilities are disproportionately located in communities of color and low wealth. In the absence of action to promote environmental justice, the continued need for new facilities could exacerbate this environmental injustice.

  4. First Commercial US Mixed Waste Vitrification Facility: Permits, Readiness Reviews, and Delisting of Final Wasteform

    International Nuclear Information System (INIS)

    Pickett, J.B.; Norford, S.W.; Diener, G.A.

    1998-01-01

    Westinghouse Savannah River Co. (WSRC) contracted GTS Duratek (Duratek) to construct and operate the first commercial vitrification facility to treat an F-006 mixed (radioactive/hazardous) waste in the United States. The permits were prepared and submitted to the South Carolina state regulators by WSRC - based on a detailed design by Duratek. Readiness Assessments were conducted by WSRC and Duratek at each major phase of the operation (sludge transfer, construction, cold and radioactive operations, and a major restart) and approved by the Savannah River Department of Energy prior to proceeding. WSRC prepared the first 'Upfront Delisting' petition for a vitrified mixed waste. Lessons learned with respect to the permit strategy, operational assessments, and delisting from this 'privatization' project will be discussed

  5. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  6. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  7. Permitting and licensing of a commercial mixed waste facility

    International Nuclear Information System (INIS)

    Sinclair, W.J.

    1995-01-01

    Federal and state regulations applicable to the Envirocare commercial mixed waste facility in Utah are discussed, with particular emphasis on Utah State Waste Policy. Waste acceptance standards of the facility are detailed. Design conflicts, due to differences between the U.S. Environmental Protection and the U.S. Nuclear Regulatory Commission, and their subsequent resolution are outlined. Other multi-jurisdictional problems and resolutions are discussed in some detail

  8. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep

  9. 77 FR 69769 - Solid Waste Rail Transfer Facilities

    Science.gov (United States)

    2012-11-21

    ...] Solid Waste Rail Transfer Facilities AGENCY: Surface Transportation Board, DOT. ACTION: Final rules. SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... Transportation Board over solid waste rail transfer facilities. The Act also added three new statutory provisions...

  10. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  11. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  12. Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste

    International Nuclear Information System (INIS)

    1994-03-01

    In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE's own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references

  13. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  14. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Vault design, run-on/run-off control design, and asphalt compatibility with 90-degree celsius double-shell slurry feed

  15. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    Energy Technology Data Exchange (ETDEWEB)

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  16. State Waste Discharge Permit application: 200-E Powerhouse Ash Pit

    Energy Technology Data Exchange (ETDEWEB)

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  17. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    International Nuclear Information System (INIS)

    Boehmer, Ann M.

    2009-01-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  18. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  19. Solid Waste Management Facilities with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  20. Permitting plan for the high-level waste interim storage

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist

  1. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  2. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Science.gov (United States)

    2010-07-01

    ..., storage or disposal facility. If an eligible academic entity makes the hazardous waste determination... hazardous waste permit or interim status as soon as it arrives in the on-site treatment, storage or disposal... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the...

  3. Hanford facility RCRA permit condition II.U.1 report: mapping of underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Hays, C.B.

    1996-09-27

    The purpose of this report is to fulfill Condition Il.U.1. of the Hanford Facility (HF) Resource Conservation and Recovery Act (RCRA) Permit. The HF RCRA Permit, Number WA7890008967, became effective on September 28, 1994 (Ecology 1994). Permit Conditions Il.U. (mapping) and II.V. (marking) of the HF RCRA Permit, Dangerous Waste (OW) Portion, require the mapping and marking of dangerous waste underground pipelines subject to the provisions of the Washington Administrative Code (WAC) Chapter 173-303. Permit Condition Il.U.I. requires the submittal of a report describing the methodology used to generate pipeline maps and to assure their quality. Though not required by the Permit, this report also documents the approach used for the field marking of dangerous waste underground pipelines.

  4. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  5. Hanford facility dangerous waste permit application, low-level burial grounds

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, 'operating' treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20)

  6. Hanford facility dangerous waste permit application, low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, R.H.

    1997-08-12

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

  7. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  8. WIPP Facility Work Plan for Solid Waste Management Units

    International Nuclear Information System (INIS)

    2000-01-01

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A

  9. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  10. State Waste Discharge Permit application, 100-N Sewage Lagoon

    International Nuclear Information System (INIS)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond

  11. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  12. Mixed Waste Management Facility closure at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.

    1991-08-01

    The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein

  13. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2000-02-25

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA

  14. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  15. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  16. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  17. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2001-01-01

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  18. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    International Nuclear Information System (INIS)

    FR-EEMAN, D.A.

    2003-01-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency

  19. Tracking mixed waste from environmental restoration through waste management for the Federal Facility Compliance Act

    International Nuclear Information System (INIS)

    Isbell, D.; Tolbert-Smith, M.; MacDonell, M.; Peterson, J.

    1994-01-01

    The Federal Facility Compliance Act required the US Department of Energy (DOE) to prepare an inventory report that presents comprehensive information on mixed wastes. Additional documents, such as site treatment plans, were also required of facilities with mixed waste. For a number of reasons, not all DOE mixed waste sites are able to provide detailed characterization and planning data at this time. Thus, an effort is currently under way to develop a reporting format that will permit mixed waste information across the DOE complex to be tracked as it becomes available

  20. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    International Nuclear Information System (INIS)

    Johnson, J.E.

    1995-01-01

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State's Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP's Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m 3 of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals

  1. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    International Nuclear Information System (INIS)

    1996-01-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility

  2. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2002-01-01

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable

  3. Waste-to-energy permitting sourcebook

    International Nuclear Information System (INIS)

    Longwell, D.; Wegrecki, A.; Williams, D.

    1992-10-01

    Environmental issues, regulatory processes and approvals important in obtaining a permit to construct and/or operate a waste-to-energy (WTE) facility are identified and discussed. Environmental issues include: (1) air emission levels, their control and potential impacts, (2) ash leachability, treatment, and disposal, (3) potential health risks from emissions, and (4) other issues such as need/benefit and public perception of WTE. Laws, regulations and approvals that can affect project development are identified and listed, and potential regulatory trends are discussed. A general permit acquisition plan is also presented. An analysis of environmental and regulatory data obtained from the literature, regulatory agencies, and specific projects is presented. California and Massachusetts, both with regulations generally more stringent than federal regulations and considered environmentally conservative, were selected for detailed state regulatory review. Two project case histories (Commerce Refuse-to-Energy (RTE) Project in California and SEMASS WTE Project in Massachusetts) were selected to illustrate: (1) how regulations are actually applied to a project, (2) project-specific permit and operating conditions, and (3) project-specific environmental issues. Modern WTE plots employ state-of-the-art air emission control technologies and strategies to reduce air emission is to levels below regulatory requirements and to reduce estimated health risks to within EPA's acceptable risk range. WTE ash leachate can exhibit hazardous waste characteristics, primarily lead and cadmium. However, modern landfills utilize liners and leachate collection systems to prevent infiltration of leachate into the groundwater supply. Modern WTE plants employ dry systems and have zero process wastewater discharge

  4. State waste discharge permit application, 200-E chemical drain field

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.

  5. State waste discharge permit application, 200-E chemical drain field

    International Nuclear Information System (INIS)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field

  6. 300 Area Treated Effluent Disposal Facility permit reopener run plan

    International Nuclear Information System (INIS)

    Olander, A.R.

    1995-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is authorized to discharge treated effluent to the Columbia River by National Pollutant Discharge Elimination System permit WA-002591-7. The letter accompanying the final permit noted the following: EPA recognizes that the TEDF is a new waste treatment facility for which full scale operation and effluent data has not been generated. The permit being issued by EPA contains discharge limits that are intended to force DOE's treatment technology to the limit of its capability.'' Because of the excessively tight limits the permit contains a reopener clause which may allow limits to be renegotiated after at least one year of operation. The restrictions for reopening the permit are as follows: (1) The permittee has properly operated and maintained the TEDF for a sufficient period to stabilize treatment plant operations, but has nevertheless been unable to achieve the limitation specified in the permit. (2) Effluent data submitted by the permittee supports the effluent limitation modifications(s). (3) The permittee has submitted a formal request for the effluent limitation modification(s) to the Director. The purpose of this document is to guide plant operations for approximately one year to ensure appropriate data is collected for reopener negotiations

  7. Hanford Facility RCRA permit handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  8. 1325-N Liquid Waste Disposal Facility Supplemental Information to the Hanford Facility Contingency Plan (DOE/RL-93-75)

    International Nuclear Information System (INIS)

    Edens, V.G.

    1998-03-01

    The 1325-N Liquid Waste Disposal Facility located at the 100-N Area of the Hanford Site started receiving part of the N Reactor liquid radioactive effluent flow in 1983. In September 1985, the 1325-N Facility became the primary liquid waste disposal system for the N Reactor. The facility is located approximately 60 feet above and 2000 feet east of the shore of the Columbia River. Waste stream discharges were ceased in April 1991.Specific information on types of waste discharged to 1325-N are contained within the Part A, Form 3, Permit application of this unit

  9. Permitting plan for the immobilized low-activity waste project

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ''the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.'' It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site's low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste

  10. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other, miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume 1 provides a narrative of the project background, objective and justification. A description of the WRAP 2A mission, operations and project scope is also included. Significant project requirements such as security, health, safety, decontamination and decomissioning, maintenance, data processing, and quality are outlined. Environmental compliance issues and regulatory permits are identified, and a preliminary safety evaluation is provided

  11. Closure of hazardous and mixed radioactive waste management units at DOE facilities

    International Nuclear Information System (INIS)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA

  12. Storm water permitting for oil and gas facilities

    International Nuclear Information System (INIS)

    de Blanc, P.C.

    1991-01-01

    After several false starts, the US Environmental Protection Agency (EPA) published new federal storm water regulations in the November 16, 1990 Federal Register. These regulations identify facilities which must apply for a storm water permit and detail permit application requirements. The regulations appear at 40 CFR 122 Subpart B and became effective December 17, 1990. An outline of these regulations and their applicability to oil and gas facilities is presented. They are: facilities which require a storm water permit; types of storm water permits; permit application deadlines; permit application forms; facilities with existing storm water permits; storm water permit application data requirements; storm water sampling and analysis requirements; and EPA contacts for additional information

  13. Annual Hanford Site environmental permitting status report

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1998-01-01

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, 'best efforts' means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for

  14. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  15. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    International Nuclear Information System (INIS)

    2010-01-01

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  16. The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Brinker, S.D.; Streit, R.D.

    1996-04-01

    The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options

  17. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types

  18. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.M.

    1997-04-30

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  19. 1993 RCRA Part B permit renewal application, Savannah River Site: Volume 10, Consolidated Incineration Facility, Section C, Revision 1

    International Nuclear Information System (INIS)

    Molen, G.

    1993-08-01

    This section describes the chemical and physical nature of the RCRA regulated hazardous wastes to be handled, stored, and incinerated at the Consolidated Incineration Facility (CIF) at the Savannah River Site. It is in accordance with requirements of South Carolina Hazardous Waste Management Regulations R.61-79.264.13(a) and(b), and 270.14(b)(2). This application is for permit to store and teat these hazardous wastes as required for the operation of CIF. The permit is to cover the storage of hazardous waste in containers and of waste in six hazardous waste storage tanks. Treatment processes include incineration, solidification of ash, and neutralization of scrubber blowdown

  20. Annual Hanford Site Environmental Permitting Status Report

    International Nuclear Information System (INIS)

    HOMAN, N.A.

    2000-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year

  1. Conceptual design for the Waste Receiving And Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. This volume provides the detailed cost estimate for the WRAP 2A facility. Included in this volume is the project construction schedule

  2. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  3. Development of a mixed waste management facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dolenc, M.R.; Kendall, E.W.

    1989-01-01

    The US Department of Energy (DOE) produces some radioactive low-level wastes (LLW) which contain hazardous components. By definition, the management of those mixed wastes (MW) at the Nevada Test Site (NTS) requires compliance with US Environmental Protection Agency (EPA) and state of Nevada regulations for hazardous wastes, and DOE regulations for LLW. Preparations for operation of a separate Mixed Waste Management Unit (MWMU) in the 1990s are underway. The 167-acre MWMU will be a part of the 732-acre Area 5 Radioactive Waste Management Site (RWMS). The MWMU is being developed in response to a DOE Office of Defense Waste and Transporation Management need to provide enhanced capabilities and facilities for safe, secure, and efficient disposal of defense-related MW in accordance with DOE, EPA, and state of Nevada requirements. Planned activities relating to the development of the MWMU include completing National Environmental Policy Act (NEPA) requirements; responding to any notices of deficiencies (NODs) on the NTS Part B Permit application; conducting generator audits as part of the NTS MW certification program; optimizing the design and operation of the vadose zone monitoring system; developing protocols for the sampling and analysis of MW, and facility construction. This paper describes the permitting and regulatory environment, the specific application of the permit process to the NTS, and the phased development of an MWMU at the NTS

  4. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  5. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Protection and Technical Services

    2009-09-30

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  6. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  7. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas

  8. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  9. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  10. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  11. Defense Waste Processing Facility staged operations: environmental information document

    International Nuclear Information System (INIS)

    1981-11-01

    Environmental information is presented relating to a staged version of the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The information is intended to provide the basis for an Environmental Impact Statement. In either the integral or the staged design, the DWPF will convert the high-level waste currently stored in tanks into: a leach-resistant form containing about 99.9% of all the radioactivity, and a residual, slightly contaminated salt, which is disposed of as saltcrete. In the first stage of the staged version, the insoluble sludge portion of the waste and the long lived radionuclides contained therein will be vitrified. The waste glass will be sealed in canisters and stored onsite until shipped to a Federal repository. In the second stage, the supernate portion of the waste will be decontaminated by ion exchange. The recovered radionuclides will be transferred to the Stage 1 facility, and mixed with the sludge feed before vitrification. The residual, slightly contaminated salt solution will be mixed with Portland cement to form a concrete product (saltcrete) which will be buried onsite in an engineered landfill. This document describes the conceptual facilities and processes for producing glass waste and decontaminated salt. The environmental effects of facility construction, normal operations, and accidents are then presented. Descriptions of site and environs, alternative sites and waste disposal options, and environmental consultations and permits are given in the base Environmental Information Document

  12. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  13. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events

  14. The mixed waste management facility

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory's Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to ∼$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at ∼$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability

  15. Low-Level Burial Grounds Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1989-01-01

    The single dangerous waste permit identification number issued to the Hanford Site by the US Environmental Protection Agency and the Washington State Department of Ecology is US Environmental Protection Agency/State Identification Number WA 7890008967. This identification number encompasses a number of waste management units within the Hanford Site. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as co-operator of the Low-Level Burial Grounds, the waste management unit addressed by this permit application. The Low-Level Burial Grounds Dangerous Waste Permit Application consists of both a Part A and a Part B Permit Application. The original Part A, submitted in November 1985, identified landfills, retrievable storage units, and reserved areas. An explanation of subsequent Part A revisions is provided at the beginning of the Part A section. Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology

  16. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluenttreatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume V, provides a comprehensive conceptual design level narrative description of the process, utility, ventilation, and plant control systems. The feeds and throughputs, design requirements, and basis for process selection are provided, as appropriate. Key DOE/WHC criteria and reference drawings are delineated

  17. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.

    1984-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  18. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.; Associated Technologies, Inc., Charlotte, NC)

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor. 4 figs

  19. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  20. An assessment of potential risk resulting from a maximum credible accident scenario at the proposed explosive waste storage facility (EWSF)

    International Nuclear Information System (INIS)

    Otsuki, K.; Harrach, R.; Berger, R.

    1992-10-01

    Lawrence Livermore National Laboratory (LLNL) proposes to build, permit, and operate a storage facility for explosive wastes at LLNL's Explosive Test Site, Site 300. The facility would consist of four existing magazines, four new magazettes (small concrete vaults), and a new prefabricated metal building. Ash from on-site treatment of explosive waste would also be stored in the prefabricated metal building prior to sampling analysis, and shipment. The magazettes would be installed at each magazine-and would provide segregated storage for explosive waste types including detonators, actuators, and other initiating devices. The proposed facility would be used to store explosive wastes generated by the Hydrotest and Explosive Development Programs at LLNL prior to treatment on-site or shipment to permitted, commercial, off-site treatment facilities. Explosive wastes to be stored in the proposed facility represent a full spectrum of Department of Energy (DOE) and LLNL explosive wastes. This document identifies and evaluates the risk to human health and the environment associated with the operation of the proposed EWSF

  1. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  2. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  3. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  4. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at the Hanford Reservation. The mission of the facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume III is a compilation of the outline specifications that will form the basis for development of the Title design construction specifications. This volume contains abbreviated CSI outline specifications for equipment as well as non-equipment related construction and material items. For process and mechanical equipment, data sheets are provided with the specifications which indicate the equipment overall design parameters. This volume also includes a major equipment list

  5. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  6. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Energy Technology Data Exchange (ETDEWEB)

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  7. A commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.T.

    1986-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application fro a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  8. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  9. A reliability-risk modelling of nuclear rad-waste facilities

    International Nuclear Information System (INIS)

    Lehmann, P.H.; El-Bassioni, A.A.

    1975-01-01

    Rad-waste disposal systems of nuclear power sites are designed and operated to collect, delay, contain, and concentrate radioactive wastes from reactor plant processes such that on-site and off-site exposures to radiation are well below permissible limits. To assist the designer in achieving minimum release/exposure goals, a computerized reliability-risk model has been developed to simulate the rad-waste system. The objectives of the model are to furnish a practical tool for quantifying the effects of changes in system configuration, operation, and equipment, and for the identification of weak segments in the system design. Primarily, the model comprises a marriage of system analysis, reliability analysis, and release-risk assessment. Provisions have been included in the model to permit the optimization of the system design subject to constraints on cost and rad-releases. The system analysis phase involves the preparation of a physical and functional description of the rad-waste facility accompanied by the formation of a system tree diagram. The reliability analysis phase embodies the formulation of appropriate reliability models and the collection of model parameters. Release-risk assessment constitutes the analytical basis whereupon further system and reliability analyses may be warranted. Release-risk represents the potential for release of radioactivity and is defined as the product of an element's unreliability at time, t, and the radioactivity available for release in time interval, Δt. A computer code (RARISK) has been written to simulate the tree diagram of the rad-waste system. Reliability and release-risk results have been generated for cases which examined the process flow paths of typical rad-waste systems, the effects of repair and standby, the variations of equipment failure and repair rates, and changes in system configurations. The essential feature of this model is that a complex system like the rad-waste facility can be easily decomposed into its

  10. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    The long-term performance of the grout disposal system for Phosphate/Sulfate Waste (PSW) was analyzed. PSW is a low-level liquid generated by activities associated with N Reactor operations. The waste will be mixed with dry solids and permanently disposed of as a cementitious grout in sub-surface concrete vaults at Hanford's 200-East Area. Two categories of scenarios were analyzed that could cause humans to be exposed to radionuclides and chemicals from the grouted waste: contaminated groundwater and direct intrusion. In the groundwater scenario, contaminants are released from the buried grout monoliths, then eventually transported via the groundwater to the Columbia River. As modeled, the contaminants are assumed to leach out of the monoliths at a constant rate over a 10,000-year period. The other category of exposure involves intruders who inadvertently contact the waste directly, either by drilling, excavating, or gardening. Long-term impacts that could result from disposal of PSW grout were expressed in terms of incremental increases of (1) chemical concentrations in the groundwater and surface waters, and (2) radiation doses. None of the calculated impacts exceeded the corresponding regulatory limits set by Washington State, Department of Energy, or the Nuclear Regulatory Commission

  11. Overview of hazardous-waste regulation at federal facilities

    International Nuclear Information System (INIS)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require

  12. Overview of hazardous-waste regulation at federal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  13. Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 7: Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards.

