WorldWideScience

Sample records for waste erip technical

  1. ERIP invention 637. Technical progress report 2nd quarter, April 1997--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, G.W.

    1997-07-22

    This technical report describes progress in the development of the Pegasus plow, a stalk and root embedding apparatus. Prototype testing is reported, and includes the addition of precision tillage. Disease data, organic matter, and nitrogen levels results are very briefly described. Progress in marketing is also reported. Current marketing issues include test use by cotton and wheat growers, establishment of dealer relationships, incorporation of design modifications, expansion of marketing activities, and expansion of loan and lease program.

  2. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  3. Solid Waste Program technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  4. Waste management project technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  5. Hanford Waste Vitrification Plant technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  6. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  7. Technical area status report for waste destruction and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States)

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office of Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.

  8. Models for waste life cycle assessment: Review of technical assumptions

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Damgaard, Anders; Hauschild, Michael Zwicky

    2010-01-01

    , such as the functional unit, system boundaries, waste composition and energy modelling. The modelling assumptions of waste management processes, ranging from collection, transportation, intermediate facilities, recycling, thermal treatment, biological treatment, and landfilling, are obviously critical when comparing......A number of waste life cycle assessment (LCA) models have been gradually developed since the early 1990s, in a number of countries, usually independently from each other. Large discrepancies in results have been observed among different waste LCA models, although it has also been shown that results...... from different LCA studies can be consistent. This paper is an attempt to identify, review and analyse methodologies and technical assumptions used in various parts of selected waste LCA models. Several criteria were identified, which could have significant impacts on the results...

  9. Waste Isolation Pilot Plant Technical Assessment Team Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-17

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  10. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  11. Draft low level waste technical summary

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.J.; Benar, C.J.; Certa, P.J.; Eiholzer, C.R.; Kruger, A.A.; Norman, E.C.; Mitchell, D.E.; Penwell, D.E.; Reidel, S.P.; Shade, J.W.

    1995-09-01

    The purpose of this document is to present an outline of the Hanford Site Low-Level Waste (LLW) disposal program, what it has accomplished, what is being done, and where the program is headed. This document may be used to provide background information to personnel new to the LLW management/disposal field and to those individuals needing more information or background on an area in LLW for which they are not familiar. This document should be appropriate for outside groups that may want to learn about the program without immediately becoming immersed in the details. This document is not a program or systems engineering baseline report, and personnel should refer to more current baseline documentation for critical information.

  12. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  13. Technical viability and development needs for waste forms and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It was not the intent of this session to recommend or advocate any one technology over another.

  14. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  15. Technical area status report for low-level mixed waste final waste forms. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  16. Technical specifications for mechanical recycling of agricultural plastic waste.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Science.gov (United States)

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act of...

  18. Technical and economic aspects of waste heat utilization

    Directory of Open Access Journals (Sweden)

    Smolen Slavomir

    2007-01-01

    Full Text Available The main aim of the following presentation is the comparison and evaluation of the conditions for waste heat utilization in Germany and in Poland. This paper presents synthetically the results of economic analysis of the different technical variants. The employment of heat pumps and other heat transformers, respectively, can reduce the energy consumption, but using of those technical possibilities depends mainly on the economic aspects. The main parameters of the financial calculations were the energy and equipment costs but beyond it a number of other factors were also considered and compared, for example calculation interests, profit tax level and similar. Four different technical alternatives were analyzed, it is using of absorption heat pump, compression heat pump, heat transformer (absorption, and a special combined system with gas motor to drive of heat pump compressor. The capital value as main result of the investigations is in Poland generally lower because of relatively high investment cost and lower energy prices compared to the situation in Germany and West Europe. The basis for the presented comparative analysis was an industrial project in Germany which effected in development of concepts for waste heat using. .

  19. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    Science.gov (United States)

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  20. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  1. AISI waste oxide recycling program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aukrust, E.; Downing, K.B.; Sarma, B.

    1995-08-01

    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  2. ``Recycling'' Nuclear Power Plant Waste: Technical Difficulties and Proliferation Concerns

    Science.gov (United States)

    Lyman, Edwin

    2007-04-01

    One of the most vexing problems associated with nuclear energy is the inability to find a technically and politically viable solution for the disposal of long-lived radioactive waste. The U.S. plan to develop a geologic repository for spent nuclear fuel at Yucca Mountain in Nevada is in jeopardy, as a result of managerial incompetence, political opposition and regulatory standards that may be impossible to meet. As a result, there is growing interest in technologies that are claimed to have the potential to drastically reduce the amount of waste that would require geologic burial and the length of time that the waste would require containment. A scenario for such a vision was presented in the December 2005 Scientific American. While details differ, these technologies share a common approach: they require chemical processing of spent fuel to extract plutonium and other long-lived actinide elements, which would then be ``recycled'' into fresh fuel for advanced reactors and ``transmuted'' into shorter-lived fission products. Such a scheme is the basis for the ``Global Nuclear Energy Partnership,'' a major program unveiled by the Department of Energy (DOE) in early 2006. This concept is not new, but has been studied for decades. Major obstacles include fundamental safety issues, engineering feasibility and cost. Perhaps the most important consideration in the post-9/11 era is that these technologies involve the separation of plutonium and other nuclear weapon-usable materials from highly radioactive fission products, providing opportunities for terrorists seeking to obtain nuclear weapons. While DOE claims that it will only utilize processes that do not produce ``separated plutonium,'' it has offered no evidence that such technologies would effectively deter theft. It is doubtful that DOE's scheme can be implemented without an unacceptable increase in the risk of nuclear terrorism.