  14. F-Area Hazardous Waste Management Facility Semiannual Corrective Action Report, First and Second Quarter 1998, Volume I and II

    International Nuclear Information System (INIS)

    Chase, J.

    1998-01-01

    This report addresses groundwater quality and monitoring data during first and second quarter 1998 for the F-Area Hazardous Waste management Facility (HWMF). The report fulfills the semiannual reporting requirements of Module III, Section D, of the 1995 Resource Conservation and Recovery Act (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995 (hereafter referred to as the RCRA permit), and Section C of the Underground Injection Control Permit Application hereafter referred to as the Section C of the Underground Injection Control Permit Application (hereafter referred to as the UIC permit). The HWMF is described in the Introduction to Module III, Section C, of the RCRA permit

  15. Waste isolation facility description: bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria. (LK)

  16. Waste isolation facility description: bedded salt

    International Nuclear Information System (INIS)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria

  17. Development of a mixed waste management facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dodge, R.L.; Brich, R.F.

    1988-01-01

    The U.S. Department of Energy (DOE) produces radioactive low-level wastes (LLW) which contain hazardous components as identified by 40 Code of Federal Regulations (CFR) 261. Management of those mixed wastes (MW) requires compliance with U.S.Environmental Protection Agency (EPA) regulations for hazardous wastes and DOE regulations for LLW. In 1988, DOE's Nevada Operations Office (NV) began disposing of MW at the Nevada Test Site (NTS) under interim status as authorized by the state of Nevada. MW disposal is limited to Pit 3 while operating under interim status. This paper discusses how preparations for operation of a separate mixed waste management facility (MWMF) are underway. Those preparations include revising the NTS Part B Permit application, developing a MW certification program, developing and operating a vadose zone monitoring system, preparing an Environmental Assessment (EA), developing protocols for analysis of MW, and facility design and construction

  18. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  19. Storm Water General Permit 1 for Industrial Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — General permit #1 for storm water discharges associated with industrial facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  20. Resource Conservation and Recovery Act: Part B, Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revison 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements.

  1. INEL RCRA [Resource Conservation and Recovery Act] permit for incineration of hazardous waste: Status report

    International Nuclear Information System (INIS)

    McFee, J.N.; Dalton, J.D.; Bohrer, H.A.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) was constructed to reduce the volume of low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). To address the problem of radioactively contaminated ignitable hazardous waste resulting from INEL activities, a development program was carried out to evaluate WERF's ability to meet the regulated criteria for incinerating liquid and solid ignitable waste. Concurrently, INEL submitted its hazardous waste Part B application under the Resource Conservation and Recovery Act (RCRA). As required, and as a major step in the permitting process, the WERF incinerator portion of the permit application included a proposed trial burn, which is a demonstration test of the incinerator's ability to destroy hazardous materials. The trial burn plan was designed to demonstrate the system performance for liquid and solid ignitable wastes at three operating conditions, using a prepared mix of materials representative of waste to be processed. EPA Region X reviewed and commented on the plan prior to the trial burn. Results of the liquid feed trial burn showed a greater than 97% probability of meeting the RCRA-dictated DRE value for chlorinated solvents and a greater than 99% probability for nonchlorinated solvents. Nonchlorinated solid waste results were calculated at a 93% probability of meeting the required DRE, with a 75% probability for chlorinated solid wastes. In addition, the incinerator DRE continued to improve long after the assumed pre-test equilibrium period had ended. The trial burn demonstrates that the WERF incinerator can safely and adequately destroy ignitable hazardous and mixed waste and provides a significant enhancement of the INEL's waste management system

  2. Hydroelectric Generating Facilities General Permit ...

    Science.gov (United States)

    2017-08-28

    The Notice of Availability of the Final NPDES General Permits (HYDROGP) for Discharges at Hydroelectric Generating Facilities in Massachusetts (MAG360000) and New Hampshire (NHG360000) and Tribal Lands in the State of Massachusetts was published in the Federal Register on December 7, 2009 (see 74 Fed. Reg. No. 233, pages 64074 - 64075).

  3. Permitting plan for project W-320 tank 241-C-106 waste retrieval sluicing system (WRSS)

    International Nuclear Information System (INIS)

    Symons, G.A.

    1997-01-01

    This document describes the permitting plan for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). A comprehensive review of environmental regulations have indicated that several environmental reviews [e.g. National Environmental Policy Act (NEPA), State Environmental Policy Act (SEPA)], permits, and approvals are required prior to construction or operation of the facility. The environmental reviews, permits and approvals, as well the regulatory authority, potentially applicable to the Tank 241-C-106 WRSS include the following: for NEPA - U.S. Department of Energy-Headquarters: Action Description Memorandum, Environmental Assessment, Categorical Exclusion, and Environmental Impact Statement; and for SEPA - State of Washington Department of Ecology (Ecology) Determination of Nonsignificance, Mitigated Determination of Nonsignificance, Determination of Significance, and SEPA Environmental Checklist

  4. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  5. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, Kent H. [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and

  6. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    International Nuclear Information System (INIS)

    Rosenberger, Kent H.

    2013-01-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling

  7. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  8. Waste Feed Delivery Environmental Permits and Approvals Plan

    International Nuclear Information System (INIS)

    TOLLEFSON, K.S.

    2000-01-01

    This plan describes the environmental permits approvals, and other requirements that may affect establishment of a waste feed delivery system for the Hanford Site's River Protection Project. This plan identifies and screens environmental standards for potential applicability, outlines alternatives for satisfying applicable standards, and describes preferred permitting and approval approaches

  9. Waste feed delivery environmental permits and approvals plan

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This document describes the range of environmental actions, including required permits and other agency approvals, that may affect waste feed delivery (WFD) activities in the Hanford Site's Tank Waste Remediation System (TWRS). This plan expands on the summary level information in the Tank Waste Remediation System Environmental Program Plan (HNF 1773) to address requirements that are most pertinent to WFD. This plan outlines alternative approaches to satisfying applicable environmental standards, and describes selected strategies for acquiring permits and other approvals needed for WFD to proceed. Appendices at the end of this plan provide preliminary cost and schedule estimates for implementing the selected strategies. The rest of this section summarizes the scope of WFD activities, including important TWRS operating information, and describes in more detail the objectives, structure, and content of this plan

  10. A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525

    International Nuclear Information System (INIS)

    Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B.; Guay, K.P.; Smith, L.C.

    1995-07-01

    For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities

  11. Waste Feed Delivery Environmental Permits and Approvals Plan

    Energy Technology Data Exchange (ETDEWEB)

    TOLLEFSON, K.S.

    2000-01-18

    This plan describes the environmental permits approvals, and other requirements that may affect establishment of a waste feed delivery system for the Hanford Site's River Protection Project. This plan identifies and screens environmental standards for potential applicability, outlines alternatives for satisfying applicable standards, and describes preferred permitting and approval approaches.

  12. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  13. Site selection process for radioactive waste repository (radioactive facility) in Cuba as a fundamental safety criteria

    International Nuclear Information System (INIS)

    Vital, Jose Luis Peralta; Castillo, Reinaldo Gil; Chales Suarez, Gustavo; Rodriguez Reyes, Aymee

    1999-01-01

    The paper show the process of search carried out for the selection of the safest site in the National territory, in order to sitting the Facility (Repository) that will disposal the low and intermediate level radioactive wastes, as well as the possible Storage Facility for nuclear spent Fuel (radioactive wastes of high activity). We summarize the obtained Methodology and the Criterions of exclusion adopted for the development of the Process of site selection, as well as the current condition of the researches that will permit the obtaining of the nominative objectives. (author)

  14. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  15. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  16. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  17. Treatment of DOE mixed wastes using commercial facilities

    International Nuclear Information System (INIS)

    Kramer, J.F.; Ross, M.A.; Dilday, D.R.

    1992-02-01

    In a demonstration program, Department of Energy (DOE) solid mixed wastes generated during uranium processing operations are characterized to define the unit operations required for treatment. The objectives included the implementation of these treatment operations utilizing a commercial Treatment, Storage and Disposal Facility (TSDF). In contracting for commercial hazardous and mixed waste treatment, it is important to characterize the waste beyond the identification of toxicity characteristic (TC) and radiological content. Performing treatability studies and verification of all the unit operations required for treatment is critical. The stream selected for this program was TC hazardous for barium (D005) and contaminated with both depleted and low enriched uranium. The program resulted in the generation of characterization data and treatment strategies. The characterization and treatability studies indicated that although a common unit operation was required to remove the toxic characteristic, multiple pretreatment operations were needed. Many of these operations do not exist at available TSDF's, rendering some portions of the stream untreatable using existing commercial TSDF's. For this project the need for pretreatment operations resulted in only a portion of the waste originally targeted for treatment being accepted for treatment at a commercial TSDF. The majority of the targeted stream could not be successfully treated due to lack of an off-site commercial treatment facility having the available equipment and capacity or with the correct combination of RCRA permits and radioactive material handling licenses. This paper presents a case study documenting the results of the project

  18. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  19. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  20. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  1. Guide to Permitting Hydrogen Motor Fuel Dispensing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, Carl [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-28

    The purpose of this guide is to assist project developers, permitting officials, code enforcement officials, and other parties involved in developing permit applications and approving the implementation of hydrogen motor fuel dispensing facilities. The guide facilitates the identification of the elements to be addressed in the permitting of a project as it progresses through the approval process; the specific requirements associated with those elements; and the applicable (or potentially applicable) codes and standards by which to determine whether the specific requirements have been met. The guide attempts to identify all applicable codes and standards relevant to the permitting requirements.

  2. Resource Conservation and Recovery Act, Part B permit application

    International Nuclear Information System (INIS)

    1993-01-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws

  3. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments

    Science.gov (United States)

    Taha, M. P. M.; Drew, G. H.; Longhurst, P. J.; Smith, R.; Pollard, S. J. T.

    The passive and active release of bioaerosols during green waste composting, measured at source is reported for a commercial composting facility in South East (SE) England as part of a research programme focused on improving risk assessments at composting facilities. Aspergillus fumigatus and actinomycetes concentrations of 9.8-36.8×10 6 and 18.9-36.0×10 6 cfu m -3, respectively, measured during the active turning of green waste compost, were typically 3-log higher than previously reported concentrations from static compost windrows. Source depletion curves constructed for A. fumigatus during compost turning and modelled using SCREEN3 suggest that bioaerosol concentrations could reduce to background concentrations of 10 3 cfu m -3 within 100 m of this site. Authentic source term data produced from this study will help to refine the risk assessment methodologies that support improved permitting of compost facilities.

  4. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  5. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  6. 40 CFR 270.65 - Research, development, and demonstration permits.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Research, development, and... Special Forms of Permits § 270.65 Research, development, and demonstration permits. (a) The Administrator may issue a research, development, and demonstration permit for any hazardous waste treatment facility...

  7. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  8. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and mixed

  9. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  10. 340 Waste Handling Facility interim safety basis

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994)

  11. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  12. Low-Level Burial Grounds Dangerous Waste Permit Application design documents

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents the Functional Design Criteria for trenches to be constructed to receive solid radioactive mixed waste (RMW) from on and offsite generators. The new RMW disposal facilities are considered modifications to or lateral expansion of the existing low-level waste burial grounds. The new facilities upgrade the existing disposal practice for RMW to the minimum technology requirements of the Resource Conservation and Recovery Act. The proposed locations for the two facilities are: 218-E-10 for drag-off-waste packages and, 218-W-4C for non drag-off waste packages

  13. Requirements for permitting a mixed waste incinerator

    International Nuclear Information System (INIS)

    Trichon, M.; Feldman, J.; Serne, J.C.

    1990-01-01

    The consideration, design, selection and operation of any incinerator depends primarily on characteristic quality (ultimate and proximate analyses) and quantity to the waste to be incinerated. In the case of burning any combination of mixed hazardous, biomedical and radioactive low level waste, specific federal and generic state environmental regulatory requirements are outlined. Combustion chamber temperature and waste residence time requirements will provide the rest of the envelope for consideration. Performance requirements must be balanced between the effects of time and temperature on destruction of the organic waste and the vaporization and possible emission of the inorganic waste components (e.g., toxic metals, radioactive inorganics) as operating conditions and emission levels will be set in state and federal regulatory permits. To this end the complete characterization of the subject waste stream must be determined if an accurate assessment of incineration effectiveness and impact are to be performed

  14. Hanford Waste Vitrification Plant Clean Air Act permit application

    International Nuclear Information System (INIS)

    1990-04-01

    This document briefly describes the Hanford Site and provides a general overview of the Hanford Waste Vitrification Plant (HWVP). Other topics include sources of emissions, facility operating parameters, facility emissions, pollutant and radionuclide control technology and air quality. The HWVP will convert mixed wastes (high-activity radioactive and hazardous liquid wastes) to a solid vitrified form (borosilicate glass) for disposal. Mixed wastes pretreated in the Hanford Site B Plant will be pumped into double- shell tanks in the 200 East Area for interim storage. This pretreated mixed waste will be batch transferred from interim storage to the HWVP facility, where the waste will be concentrated by evaporation, treated with chemicals, and mixed with glass-forming materials. The mixture will then be continuously fed into an electrically heated glass melter. The molten glass will be poured into canisters that will be cooled, sealed, decontaminated, and stored until the vitrified product can be transferred to a geologic repository. 25 refs., 18 figs., 32 tabs

  15. The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)

    International Nuclear Information System (INIS)

    1994-12-01

    The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration

  16. High-Level Waste Vitrification Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  17. High-Level Waste Vitrification Facility Feasibility Study

    International Nuclear Information System (INIS)

    D. A. Lopez

    1999-01-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035

  18. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  19. Annual Hanford Site Environmental Permitting status report

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    1999-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies

  20. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  1. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and

  2. Radwaste characteristics and Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Sung, Suk Hyun; Jeong, Yi Yeong; Kim, Ki Hong

    2008-01-01

    The purpose of Radioactive Waste Acceptance Criteria (WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  3. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Martinez, Patrick Thomas [Los Alamos National Laboratory; Garcia, Terrence Kerwin [Los Alamos National Laboratory

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  4. PUREX facility preclosure work plan

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D)

  5. Design and construction of hazardous waste landfill components

    International Nuclear Information System (INIS)

    Frano, A.J.; Numes, G.S.

    1985-01-01

    This paper discusses design and construction of two sections of a hazardous waste landfill at Peoria Disposal Company's hazardous waste management facilities in central Illinois. One section, an existing disposal facility, was retrofitted with leachate control and containment features for additional security. The second section, a new facility which had been previously permitted for development with a single clay liner, was modified to include a double liner and revised leachate collection system for additional security, and an all-weather construction and operation access ramp. The two sections of the landfill were granted a development permit allowing construction. An operating permit was granted after construction and certification by the designer allowing waste disposal operations. The sections will be accepting waste material at publication. Design and construction included: planning studies, design analyses, permitting, preparation of construction contract documents, construction assistance, monitoring construction, and certification

  6. EG and G long-range hazardous waste program plan

    International Nuclear Information System (INIS)

    1985-02-01

    The purpose of this document is to develop and implement a program for safe, economic management of hazardous and radioactive mixed waste generated, transported, treated, stored, or disposed of by EG and G Idaho operated facilities. The initial part of this program involves identification and characterization of EG and G-generated hazardous and radioactive mixed waste, and activities for corrective action, including handling, packaging, and shipping of these wastes off site for treatment, storage, and/or disposal, or for interim remedial action. The documentation necessary for all areas of the plan is carefully defined, so as to ensure compliance, at every step, with the requisite orders and guidelines. A second part of this program calls for assessment, and possible development and implementation of a treatment, storage, and disposal (T/S/D) program for special hazardous and radioactive mixed wastes which cannot practically, economically, and safely be disposed of at off-site facilities. This segment of the plan addresses obtaining permits for the existing Waste Experimental Reduction Facility (WERF) incinerator and for the construction of an adjacent hazardous waste solidification facility and a storage area. The permitting and construction of a special hazardous waste treatment and storage facility is also explored. The report investigates permitting the Hazardous Waste Storage Facility (HWSF) as a permanent storage facility

  7. Ontario hydro waste storage concepts and facilities

    International Nuclear Information System (INIS)

    Carter, T.J.; Mentes, G.A.

    1976-01-01

    Ontario Hydro presently operates 2,200 MWe of CANDU heavy water reactors with a further 11,000 MWe under design or construction. The annual quantities of low and medium level solid wastes expected to be produced at these stations are tabulated. In order to manage these wastes, Ontario Hydro established a Radioactive Waste Operations Site within the Bruce Nuclear Power Development located on Lake Huron about 250 km northwest of Toronto. The Waste Operations Site includes a 19-acre Storage Site plus a Radioactive Waste Volume Reduction Facility consisting of an incinerator and waste compactor. Ontario has in use or under construction both in-ground and above-ground storage facilities. In-ground facilities have been used for a number of years while the above-ground facilities are a more recent approach. Water, either in the form of precipitation, surface or subsurface water, presents the greatest concern with respect to confinement integrity and safe waste handling and storage operations

  8. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 [EPA-EPA-R10-RCRA-2010-0953; FRL-9247-5] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA...

  9. Conceptual designs for waste quality checking facilities for low level and intermediate level radioactive wastes and hazardous waste

    International Nuclear Information System (INIS)

    Driver, S.; Griffiths, M.; Leonard, C.D.; Smith, D.L.G.

    1992-01-01

    This report summarises work carried out on the design of facilities for the quality checking of Intermediate and Low Level Radioactive Waste and Hazardous Waste. The procedures used for the quality checking of these categories of waste are summarised. Three building options are considered: a separate LLW facility, a combined facility for LLW and HW and a Waste Quality Checking Facility for the three categories of waste. Budget Cost Estimates for the three facilities are given based on 1991 prices. (author)

  10. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  11. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  12. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1991-10-01

    Waste waters have been generated as result of operations conducted at the Hanford Facility for over 40 years. These waste waters were previously discharged to cribs, ponds, or ditches. Examples of such waste waters include steam condensates and cooling waters that have not been in contact with dangerous or mixed waste and process condensates that may have been in contact with dangerous or mixed waste. Many measures have been taken to reduce the amount of contamination being discharged in these effluents. However, some of these waste waters still require additional treatment before release to the environment. Systems are being designed and built to treat these waste waters along with any future waste waters resulting from remediation activities on the Hanford Facility

  13. The waste disposal facility in the Aube District

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-06-01

    The waste disposal facility in the Aube district is the second surface waste disposal facility built in France. It is located in the Aube district, and has been operated by Andra since 1992. With a footprint of 95 hectares, it is licensed for the disposal of 1 million cubic meters of low- and intermediate-level, short-lived waste packages. The CSA is located a few kilometers away another Andra facility, currently in operation for very-low-level waste, and collection and storage of non-nuclear power waste (the Cires). Contents: Andra in the Aube district, an exemplary industrial operator - The waste disposal facility in the Aube district (CSA); Low- and intermediate-level, short-lived radioactive waste (LILW-SL); The LILW-SL circuit; Protecting present and future generations

  14. Air emission points for facilities in Iowa with operating permits for Title V of the Federal Clean Air Act_considered MAJOR permits

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Air emission points for facilities in Iowa with operating permits for Title V of the Federal Clean Air Act, considered "major" permits. Also includes emission points...