  3. Technical issues in licensing low-level radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Junkert, R. [California Dept. of Health Services, CA (United States)

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  4. Waste Management Program. Technical progress report, October-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-07-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  5. Waste Management Program. Technical progress report, Aporil-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  6. 77 FR 8926 - Board Meeting: March 7, 2012-Albuquerque, NM; The U.S. Nuclear Waste Technical Review Board Will...

    Science.gov (United States)

    2012-02-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: March 7, 2012--Albuquerque, NM; The U.S. Nuclear Waste Technical Review Board... authority under section 5051 of Public Law 100-203, the Nuclear Waste Technical Review Board will hold a...

  7. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-16

    This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers` Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided.

  8. 76 FR 3678 - Board Meeting: February 16, 2011-Las Vegas, NV, the U.S. Nuclear Waste Technical Review Board...

    Science.gov (United States)

    2011-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: February 16, 2011--Las Vegas, NV, the U.S. Nuclear Waste Technical Review... Radioactive Waste Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy...

  9. 76 FR 17970 - Board Meeting: April 27, 2011-Amherst, New York; the U.S. Nuclear Waste Technical Review Board...

    Science.gov (United States)

    2011-03-31

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: April 27, 2011--Amherst, New York; the U.S. Nuclear Waste Technical Review... 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste...

  10. Melt processing of radioactive waste: A technical overview

    Energy Technology Data Exchange (ETDEWEB)

    Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

    1997-04-01

    Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.

  11. Waste Management Program. Technical progress report, July-December, 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-10-01

    This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement.

  12. Hiina äri eripärad eestlase pilgu läbi / Meelis Koik ; intervjueerinud Villu Zirnask

    Index Scriptorium Estoniae

    Koik, Meelis

    2010-01-01

    Hiina ettevõtetega koostööd tegeva AS-i Fors MW juht räägib Hiina ettevõtluse eripäradest ja Eesti võimalustest Hiina turul. Ta leiab, et jüaani kurss ongi kõige suurem oht Hiinast kauba toomise kasulikkusele, praegu ei saa Hiina jüaani dollarist vabaks lasta, kuna see samm toob endaga kaasa ekspordi hääbumise

  13. Technical aspects of municipal solid waste collection: case studies from East Africa

    OpenAIRE

    Vaccari, Mentore; Vitali, Francesco

    2015-01-01

    Material complementari del cas estudi "Technical aspects of municipal solid waste collection: case studies from East Africa", part component del llibre "Case studies for developing globally responsible engineers" Peer Reviewed

  14. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Science.gov (United States)

    2010-03-18

    ... standards for owners and operators of hazardous waste treatment, storage and disposal facilities, the... generator requirements, the standards for owners and operators of hazardous waste treatment, storage and... bonds, Water supply. 40 CFR Part 266 Environmental protection, Energy, Hazardous waste, Recycling...

  15. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  16. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  17. Geologic disposal of radioactive waste: Ethical and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T.H. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Ethical goals that future people should be protected and should not have to protect themselves from our radioactive waste are claimed by geologic repository projects. The best test of sufficient protection is to show that the calculated individual doses to future farming families are well below a regulatory limit. That limit should be no greater than what is now adopted to protect the public from operatinglicensed facilities. Present US calculations show doses, at times well beyond 10,000 years, that exceed current accepted limits by at least three orders of magnitude. Notwithstanding, there is a good chance that the goals can still be achieved by careful technical design of the geologic confinement system. But many in the US now propose ways that would allow greater individual exposures from radionuclides that eventually leak from a geologic repository. Examples include: (a) the 10,000-year cutoff proposed by industry, the US Congress, EPA, and DOE, thus obscuring the later times when higher doses are certain to result; (b) the vicinity-average dose proposed by industry and the US Congress; (c) the probabilistic critical groups proposed by EPRI and by the National Research Council's TYMS committee; (d) proposals to rely on future humans to detect and cleanup excessive amounts of radioactivity that may escape from a repository, and (e) the move to base compliance on calculated doses from well water drawn at considerable distance from Yucca Mountain. Each of these proposals would lead to a far more lenient radiation protection standard than current standards. Each of these proposals is without sufficient scientific basis for its use as a protector of public health. Each of these proposals would violate one or more of the ethical goals. Each is made without adequate discussion and explanation and without explaining how and why it would violate one or more of the ethical goals. What if serious work on alternatives fails to produce conservatively calculated and

  18. Mixed waste focus area technical baseline report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    As part of its overall program, the MWFA uses a national mixed waste data set to develop approaches for treating mixed waste that cannot be treated using existing capabilities at DOE or commercial facilities. The current data set was originally compiled under the auspices of the 1995 Mixed Waste Inventory Report. The data set has been updated over the past two years based on Site Treatment Plan revisions and clarifications provided by individual sites. The current data set is maintained by the MWFA staff and is known as MWFA97. In 1996, the MWFA developed waste groupings, process flow diagrams, and treatment train diagrams to systematically model the treatment of all mixed waste in the DOE complex. The purpose of the modeling process was to identify treatment gaps and corresponding technology development needs for the DOE complex. Each diagram provides the general steps needed to treat a specific type of waste. The NWFA categorized each MWFA97 waste stream by waste group, treatment train, and process flow. Appendices B through F provide the complete listing of waste streams by waste group, treatment train, and process flow. The MWFA97 waste strewn information provided in the appendices is defined in Table A-1.

  19. Anaerobic digestion of municipal solid waste: Technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  20. Socio-technical systems analysis of waste to energy from municipal solid waste in developing economies: a case for Nigeria

    Directory of Open Access Journals (Sweden)

    Iyamu Hope O.

    2017-01-01

    Full Text Available Waste generation is an inevitable by-product of human activity, and it is on the rise due to rapid urbanisation, industrialisation, increased wealth and population. The composition of municipal solid waste (MSW in developed and developing economies differ, especially with the organic fraction. Research shows that the food waste stream of MSW in developing countries is over 50%. The case study for this investigation, Nigeria, has minimal formal recycling or resource recovery programs. The average composition of waste from previous research in the country is between 50–70% putrescible and 30–50% non-putrescible, presenting significant resource recovery potential in composting and biogas production. Waste-to-energy (WtE is an important waste management solution that has been successfully implemented and operated in most developed economies. This contribution reports the conditions that would be of interest before WtE potentials of MSW is harnessed, in an efficient waste management process in a developing economy like Nigeria. The investigation presents a set of socio-technical parameters and transition strategy model that would inform a productive MSW management and resource recovery, in which WtE can be part of the solution. This model will find application in the understanding of the interactions between the socio-economic, technical and environmental system, to promote sustainable resource recovery programs in developing economies, among which is WtE.

  1. Technical resource document for assured thermal processing of wastes

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

    1994-06-01

    This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

  2. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.W. [Science Applications International Corp., Oak Ridge, TN (United States); Wu, C.F.; Goff, T.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.

  3. Technical justifications for the tests and criteria in the waste form technical position appendix on cement stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Siskind, B.; Cowgill, M.G.

    1992-01-01

    As part of its technical assistance to the Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a background document for the cement stabilization appendix, Appendix A, to Rev. 1 of the Technical Position on Waste Form (TP). Here we present an overview of this background document, which provides technical justification for the stability tests to be performed on cement-stabilized waste forms and for the criteria posed in each test, especially for those tests which have been changed from their counterparts in the May 1983 Rev. 0 TP. We address guidelines for procedures from Appendix A which are considered in less detail or not at all in the Rev. 0 of the TP, namely, qualification specimen preparation (mixing, curing, storage), statistical sampling and analysis, process control program specimen preparation and examination, and surveillance specimens. For each waste form qualification test, criterion or procedural guidelines, we consider the reason for its inclusion in Appendix A, the changes from Rev. 0 of the TP (if applicable), and a discussion of the justification or rationale for these changes.

  4. Technical justifications for the tests and criteria in the waste form technical position appendix on cement stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Siskind, B.; Cowgill, M.G.

    1992-04-01

    As part of its technical assistance to the Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a background document for the cement stabilization appendix, Appendix A, to Rev. 1 of the Technical Position on Waste Form (TP). Here we present an overview of this background document, which provides technical justification for the stability tests to be performed on cement-stabilized waste forms and for the criteria posed in each test, especially for those tests which have been changed from their counterparts in the May 1983 Rev. 0 TP. We address guidelines for procedures from Appendix A which are considered in less detail or not at all in the Rev. 0 of the TP, namely, qualification specimen preparation (mixing, curing, storage), statistical sampling and analysis, process control program specimen preparation and examination, and surveillance specimens. For each waste form qualification test, criterion or procedural guidelines, we consider the reason for its inclusion in Appendix A, the changes from Rev. 0 of the TP (if applicable), and a discussion of the justification or rationale for these changes.

  5. Hanford Site Composite Analysis Technical Approach Description: Waste Form Release.

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, S. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Paris, B. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Apted, M. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-09-14

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions or assessment needs, if potential problems are identified.

  6. Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D.G.; Epler, J.S.; Rose, R.R.