  15. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  16. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  17. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  18. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  19. Permitting plan for project W-236B, initial pretreatment module

    International Nuclear Information System (INIS)

    Tollefson, K.S.

    1995-01-01

    The Tank Waste Remediation System pretreatment process mission is to separate high-level and low-level waste fractions. A comprehensive review of environmental regulations has indicated that several environmental reviews, permits, and approvals are required before construction and operation of the facility. This revised document provides a summary of permit application data requirements, alternative strategies for permit completion and approval, as well as the probability of success for each alternative for the Initial Pretreatment Module resulting from recent revisions to the Tri-Party Agreement

  20. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  1. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 2

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  2. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 3

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  3. 242-A evaporator dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    The 242-A Evaporator is a waste management unit within the Hanford Facility that consists of process vessels and support systems for heating, evaporating, and condensing double-shell tank (DST) waste generated by Hanford Site operations. Operation of the 242-A Evaporator serves to reduce the volume of waste solutions within the DSTs that do not self-boil, while separating inorganic and radionuclide constituents from organic constituents. This operation reduces the number of underground DSTs required for waste storage and also makes the mixed waste more suitable for future treatment and disposal (i.e., grouting and vitrification). The 242-A Evaporator receives mixed-waste streams from the DSTs that contain organic and inorganic constituents and radionuclides. The waste is a dangerous waste (DW) because of corrosivity, reactivity, and toxicity characteristics, and is an extremely hazardous waste (EHW) as a result of toxicity (state criteria only), carcinogenicity, and persistence under the state mixture rule. The waste also contains spent nonhalogenated solvents

  4. Waste-clearance strategy for DOE waste processed at commercial facilities

    International Nuclear Information System (INIS)

    Chen, S.Y.; Pfingston, M.; LePoire, D.

    1996-01-01

    In May 1991, a moratorium was issued on shipping potentially mixed waste from DOE facilities nationwide to commercial treatment, storage, and disposal facilities. A potential waste-clearance strategy was developed to address the DOE mixed-waste moratorium issues, which had resulted from a lack of exisitng volume contamination regulations. This strategy also has important potential applications for establishing site clearance limits that ensure worker and public risks remain well below regulatory limits

  5. Site and facility waste transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Schmid, S.; Danese, L.

    1991-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and maintenance of Site- and Facility-Specific Transportation Services Planning Documents (SPDs) and Site-Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities, with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations

  6. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  7. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  8. Permitting of Wind Energy Facilities: A Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Siting Work Group

    2002-08-01

    This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

  9. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  10. The construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Kim, Joon Hyung; Lee, Byung Jik; Koo, Jun Mo; Kim, Jeong Guk; Jung, In Ha

    1990-03-01

    The solid waste form test facility (SWFTF) to test and/or evaluate the characteristics of waste forms, such as homogeniety, mechanical properties, thermal properties, waste resistance and leachability, have been constructed, and some equipments for testing actual waste forms has been purchased; radiocative monitoring system, glove box for the manipulator repair room, and uninteruppted power supply system, et al. Classifications of radioactive wastes, basic requirements and criteria to be considered during waste management were also reviewed. Some of the described items above have been standardized for the purpose of indigenigation. Therefore, safety assurance of waste forms, as well as increase in the range of participating of domestic companies in construction of further nuclear facilities could be obtained as results through constructing this facility. In the furture this facility is going to be utilized not only for the inspection of waste forms but also for the periodic decontamination for extending the life time of some expensive radiological equipments using remote handling techniques. (author)

  11. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  12. State Waste Discharge Permit Application: Electric resistance tomography testing

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  13. State Waste Discharge Permit Application: Electric resistance tomography testing

    International Nuclear Information System (INIS)

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks

  14. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... waste landfills by approved states. On June 14, 2012, Oregon submitted an application to EPA Region 10...

  15. Certification plan transuranic waste: Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification

  16. Solid Waste Land Applications with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  17. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  18. 76 FR 9772 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-02-22

    ... Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... Region IX is proposing to approve a modification to Arizona's municipal solid waste landfill (MSWLF... final rule amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for RD&D...

  19. Mine subsidence control projects associated with solid waste disposal facilities

    International Nuclear Information System (INIS)

    Wood, R.M.

    1994-01-01

    Pennsylvania environmental regulations require applicant's for solid waste disposal permits to provide information regarding the extent of deep mining under the proposed site, evaluations of the maximum subsidence potential, and designs of measures to mitigate potential subsidence impact on the facility. This paper presents three case histories of deep mine subsidence control projects at solid waste disposal facilities. Each case history presents site specific mine grouting project data summaries which include evaluations of the subsurface conditions from drilling, mine void volume calculations, grout mix designs, grouting procedures and techniques, as well as grout coverage and extent of mine void filling evaluations. The case studies described utilized basic gravity grouting techniques to fill the mine voids and fractured strata over the collapsed portions of the deep mines. Grout mixtures were designed to achieve compressive strengths suitable for preventing future mine subsidence while maintaining high flow characteristics to penetrate fractured strata. Verification drilling and coring was performed in the grouted areas to determine the extent of grout coverage and obtain samples of the in-place grout for compression testing. The case histories presented in this report demonstrate an efficient and cost effective technique for mine subsidence control projects

  20. Central Waste Complex (CWC) Waste Analysis Plan

    International Nuclear Information System (INIS)

    ELLEFSON, M.D.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly

  1. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  2. Potable Water Treatment Facility General Permit (PWTF GP) ...

    Science.gov (United States)

    2017-08-28

    The Final PWTF GP establishes permit eligibility conditions, Notice of Intent (NOI) requirements, effluent limitations, standards, prohibitions, and best management practices for facilities that discharge to waters in the Commonwealth of Massachusetts (including both Commonwealth and Indian country lands) and the State of New Hampshire.

  3. Safe waste management practices in beryllium facilities

    International Nuclear Information System (INIS)

    Bhat, P.N.; Soundararajan, S.; Sharma, D.N.

    2012-01-01

    Beryllium, an element with the atomic symbol Be, atomic number 4, has very high stiffness to weight ratio and low density. It has good electrical conductive properties with low coefficient of thermal expansion. These properties make the metal beryllium very useful in varied technological endeavours, However, beryllium is recognised as one of the most toxic metals. Revelation of toxic effects of beryllium resulted in institution of stringent health and safety practices in beryllium handling facilities. The waste generated in such facilities may contain traces of beryllium. Any such waste should be treated as toxic waste and suitable safe waste management practices should be adopted. By instituting appropriate waste management practice and through a meticulously incorporated safety measures and continuous surveillance exercised in such facilities, total safety can be ensured. This paper broadly discusses health hazards posed by beryllium and safe methods of management of beryllium bearing wastes. (author)

  4. Federal facilities compliance act waste management

    International Nuclear Information System (INIS)

    Bowers, J.; Gates-Anderson, D.; Hollister, R.; Painter, S.

    1999-01-01

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal

  5. Status quo of energy recovery from waste in special industrial facilities and evaluation of the environmental impacts of using refuse derived fuel (RDF) in cement kilns in Germany; Untersuchung der Umweltauswirkungen des Einsatzes von Abfaellen ausserhalb thermischer Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Alwast, H.; Marton, C.; Koepp, M.

    2001-10-01

    Within the study presented here the use of energy recovery from waste was analysed for several industrial facilities, focussing on cement plants, kilns in the lime and gypsum industry, steel works and plants for the production of non ferrous metals. 44 German cement plants dispose of an own clinker production. Presently 31 plants have a permit for recovering energy from waste. The total permitted capacity for energy recovery in German cement kilns amounts to nearly 2,6 Mio. t/a. Mainly waste oil, old tyres, fuel derived from processed production-specific and municipal waste, plastics, scrap wood and waste paper are co-incinerated. In 1998/99 a total amount of roughly 945.000 t refuse was processed in 30 units of the studied facilities. In five furnaces at three steel works waste can be used for energy or material recovery. The approved total capacity of high calorific waste for energy recovery comes to nearly 350,000 t/a. Especially industrial plastics and packaging waste from DSD, plastics processed in scrap mills and shreddered waste and granulated paint sludge are used. In 1998 the facilities processed only old plastic, representing a total amount of nearly 109.000 t. At present seven facilities in the non ferrous metal industry have a permit for energy recovery from waste. The maximum capacity amounts on national level to nearly 140.000 t/a. Especially waste oil, packaging waste, plastics and scrap wood can be processed. The analysis of respective applications of the 17th BImSchV shows an inconsistency within the amending permitting procedures. For the time to come a conformity between the respective regional permitting authorities would be recommendable. Moreover, the effects on air emission caused by using waste for energy recovery were analysed for cement kilns with own clinker production. Due to the amendment of the 17th BImSchV more stringent requirements regarding waste composition must be established. This is especially valid for the highly volatile

  6. Resource Conservation and Recovery Act Part B permit application

    International Nuclear Information System (INIS)

    1992-01-01

    This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards

  7. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  8. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  9. High level waste facilities - Continuing operation or orderly shutdown

    International Nuclear Information System (INIS)

    Decker, L.A.

    1998-04-01

    Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed

  10. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  11. 77 FR 62537 - Notice of Waste Management Permit Application Received Under the Antarctic Conservation Act of 1978

    Science.gov (United States)

    2012-10-15

    ... NATIONAL SCIENCE FOUNDATION Notice of Waste Management Permit Application Received Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of a Waste Management... the National Science Foundation (NSF) has received a waste management permit application for Mike...

  12. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  13. Proposed integrated hazardous waste disposal facility. Public environmental review

    International Nuclear Information System (INIS)

    1998-05-01

    This Public Environmental Report describes a proposal by the Health Department of Western Australia to establish a disposal facility for certain hazardous wastes and seeks comments from governments agencies and the public that will assist the EPA to make its recommendations to. The facility would only be used for wastes generated in Western Australia.The proposal specifically includes: a high temperature incinerator for the disposal of organo-chlorines (including agricultural chemicals and PCBs), and other intractable wastes for which this is the optimum disposal method; an area for the burial (after any appropriate conditioning) of low level radioactive intractable wastes arising from the processing of mineral sands (including monazite, ilmenite and zircon) and phosphate rock. Detailed information is presented on those wastes which are currently identified as requiring disposal at the facility.The proposed facility will also be suitable for the disposal of other intractable wastes including radioactive wastes (from industry, medicine and research) and other solid intractable wastes of a chemical nature including spent catalysts etc. Proposals to dispose of these other wastes at this facility in the future will be referred to the Environmental Protection Authority for separate assessment

  14. New Waste Calcining Facility (NWCF) Waste Streams

    International Nuclear Information System (INIS)

    K. E. Archibald

    1999-01-01

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF

  15. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  16. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  17. Hanford Facility resource conservation and recovery act permit general inspection plan

    International Nuclear Information System (INIS)

    Beagles, D.B.

    1995-12-01

    The Hanford Facility Resource Conservation and Recovery Act Permit, General Inspection Requirements, includes a requirement that general facility inspections be conducted of the 100, 200 East, 200 West, 300, 400, and 1100 Areas and the banks of the Columbia River. This inspection plan describes the activities that shall be conducted for a general inspection of the Hanford Facility

  18. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10 16 Bq (7.5 x 10 5 Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation of the new hydrofracture facility include: (1) significant 90 Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations. The facility also falls under the provisions of part 3004(u) of the Resource Conservation and Recovery Act pertaining to corrective actions. Nationally, there is an uncertain outlook for the disposal of wastes by underground injection. All wells used for the injection of hazardous wastes (Class I wells) are being reviewed. 8 refs., 4 figs., 2 tabs

  19. Project No. 4 - Waste incineration facility

    International Nuclear Information System (INIS)

    2000-01-01

    There are currently 12000 m 3 of combustible waste stored at the Ignalina NPP site. It is estimated that by 2005 the volume will have increase to 15000 m 3 (filters, personnel protection, clothing and plastics). As a part of the preparation for the closure of the Ignalina NPP an incineration facility will be required to process combustible wastes to reduce the overall volume of short-lived radioactive wastes stored at the Ignalina NPP site, thus reducing the overall risk to the environment. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  20. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  1. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1993-03-01

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates

  2. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  3. The Advantages of Fixed Facilities in Characterizing TRU Wastes

    International Nuclear Information System (INIS)

    FRENCH, M.S.

    2000-01-01

    In May 1998 the Hanford Site started developing a program for characterization of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. After less than two years, Hanford will have a program certified by the Carlsbad Area Office (CAO). By picking a simple waste stream, taking advantage of lessons learned at the other sites, as well as communicating effectively with the CAO, Hanford was able to achieve certification in record time. This effort was further simplified by having a centralized program centered on the Waste Receiving and Processing (WRAP) Facility that contains most of the equipment required to characterize TRU waste. The use of fixed facilities for the characterization of TRU waste at sites with a long-term clean-up mission can be cost effective for several reasons. These include the ability to control the environment in which sensitive instrumentation is required to operate and ensuring that calibrations and maintenance activities are scheduled and performed as an operating routine. Other factors contributing to cost effectiveness include providing approved procedures and facilities for handling hazardous materials and anticipated contingencies and performing essential evolutions, and regulating and smoothing the work load and environmental conditions to provide maximal efficiency and productivity. Another advantage is the ability to efficiently provide characterization services to other sites in the Department of Energy (DOE) Complex that do not have the same capabilities. The Waste Receiving and Processing (WRAP) Facility is a state-of-the-art facility designed to consolidate the operations necessary to inspect, process and ship waste to facilitate verification of contents for certification to established waste acceptance criteria. The WRAP facility inspects, characterizes, treats, and certifies transuranic (TRU), low-level and mixed waste at the Hanford Site in Washington state. Fluor Hanford operates the $89

  4. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume I contains the following attachments for Module II: waste analysis plan; quality assurance program plan for the Waste Isolation Pilot Plant (WIPP) Experiment Waste Characterization Program(QAPP); WIPP Characterization Sampling and Analysis Guidance Manual (Plan)(SAP); and no migration Determination Requirement Summary (NMD)

  5. Low-level burial grounds dangerous waste permit application design documents

    International Nuclear Information System (INIS)

    1990-08-01

    This document serves a supplement to the already existing ''Low-Level Burial Ground Dangerous Waste Permit Application Design Documents.'' This paper contains information regarding drawings, construction specifications, and liner/leachate compatibility test plans

  6. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  7. Resource Conservation and Recovery Act: Part B, Permit application

    International Nuclear Information System (INIS)

    1992-03-01

    This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements

  8. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  9. The construction of solid waste form test and inspection facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Lee, Kang Moo; Jung, In Ha; Kim, Sung Hwan; Yoo, Jeong Woo; Lee, Jong Youl; Bae, Sang Min

    1988-01-01

    The solid waste form test and inspection facility is a facility to test and inspect the characteristics of waste forms, such as homogenity, mechanical structure, thermal behaviour, water resistance and leachability. Such kinds of characteristics in waste forms are required to meet a certain conditions for long-term storage or for final disposal of wastes. The facility will be used to evaluate safety for the disposal of wastes by test and inspection. At this moment, the efforts to search the most effective management of the radioactive wastes generated from power plants and radioisotope user are being executed by the people related to this field. Therefore, the facility becomes more significant tool because of its guidance of sucessfully converting wastes into forms to give a credit to the safety of waste disposal for managing the radioactive wastes. In addition the overall technical standards for inspecting of waste forms such as the standardized equipment and processes in the facility will be estabilished in the begining of 1990's when the project of waste management will be on the stream. Some of the items of the project have been standardized for the purpose of localization. In future, this facility will be utilized not only for the inspection of waste forms but also for the periodic decontamination apparatus by remote operation techniques. (Author)

  10. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  11. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  12. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2 radioactive waste and laundry shipments

    International Nuclear Information System (INIS)

    Doerge, D.H.; Haffner, D.R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  13. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  14. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  15. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  16. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  17. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  18. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  19. Annual Report of Radioactive Waste Facilities Operation in 2015

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; DIAO; Lei; SHEN; Zheng; LI; Wen-ge

    2015-01-01

    301of the Department of Radiochemistry,is in charge of the management of radioactive waste and the safety of the relative facilities to meet the request of the scientific research production.There are 16radioactive waste facilities,including9facilities which are closed and monitored

  20. Listed waste history at Hanford facility TSD units

    International Nuclear Information System (INIS)

    Miskho, A.G.

    1996-01-01

    This document was prepared to close out an occurrence report that Westinghouse Hanford Company issued on December 29, 1994. Occurrence Report RL-WHC-GENERAL-1994-0020 was issued because knowledge became available that could have impacted start up of a Hanford Site facility. The knowledge pertained to how certain wastes on the Hanford Site were treated, stored, or disposed of. This document consolidates the research performed by Westinghouse Hanford Company regarding listed waste management at onsite laboratories that transfer waste to the Double-Shell Tank System. Liquid and solid (non-liquid) dangerous wastes and mixed wastes at the Hanford Site are generated from various Site operations. These wastes may be sampled and characterized at onsite laboratories to meet waste management requirements. In some cases, the wastes that are generated in the field or in the laboratory from the analysis of samples require further management on the Hanford Site and are aggregated together in centralized tank storage facilities. The process knowledge presented herein documents the basis for designation and management of 242-A Evaporator Process Condensate, a waste stream derived from the treatment of the centralized tank storage facility waste (the Double-Shell Tank System). This document will not be updated as clean up of the Hanford Site progresses

  1. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  2. A game-theoretical model for selecting a site of non-preferred waste facilities

    International Nuclear Information System (INIS)

    Kim, Seong Ho; Kim, Tae Woon

    2006-01-01

    In the present work, a game-theoretic model (GTM) as a tool of conflict analysis is proposed for multiplayer multicriteria decision-making problems in a conflict situation. The developed GTM is used for obtaining the most possible resolutions in the conflict among multiple decision makers. The GTM is based on directed graph structure and solution concepts. To demonstrate the performance of the GTM, using a numerical example, the GTM is applied to an environmental conflict problem, especially a non-preferred waste disposal siting conflict available in the literature. It is found that with GTM the states in equilibrium can be recognized. The conflict under consideration is to select a site of non-preferred waste facilities. The government is to choose a site of installation for users of a toxic waste disposal facility. A certain time-point of interest is a period of time to select one of candidate sites that completely meet regular criteria of governmental body in charge of permitting a facility site. The facility siting conflict among multiple players (i.e., decision-makers, DMs) of concern is viewed as a multiple player-multiple criteria (MPMC) domain. For instance, three possible sites (i.e., site A, site B, and site C) to be selected by multiple players are characterized by the building cost, accessibility, and proximity to the residential area. Concerning the site A, the installation of a facility is not expensive, the accessible to a facility is easy, and the site A is located very near a residential area. Concerning site B, the facility is expensive to build, the facility is easily accessible, and the site is located near the residential area. Concerning site C, the installation cost is expensive, the accessibility is difficult, and the location of site is far from the residential area. In simple models, three main groups of players could be considered to be the government, users, and local residents. The government is to play a role as one of proponents or

  3. 340 waste handling facility interim safety basis

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  4. 340 waste handling facility interim safety basis

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people

  5. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    Science.gov (United States)

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  6. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  7. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment ampersand storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage ampersand treatment facilities

    International Nuclear Information System (INIS)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory's storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations

  8. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  9. Race, Wealth, and Solid Waste Facilities in North Carolina

    OpenAIRE

    Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Kaufman, Jay S.; Marshall, Stephen W.; Cravey, Altha J.

    2007-01-01

    Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain ...

  10. Application for approval to construct the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The following Application For Approval Of Construction is being submitted by the US Department of Energy, Richland Field Office pursuant to 40 CFR 61.07, ''Application for Approval of Construction or Modification,'' for the Waste Receiving and Processing (WRAP) Module 1 facility (also referred to as WRAP 1). The WRAP 1 facility will be a new source of radioactive emissions to the atmosphere. The WRAP 1 facility will be housed in the new 2336-W Building, which will be located in the 200 West Area south of 23rd Street and west of Dayton Avenue. The 200 West Area is located within the boundary of the Hanford Site. The mission of the WRAP 1 facility is to examine, assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the waste in accordance with all applicable regulations. The solid wastes to be handled in the WRAP 1 facility include low-level waste (LLW), Transuranic (TRU) waste, TRU mixed waste, and low-level mixed waste (LLMW). The WRAP 1 facility will only accept contact handled (CH) waste containers. CH waste is a waste category whose external surface dose rate does not exceed 200 mrem/h. These containers have a surface dose rate of less than 200 mrem/h

  11. PACCOM: A nuclear waste packaging facility cost model: Draft technical report

    International Nuclear Information System (INIS)

    Dippold, D.G.; Tzemos, S.; Smith, D.J.

    1985-05-01

    PACCOM is a computerized, parametric model used to estimate the capital, operating, and decommissioning costs of a variety of nuclear waste packaging facility configurations. The model is based upon a modular waste packaging facility concept from which functional components of the overall facility have been identified and their design and costs related to various parameters such as waste type, waste throughput, and the number of operational shifts employed. The model may be used to either estimate the cost of a particular waste packaging facility configuration or to explore the cost tradeoff between plant capital and labor. That is, one may use the model to search for the particular facility sizes and associated cost which when coupled with a particular number of shifts, and thus staffing level, leads to the lowest overall total cost. The functional components which the model considers include hot cells and their supporting facilities, transportation, cask handling facilities, transuranic waste handling facilities, and administrative facilities such as warehouses, security buildings, maintenance buildings, etc. The cost of each of these functional components is related either directly or indirectly to the various independent design parameters. Staffing by shift is reported into direct and indirect support labor. These staffing levels are in turn related to the waste type, waste throughput, etc. 2 refs., 11 figs., 3 tabs

  12. Reduction of radioactive waste by improvement of conditioning facilities

    Energy Technology Data Exchange (ETDEWEB)

    Radde, E.

    2014-07-01

    The NES (Nuclear Engineering Seibersdorf) is the only radioactive waste conditions and storage facility in Austria. It manages waste originating from research, industry and medicine. Its main goal is, not only to treat and store waste safety, but also to optimize processes to further reduce the waste volume. To achieve this goal, the New Handling Facility was built. In this paper we will show how the waste volume can be easily reduced by optimizing the conditioning and waste stream process. The NES owns a water treatment plant for cleaning of active waste water, an incineration plant that is used to burn radioactive waste. (Author)

  13. Estimation of marginal costs at existing waste treatment facilities.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  14. Hydroelectric Generating Facilities General Permit (HYDROGP) for Massachusetts & New Hampshire

    Science.gov (United States)

    Documents, links & contacts for the Notice of Availability of the Final NPDES General Permits (HYDROGP) for Discharges at Hydroelectric Generating Facilities in Massachusetts (MAG360000) and New Hampshire (NHG360000) and Tribal Lands in the State of MA.

  15. Regulation imposed to nuclear facility operators for the elaboration of 'waste studies' and 'waste statuses'

    International Nuclear Information System (INIS)

    2001-01-01

    This decision from the French authority of nuclear safety (ASN) aims at validating the new versions of the guidebook for the elaboration of 'waste studies' for nuclear facilities and of the specifications for the elaboration of 'waste statuses' for nuclear facilities. This paper includes two documents. The first one is a guidebook devoted to nuclear facility operators which fixes the rules of production of waste studies according to the articles 20 to 26 of the inter-ministry by-law from December 31, 1999 (waste zoning conditions and ASN's control modalities). The second document concerns the specifications for the establishment of annual waste statuses according to article 27 of the inter-ministry by-law from December 31, 1999 (rational management of nuclear wastes). (J.S.)

  16. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  17. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  18. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    Briesmeister, A.; Harper, J.; Reich, B.; Warren, J.L.

    1982-01-01

    To facilitate disposal of transuranic (TRU) waste, Los Alamos National Laboratory designed and constructed the Size Reduction Facility (SRF) during the period 1977 to 1981. This report summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  19. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    Briesmeister, A.; Harper, J.; Reich, B.; Warren, J.L.

    1982-01-01

    A transuranic (TRU) Waste Size Reduction Facility (SRF) was designed and constructed at the Los Alamos National Laboratory during the period of 1977 to 1981. This paper summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  20. 40 CFR 266.102 - Permit standards for burners.

    Science.gov (United States)

    2010-07-01

    ... or industrial furnace downstream of the combustion zone and prior to release of stack gases to the... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.102 Permit standards for burners. (a) Applicability—(1) General. Owners and operators of boilers and industrial furnaces...

  1. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  2. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  3. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  4. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ...-ZA31 Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk AGENCY: Coast Guard... availability of a proposed policy letter concerning the carriage of shale gas extraction waste water in bulk... transport shale gas extraction waste water in bulk. The policy letter also defines the information the Coast...

  5. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  6. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  7. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  8. WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2000-01-01

    This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

  9. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  10. Permeability of Consolidated Incinerator Facility Wastes Stabilized with Portland Cement

    International Nuclear Information System (INIS)

    Walker, B.W.

    1999-01-01

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and off-gas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as waste water. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete and will continue to be treated this way for listed waste burns and scrubber solution that do not meet the Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC)

  11. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1984-01-01

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion

  12. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  13. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    International Nuclear Information System (INIS)

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  14. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  15. The Mixed Waste Management Facility, monthly report, February 1995

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-03-01

    Technical progress continued in general accordance with the Mixed Waste Management Facility (MWMF) FY95 Plan. Engineering development and design continued in support of preliminary design of MWMF major subsystems. Peer reviews have begun in preparation for system preliminary design reviews. Procurements in support of engineering design/development have continued to increase. Significant effort to provide technical and cost trade-off information for the Project Baseline Revision 1.2 (PB1.2) and FY97 Validation was completed. Management focus during February centered upon addressing the rebaseline for MWMF for the FY97 Validation in March, and upon completing the permitting strategy. We completed a consistent baseline plan for Validation that satisfied the DOE constraints of integration with DWTF, schedule stretchout, overall Project cost, and FY cost profiles. The revised permitting strategy was completed and reviewed by a number of stakeholders (LLNL, DOE, State). The proposed strategy involves no RCRA RD ampersand D permit, since all technology demonstrations can be done with surrogates and using limited treatability studies. The expenses for February continue to run somewhat below the plan due to the limited new hiring. This is a result of uncertain DOE funding and guidance to keep personnel to a minimum. However, the spending rate is picking up due to initiation of procurements for engineering development and a minimum of essential new hires. A significant imbalance in the OPEX/CENRTC funding split for FY95 exists (about $2.1M); DOE/OAK began to seek resolution this month. Critical-path items are DWTF construction, NEPA, and permitting (for both MWMF and DWTF). Contractual issues have delayed award of the A ampersand E contract for DWTF, but work-arounds are in progress to avoid schedule impact. NEPA and permitting issues are discussed below. Progress on preliminary design for MWMF is close to schedule

  16. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    International Nuclear Information System (INIS)

    Dyer, R.S.; Diamante, J.M.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility's capacity from 1,200 m 3 per year to 5,000 m 3 per year, will permit the facility to process high-salt wastes from the Russian Navy's Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted

  17. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  18. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  19. Outline of the radioactive waste management strategy at the national radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.F.; Tukhto, A.A.; Ivanov, V.B.

    2000-01-01

    The national Belarus radioactive waste disposal facility 'Ekores' was started in 1964 and was designed for radioactive waste coming from nuclear applications in industry, medicine and research. It is located in the neighbourhood of Minsk (2 Mil. people) and it is the only one in this country. In 1997 the Government initiated the project for the facility reconstruction. The main reconstruction goal is to upgrade radiological safety of the site by creating adequate safety conditions for managing radioactive waste at the Ekores disposal facility. This covers modernising technologies for new coming wastes and also that the wastes currently disposed in the pits are retrieved, sorted and treated in the same way as new coming wastes. The reconstruction project developed by Belarus specialists was reviewed by the IAEA experts. The main provisions of the revised project strategy are given in this paper. The paper's intention is to outline the technical measures which may be taken at standard 'old type Soviet Radon' disposal facility so as to ensure the radiological safety of the site. (author)

  20. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    Soukup, J.D.; Erpenbeck, G.J.

    1995-01-01

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  1. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  2. Resource Conservation and Recovery Act Part B permit application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 1, contains a site and facility description of WIPP; procedures for waste analysis and characterization, testing, monitoring, inspection, and training; hazard prevention, safety and security plans; plans for closure; and a discussion of other applicable laws. Also included are maps, photographs, and diagrams of the facilities and surrounding areas. 180 refs., 75 figs., 24 tabs

  3. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous waste...

  4. Los Alamos Transuranic Waste Size Reduction Facility

    International Nuclear Information System (INIS)

    Harper, J.; Warren, J.

    1987-06-01

    The Los Alamos Transuranic (TRU) Waste Size Reduction Facility (SRF) is a production oriented prototype. The facility is operated to remotely cut and repackage TRU contaminated metallic wastes (e.g., glove boxes, ducting and pipes) for eventual disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The resulting flat sections are packaged into a tested Department of Transportation Type 7A metal container. To date, the facility has successfully processed stainless steel glove boxes (with and without lead shielding construction) and retention tanks. We have found that used glove boxes generate more cutting fumes than do unused glove boxes or metal plates - possibly due to deeply embedded chemical residues from years of service. Water used as a secondary fluid with the plasma arc cutting system significantly reduces visible fume generation during the cutting of used glove boxes and lead-lined glove boxes. 2 figs., 1 tab

  5. The Constitution, waste facility performance standards, and radioactive waste classification: Is equal protection possible?

    Energy Technology Data Exchange (ETDEWEB)

    Eye, R.V. [Kansas Dept. of Health and Environment, Topeka, KS (United States)

    1993-03-01

    The process for disposal of so-called low-level radioactive waste is deadlocked at present. Supporters of the proposed near-surface facilities assert that their designs will meet minimum legal and regulatory standards currently in effect. Among opponents there is an overarching concern that the proposed waste management facilities will not isolate radiation from the biosphere for an adequate length of time. This clash between legal acceptability and a perceived need to protect the environment and public health by requiring more than the law demand sis one of the underlying reasons why the process is deadlocked. Perhaps the most exhaustive public hearing yet conducted on low-level radioactive waste management has recently concluded in Illinois. The Illinois Low-Level Radioactive Waste Disposal Facility Sitting Commission conducted 71 days of fact-finding hearings on the safety and suitability of a site near Martinsville, Illinois, to serve as a location for disposition of low-level radioactive waste. Ultimately, the siting commission rejected the proposed facility site for several reasons. However, almost all the reasons were related, to the prospect that, as currently conceived, the concrete barrier/shallow-land burial method will not isolate radioactive waste from the biosphere. This paper reviews the relevant legal framework of the radioactive waste classification system and will argue that it is inadequate for long-lived radionuclides. Next, the paper will present a case for altering the classification system based on high-level waste regulatory considerations.

  6. Mass and element balance in food waste composting facilities.

    Science.gov (United States)

    Zhang, Huijun; Matsuto, Toshihiko

    2010-01-01

    The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined. Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities. 2010 Elsevier Ltd. All rights reserved.

  7. Legal problems of waste treatment in German atomic energy facilities

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1980-01-01

    The execution of the strategies of waste treatment and disposal calls for the laws and regulations on the obligations of the owners of equipments and facilities and of the state for securing safety and the final elimination of radioactive wastes, which are defined mainly in Article 9 of Atomgesetz and Section 2 (Article 44 - 48) of the order on protection from radiation. The owners of equipments and facilities of atomic energy technology shall limit the emission of radiation to about 6% of internationally permissible values, avoid uncontrolled emission without fail, inspect emission and submit reports yearly to government offices. The owners have attention obligations to utilize harmlessly produced radioactive residues and the expanded or dismantled parts of radioactive equipments or to eliminate orderly such things as radioactive wastes, only when such utilization is unable technically or economically, or not adequate under the protection aims of Atomgesetz. The possessors of radioactive wastes shall deliver the wastes to the accumulation places of provinces for intermediate storage, to the facilities of the Federal Republic for securing safety or final storage, or the facilities authorized by government offices for the elimination of radioactive wastes. Provinces shall install the accumulation places for the intermediate storage of radioactive wastes produced in their territories, and the Federal Republic shall set up the facilities for securing safety and the final elimination of radioactive wastes (Article 9, Atomgesetz). (Okada, K.)

  8. US Army facility for the consolidation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables

  9. Design and construction of low level radioactive waste disposal facility at Rokkasho storage center

    International Nuclear Information System (INIS)

    Takahashi, K.; Itoh, H.; Iimura, H.; Shimoda, H.

    1992-01-01

    Japan Nuclear Fuel Industries Co., Inc. (JNFI) which has been established to dispose through burial the low-level radioactive waste (LLW) produced by nuclear power stations over the country is now constructing Rokkasho LLW Storage Center at Rokkasho Village,Aomori Prefecture. At this storage center JNFI plans to bury about 200,000m 3 , of LLW (equivalent to about one million drums each with a 200 liter capacity), and ultimately plans to bury about 600,000m 3 about 3 million drums of LLW. About the construction of the burial facilities for the first-stage LLW equivalent to 200,000 drums (each with a 200-liter capacity) we obtained the government's permit in November, 1990 and set out the construction work from the same month, which has since been promoted favorably. The facilities are scheduled to start operation from December, 1992. This paper gives an overview of at these facilities

  10. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  11. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  12. F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application

  13. Criteria for designing an interim waste storage facility

    International Nuclear Information System (INIS)

    Vicente, Roberto

    2011-01-01

    The long-lived radioactive wastes with activity above clearance levels generated by radioisotope users in Brazil are collected into centralized waste storage facilities under overview of the National Commission on Nuclear Energy (CNEN). One of these centers is the Radioactive Waste Management Department (GRR) at the Nuclear and Energy Research Institute (IPEN), in Sao Paulo, which since 1978 also manages the wastes generated by IPEN itself. Present inventory of stored wastes includes about 160 tons of treated wastes, distributed in 1290 steel, 200-liters drums, and 52 steel, 1.6 m 3 -boxes, with an estimated total activity of 0.8 TBq. Radionuclides present in these wastes are fission and activation products, transuranium elements, and isotopes from the uranium and thorium decay series. The capacity and quality of the storage rooms at GRR evolved along the last decades to meet the requirements set forth by the Brazilian regulatory authorities.From a mere outdoor concrete platform over which drums were simply stacked and covered with canvas to the present day building, a great progress was made in the storage method. In this paper we present the results of a study in the criteria that were meant to guide the design of the storage building, many of which were eventually adopted in the final concept, and are now built-in features of the facility. We also present some landmarks in the GRR's activities related to waste management in general and waste storage in particular, until the treated wastes of IPEN found their way into the recently licensed new storage facility. (author)

  14. Startup of the remote laboratory-scale waste-treatment facility

    International Nuclear Information System (INIS)

    Knox, C.A.; Siemens, D.H.; Berger, D.N.

    1981-01-01

    The Remote Laboratory-Scale Waste-Treatment Facility was designed as a system to solidify small volumes of radioactive liquid wastes. The objectives in operating this facility are to evaluate solidification processes, determine the effluents generated, test methods for decontaminating the effluents, and provide radioactive solidified waste products for evaluation. The facility consists of a feed-preparation module, a waste-solidification module and an effluent-treatment module. The system was designed for remote installation and operation. Several special features for remotely handling radioactive materials were incorporated into the design. The equipment was initially assembled outside of a radiochemical cell to size and fabricate the connecting jumpers between the modules and to complete some preliminary design-verification tests. The equipment was then disassembled and installed in the radiochemical cell. When installation was completed the entire system was checked out with water and then with a nonradioactive simulated waste solution. The purpose of these operations was to start up the facility, find and solve operational problems, verify operating procedures and train personnel. The major problems experienced during these nonradioactive runs were plugging of the spray calciner nozzle and feed tank pumping failures. When these problems were solved, radioactive operations were started. This report describes the installation of this facility, its special remote design feature and the startup operations

  15. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  16. Waste immobilization demonstration program for the Hanford Site's Mixed Waste Facility

    International Nuclear Information System (INIS)

    Burbank, D.A.; Weingardt, K.M.

    1994-05-01

    This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation

  17. Facility status and progress of the INEL's WERF MLLW and LLW incinerator

    International Nuclear Information System (INIS)

    Conley, D.; Corrigan, S.

    1996-01-01

    The Idaho National Engineering Laboratory's (INEL) Waste Experimental Reduction Facility (WERF) incinerator began processing beta/gamma- emitting low-level waste (LLW) in September 1984. A Resource Conservation and Recovery Act (RCRA) trial burn for the WERF incinerator was conducted in 1986, and in 1989 WERF began processing (hazardous and low-level radioactive) waste known as mixed low-level waste (MLLW). On February 14, 1991 WERF operations were suspended to improve operating procedures and configuration management. On July 12, 1995, WERF initiated incineration of LLW; and on September 20, 1995 WERF resumed its primary mission of incinerating MLLW. MLLW incineration is proceeding under RCRA interim status. State of Idaho issuance of the Part B permit is one of the State's highest permitting priorities. The State of Idaho's Division of Environmental Quality is reviewing the permit application along with a revised trial burn plan that was also submitted with the application. The trial burn has been proposed to be performed in 1996 to demonstrate compliance with the current incinerator guidance. This paper describes the experiences and problems associated with WERF's operations, incineration of MLLW, and the RCRA Part B Permit Application. Some of the challenges that have been overcome include waste characterization, waste repackaging, repackaged waste storage, and implementation of RCRA interim status requirements. A number of challenges remain. They include revision of the RCRA Part B Permit Application and the Trial Burn Plan in response to comments from the state permit application reviewers as well as facility and equipment upgrades required to meet RCRA Permitted Status

  18. Resource Conservation and Recovery Act, Part B, Permit Application

    International Nuclear Information System (INIS)

    1991-01-01

    This report is part of the permit application for the WIPP facility. Appendices are presented on the following: the design validation final report; sampling of volatile organic compounds which may be emitted from waste binss, site supplementary roof support system, and studies on wind and tornado probabilities

  19. Los Alamos Transuranic Waste Size Reduction Facility

    International Nuclear Information System (INIS)

    Harper, J.; Warren, J.