    1980-03-01

    A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

  7. Hazardous Waste Technical Assistance Survey, Brooks AFB Texas.

    Science.gov (United States)

    1988-04-01

    vermiculite , and then disposed of as municipal waste. This section averages about 50-100 PCB samples per week with each sample generating anywhere from 5-100 ml...testing various methods of S decontamination for personnel exposed to chemical agents in a wartime scenario. A methyl salicylate solution (.1 N NaOH

  8. TECHNICAL NOTE LIQUID WASTE DISPOSAL IN URBAN LOW ...

    African Journals Online (AJOL)

    income from malted grain production which is then sold in Medcato, a large open market nearby, for the eventual production of• Tela • a mild alcholic drinlc. In the production of malted grain or •biJcil•, as it is locally called, from wheat or barley a large amount of water is used, and hence a substantial amo\\Ult of liquid wastes.

  9. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

  10. Urban Waste and Sanitation Services for Sustainable Development: Harnessing social and technical diversity in East Africa

    NARCIS (Netherlands)

    Vliet, van B.J.M.; Buuren, van J.C.L.; Mgana, S.

    2014-01-01

    Urban sanitation and solid waste sectors are under significant pressure in East Africa due to the lack of competent institutional capacity and the growth of the region’s urban population. This book presents and applies an original analytical approach to assess the existing socio-technical mixtures

  11. Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; Huebner, T.L. [Science Applications International Corp., Idaho Falls, ID (United States); Ross, W. [Pacific Northwest Lab., Richland, WA (United States); Nakaoka, R. [Los Alamos National Lab., NM (United States); Schumacher, R. [Westinghouse Savannah River Co., Aiken, SC (United States); Cunnane, J.; Singh, D. [Argonne National Lab., IL (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Greenhalgh, W. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-08-01

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

  12. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 23. Environmental effluent analyses

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/23, ''Environmental Effluent Analysis,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Drat Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume discusses the releases to the environment of radioactive and non-radioactive materials that arise during facility construction and waste handling operations, as well as releases that could occur in the event of an operational accident. The results of the analyses are presented along with a detailed description of the analytical methodologies employed.

  13. Low level mixed waste thermal treatment technical basis report

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  14. Optimised anaerobic treatment of house-sorted biodegradable waste and slaughterhouse waste in a high loaded half technical scale digester.

    Science.gov (United States)

    Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R

    2006-01-01

    Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.

  15. Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation

    Science.gov (United States)

    Huang, C. J.; Dalton, C.

    1975-01-01

    A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.

  16. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  17. NTS terminal waste storage. Monthly technical status report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-07-31

    The interim draft report containing the first stage of CSC`s work on prediction of subsurface ground motion was completed. Twenty-four stations of the seismic monitoring network are now operational. The location for the first exploratory hole in Calico Hills was changed based on interpretation of magnetic and electrical geophysical data. Two core holes were completed in the Climax Stock in the Pile Driver tunnel complex. Drilling on the first exploratory hole at Yucca Mountain commenced on July 30, 1978. Field reconnaissance of granitic rocks in southern Nevada continued, including locations in Esmeralda, Nye, and White Pine Counties. The modeling of the Eleana Heater Experiment showed good agreement with field temperature data for conduction energy transfer. A rough draft of the tuff scoping report was completed. Review of the LASL quality program plan for their activities on the NTS Terminal Waste Storage Program was completed by Sandia Quality Assurance. A geological reconnaissance of the region near the Yucca Mountain drill site suggested a high probability that large, reasonably unfaulted blocks of tuff exist in the area.

  18. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.

    Science.gov (United States)

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A

    2015-11-01

    Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hospital waste sterilization: A technical and economic comparison between radiation and microwaves treatments

    Science.gov (United States)

    Tata, A.; Beone, F.

    1995-09-01

    Hospital waste (HW) disposal is becoming a problem of increasing importance in almost all industrially advanced countries. In Italy the yearly hospital waste production is about 250,000 tons and only 60,000 tons are treated by incineration at present time. As by a recent Italian law a meaningful percentage of HW (50 to 60%), corresponding to food residuals, plastics, paper, various organic materials, etc., could be landfilled as municipal refuses if preliminarily submitted to a suitable sterilization treatment. Under this perspective, sterilization/sanitation techniques represent now a technically and commercially viable alternative to HW thermal destruction that, besides, is more and more socially and politically less accepted. Electron Beam (EB) and Microwave (MW) treatments are two of the most interesting and emerging HW sterilization techniques, and, based on engineering real data, a technical and economic comparison is carried out, focusing vantages and limits of each process.

  20. Communication of technical information to lay audiences. [National Waste Terminal Storage (NWTS) program

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, J.E.; Stamm, K.R.; Jackson, K.M.; Moore, J.

    1978-05-01

    One of the objectives of the National Waste Terminal Storage (NWTS) Program is to provide terminal storage facilities for commercial radioactive wastes in various geologic formations at multiple locations in the United States. The activities performed under the NWTS Program will affect regional, state, and local areas, and widespread public interest in this program is expected. Since a large part of the NWTS Program deals with technical information it was considered desirable to initiate a study dealing with possible methods of effectively transmitting this technical information to the general public. This study has the objective of preparing a state-of-the-art report on the communication of technical information to lay audiences. The particular task of communicating information about the NWTS Program to the public is discussed where appropriate. The results of this study will aid the NWTS Program in presenting to the public the quite diverse technical information generated within the program so that a widespread, thorough public understanding of the NWTS Program might be achieved. An annotated bibliography is included.