    1987-01-01

    The Los Alamos Transuranic (TRU) Waste Size Reduction Facility (SRF) is a production oriented prototype completed in 1981 and later modified during 1986 to enhance production. The facility is operated to remotely cut (with a plasma arc torch) and repackage TRU contaminated metallic wastes (e.g., glove boxes, ducting and pipes) for eventual disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The resulting flat sections are packaged into a tested Department of Transportation Type 7A metal container. To date, the facility has successfully processed stainless steel glove boxes (with and without lead shielding construction) and retention tanks. It was found that used glove boxes generate more cutting fumes than do unused glove boxes or metal plates - possibly due to deeply embedded chemical residues from years of service. Water used as a secondary fluid with the plasma arc cutting system significantly reduces visible fume generation during the cutting of used glove boxes and lead-lined glove boxes

  20. A pilot survey of the U.S. medical waste industry to determine training needs for safely handling highly infectious waste.

    Science.gov (United States)

    Le, Aurora B; Hoboy, Selin; Germain, Anne; Miller, Hal; Thompson, Richard; Herstein, Jocelyn J; Jelden, Katelyn C; Beam, Elizabeth L; Gibbs, Shawn G; Lowe, John J

    2018-02-01

    The recent Ebola outbreak led to the development of Ebola virus disease (EVD) best practices in clinical settings. However, after the care of EVD patients, proper medical waste management and disposal was identified as a crucial component to containing the virus. Category A waste-contaminated with EVD and other highly infectious pathogens-is strictly regulated by governmental agencies, and led to only several facilities willing to accept the waste. A pilot survey was administered to determine if U.S. medical waste facilities are prepared to handle or transport category A waste, and to determine waste workers' current extent of training to handle highly infectious waste. Sixty-eight percent of survey respondents indicated they had not determined if their facility would accept category A waste. Of those that had acquired a special permit, 67% had yet to modify their permit since the EVD outbreak. This pilot survey underscores gaps in the medical waste industry to handle and respond to category A waste. Furthermore, this study affirms reports a limited number of processing facilities are capable or willing to accept category A waste. Developing the proper management of infectious disease materials is essential to close the gaps identified so that states and governmental entities can act accordingly based on the regulations and guidance developed, and to ensure public safety. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Remediation and decommissioning of radioactive waste facilities in Estonia

    International Nuclear Information System (INIS)

    Putnik, H.; Realo, E.

    2001-01-01

    Full text: The nuclear training facility at Paldiski was constructed in the early 1960's by the former USSR Navy. The hull sections of Delta and Echo class submarines each housing a full-sized ship reactor were installed in the main building of the site for training of navy personnel in safe operation of the submarine nuclear reactor systems. The first reactor was commissioned in 1968 and the second in 1982, while both was shut down in 1989. After Estonia's reproclamation of independence in 1991 the responsibility for the clean up and decommissioning of the Paldiski site became a subject of negotiations between Russia and Estonia. As the result Estonia took the ownership and control of the site in September 1995. Before the take over the Russian authorities defuelled the reactors and transported the spent fuel to Russia, dismantled the hull sections not related with reactor systems, seal-welded the hull sections housing the reactor vessels with their primary circuitry and enclosed those in reinforced concrete sarcophagi. The auxiliary facilities and radioactive waste were left intact. Main goals of the Conceptual Decommissioning Plan for the Paldiski facilities, developed under the auspices of the Paldiski International Expert Reference Group (Pier, a group established at the request of the Estonian government to advise local authorities to maintain the decommissioning and waste management at Paldiski) were defined as following: Establishing the waste management system and a long term monitored interim storage, corresponding to internationally accepted safety standards and capable to condition, receive and store all the waste generated during decommissioning of the facility; Reductions of the extent of radiologically controlled areas as much as possible, in order to minimise maintenance requirements. To achieve these goals the following main tasks were addressed in the short and medium term site management action plans: Rearrangement of site for the needs of

  2. WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-05-23

    This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

  3. Status of spent fuel storage facilities in Switzerland

    International Nuclear Information System (INIS)

    Beyeler, P.C.; Lutz, H.R.; Heesen, W. von

    1999-01-01

    Planning of a dry spent fuel storage facility in Switzerland started already 15 years ago. The first site considered for a central interim storage facility was the cavern of the decommissioned pilot nuclear plant at Lucens in the French-speaking part of Switzerland. This project was terminated in the late eighties because of lack of public acceptance. The necessary acceptance was found in the small town of Wuerenlingen which has hosted for many years the Swiss Reactor Research Centre. The new project consists of centralised interim storage facilities for all types of radioactive waste plus a hot cell and a conditioning and incinerating facility. It represents a so-called integrated storage solution. In 1990, the new company 'ZWILAG Zwischenlager Wuerenlingen AG' (ZWILAG) was founded and the licensing procedures according to the Swiss Atomic law were initiated. On August 26, 1996 ZWILAG got the permit for construction of the whole facility including the operating permit for the storage facilities. End of construction and commissioning are scheduled for autumn 1999. The nuclear power station Beznau started planning a low level waste and spent fuel storage facility on its own, because in 1990 its management thought that by 1997 the first high active waste from the reprocessing facilities in France would have to be taken back. This facility at the Beznau site, called ZWIBEZ, was licensed according to a shorter procedure so its construction was finished by 1997. The two facilities for high level waste and spent fuel provide space for a total of 278 casks, which is sufficient for the waste and spent fuel of the four Swiss nuclear power stations including their life extension programme. (author)

  4. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    International Nuclear Information System (INIS)

    Dominick, J L

    2001-01-01

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification

  5. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  6. Evalution of NDA techniques and instruments for assay of nuclear waste at a waste terminal storage facility

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Allen, E.J.; Jenkins, J.D.

    1978-05-01

    The use of Nondestructive Assay (NDA) instrumentation at a nuclear waste terminal storage facility for purposes of Special Nuclear Material (SNM) accountability is evaluated. Background information is given concerning general NDA techniques and the relative advantages and disadvantages of active and passive NDA methods are discussed. The projected characteristics and amounts of nuclear wastes that will be delivered to a waste terminal storage facility are presented. Wastes are divided into four categories: High Level Waste, Cladding Waste, Intermediate Level Waste, and Low Level Waste. Applications of NDA methods to the assay of these waste types is discussed. Several existing active and passive NDA instruments are described and, where applicable, results of assays performed on wastes in large containers (e.g., 55-gal drums) are given. It is concluded that it will be difficult to routinely achieve accuracies better than approximately 10--30% with ''simple'' NDA devices or 5--20% with more sohpisticated NDA instruments for compacted wastes. It is recommended that NDA instruments not be used for safeguards accountability at a waste storage facility. It is concluded that item accountability methods be implemented. These conclusions and recommendations are detailed in a concurrent report entitled ''Recommendations on the Safeguards Requirements Related to the Accountability of Special Nuclear Material at Waste Terminal Storage Facilities'' by J.D. Jenkins, E.J. Allen and E.D. Blakeman

  7. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  8. Waste sampling and characterization facility (WSCF)

    International Nuclear Information System (INIS)

    1994-10-01

    The Waste Sampling and Characterization Facility (WSCF) complex consists of the main structure (WSCF) and four support structures located in the 600 Area of the Hanford site east of the 200 West area and south of the Hanford Meterology Station. WSCF is to be used for low level sample analysis, less than 2 mRem. The Laboratory features state-of-the-art analytical and low level radiological counting equipment for gaseous, soil, and liquid sample analysis. In particular, this facility is to be used to perform Resource Conservation and Recovery Act (RCRA) of 1976 and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 sample analysis in accordance with U.S. Environmental Protection Agency Protocols, room air and stack monitoring sample analysis, waste water treatment process support, and contractor laboratory quality assurance checks. The samples to be analyzed contain very low concentrations of radioisotopes. The main reason that WSCF is considered a Nuclear Facility is due to the storage of samples at the facility. This maintenance Implementation Plan has been developed for maintenace functions associate with the WSCF

  9. Operation of a low-level waste disposal facility and how to prevent problems in future facilities

    International Nuclear Information System (INIS)

    Di Sibio, R.

    1985-01-01

    Operation of a low-level waste facility is an ever increasing problem nationally, and specifically one that could grow to crisis proportion in Pennsylvania. There have been, nevertheless, a variety of changes over the years in the management of low level radioactive waste, particularly with regard to disposal facilities that can avert a crisis condition. A number of companies have been organized thru possible a broad range of services to the nuclear industry, including those that emphasize solidification of waste materials, engineering services, waste management, and transportation to disposal sites across the United States. This paper addresses one particular site and the problems which evolved at that site from an environmental perspective. It is important that it is clearly understood that, although these problems are resolvable, the lessons learned here are critical for the prevention of problems at future facilities. The focus of this paper is on the Maxey Flats, Kentucky disposal facility which was closed in 1977. It must be understood that the regulations for siting, management, burial techniques, waste classification, and the overall management of disposal sites were limited when this facility was in operation

  10. AIR PERMIT COMPLIANCE FOR WASTE RETRIEVAL OEPRATIONS INVOLVING MULTI-UNIT EMISSIONS

    International Nuclear Information System (INIS)

    SIMMONS FM

    2007-01-01

    Since 1970, approximately 38,000 suspect-transuranic and transuranic waste containers have been placed in retrievable storage on the Hanford Site in the 200 Areas burial grounds. Hanford's Waste Retrieval Project is retrieving these buried containers and processing them for safe storage and disposition. Container retrieval activities require an air emissions permit to account for potential emissions of radionuclides. The air permit covers the excavation activities as well as activities associated with assaying containers and installing filters in the retrieved transuranic containers lacking proper venting devices. Fluor Hanford, Inc. is required to track radioactive emissions resulting from the retrieval activities. Air, soil, and debris media contribute to the emissions and enabling assumptions allow for calculation of emissions. Each of these activities is limited to an allowed annual emission (per calendar year) and .contributes to the overall total emissions allowed for waste retrieval operations. Tracking these emissions is required to ensure a permit exceedance does not occur. A tracking tool was developed to calculate potential emissions in real time sense. Logic evaluations are established within the tracking system to compare real time data against license limits to ensure values are not exceeded for either an individual activity or the total limit. Data input are based on field survey and workplace air monitoring activities. This tracking tool is used monthly and quarterly to verify compliance to the license limits. Use of this tool has allowed Fluor Hanford, Inc. to successfully retrieve a significant number of containers in a safe manner without any exceedance of emission limits

  11. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.

  12. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report

  13. The adequacy of the facility and the location of waste collection

    Science.gov (United States)

    Ulrich-Supovec, Marjana

    2017-07-01

    The purpose of this article is to summarise some provisions of the legislation applicable in the territory of the Republic of Slovenia that have to be complied with when selecting facilities intended for waste collection. In addition to equipment, the adequacy of such facility also depends on its site. Not only waste management legislation and environment protection legislation, but also legislation governing water, nature preservation and conservation, natural and cultural heritage and mining legislation stipulate the possibility of using facilities where collectors can sort and store waste before depositing it for subsequent management. This paper presents location examples where various factors exclude the possibility of using facilities as waste collection centres.

  14. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Mendiratta, O.P.; Ploetz, D.K.

    2000-01-01

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste processing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999

  15. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  16. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    Directory of Open Access Journals (Sweden)

    M. V. Vedernikova

    2017-01-01

    Full Text Available This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on data collected during operation of near-surface disposal facilities for short-lived intermediate-, lowand very low-level waste in France, as well as nearsurface disposal facilities for long-lived waste in Russia. Further analysis of occupational and public doses calculated at the design stage was completed covering a near-surface disposal facility in Belgium and deep disposal facilities in the United Kingdom and the Nizhne-Kansk rock massive (Russia. The results show that engineering and technical solutions enable almost complete elimination of internal occupational exposure, whereas external exposure doses would fall within the range of values typical for a basic nuclear facility. Conclusion: radioactive waste disposal facilities being developed, constructed and operated meet the safety requirements effective in the Russian Federation and consistent with relevant international recommendations. It has been found that individual occupational exposure doses commensurate with those received by personnel of similar facilities abroad. Furthermore, according to the forecasts, mean individual doses for personnel during radioactive waste disposal would be an order of magnitude lower than the dose limit of 20 mSv/year. As for the public exposure, during normal operation, potential impact is virtually impossible by delaminating boundaries of a nuclear facility sanitary protection zone inside which the disposal facility is located and can be solely attributed to the use

  17. Training manual for process operation and management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J. S.; Kim, K. J.; Ahn, S. J. [and others

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure.

  18. Training manual for process operation and management of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure

  19. Facility for low-level solid waste treatment

    International Nuclear Information System (INIS)

    Vicente, R.; Miyamoto, H.

    1987-01-01

    A facility for low-level solid waste compaction, encapsulation and storage is described. Solid wastes are compacted in 200 l drums and stored over concrete platforms covered with canvas, for decay or for interim storage before transport to the final disposal site. (Author) [pt

  20. Nonradioactive air emissions notice of construction for the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) is to examine assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. WRAP 1 will contain equipment and facilities necessary for non-destructive examination (NDE) of wastes and to perform a non-destructive examination assay (NDA) of the total radionuclide content of the wastes, without opening the outer container (e.g., 55-gal drum). WRAP 1 will also be equipped to open drums which do not meet waste acceptance and shipping criteria, and to perform limited physical treatment of the wastes to ensure that storage, shipping, and disposal criteria are met. The solid wastes to be handled in the WRAP 1 facility include low level waste (LLW), transuranic (TRU) waste, and transuranic and low level mixed wastes (LLMW). The WRAP 1 facility will only accept contact handler (CH) waste containers. A Best Available Control Technology for Toxics (TBACT) assessment has been completed for the WRAP 1 facility (WHC 1993). Because toxic emissions from the WRAP 1 facility are sufficiently low and do not pose any health or safety concerns to the public, no controls for volatile organic compounds (VOCs), and installation of HEPA filters for particulates satisfy TBACT for the facility

  1. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  2. Mixed waste treatment at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Larsen, M.M.; Hunt, L.F.; Sanow, D.J.

    1988-01-01

    The Idaho Operations Office of the Department of Energy (DOE) made the decision in 1984 to prohibit the disposal of mixed waste (MW) (combustible waste-toxic metal waste) in the Idaho National Engineering Laboratory (INEL) low-level radioactive waste (LLW) disposal facility. As a result of this decision and due to there being no EPA-permitted MW treatment/storage/disposal (T/S/D) facilities, the development of waste treatment methods for MW was initiated and a storage facility was established to store these wastes while awaiting development of treatment systems. This report discusses the treatment systems developed and their status. 3 refs., 2 figs., 1 tab

  3. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  4. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  5. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  6. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  7. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  8. The adequacy of the facility and the location of waste collection

    Directory of Open Access Journals (Sweden)

    Ulrich-Supovec Marjana

    2017-07-01

    Full Text Available The purpose of this article is to summarise some provisions of the legislation applicable in the territory of the Republic of Slovenia that have to be complied with when selecting facilities intended for waste collection. In addition to equipment, the adequacy of such facility also depends on its site. Not only waste management legislation and environment protection legislation, but also legislation governing water, nature preservation and conservation, natural and cultural heritage and mining legislation stipulate the possibility of using facilities where collectors can sort and store waste before depositing it for subsequent management. This paper presents location examples where various factors exclude the possibility of using facilities as waste collection centres.

  9. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  10. Characterization of mixed waste for shipment to TSD Facilities Program

    International Nuclear Information System (INIS)

    Chandler, K.; Goyal, K.

    1995-01-01

    In compliance with the Federal Facilities Compliance Agreement, Los Alamos National Laboratory (LANL) is striving to ship its low-level mixed waste (LLMW) off-site for treatment and disposal. In order to ship LLMW off site to a commercial facility, LANL must request exemption from the DOE Order 5820.2A requirement that LLMW be shipped only to Department of Energy facilities. Because the process of obtaining the required information and approvals for a mixed waste shipment campaign can be very expensive, time consuming, and frustrating, a well-planned program is necessary to ensure that the elements for the exemption request package are completed successfully the first time. LANL has developed such a program, which is cost- effective, quality-driven, and compliance-based. This program encompasses selecting a qualified analytical laboratory, developing a quality project-specific sampling plan, properly sampling liquid and solid wastes, validating analytical data, documenting the waste characterization and decision processes, and maintaining quality records. The products of the program are containers of waste that meet the off-site facility's waste acceptance criteria, a quality exemption request package, documentation supporting waste characterization, and overall quality assurance for the process. The primary goal of the program is to provide an avenue for documenting decisions, procedures, and data pertinent to characterizing waste and preparing it for off-site treatment or disposal

  11. The role of economic incentives in nuclear waste facility siting

    International Nuclear Information System (INIS)

    Davis, E.M.

    1986-01-01

    There is a need to provide some public benefit and/or reward for accepting a ''locally unwanted land use'' (LULU) facility such as a nuclear waste storage or disposal facility. This paper concludes that DOE, Congress and the states should immediately quantify an economic incentive for consideration ''up front'' by society on siting decisions for nuclear waste storage and disposal facilities

  12. Task technical plan: DWPF air permit/dispersion modeling

    International Nuclear Information System (INIS)

    Lambert, D.P.

    1993-01-01

    This Task Technical Plan summarizes work required to project the benzene emissions from the Late Wash Facility (LWF) as well as update the benzene, mercury, and NO x emissions from the remainder of the Defense Waste Processing Facility (DWPF). These calculations will reflect (1) the addition of the LWF and (2) the replacement of formic acid with nitric acid in the melter preparation process. The completed calculations will be used to assist DWPF in applying for the LWF Air Quality Permit

  13. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  14. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  15. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  16. Radonclose - the system of Soviet designed regional waste management facilities

    International Nuclear Information System (INIS)

    Horak, W.C.; Reisman, A.; Purvis, E.E. III.

    1997-01-01

    The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities

  17. State waste discharge permit application for cooling water and condensate discharges

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  18. Radon exposure at a radioactive waste storage facility.

    Science.gov (United States)

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  19. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  20. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  1. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Separate review of NMP-NCS-930058, open-quotes Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility (U), August 17, 1993,close quotes was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility's Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2x2x1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion

  2. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  3. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  4. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  5. Alpha waste management at the Valduc Research Center

    International Nuclear Information System (INIS)

    Jouan, A.; Cartier, R.; Durec, J.P.; Flament, T.

    1995-01-01

    Operation of the reprocessing facilities at the Valduc Research Center of the French Atomic Energy Commission (CEA) generates waste with a variety of characteristics. The waste compatible with surface storage requirements is transferred to the French Radioactive Waste Management Agency (ANDRA); rest is reprocessed under a program which enables storage in compliance with the requirements of permits issued by safety Authorities. The waste reprocessing program provides for the construction of an incinerator capable of handling nearly all of the combustible waste generated by the Center and vitrification facility for treating liquid waste generated by the plutonium handling plant. (authors)

  6. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  7. The defense waste processing facility: A status report

    International Nuclear Information System (INIS)

    Cowan, S.P.; Fulmer, D.C.

    1987-01-01

    The Defense Waste Processing Fascility (DWPF) will be the nation's first production scale facility for immobilizing high-level waste for disposal. It will also be the largest facility of its kind in the world. The technology, design, and construction efforts are on schedule for ''hot'' operation in fiscal year 1990. This paper provides a status report on the DWPF technology, design, and construction, and describes some of the challenges that have arisen during design and construction

  8. Economic comparison of centralizing or decentralizing processing facilities for defense transuranic waste

    International Nuclear Information System (INIS)

    Brown, C.M.

    1980-07-01

    This study is part of a set of analyses under direction of the Transuranic Waste Management Program designed to provide comprehensive, systematic methodology and support necessary to better understand options for national long-term management of transuranic (TRU) waste. The report summarizes activities to evaluate the economics of possible alternatives in locating facilities to process DOE-managed transuranic waste. The options considered are: (1) Facilities located at all major DOE TRU waste generating sites. (2) Two or three regional facilities. (3) Central processing facility at only one DOE site. The study concludes that processing at only one facility is the lowest cost option, followed, in order of cost, by regional then individual site processing

  9. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  10. Waste management facility acceptance - some findings

    International Nuclear Information System (INIS)

    Sigmon, B.

    1987-01-01

    Acceptance of waste management facilities remains a significant problem, despite years of efforts to reassure potential host communities. The tangible economic benefits from jobs, taxes, and expenditures are generally small, while the intangible risks of environmental or other impacts are difficult to evaluate and understand. No magic formula for winning local acceptance has yet been found. Limited case study and survey work does suggest some pitfalls to be avoided and some directions to be pursued. Among the most significant is the importance that communities place on controlling their own destiny. Finding a meaningful role for communities in the planning and operation of waste management facilities is a challenge that would-be developers should approach with the same creativity that characterizes their technical efforts

  11. Studies involving proposed waste disposal facilities in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1987-01-01

    Today principal sources of radioactive wastes are hospitals, research institutions, biological research centers, universities, industries and two research reactors in Turkey. These wastes will be treated in a pilot waste treatment facility located in Cekmece Nuclear Research and Training Center, Istanbul. In this temporary waste disposal facility, the wastes will be stored in 200 liter concrete containers until the establishment of the permanent waste disposal sites in Turkey, in 1990. The PRESTO - II (Prediction of Radiation Effects From Shallow Trench Operations) computer code was applied for the general probable sites for LLW disposal in Turkey. The model is non-site specific screening model for assessing radionuclide transport, ensuring exposure, and health impacts to a static local population for a chosen time period, following the end of the disposal operation. The methodology that this codes takes into consideration is versatile and explicitly considers infiltration and percolation of surface water into the trench, leaching of radionuclides, vertical and horizontal transport of radionuclides and use of this contaminated ground water for farming, irrigation, and ingestion

  12. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  13. Radiological risks of transports to central waste management facilities

    International Nuclear Information System (INIS)

    Lange, F.

    1997-01-01

    Transports of radioactive waste from nuclear facilities have been a matter of frequent public concern in the recent past. News reports, protests and questions concerning the radiological risk tended to concentrate on transports to and from central waste management facilities, e.g. transports of spent fuel elements to reprocessing plants abroad (France, England), transports to intermediate storage sites (Ahaus, Gorleben), transports to operative (Morsleben) and projected (Konrad) final storage sites, and transports of vitrified high-activity waste from reprocessing plants to the intermediate storage site (Gorleben). (orig.) [de

  14. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  15. Treatment of wastes from a central spent-fuel rod consolidation facility

    International Nuclear Information System (INIS)

    Ross, W.A.

    1986-01-01

    The consolidation of commercial spent-fuel rods at a central treatment facility (such as the proposed Monitored Retrievable Storage Facility) will generate several types of waste, which may require treatment and disposal. Eight alternatives for the treatment of the wastes have been evaluated as part of DOE's Nuclear Waste Treatment Program at the Pacific Northwest Laboratory. The evaluation considered the system costs, potential waste form requirements, and processing characteristics

  16. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1994-01-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE's waste management capabilities

  17. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1993-01-01

    One important factor frustrating optimal management of DOE-complex wastes is inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE's waste management capabilities

  18. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1994-01-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE's waste management capabilities

  19. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    International Nuclear Information System (INIS)

    Ballantyne, N.A.

    1995-01-01

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  20. Development of a Commonwealth Radioactive Waste Management Facility in Australia

    International Nuclear Information System (INIS)

    Hesterman, R.

    2006-01-01

    Full text: The Australian Government has commenced a process to build a Commonwealth Radioactive Waste Management Facility in the Northern Territory for management of radioactive wastes produced by Australian Government agencies. The Government is committed to safely managing its relatively small volume of low level radioactive waste (approximately 3800 cubic metres) and even smaller volume of intermediate level waste (around 400 cubic metres) that have been generated since the early 1950s from the research, medical and industrial use of radioactive materials. Australia has no high level radioactive waste as it does not have any nuclear power reactors. Australian states and territories are responsible for the safe and secure management of low level and intermediate level waste generated within their jurisdictions. They have jointly generated approximately 200 cubic metres of low level radioactive waste and under 100 cubic metres of intermediate level for the same period. In July 2004, the Prime Minister announced that the Australian Government would examine the suitability of Commonwealth land holdings, both onshore and offshore, for establishing the Facility. An initial assessment of offshore territories by the Department of Education, Science and Training (DEST) did not find any sufficiently suitable sites for hosting the Facility. This was due to the low elevation of most territories, inadequate infrastructure and incompatibility with existing land uses. In July 2005, Dr Nelson, then the Minister for Education, Science and Training, announced that three Department of Defence properties in the Northern Territory would be investigated for siting the Facility. The three properties are Fishers Ridge, about 43 kilometres southeast of Katherine; Harts Range, 100 kilometres directly northeast of Alice Springs; and Mt Everard, about 27 kilometres directly northwest of Alice Springs. In addition, the Commonwealth Radioactive Waste Management Act 2005, enacted in December

  1. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities.

    Science.gov (United States)

    Morin, Nicolas A O; Andersson, Patrik L; Hale, Sarah E; Arp, Hans Peter H

    2017-12-01

    Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000μg/kg; ∑FR-7: 300-13,000μg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m 3 WEEE/vehicle facilities, 80-900pg/m 3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, K waste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated K waste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices. Copyright © 2017. Published by Elsevier B.V.

  2. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  3. NPDES Permit for Dakota Magic Casino Wastewater Treatment Facility in North Dakota

    Science.gov (United States)

    Under NPDES permit ND-0030813, the Dakota Nation Gaming Enterprise is authorized to discharge from the wastewater treatment facility in Richland County, North Dakota, to a roadside ditch flowing to an unnamed tributary to the Bois de Sioux.

  4. NPDES Permit for Town of Lodge Grass Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT0021890, the Town of Lodge Grass is authorized to discharge from from its wastewater treatment facility in Big Horn County to an unnamed slough to the Little Bighorn River.

  5. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.

    1993-01-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located

  6. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  7. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  8. OPG Western Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Julian, J. [Ontario Power Generation, Western Waste Management Facility, Tiverton, ON (Canada)

    2011-07-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  9. OPG Western Waste Management Facility

    International Nuclear Information System (INIS)

    Julian, J.

    2011-01-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  10. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  11. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    Toth, J.J.; King, D.A.; Humphreys, K.K.; Haffner, D.R.

    1994-01-01

    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  12. Control and prevention of seepage from uranium mill waste disposal facilities

    International Nuclear Information System (INIS)

    Williams, R.E.

    1978-01-01

    This paper constitutes an analysis of the technologies which are available for the prevention of movement of waste waters out of uranium mill waste disposal facilities via sub-surface routes. Hydrogeologic criteria for potential uranium mill waste disposal sites and mathematical modeling of contaminant migration in ground water are presented. Methods for prevention of seepage from uranium mill waste disposal facilities are investigated: liners, clay seals, synthetic polymeric membranes (PVC, polyethylene, chlorinated polyethylene, hypalon, butyl rubber, neoprene, elasticized polyolefin)

  13. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  14. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  15. Annual Report of Radioactive Waste Facilities Operation in 2013

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; LIU; Fu-guo

    2013-01-01

    301,a section of Department of Radiochemistry,which manages 15 facilities and undertakes the administrative tasks of radioactive waste,is the important guarantee of scientific research production and safety in CIAE.1 The safe operation of the radioactive waste management facilities In 2013,in order to ensure the operation safety,we formulated the inspection regulations,which included regular operation inspection,week safety inspection from the leaders of the section and

  16. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  17. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  18. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  19. Negotiating the voluntary siting of nuclear waste facilities

    International Nuclear Information System (INIS)

    Mussler, R.M.

    1992-01-01

    This paper discusses the Office of the Nuclear Waste Negotiator which was created by Congress with the purpose of seeking a voluntary host State or Indian tribe for a high level nuclear waste repository or monitored retrievable storage facility. Given the history of the Federal government's efforts at siting such facilities, this would appear to be an impossible mission. Since commencing operations in August 1990, the Office has accomplished perhaps more than had been expected. Some of the approaches it has taken to implementing this mission may be applicable to other endeavors

  20. A comprehensive centralized control system for radiation waste treatment facility

    International Nuclear Information System (INIS)

    Kong Jinsong

    2014-01-01

    A comprehensive centralized control system is designed for the radiation waste treatment facility that lacking of coordinated operational mechanism for the radiation waste treatment. The centralized control and alarm linkage of various systems is implemented to ensure effectively the safety of nuclear facility and materials, improve the integral control ability through advanced informatization ways. (author)

  1. Radioactive waste management in a fuel reprocessing facility in fiscal 1982

    International Nuclear Information System (INIS)

    1984-01-01

    In the fuel reprocessing facility of the Power Reactor and Nuclear Fuel Development Corporation, radioactive gaseous and liquid waste are released not exceeding the respective permissible levels. Radioactive concentrated solutions are stored at the site. Radioactive solid waste are stored appropriately at the site. In fiscal 1982, the released quantities of radioactive gaseous and liquid waste were both below the permissible levels. The results of radioactive waste management in the fuel reprocessing facility in fiscal 1982 are given in the tables: the released quantities of radioactive gaseous and liquid waste, the produced quantities of radioactive solid waste, and the stored quantities of radioactive concentrated solutions and of radioactive solid waste as of the end of fiscal 1982. (Mori, K.)

  2. Defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.; Maher, R.; Mellen, J.B.; Shafranek, L.F.; Stevens, W.R. III.

    1984-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures

  3. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  4. Issues related to the licensing of final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Medici, M.A.; Alvarez, D.E.; Lee Gonzales, H.; Piumetti, E.H.; Palacios, E.

    2010-01-01

    The licensing process of a final disposal facility for radioactive waste involves the design, construction, pre-operation, operation, closure and post closure stages. While design and pre-operational stages are, to a reasonable extent, similar to other kind of nuclear or radioactive facilities, construction, operation, closure and post-closure of a radioactive waste disposal facility have unique meanings. As consequence of that, the licensing process should incorporate these particularities. Considering the long timeframes involved at each stage of a waste disposal facility, it is convenient that the development of the project being implemented in and step by step process, be flexible enough as to adapt to new requirements that would arise as a consequence of technology improvements or due to variations in the socio-economical and political conditions. In Argentina, the regulatory Standard AR 0.1.1 establishes the general guideline for the 'Licensing of Class I facilities (relevant facilities)'. Nevertheless, for radioactive waste final disposal facilities a new specific guidance should be developed in addition to the Basic Standard mentioned. This paper describes the particularities of final disposal facilities indicating that a specific licensing system for this type of facilities should be foreseen. (authors) [es

  5. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  6. Screening calculations for radioactive waste releases from non-nuclear facilities

    International Nuclear Information System (INIS)

    Xu, Shulan; Soederman, Ann-Louis

    2009-02-01

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 μSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 μSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment plant

  7. Screening calculations for radioactive waste releases from non-nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shulan Xu; Soederman, Ann-Louis

    2009-02-15

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 muSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 muSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment

  8. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  9. Assessment of the proposed decontamination and waste treatment facility at LLNL

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1987-01-01

    To provide a centralized decontamination and waste treatment facility (DWTF) at LLNL, the construction of a new installation has been planned. Objectives for this new facility were to replace obsolete, structurally and environmentally sub-marginal liquid and solid waste process facilities and decontamination facility and to bring these facilities into compliance with existing federal, state and local regulations as well as DOE orders. In a previous study, SAIC conducted a preliminary review and evaluation of existing facilities at LLNL and cost effectiveness of the proposed DWTF. This document reports on a detailed review of specific aspects of the proposed DWTF

  10. Radioactive material inventory control at a waste characterization facility

    International Nuclear Information System (INIS)

    Yong, L.K.; Chapman, J.A.; Schultz, F.J.

    1996-01-01

    Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility's nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the open-quotes Radioactive Material Inventory Systemclose quotes (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded

  11. Developing a methodology for real-time trading of water withdrawal and waste load discharge permits in rivers.

    Science.gov (United States)

    Soltani, Maryam; Kerachian, Reza

    2018-04-15

    In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Conditioning and handling of tritiated wastes at Canadian nuclear power facilities

    International Nuclear Information System (INIS)

    Krochmalnek, L.S.; Krasznai, J.P.; Carney, M.

    1987-04-01

    Ontario Hydro operates a 10,000 MW capacity nuclear power system utilizing the CANDU pressurized heavy water reactor design. The use of D 2 O as moderator and coolant results in the production of about 2400 Ci of tritium per MWe-yr. As a result, there is significant Canadian experience in the treatment, handling, transport and storage of tritiated wastes. Ontario Hydro operates its own reactor waste storage site which includes systems for volume reduction, immobilization and packaging of wastes. In addition, a facility to remove tritium from heavy water is presently being commissioned at the Darlington nuclear site. This facility will generate tritiated liquid and solid waste that will have to be properly conditioned prior to storage or disposal. The nature of these various wastes and the processes/packaging required to meet storage/disposal criteria are judged to have relevance to investigations in fusion facility waste arisings. Experience to date, planned operational procedures and ongoing R and D in this area are described

  13. Overview of a conceptualized waste water treatment facility for the Consolidated Incinerator Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.

    1992-01-01

    The offgas system in the Consolidated Incinerator Facility (CIF) will generate an aqueous waste stream which is expected to contain hazardous, nonhazardous, and radioactive components. The actual composition of this waste stream will not be identified until startup of the facility, and is expected to vary considerably. Wastewater treatment is being considered as a pretreatment to solidification in order to make a more stable final waste form and to reduce disposal costs. A potential treatment scenario has been defined which may allow disposition of this waste in compliance with all applicable regulations. The conceptualized wastewater treatment plant is based on literature evaluations for treating hazardous metals. Laboratory tests hwill be run to verify the design for its ability to remove the hazardous and radioactive components from this waste stream. The predominant mechanism employed for removal of the hazardous and radioactive metal ions is coprecipitation. The literature indicates that reasonably low quantities of hazardous metals can be achieved with this technique. The effect on the radioactive metal ions is not predictable and has not been tested. The quantity of radioactive metal ions predicted to be present in the waste is significantly less than the solubility limit of those ions, but is higher than the discharge guidelines established by DOE Order 5400.5

  14. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities

    Institute of Scientific and Technical Information of China (English)

    Nicolas A.O.Morin; Patrik L.Andersson; Sarah E.Hale; Hans Peter H.Arp

    2017-01-01

    Flame retardants in commercial products eventually make their way into the waste stream.Herein the presence of flame retardants in Norwegian landfills,incineration facilities and recycling sorting/defragmenting facilities is investigated.These facilities handled waste electrical and electronic equipment (WEEE),vehicles,digestate,glass,combustibles,bottom ash and fly ash.The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus,polybrominated biphenyls,hexabromobenzene,pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7).Plastic,WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10:45,000-210,000 μg/kg;∑FR-7:300-13,000 μg/kg).It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest.This was supported for total air phase concenttations (∑BDE-10:9000-195,000 pg/m3 WEEE/vehicle facilities,80-900 pg/m3 in incineration/sorting and landfill sites),but not for water leachate concentrations (e.g.,ΣBDE-10:15-3500 ng/L in WEEE/Vehicle facilities and 1-250 ng/L in landfill sites).Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate.To better account for concentrations in leachates at the different facilities,waste-water partitioning coefficients,Kwaste were measured (for the first time to our knowledge for flame retardants).WEEE and plastic waste had elevated Kwaste compared to other wastes,likely because flame retardants are directly added to these materials.The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices.

  15. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  16. Derivation of Waste Acceptance Criteria for Low and Intermediate Level Waste in Surface Disposal Facility

    International Nuclear Information System (INIS)

    Gagner, L.; Voinis, S.

    2000-01-01

    In France, low- and intermediate-level radioactive wastes are disposed in a near-surface facility, at Centre de l'Aube disposal facility. This facility, which was commissioned in 1992, has a disposal capacity of one million cubic meters, and will be operated up to about 2050. It took over the job from Centre de la Manche, which was commissioned in 1969 and shut down in 1994, after having received about 520,000 cubic meters of wastes. The Centre de l'Aube disposal facility is designed to receive a many types of waste produced by nuclear power plants, reprocessing, decommissioning, as well as by the industry, hospitals and armed forces. The limitation of radioactive transfer to man and the limitation of personnel exposure in all situations considered plausible require limiting the total activity of the waste disposed in the facility as well as the activity of each package. The paper presents how ANDRA has derived the activity-related acceptance criteria, based on the safety analysis. In the French methodology, activity is considered as end-point for deriving the concentration limits per package, whereas it is the starting point for deriving the total activity limits. For the concentration limits (called here LMA) the approach consists of five steps: the determination of radionuclides important for safety with regards to operational and long-term safety, the use of relevant safety scenarios as a tool to derive quantitative limits, the setting of dose constraint per situation associated with scenarios, the setting of contribution factor per radionuclide, and the calculation of concentration activity limits. An exhaustive survey has been performed and has shown that the totality of waste packages which should be delivered by waste generators are acceptable in terms of activity limits in the Centre de l'Aube. Examples of concentration activity limits derived from this methodology are presented. Furthermore those limits have been accepted by the French regulatory body and

  17. Establishing a central waste processing and storage facility in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.; Darko, E.O.

    2001-01-01

    Radioactive waste and spent sealed sources in Ghana are generated from various nuclear applications - diagnostic and therapeutic procedures in medicine, measurement and processing techniques in industry, irradiation techniques for food preservation and sterilization of medical products and a research reactor for research and teaching. Statistics available indicate that over 15 institutions in Ghana are authorized to handle radiation sources. At present radioactive waste and spent sealed sources are collected and stored in the interim facility without conditioning. With the increasing use of radioactive sources in the industry, medicine for diagnostic and therapeutic purpose and research and teaching, the volume of waste is expected to increase. The radioactive waste expected include spent ion exchange resins from the nuclear reactor water purification system, incompactible solid waste from mechanical filter, liquid and organic waste and spent sealed sources. It is estimated that four 200L drums will be needed annually to condition the waste to be generated. The National Radioactive Waste Management Centre (NRWMC) was therefore established to carry radioactive waste safety operations in Ghana and research to ensure that each waste type is managed in the most appropriate manner. Its main task includes development and establishment of the radioactive waste management infrastructure with a capacity considering the future nuclear technology development in Ghana. The first phase covers the establishment of administrative structure, development of basic regulations and construction of the radioactive waste processing and storage facility. The Ghana Radioactive Waste Management regulation has been presented to the Parliament of Ghana for consideration. The initial draft was reviewed by the RPB. A 3-day national seminar on the Understanding and Implementation of the Regulation on Radioactive Waste Management in Ghana was held to discuss and educate the general public on the

  18. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  19. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  20. Waste Calcining Facility remote inspection report

    International Nuclear Information System (INIS)

    Patterson, M.W.; Ison, W.M.