  1. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. (ed.)

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

  2. 76 FR 24065 - Board Workshop: June 6-7, 2011-Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board...

    Science.gov (United States)

    2011-04-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Workshop: June 6-7, 2011--Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board Will Hold a Workshop on Methods for Evaluating Nuclear Waste Streams Pursuant to its authority...

  3. Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up.

    Science.gov (United States)

    Liu, Zhidan; Si, Buchun; Li, Jiaming; He, Jianwei; Zhang, Chong; Lu, Yuan; Zhang, Yuanhui; Xing, Xin-Hui

    2017-09-08

    A concept of biohythane production by combining biohydrogen and biomethane together via two-stage anaerobic fermentation (TSAF) has been recently proposed and considered as a promising approach for sustainable hythane generation from waste biomass. The advantage of biohythane over traditional biogas are more environmentally benign, higher energy recovery and shorter fermentation time. However, many of current efforts to convert waste biomass into biohythane are still at the bench scale. The system bioprocess study and scale up for industrial application are indispensable. This paper outlines the general approach of biohythane by comparing with other biological processes. The technical challenges are highlighted towards scale up of biohythane system, including functionalization of biohydrogen-producing reactor, energy efficiency, and bioprocess engineering of TSAF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Geological Disposal of Radioactive Waste: A Long-Term Socio-Technical Experiment.

    Science.gov (United States)

    Schröder, Jantine

    2016-06-01

    In this article we investigate whether long-term radioactive waste management by means of geological disposal can be understood as a social experiment. Geological disposal is a rather particular technology in the way it deals with the analytical and ethical complexities implied by the idea of technological innovation as social experimentation, because it is presented as a technology that ultimately functions without human involvement. We argue that, even when the long term function of the 'social' is foreseen to be restricted to safeguarding the functioning of the 'technical', geological disposal is still a social experiment. In order to better understand this argument and explore how it could be addressed, we elaborate the idea of social experimentation with the notion of co-production and the analytical tools of delegation, prescription and network as developed by actor-network theory. In doing so we emphasize that geological disposal inherently involves relations between surface and subsurface, between humans and nonhumans, between the social, material and natural realm, and that these relations require recognition and further elaboration. In other words, we argue that geological disposal concurrently is a social and a technical experiment, or better, a long-term socio-technical experiment. We end with proposing the idea of 'actor-networking' as a sensitizing concept for future research into what geological disposal as a socio-technical experiment could look like.

  5. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  6. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 2, Technical basis

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6.

  7. Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction.

    Science.gov (United States)

    Vegas, I; Ibañez, J A; San José, J T; Urzelai, A

    2008-01-01

    The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.

  8. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 8. Repository preconceptual design studies: salt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Volume 8 ''Repository Preconceptual Design Studies: Salt,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/9, ''Drawings for Repository Preconceptual Design Studies: Salt.''

  9. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 10. Repository preconceptual design studies: granite

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Volume 10 ''Repository Preconceptual Design Studies: Granite,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in granite. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/11, ''Drawings for Repository Preconceptual Design Studies: Granite.''

  10. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Garth M. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Saunders, Scott A. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  11. TECHNICAL EVALUATION OF THE SAFE TRANSPORTATION OF WASTE CONTAINERS COATED WITH POLYUREA

    Energy Technology Data Exchange (ETDEWEB)

    VAIL, T.S.

    2007-03-30

    This technical report is to evaluate and establish that the transportation of waste containers (e.g. drums, wooden boxes, fiberglass-reinforced plywood (FRP) or metal boxes, tanks, casks, or other containers) that have an external application of polyurea coating between facilities on the Hanford Site can be achieved with a level of onsite safety equivalent to that achieved offsite. Utilizing the parameters, requirements, limitations, and controls described in the DOE/RL-2001-36, ''Hanford Sitewide Transportation Safety Document'' (TSD) and the Department of Energy Richland Operations (DOE-RL) approved package specific authorizations (e.g. Package Specific Safety Documents (PSSDs), One-Time Requests for Shipment (OTRSs), and Special Packaging Authorizations (SPAS)), this evaluation concludes that polyurea coatings on packages does not impose an undue hazard for normal and accident conditions. The transportation of all packages on the Hanford Site must comply with the transportation safety basis documents for that packaging system. Compliance with the requirements, limitations, or controls described in the safety basis for a package system will not be relaxed or modified because of the application of polyurea. The inspection criteria described in facility/projects procedures and work packages that ensure compliance with Container Management Programs and transportation safety basis documentation dictate the need to overpack a package without consideration for polyurea. This technical report reviews the transportation of waste packages coated with polyurea and does not credit the polyurea with enhancing the structural, thermal, containment, shielding, criticality, or gas generating posture of a package. Facilities/Projects Container Management Programs must determine if a container requires an overpack prior to the polyurea application recognizing that circumstances newly discovered surface contamination or loss of integrity may require a previously

  12. Guidance document for revision of DOE Order 5820.2A, Radioactive Waste Technical Support Program. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, D.E.; McMurtrey, C.D.; Meagher, B.G.

    1993-04-01

    This document provides guidance for the revision of DOE Order 5820.2A, ``Radioactive Waste Management.`` Technical Working Groups have been established and are responsible for writing the revised order. The Technical Working Groups will use this document as a reference for polices and procedures that have been established for the revision process. The overall intent of this guidance is to outline how the order will be revised and how the revision process will be managed. In addition, this document outlines technical issues considered for inclusion by a Department of Energy Steering Committee.

  13. Generation of organic waste from institutions in Denmark: case study of the Technical University of Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Boldrin, Alessio; Scheutz, Charlotte

    of this study, two plastic waste bins of 60 L each were placed in the kitchens: organic waste bins and mixed waste bins. Organic waste and mixed waste from these kitchens were collected and weighed separately, on a daily basis, during 133 working days (29 weeks). However, waste was not sampled during weekends...... potential. They also suggest that recycling target for source-segregated organic waste might be achievable with reasonable logistical ease in institution areas....

  14. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  15. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 7. Baseline rock properties-basalt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/7 Baseline Rock Properties--Basalt, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report contains an evaluation of the results of a literature survey to define the rock mass properties of a generic basalt, which could be considered as a geological medium for storing radioactive waste. The general formation and structure of basaltic rocks is described. This is followed by specific descriptions and rock property data for the Dresser Basalt, the Amchitka Island Basalt, the Nevada Test Site Basalt and the Columbia River Group Basalt. Engineering judgment has been used to derive the rock mass properties of a typical basalt from the relevant intact rock property data and the geological information pertaining to structural defects, such as joints and faults.

  16. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  17. Eleventh annual U.S. DOE low-level radioactive waste management conference: Executive summary, opening plenary, technical session summaries, and attendees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-01-01

    The conference consisted of ten technical sessions, with three sessions running simultaneously each day. Session topics included: regulatory updates; performance assessment;understanding remedial action efforts; low-level waste strategy and planning (Nuclear Energy); low-level waste strategy and planning (Defense); compliance monitoring; decontamination and decommissioning; waste characterization; waste reduction and minimization; and prototype licensing application workshop. Summaries are presented for each of these sessions.

  18. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 21. Ground water movement and nuclide transport

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    This volume, TM-36/21 Ground Water Movement and Nuclide Transport, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling of spent fuel and uranium-only recycling. The studies presented in this volume consider the effect of the construction of the repository and the consequent heat generation on the ground water movement. Additionally, the source concentrations and leach rates of selected radionuclides were studied in relation to the estimated ground water inflow rates. Studies were also performed to evaluate the long term migration of radionuclides as affected by the ground water flow. In all these studies, three geologic environments are considered; granite, shale and basalt.

  19. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

    1982-02-01

    In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

  20. Reflecting socio-technical combinations in radioactive waste management. Results from the InSOTEC European research project

    Energy Technology Data Exchange (ETDEWEB)

    Kallenbach-Herbert, Beate [Oeko-Institut e.V., Darmstadt (Germany); Bergmans, Anne [Antwerp Univ. (Belgium); Martell, Meritxell [Merience Strategic Thinking, Olerdola (Spain); Schroeder, Jantine [Antwerp Univ. (Belgium); SCK - CEN, Mol (Belgium)

    2015-07-01

    InSOTEC is a three-year collaborative social sciences research project funded under the European Atomic Energy Community's 7th Framework Programme FP7. The project aims to generate a better understanding of the complex interplay between the technical and the social in the context of geological disposal of radioactive waste. In doing so, InSOTEC has moved beyond the social and technical division that is frequently being found in this context by - investigating the consideration of social sciences and the recognition of socio-technical combinations in research programs on geological disposal, - analyzing the socio-technical entanglement in selected contexts like siting, reversibility and retrievability, demonstrating safety and technology transfer on the basis of case studies, and - exploring the integration of diverse stakeholders in technology oriented networks. The analyses reveal that activities in the context of geological disposal, whether related to research, planning, siting etc., rather support the divide of social and technical aspects than fostering the consideration of their entanglement. Reasons identified for this are manifold. The wish to reduce complexity by focusing stakeholder involvement on social questions and fixing the technical part ''when acceptance is reached'' is only one of them. However, the analyses also show that over the long timescales of repository planning and implementation, robust management strategies must provide the flexibility to adapt to both technical and social developments and demands. Understanding the socio-technical interplay and creating structures for its consideration provides the basis for dealing with this challenge. This presentation will focus on the main findings of the InSOTEC project with regard to the consideration of socio-technical combinations in practice. These insights are currently under development and will be finalized at the end of the project in June 2014. We will reflect on

  1. Technical and Socioeconomic Potential of Biogas from Cassava Waste in Ghana.

    Science.gov (United States)