    1994-08-01

    The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility

  1. Low and intermediate radioactive waste management at OPG's western waste management facility

    International Nuclear Information System (INIS)

    Ellsworth, M.

    2006-01-01

    'Full text:' This paper will discuss low and intermediate level radioactive waste operations at Ontario Power Generation's Western Waste Management Facility. The facility has been in operation since 1974 and receives about 5000 - 7000 m 3 of low and intermediate level radioactive waste per year from Ontario's nuclear power plants. Low-level radioactive waste is received at the Waste Volume Reduction Building for possible volume reduction before it is placed into storage. Waste may be volume reduced by one of two methods at the WWMF, through either compaction or incineration. The Compactor is capable of reducing the volume of waste by a factor up to 5:1 for most waste. The Radioactive Incinerator is capable of volume reducing incinerable material by a factor up to 70:1. After processing, low-level waste is stored in above ground concrete warehouse-like structures called Low Level Storage Buildings. Low-level waste that cannot be volume reduced is placed into steel containers and stored in the Low Level Storage Buildings. Intermediate level waste is stored mainly in steel lined concrete storage structures. WWMF has both above ground and in-ground storage structures for intermediate level waste. Intermediate level waste consists primarily of resin and filters used to keep reactor water systems clean, and some used reactor core components. All low and intermediate level waste storage at the WWMF is considered interim storage and the material can be retrieved for future disposal or permanent storage. Current improvement initiatives include the installation of a new radioactive incinerator and a shredder/bagger. The new incinerator is a continuous feed system that is expected to achieve volume reduction rates up to 70:1, while incinerating higher volumes of waste than its predecessor. The shredder will break down large/bulky items into a form, which can be processed for further volume reduction. A Refurbishment Waste Storage Project is underway in anticipation of the

  2. NPDES Permit for Rosebud Casino and Hotel Wastewater Treatment Facility in South Dakota

    Science.gov (United States)

    Under NPDES permit SD-0034584, Rosebud Casino and Hotel, South Dakota, is authorized to discharge from its wastewater treatment facility in Todd County, South Dakota to an unnamed drainageway(s) tributary to Rock Creek.

  3. Nuclear energy: Environmental issues at DOE's nuclear defense facilities

    International Nuclear Information System (INIS)

    1986-01-01

    GAO's review of nine Department of Energy defense facilities identified a number of significant environmental issues: (1) eight facilities have groundwater contaminated with radioactive and/or hazardous substances to high levels; (2) six facilities have soil contamination in unexpected areas, including offsite locations; (3) four facilities are not in full compliance with the Clean Water Act; and (4) all nine facilities are significantly changing their waste disposal practices to obtain a permit under the Resource Conservation and Recovery Act. GAO is recommending that DOE develop and overall groundwater and soil protection strategy that would provide a better perspective on the environmental risks and impacts associated with operating DOE's nuclear defense facilities. GAO also recommends that DOE allow outside independent inspections of the disposal practices used for any waste DOE self-regulates and revise its order governing the management of hazardous and mixed waste

  4. 2016 Annual Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Ponds

    International Nuclear Information System (INIS)

    Lewis, Michael George

    2017-01-01

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015-October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: · Facility and system description · Permit required effluent monitoring data and loading rates · Permit required groundwater monitoring data · Status of compliance activities · Issues · Discussion of the facility's environmental impacts. During the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.

  5. Progress report on the design of a Low-Level Waste Pilot Facility at ORNL

    International Nuclear Information System (INIS)

    Hensley, L.C.; Turner, V.L.; Pruitt, A.S.

    1980-01-01

    All low-level radioactive solid wastes, excluding TRU wastes, are disposed of by shallow land burial at the Oak Ridge National Laboratory. Contaminated liquids and sludges are hydrofractures. The TRU wastes are stored in a retrievable fashion in concrete storage facilities. Currently, the capacity for low-level radioactive waste burial at the Oak Ridge National Laboratory is adequate for another six years of service at the current solids disposal rate which ranges between 80,000 and 100,000 cu ft per year. Decontamination and decommissioning of a number of ORNL facilities will be a significant activity in the next few years. Quantities of radioactive materials to be stored or disposed of as a result of these activities will be large; therefore, the technology to dispose of large quantities of low-level radioactive wastes must be demonstrated. The UCC-ND Engineering Division, in concert with divisions of the Oak Ridge National Laboratory, has been requested to prepare a conceptual design for a facility to both dispose of the currently produced low-level radioactive waste and also to provide a test bed for demonstration of other processes which may be used in future low-level radioactive wastes disposal facilities. This facility is designated as the Low-Level Waste Pilot Facility (LLWPF). This paper describes the status of the conceptual design of a facility for disposal of the subject radioactive waste

  6. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  7. Centralized interim storage facility for radioactive wastes at Wuerenlingen (ZWILAG)

    International Nuclear Information System (INIS)

    Lutz, H.R.; Schnetzler, U.

    1994-01-01

    Radioactive waste management in Switzerland is the responsibility of the waste producers; in this respect, the law requires permanent, safe management of the wastes by means of final disposal. Nagra is responsible for the research and development work associated with final disposal. Processing of the wastes into a form suitable for disposal, as well as interim storage, remain the responsibility of the waste producers. In order to supplement the existing conditioning and storage facilities at the nuclear power plants and to replace the outdated waste treatment plant at the Paul Scherrer Institute (PSI) at Wuerenlingen, the operators of the Swiss nuclear power plants are planning a joint treatment and storage facility at the PSI-East site. The organisation ''Zwischenlager Wuerenlingen AG'', which was set up at the beginning of 1990, has been entrusted with this task. (author) 4 figs

  8. Comparative analysis of risk characteristics of nuclear waste repositories and other disposal facilities

    International Nuclear Information System (INIS)

    Lindell, M.K.; Earle, T.C.; Nealey, S.M.

    1981-06-01

    Three fundamental questions concerning public perception of the measurement of radioactive wastes were addressed in this report. The first question centered on the perceived importance of nuclear waste management as a public issue: how important is nuclear waste management relative to other technological and scientific issues; do different segments of the public disagree on its importance; the second question concerned public attitudes toward a nuclear waste disposal facility: how great a risk to health and safety is a nuclear waste disposal facility relative to other industrial facilities; is there disagreement on its riskiness among various public groups; the third question pertained to the aspects of risks that affect overall risk perception: what are the qualitative aspects of a nuclear waste disposal facility that contribute to overall perceptions of risk; do different segments of the population associate different risk characteristics with hazardous facilities. The questions follow from one another: is the issue important; given the importance of the issue, is the facility designed to deal with it considered risky; given the riskiness of the facility, why is it considered risky. Also addressed in this report, and a main focus of its findings, were the patterns of differences among respondent groups on each of these questions

  9. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  10. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E

    2008-03-31

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest

  11. Design of the Waste Receiving and Processing (WRAP) 2A Facility

    International Nuclear Information System (INIS)

    Lamberd, D.L.; Weingardt, K.M.

    1994-07-01

    Radioactive and Hazardous Mixed Waste have accumulated at the US Department of Energy (DOE) Hanford Site in south-central Washington State. Future generated waste streams from planned facilities at the Hanford Site and off site will also generate solid wastes that contain both radiological and hazardous chemical components. Most of the low-level waste (LLW) in this category is generated in batches sized to be stored in smaller containers (mostly 55-gallon drums and boxes). To meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions, most of this waste will need to be treated to meet disposal requirements. In general this treatment must include stabilization/solidification either as a sole method or as part of a treatment train. A planned DOE facility, the Waste Receiving and Processing (WRAP) Module 2A, Building 2337-W, is scoped to provide this required treatment for containerized contact-handle at sign d (CH), mixed low-level waste (MLLW) at the Hanford Site. The core processes in WRAP Module 2A include cement stabilization of particulate waste, polyethylene encapsulation (via extrusion) of particulate waste, and cement encapsulation (via vibratory infilling) of hard and soft debris. A conceptual design was prepared and issued in July 1992. Since that time, process development test activities and further design iterations have evolved into the optimized process and facility design presented in this paper. This paper will discuss the revised processing scheme, equipment configuration, and facility layout. The WRAP Module 2A will begin construction in 1996 after a detailed design effort and pilot testing activities

  12. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  13. Studies involving proposed waste disposal facilities in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1987-01-01

    The Turkish government is in the process of planning two nuclear reactors in Turkey. The Turkish Atomic Energy Authority has been given the task of developing plans for improved control of low-level wastes (LLW) in Turkey. Principal sources of radioactive wastes are hospitals, research institutions, biological research centers, universities, industries, and two research reactors in Turkey. These wastes will be treated in a pilot water treatment facility located in Cekmece Nuclear Research and Training Center, Istanbul. In this temporary waste disposal facility, the wastes will be stored in 200-l concrete containers until the establishment of the permanent waste disposal sites in Turkey in 1990. The PRESTO-II (prediction of radiation effects from shallow trench operations) computer code has been applied for the general probable sites for LLW disposal in Turkey. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuring exposure, and health impacts to a static local population for a chosen time period, following the end of the disposal operation. The methodology that this code takes into consideration is versatile and explicitly considers infiltration and percolation of surface water into the trench, leaching of radionuclides, vertical and horizontal transport of radionuclides, and use of this contaminated ground water for farming, irrigation, and ingestion

  14. Waste management facilities cost information: System cost model product description. Revision 2

    International Nuclear Information System (INIS)

    Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities

  15. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  16. Waste Isolation Pilot Plant (WIPP) fact sheet

    International Nuclear Information System (INIS)

    1993-01-01

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all terms and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993

  17. Resource Conservation and Recovery Act, Part B Permit Application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 4, contains Appendices C3, C4, and D1--D10. These appendices cover information on environmental impacts, site characterization, geology and hydrology of the area, monitoring of the environment, compatibility of waste forms and containers, and removal of volatile organic compounds (VOC)

  18. Westinghouse integrated cementation facility. Smart process automation minimizing secondary waste

    International Nuclear Information System (INIS)

    Fehrmann, H.; Jacobs, T.; Aign, J.

    2015-01-01

    The Westinghouse Cementation Facility described in this paper is an example for a typical standardized turnkey project in the area of waste management. The facility is able to handle NPP waste such as evaporator concentrates, spent resins and filter cartridges. The facility scope covers all equipment required for a fully integrated system including all required auxiliary equipment for hydraulic, pneumatic and electric control system. The control system is based on actual PLC technology and the process is highly automated. The equipment is designed to be remotely operated, under radiation exposure conditions. 4 cementation facilities have been built for new CPR-1000 nuclear power stations in China

  19. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches

  20. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    International Nuclear Information System (INIS)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak

    2016-01-01

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment

  1. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-01-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  2. Waste minimization at a plutonium processing facility

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    As part of Los Alamos National Laboratory's (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management

  3. Socioeconomic issues and analyses for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Ulland, L.

    1988-01-01

    Radioactive Waste facility siting and development can raise major social and economic issues in the host area. Initial site screening and analyses have been conducted for both potential high-level and low-level radioactive waste facilities; more detailed characterization and analyses are being planned. Results of these assessments are key to developing community plans that identify and implement measures to mitigate adverse socioeconomic impacts. Preliminary impact analyses conducted at high-level sites in Texas and Nevada, and site screening activities for low-level facilities in Illinois and California have identified a number of common socioeconomic issues and characteristics as well as issues and characteristics that differ between the sites and the type of facilities. Based on these comparisons, implications for selection of an appropriate methodology for impact assessment and elements of impact mitigation are identified

  4. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  5. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  6. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  7. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  8. Effectiveness of interim remedial actions at a radioactive waste facility

    International Nuclear Information System (INIS)

    Devgun, J.S.; Beskid, N.J.; Peterson, J.M.; Seay, W.M.; McNamee, E.

    1989-01-01

    Over the past eight years, several interim remedial actions have been taken at the Niagara Falls Storage Site (NFSS), primarily to reduce radon and gamma radiation exposures and to consolidate radioactive waste into a waste containment facility. Interim remedial actions have included capping of vents, sealing of pipes, relocation of the perimeter fence (to limit radon risk), transfer and consolidation of waste, upgrading of storage buildings, construction of a clay cutoff wall (to limit the potential groundwater transport of contaminants), treatment and release of contaminated water, interim use of a synthetic liner, and emplacement of an interim clay cap. An interim waste containment facility was completed in 1986. 6 refs., 3 figs

  9. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  10. National facilities for the management of institutional radioactive waste in Romania

    International Nuclear Information System (INIS)

    Rotarescu, Gh.; Turcanu, C.N.; Dragolici, F.; Nicu, M.; Lungu, L.; Cazan, L.; Matei, G.; Guran, V.

    2000-01-01

    The management of the non-fuel cycle radioactive wastes from all over Romania is centralized at IFIN-HH in the Radioactive Waste Treatment Plant (STDR). Final disposal is carried out at the National Repository of Radioactive Wastes (DNDR) at Baita Bihor. Radioactive waste treated at STDR arise from three main sources: 1. Wastes arising from the WWR-S research reactor during operation and the future decommissioning works; 2. Local waste from other facilities operating on IFIN-HH site. These sources include wastes generated during the normal activities of the STDR; 3. Wastes from IFIN-HH off site facilities and activities including medical, biological, and industrial applications all over the country. The Radiochemical Production Center, operating within IFIN-HH is the most important source of low and intermediate level radioactive wastes (liquid and solid), as the operational wastes arising from processing at STDR are. The STDR basically consists of liquid and solid waste treatment and conditioning facilities, a radioactive decontamination centre, a laundry and an intermediate storage area. The processing system of the STDR are located at six principal areas performing the following activities: 1. Liquid effluent treatment; 2. Burning of combustible solid stuff; 3. Compaction of solid non-combustible stuff; 4. Cement conditioning; 5. Radioactive decontamination; 6. Laundry. The annual designed treatment capacity of the plant is 1500 m 3 Low Level Aqueous Waste, 100 m 3 Low Level Solid Waste and shielded drums for Intermediate Level Waste. The temporary storage within and final disposal of waste in the frame of DNDR are explained as well as the up-dating of institutional radioactive waste infrastructure

  11. Critical Protection Item classification for a waste processing facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Garrett, R.J.

    1993-01-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed

  12. 190-C Facility <90 Day Storage Pad supplemental information to the Hanford facility contingency plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    The 190-C Facility <90 Day Storage Pad stores waste oils primarily contaminated with lead generated while draining equipment within the building of residual lubricating oils. Waste oils are packaged and stored in fifty-five gallon drums, or other containers permitted by the Site Specific Waste Management Instruction. Bechtel Hanford, Inc. (BHI) manual BHI-EE-02, Environmental Requirements Procedures, references this document. This document is to be used to demonstrate compliance with the contingency plan requirements in Washington Administrative Code, Chapter 173-303, Dangerous Waste Regulations, for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units (units). Refer to BHI-EE-02, for additional information

  13. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  14. Strategic aspects on waste management in decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Rannemalm, T.; Eliasson, S.; Larsson, A.; Lidar, P.; Bergh, N.; Hedin, G.

    2017-01-01

    A team composed of experts from the facility owner OKG, Westinghouse and Studsvik (today Cyclife Sweden and Studsvik Consulting) was asked to develop a basis for decision on an overall strategy for the management of the material and waste arising from the decommissioning of two BWR NPPs at the Oskarshamn site in Sweden. To be able to provide a good basis for decision the full waste management chain from generation to disposition, i.e. clearance or disposal had to be assessed, categorised, quantified and analysed with regards to costs, environmental impact and risks. A systematic approach was applied taking benefit of the decommissioning studies made previously for the two facilities, the decommissioning concepts developed by Ndcon (the partnership in decommissioning between Studsvik and Westinghouse) and the combined knowledge and experience in the project team. In total 4 different waste management concepts were compared individually and in combinations. The four concepts evaluated were based on: direct disposal in the national geological repository; treatment of the waste for volume reduction and where applicable clearance in an external waste treatment facility; decontamination and clearance in an on-site waste treatment facility; direct disposal in a near surface repository at the NPP site. It was important to be able to compare the different options in a quantifiable way. Therefore the project team set up a matrix with parameters for the different options gained from the utility, the national waste management company, external vendors and the experience of the team. In this way a quantitative analysis could be done with the four different waste management options. In addition to the quantitative analysis the team summarised decades of experience in radioactive waste management and decommissioning recommendations and risk analyses. Special attention was given to risk mitigation and redundancy in the waste management chain. The development of an overall waste

  15. Challenges in the management of decommission waste of nuclear facilities in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2002-01-01

    It is inevitable that every nuclear facility must one day be safely decommissioned. When considering decommissioning, large amounts of radioactive and non-radioactive waste have to be taken into account. Disposal of such materials can have large economic impact on the overall decommissioning cost. In developing countries like Ghana, the perception of environmental protection through waste management, is often not very high as compared to many other pressing needs. Therefore limited resources are allocated for environmental problems. Ghana operates a tank-in- pool type research reactor, 30kW output for research in neutron activation analysis, radioisotope preparation, education and training, a radiotherapy unit that utilizes a 185TBq Co-60 radioactive sources for the treatment of cancer and a gamma irradiation facility which utilizes 1.85PBq Co-60 radioactive source for the irradiation of various materials. All these facilities are operating without designed decommissioning in mind, an inadequate waste management infrastructure as well as a lack of a repository to handling the resulting waste. It is today's beneficials of the nuclear facility that has to deal with the legacies of the future decommissioning activities. The paper outlines some of the challenges and issues to be expected in the management of waste from future decommissioning of nuclear facilities in Ghana with the absence of a waste management infrastructure and inadequate financial resources. The paper puts forth a concept to perform meaningful and significant plans whilst the facilities are still operating. (author)

  16. Remote waste handling at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Vaughn, M.E.

    1982-01-01

    Radioactive solid wastes, some of which are combustible, are generated during disassembly and examination of irradiated fast-reactor fuel and material experiments at the Hot Fuel Examination Facility (HFEF). These wastes are remotely segregated and packaged in doubly contained, high-integrity, clean, retrievable waste packages for shipment to the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). This paper describes the equipment and techniques used to perform these operations

  17. Resource Conservation and Recovery Act, Part B permit application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 3, is Appendix C2 continued. This appendix contains information on shipping; inventories of chemicals present in waste; chemical compatibility of wastes; the methodology to determine compatibility; analytical data regarding volatile organic compounds (VOC), metals, and solvents; and a description of sampling programs of waste drum gases

  18. Resource Conservation and Recovery Act, Part B Permit Application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 2, contains Appendices B1, C1, and C2. These appendices describe the surface hydrology of the area, provide a description of the physical and chemical characteristics of wastes to be placed in WIPP, and outline a waste analysis plan which gives an overview of the total waste inventory planned for WIPP. 34 refs., 107 figs., 27 tabs

  19. Mastery of risks: we build the memory of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Lacourcelle, C.

    2011-01-01

    The ANDRA, the French national agency of radioactive wastes, is organizing today the information needs of tomorrow. The aim is to allow the future generations to have access to the knowledge of the existence of subsurface radioactive waste facilities and to understand the context and technologies of such facilities. The storage of this information is made on 'permanent paper', a high resistant paper with a lifetime of 600 to 1000 years. An updating of these data is made every 5 years for each waste disposal center. Another project, still in progress, concerns the memory management of deep geologic waste disposal facilities for which the time scale to be considered is of the order of millennia. (J.S.)