    Kemausuor, Francis; Addo, Ahmad; Darkwah, Lawrence

    2015-01-01

    This study analyses technical potential and ex ante socioeconomic impacts of biogas production using cassava waste from agroprocessing plants. An analysis was performed for two biodigesters in two cassava processing communities in Ghana. The results showed that the two communities generate an excess of 4,500 tonnes of cassava peels per year. Using approximately 5% of the peels generated and livestock manure as inoculum can generate approximately 75,000 m(3) of gas with an estimated 60% methane content from two separate plants of capacities 500 m(3) and 300 m(3) in the two communities. If used internally as process fuel, the potential gas available could replace over 300 tonnes of firewood per year for cassava processing. The displacement of firewood with gas could have environmental, economic, and social benefits in creating sustainable development. With a 10 percent discount rate, an assumed 20-year biodigester will have a Net Present Value of approximately US$ 148,000, 7-year Payback Period, and an Internal Rate of Return of 18.7%. The project will create 10 full-time unskilled labour positions during the investment year and 4 positions during operation years.

  2. Technical and Socioeconomic Potential of Biogas from Cassava Waste in Ghana

    Directory of Open Access Journals (Sweden)

    Francis Kemausuor

    2015-01-01

    Full Text Available This study analyses technical potential and ex ante socioeconomic impacts of biogas production using cassava waste from agroprocessing plants. An analysis was performed for two biodigesters in two cassava processing communities in Ghana. The results showed that the two communities generate an excess of 4,500 tonnes of cassava peels per year. Using approximately 5% of the peels generated and livestock manure as inoculum can generate approximately 75,000 m3 of gas with an estimated 60% methane content from two separate plants of capacities 500 m3 and 300 m3 in the two communities. If used internally as process fuel, the potential gas available could replace over 300 tonnes of firewood per year for cassava processing. The displacement of firewood with gas could have environmental, economic, and social benefits in creating sustainable development. With a 10 percent discount rate, an assumed 20-year biodigester will have a Net Present Value of approximately US$ 148,000, 7-year Payback Period, and an Internal Rate of Return of 18.7%. The project will create 10 full-time unskilled labour positions during the investment year and 4 positions during operation years.

  3. Environmental, technical and technological aspects of hazardous waste management in Poland

    Science.gov (United States)

    Pyssa, Justyna

    2017-10-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions deciding on the full success of investment, and namely: economic effectiveness, ecological efficiency and social acceptance. The structure of generation of hazardous waste in EU-28 has been presented in the paper. Methods of hazardous waste disposal in Poland have been discussed. Economic and ecological criteria for the selection of technology of hazardous waste disposal have been analyzed. The influence of the hazardous waste on the environment is also presented. For four groups of waste, which are currently stored, alternative methods of disposal have been proposed.

  4. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  5. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  6. Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McVey, M.D.; Goering, T.J. [GRAM, Inc., Albuquerque, NM (United States); Peace, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1996-02-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

  7. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  8. Implementing Selective Waste Collection: The Articulation between Pedagogical Theory and Practice in the Pollution and Ecology Class in the Environmental Control Technical Course

    Science.gov (United States)

    Rocas, Giselle; Gonzalez, Wania R. Coutinho; Araujo, Flavia Monteiro de Barros

    2009-01-01

    This study focuses on the implementation of selective waste collection in a school located on the outskirts of the city of Rio de Janeiro. The participants consisted mainly of 64 students taking an Environmental Control technical course during 2007 and 2008. By addressing selective waste collection, the pedagogical proposal aimed at: a) enabling…

  9. 76 FR 47613 - Board Meeting: September 13-14, 2011-Salt Lake City, UT; the U.S. Nuclear Waste Technical Review...

    Science.gov (United States)

    2011-08-05

    ... REVIEW BOARD Board Meeting: September 13-14, 2011--Salt Lake City, UT; the U.S. Nuclear Waste Technical... Technical Review Board will hold a public meeting in Salt Lake City, Utah, on Tuesday, September 13, and....m. and will be held at the Little America Hotel; 500 South Main Street; Salt Lake City, Utah 84101...

  10. Composite quarterly technical report long-term high-level-waste technology, October-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cornman, W.R. (comp.)

    1982-06-01

    This document summarizes work performed at participating sites on the immobilization of high-level wastes from the chemical reprocessing of reactor fuels. The plan is to develop waste form alternatives for each of the three DOE sites (SRP, ICPP, and Hanford). Progress is reported in the following areas: waste preparation; fixation in glass, concrete, tailored ceramics, and coated particles; process and equipment development; and final handling. 12 figures, 19 tables. (DLC)

  11. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    Science.gov (United States)

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. Copyright © 2013

  12. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  13. ANL Technical Support Program for DOE Environmental Restoration and Waste Management; Annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Bourcier, W.L.; Bradley, C.R. [and others

    1994-06-01

    This report is an overview of the progress during FY 1993 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are anticipated to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: reviewing and evaluating available data on parameters that will be important in establishing the long-term performance of glass in a repository environment; performing tests to further quantify the effects of important variables where there are deficiencies in the available data; and initiating long-term tests to determine glass performance under a range of conditions applicable to repository disposal.