  20. Commissioning of the very low level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  1. NSC confirms principles for safety review on Radioactive Waste Burial Facilities

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Nuclear Safety Commission authorized the scope of Principles for Safety Examination on Radioactive Waste Burial Facilities as suitable, the draft report for which was established by the Special Committee on Safety Standards of Radioactive Waste (Chairman Prof. Masao Sago, Science University of Tokyo) and reported on March 10 to the NSC. The principles include the theory that the facility must be controlled step by step, corresponding to the amount of radioactivity over 300 to 400 years after the burial of low-level solid radioactive waste with site conditions safe even in the event of occurrence of a natural disaster. The principles will be used for administrative safety examination against the application of the business on low-level radioactive waste burial facility which Japan Nuclear Fuel Industries, Inc. is planning to install at Rokkashomura, Aomori Prefecture. (author)

  2. Centralized collection of radioactive wastes

    International Nuclear Information System (INIS)

    1985-06-01

    The standard based upon TGL-190-921/03 applies to solid wastes of the category A2 and the radiation protection groups S3, S4 and S5. The following items are specified: (1) requirements concerning the form and properties of the waste (permitted composition, unpermitted components, type of packaging, maximum weight per package/container), (2) technical conditions for connecting technical means of collection (lifting devices, traffic connections) with customer, and (3) tasks in handing/taking over the waste in relation to waste type (controls, operation of facilities, decontamination, transport documents)

  3. Centralized collection of radioactive wastes

    International Nuclear Information System (INIS)

    1985-06-01

    The standard based upon TGL-190-921/02 applies to solid wastes of the category A1 and the radiation protection groups S1 and S2. The following items are specified: (1) requirements concerning the form and properties of the waste (permitted composition, unpermitted components, type of packaging, maximum weight per package/container), (2) technical conditions for connecting technical means of collection (lifting devices, traffic connections) with customer, and (3) tasks in handing/taking over the waste in relation to waste type (controls, operation of facilities, decontamination, transport documents)

  4. Environmental Restoration Disposal Facility waste acceptance criteria. Revision 1

    International Nuclear Information System (INIS)

    Corriveau, C.E.

    1996-01-01

    The Environmental Restoration Disposal Facility (ERDF) is designed to be an isolation structure for low-level radioactive remediation waste, chemically contaminated remediation waste, and remediation waste that contains both chemical and radioactive constituents (i.e., mixed remediation waste) produced during environmental remediation of Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) past-practice units at the Hanford Site. Remedial action wastes, which will become a structural component of the ERDF, include bulk soil, demolition debris, and miscellaneous wastes from burial grounds. These wastes may originate from CERCLA past-practice sites (i.e., operable units) in the 100 Areas, the 200 Areas, and the 300 Area of the Hanford Site

  5. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  6. Analysis of local acceptance of a radioactive waste disposal facility.

    Science.gov (United States)

    Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew

    2008-08-01

    Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.

  7. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  8. Solid radioactive waste processing facility of the NPP Leningrad

    International Nuclear Information System (INIS)

    Weichard, Swetlana

    2008-01-01

    On behalf of the Russian Company Rosenergoatom NUKEM Technologies GmbH is planning and constructing a complete facility for the processing of solid low- and medium-active radioactive wastes. The NPP Leningrad comprises 4 units of RBMK-1000 reactors, the plant life has been extended by 15 years, the first unit is to be decommissioned in 2018. The construction of four new units is planned. NUKEM is in charge of planning, manufacture, construction and startup of the following facilities: sorting, internal transport, combustion and waste gas cleaning, emission surveillance, compacting, packaging and radiological measurement.

  9. Evaluation of a high-level waste radiological maintenance facility

    International Nuclear Information System (INIS)

    Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation''s first and world''s largest high level waste vitrification facility. DWPF began, operations in March 1996 to process radioactive waste, consisting of a matrixed predominantly 137 Cs precipitate and a predominately 90 Sr and alpha emitting sludge, into boro-silicate glass for long term storage. Presently, DWPF is processing only sludge waste and is preparing to process a combination of sludge and precipitate waste. During precipitate operations, canister dose rates are expected to exceed 10 Sv hr -1 (1000 rem hr -1 ). In sludge-only operations, canister contact gamma dose rates are approximately 15 mSv hr -1 (1500 mrem hr -1 ). Transferable contamination levels have been greater than 10 mSv hr -1 (100 cm 2 ) -1 for beta-gamma emitters and into the millions of Bq (100 cm 2 ) -1 for the alpha emitting radionuclides. This paper presents an evaluation of the radiological maintenance areas and their ability to support radiological work

  10. Licence applications for low and intermediate level waste predisposal facilities: A manual for operators

    International Nuclear Information System (INIS)

    2009-07-01

    This publication covers all predisposal waste management facilities and practices for receipt, pretreatment (sorting, segregation, characterization), treatment, conditioning, internal relocation and storage of low and intermediate level radioactive waste, including disused sealed radioactive sources. The publication contains an Annex presenting the example of a safety assessment for a small radioactive waste storage facility. Facilities dealing with both short lived and long lived low and intermediate level waste generated from nuclear applications and from operation of small nuclear research reactors are included in the scope. Processing and storage facilities for high activity disused sealed sources and sealed sources containing long lived radionuclides are also covered. The publication does not cover facilities processing or storing radioactive waste from nuclear power plants or any other industrial scale nuclear fuel cycle facilities. Disposal facilities are excluded from the scope of this publication. Authorization process can be implemented in several stages, which may start at the site planning and the feasibility study stage and will continue through preliminary design, final design, commissioning, operation and decommissioning stages. This publication covers primarily the authorization needed to take the facility into operation

  11. Near-surface facilities for disposal radioactive waste from non-nuclear application

    International Nuclear Information System (INIS)

    Barinov, A.

    2000-01-01

    The design features of the near-surface facilities of 'Radon', an estimation of the possible emergency situations, and the scenarios of their progress are given. The possible safety enhancing during operation of near-surface facilities, so called 'Historical facilities', and newly developed ones are described. The Moscow SIA 'Radon' experience in use of mobile module plants for liquid radioactive waste purification and principal technological scheme of the plant are presented. Upgrading of the technological scheme for treatment and conditioning of radioactive waste for new-developed facilities is shown. The main activities related to management of spent ionizing sources are mentioned

  12. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  13. Transportation operations functions of the federal waste management system

    International Nuclear Information System (INIS)

    Shappert, L.B.; Klimas, M.J.

    1989-01-01

    This paper documents the functions that are necessary to operate the OCRWM transportation system. OCRWM's mission is to accept and transport spent fuel and high-level waste from waste generators to FWMS facilities. The emphasis is on transportation operations and assumes that all necessary facilities are in place and equipment designs and specifications are available to permit the system to operate properly. The information reported in this paper was developed for TOPO and is compatible with the draft revision of the Waste Management System Requirements and Description (SRD). 5 refs

  14. Pollution prevention opportunity assessment for the SNL/California waste management facilities

    International Nuclear Information System (INIS)

    Braye, S.; Phillips, N.M.

    1995-01-01

    SNL/California's waste management facilities, Bldgs. 961 and 962-2, generate a secondary stream of hazardous and radioactive waste. This waste stream is generated mainly during the processing and handling of hazardous, radioactive, and mixed wastes (primary waste stream), which are generated by the laboratories, and when cleaning up spills. The secondary waste stream begins with the removal of a generator's hazardous, radioactive, and mixed waste from specified collection areas. The waste stream ends when the containers of processed waste are loaded for shipment off-site. The total amount of secondary hazardous waste generated in the waste management facilities from January 1993 to July 1994 was 1,160.6 kg. The total amount of secondary radioactive waste generated during the same period was 1,528.8 kg (with an activity of 0.070 mCi). Mixed waste usually is not generated in the secondary waste stream. This pollution prevention opportunity assessment (PPOA) was conducted using the graded approach methodology developed by the Department of Energy (DOE) PPOA task group. The original method was modified to accommodate the needs of Sandia's site-specific processes. The options generated for potential hazardous waste minimization, cost savings, and environmental health and safety were the result of a waste minimization team effort. The results of the team efforts are summarized

  15. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10/sup 16/ Bq (7.5 x 10/sup 5/ Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation and the new hydrofracture facility include: (1) significant /sup 90/Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. There are no plans to reactivate the hydrofracture process. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations and under provision 3004(u) of the Resource Conservation and Recovery Act

  16. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  17. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    Energy Technology Data Exchange (ETDEWEB)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  18. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    International Nuclear Information System (INIS)

    TOMASZEWSKI, T.A.

    2000-01-01

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management

  19. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    OpenAIRE

    M. V. Vedernikova; I. A. Pron; M. N. Savkin; N. S. Cebakovskaya

    2017-01-01

    This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on d...

  20. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  1. From waste packages acceptance criteria to waste packages acceptance process at the Centre de l'Aube disposal facility

    International Nuclear Information System (INIS)

    Dutzer, M.

    2003-01-01

    The Centre de l'Aube disposal facility has now been operated for 10 years. At the end of 2001, about 124,000 m3 of low and intermediate level short lived waste packages, representing 180,000 packages, have been disposed, for a total capacity of 1,000,000 m3. The flow of waste packages is now between 12 and 15,000 m3 per year, that is one third of the flow that was taken into account for the design of the repository. It confirms the efforts by waste generators to minimise waste production. This flow represents 25 to 30,000 packages, 50% are conditioned into the compaction facility of the repository, so that 17,000 packages are disposed per year. 54 disposal vaults have been closed. In 1996-1999, the safety assessment of the repository have been reviewed, taking into account the experience of operation. This assessment was investigated by the regulatory body and, subsequently, a so-called 'definitive license' to operate was granted to ANDRA on September 2, 1999 with updated licensing requirements. Another review will be performed in 2004. To ensure a better consistency with the safety assessment of the facility, Andra issued new technical requirements for waste packages at the end of 2000. Discussions with waste generators also showed that the waste package acceptance process should be improved to provide a more precise definition of operational criteria to comply with in waste conditioning facilities. Consequently, a new approach has been implemented since 2000. (orig.)

  2. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  3. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  4. Waste Sampling and Characterization Facility (WSCF) Complex Safety Analysis

    International Nuclear Information System (INIS)

    MELOY, R.T.

    2003-01-01

    The Waste Sampling and Characterization Facility (WSCF) is an analytical laboratory complex on the Hanford Site that was constructed to perform chemical and low-level radiological analyses on a variety of sample media in support of Hanford Site customer needs. The complex is located in the 600 area of the Hanford Site, east of the 200 West Area. Customers include effluent treatment facilities, waste disposal and storage facilities, and remediation projects. Customers primarily need analysis results for process control and to comply with federal, Washington State, and US. Department of Energy (DOE) environmental or industrial hygiene requirements. This document was prepared to analyze the facility for safety consequences and includes the following steps: Determine radionuclide and highly hazardous chemical inventories; Compare these inventories to the appropriate regulatory limits; Document the compliance status with respect to these limits; and Identify the administrative controls necessary to maintain this status

  5. Investigation on proper materials of a liner system for trench type disposal facilities of radioactive wastes from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Arikawa, Masanobu; Sakamoto, Yoshiaki

    2011-08-01

    The Low-level Radioactive Waste Disposal Project Center of Japan Atomic Energy Agency will settle on near surface disposal facilities with and without engineered barriers for radioactive wastes from research, industrial and medical facilities. Both of them are so called 'concrete pit type' and 'trench type', respectively. The technical standard of constructing and operating a disposal facility based on 'Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors' have been regulated partly by referring to that of 'Waste Management and Public Cleansing Law'. This means that the concrete pit type and the trench type disposal facility resemble an isolated type for specified industrial wastes and a non leachate controlled type final disposal site for stable industrial wastes, respectively. On the other, We plan to design a disposal facility with a liner system corresponding to a leachate controlled type final disposal site on a crucial assumption that radioactive wastes other than stable industrial wastes to be disposed into the trench type disposal facility is generated. By current nuclear related regulations in Japan, There are no technical standard of constructing the disposal facility with the liner system referring to that of 'Waste Management and Public Cleansing Law'. We investigate the function of the liner system in order to design a proper liner system for the trench type disposal facility. In this report, We investigated liner materials currently in use by actual leachate controlled type final disposal sites in Japan. Thereby important items such as tensile strength, durability from a view point of selecting proper liner materials were studied. The items were classified into three categories according to importance. We ranked proper liner materials for the trench type disposal facility by evaluating the important items per material. As a result, high density polyethylene(HDPE) of high elasticity type polymetric sheet was selected

  6. Long-term storage of radioactive solid waste within disposal facilities

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Edmunds, J.

    1986-05-01

    A study of the feasibility and implications of operating potential disposal facilities for low and intermediate level solid radioactive waste in a retrievable storage mode for extended periods of up to 200 years has been carried out. The arisings of conditioned UK radioactive waste up to the year 2030 have been examined. Assignments of these wastes to different types of underground disposal facilities have been made on the basis of their present activity and that which they will have in 200 years time. Five illustrative disposal concepts proposed both in the UK and overseas have been examined with a view to their suitability for adaption for storage/disposal duty. Two concepts have been judged unsuitable because either the waste form or the repository structure were considered unlikely to last the storage phase. Three of the concepts would be feasible from a construction and operational viewpoint. This suggests that with appropriate allowance for geological aspects and good repository and waste form design that storage/disposal within the same facility is achievable. The overall cost of the storage/disposal concepts is in general less than that for separate surface storage followed by land disposal, but more than that for direct disposal. (author)

  7. Incentives and the siting of radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process.

  8. Incentives and the siting of radioactive waste facilities

    International Nuclear Information System (INIS)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process

  9. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  10. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  11. Approaches to the management of waste from health care facilities in Czech Republic and Kazakhstan

    OpenAIRE

    Kaireshev, Ruslan

    2015-01-01

    Waste from healthcare facilities or similar facilities includes components of various physical, chemical and biological character that require special approaches during the handling, specifically with regard to possible risks to human health and the environment. Nowadays a challenge for waste management system becomes waste produced in healthcare facilities and contributes too many reasons, such as population growth and rising life expectancy. The rate of waste production from healthcare faci...

  12. Radioactive waste package assay facility. Volume 3. Data processing

    International Nuclear Information System (INIS)

    Creamer, S.C.; Lalies, A.A.; Wise, M.O.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd, and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd, on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. Volume 3, describes the work carried out by Siemens Plessey Controls Ltd on the data-processing aspects of an integrated waste assay facility. It introduces the need for a mathematical model of the assay process and develops a deterministic model which could be tested using Harwell experimental data. Relevant nuclear reactions are identified. Full implementation of the model was not possible within the scope of the Harwell experimental work, although calculations suggested that the model behaved as predicted by theory. 34 figs., 52 refs., 5 tabs

  13. Principles and guidelines for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1988-06-01

    Four basic principles relevant to radioactive waste disposal identified. These principles cover the justification of the activity giving rise to the waste, the consideration of risk to present and future generations, the minimization of the need for intervention in the future, and the financial obligations of the licensee. The use of risk limits as opposed to dose limits associated with disposal is discussed, as are the concepts of critical group, de minimis, and ALARA, in the context of a waste disposal facility. Guidance is given on the selection of the preferred waste disposal concept from among several alternatives, and for judging proposed design improvements to the chosen concept

  14. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  15. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  16. Environmental Assessment for the Independent Waste Handling Facility, 211-F at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Currently, liquid Low Activity Waste (LAW) and liquid High Activity Waste (HAW) are generated from various process operational facilities/processes throughout the Savannah River Site (SRS) as depicted on Figure 2-1. Prior to storage in the F-Area tank farm, these wastes are neutralized and concentrated to minimize their volume. The Waste Handling Facility (211-3F) at Building 211-F Complex (see Figure 2-2) is the only existing facility onsite equipped to receive acidic HAW for neutralization and volume reduction processing. Currently, Building 221-F Canyon (see Figure 2-2) houses the neutralization and evaporation facilities for HAW volume reduction and provides support services such as electric power and plant, process, and instrument air, waste transfer capabilities, etc., for 21 1-F operations. The future plan is to deactivate the 221-F building. DOE`s purpose is to be able to process the LAW/HAW that will continue to be generated on site. DOE needs to establish an alternative liquid waste receipt and treatment capability to support site facilities with a continuing mission. The desire is for Building 211-F to provide the receipt and neutralization functions for LAW and HAW independent of 221-F Canyon. The neutralization capability is required to be part of the Nuclear Materials Stabilization Programs (NMSP) facilities since the liquid waste generated by the various site facilities is acidic. Tn order for Waste Management to receive the waste streams, the solutions must be neutralized to meet Waste Management`s acceptance criteria. The Waste Management system is caustic in nature to prevent corrosion and the subsequent potential failure of tanks and associated piping and hardware.

  17. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume III contains attachments for Module III and Module IV. Module III attachments are: test bin design drawings; SWB/RCB design drawings; waste handling building secondary containment system drawings; and test bin flammable gas concentration control system drawings. Only one attachment for Module IV is included in this volume. The remaining attachments are in Volume IV

  18. Plutonium finishing plant dangerous waste training plan

    International Nuclear Information System (INIS)

    ENTROP, G.E.

    1999-01-01

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas

  19. Incineration facility for radioactively contaminated polychlorinated biphenyls and other wastes

    International Nuclear Information System (INIS)

    1982-06-01

    The statement assesses the environmental impacts associated with the construction of an incineration facility and related support facilities for the disposal of hazardous organic waste materials (including PCBs) which are contaminated with trace quantities of low-assay enriched uranium. The proposed action includes the incineration facility at Oak Ridge, Tennessee and storage, packaging, and shipping facilities at the Gaseous Diffusion Plants in Paducah, KY, and Portsmouth, OH; hazardous organic wastes from these plants and from the Y-12 Plant and Oak Ridge National Laboratories would be shipped to the proposed incineration facility. Impacts assessed include the effects of the project on air and water quality, on socioeconomic conditions, on public and occupational health and safety, and on ecology. Additionally, the statement presents an assessment of the potential impacts from accidents at the incineration facility or during transportation of the waste materials to the facility. The major impact identified was the potential for short-term occupational exposure to high concentrations of PCBs in smoke during the worst credible accident; mitigation of this impact will be addressed during the final design of the proposed facility. Alternatives which were assessed include no action, chemical destruction processes, and alternative transportation routes; all would have greater adverse impact or would increase the risk of an accident with the potential for adverse impact. The alternatives of commercial disposal, alternative sites, multiple incinerators, and alternative modes were eliminated from detailed analysis either because they are not feasible or because preliminary analysis showed that they would have clearly more adverse impact upon the environment than the proposed action

  20. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    International Nuclear Information System (INIS)

    Lewis, Mike

    2012-01-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.