  14. ANL Technical Support Program for DOE Environmental Restoration and Waste Management. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J. [Argonne National Lab., IL (United States); Bourcier, W.L.; Morgan, L.E.; Nielsen, J.K.; Steward, S.A. [Lawrence Livermore National Lab., CA (United States); Ewing, R.C.; Wang, L.M. [New Mexico Univ., Albuquerque, NM (United States); Han, W.T.; Tomozawa, M. [Rensselaer Polytechnic Inst., Troy, MI (United States)

    1992-03-01

    This report provides an overview of progress during FY 1991 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE, Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defenses Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are likely to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: (1) to review and evaluate available information on parameters that will be important in establishing the long-term performance of glass in a repository environment; (2) to perform testing to further quantify the effects of important variables where there are deficiencies in the available data; and (3) to initiate long-term testing that will bound glass performance under a range of conditions applicable to repository disposal.

  15. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    Energy Technology Data Exchange (ETDEWEB)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.; Benson, G.L.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.; Schilling, A.H.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis. (DC)

  16. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    Science.gov (United States)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  17. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; ML Elliott; D Bickford

    1999-11-19

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

  18. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Landon, L.F. (comp.)

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  19. Waste isolation safety assessment program. Technical progress report for FY-77

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Greenborg, J.; Stottlemyre, J.A.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.

    1979-04-01

    Purpose of WISAP is to evaluate the post-closure effectiveness of deep geologic nuclear waste repository systems. The work conducted centered in four subject areas: (1) the analysis of potential repository release scenarios, (2) the analysis of potential release consequences, (3) the measurement of waste form leaching rates, and (4) the measurement of the interactions of dissolved radionuclides with geologic media. 12 figures, 24 tables.

  20. Technical Basis Document No. 6: Waste Package and Drip Shield Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Pasupathi, V; Nair, P; Gordon, G; McCright, D; Gdowski, G; Carroll, S; Steinborn, T; Summers, T; Wong, F; Rebak, R; Lian, T; Ilevbare, G; Lee, J; Hua, F; Payer, J

    2003-08-01

    The waste package and drip shield will experience a wide range of interactive environmental conditions and degradation modes that will determine the overall performance of the waste package and repository. The operable modes of degradation are determined by the temperature regime of operation (region), and are summarized here. Dry-Out Region (T {ge} 120 C; 50 to 400 Years): During the pre-closure period, the waste package will be kept dry by ventilation air. During the thermal pulse, heat generated by radioactive decay will eventually increase the temperature of the waste package, drip shield and drift wall to a level above the boiling point, where the probability of seepage into drifts will become insignificant. Further heating will push the waste package surface temperature above the deliquescence point of expected salt mixtures, thereby preventing the formation of deliquescence brines from dust deposits and humid air. Phase and time-temperature-transformation diagrams predicted for Alloy 22, and validated with experimental data, indicates no significant phase instabilities (LRO and TCP precipitation) at temperatures below 300 C for 10,000 years. Neither will dry oxidation at these elevated temperatures limit waste package life. After the peak temperature is reached, the waste package will begin to cool, eventually reaching a point where deliquescence brine formation may occur. However, corrosion testing of Alloy 22 underneath such films has shown no evidence of life-limiting localized corrosion. Transition Region (120 C {ge} T {ge} 100 C; 400 to 1,000 Years): During continued cooling, the temperature of the drift wall will drop to a level close to the boiling point of the seepage brine, thus permitting the onset of seepage. Corrosion in a concentrated, possibly aggressive, liquid-phase brine, evolved through evaporative concentration, is possible while in this region. However, based upon chemical divide theory, most ({ge} 99%) of the seepage water entering the

  1. Technical assessment of the CLEERGAS moving grate-based process for energy generation from municipal solid waste.

    Science.gov (United States)

    Lusardi, Marcella R; Kohn, McKenzie; Themelis, Nickolas J; Castaldi, Marco J

    2014-08-01

    A technical analysis has been completed for a commercial-scale two-stage gasification-combustion system. The CLEERGAS (Covanta Low Emissions Energy Recovery GASification) process consists of partial combustion and gasification of as-received municipal solid waste (MSW) on a moving grate producing syngas followed by full combustion of the generated syngas in an adjoining chamber and boiler. This process has been in operation since 2009 on a modified 330-tonne day(-1) waste-to-energy (WTE) line in Tulsa, Oklahoma. Material balances determined that the syngas composition is 12.8% H2 and 11.4% CO, the heating value of the gas in the gasifier section is 4098 kJ Nm(-3), and an aggregate molecular formula for the waste is C6H14.5O5. The analysis of gas measurements sampled from the Tulsa unit showed that the gasification-combustion mode fully processed the MSW at an excess air input of only 20% as compared to the 80-100% typically found in conventional WTE moving grate plants. Other important attributes of the CLEERGAS gasification-combustion process are that it has operated on a commercial scale for a period of over two years with 93% availability and utilizes a moving grate technology that is currently used in hundreds of WTE plants around the world. © The Author(s) 2014.

  2. Municipal Solid Waste Management

    OpenAIRE

    Soni, Ajaykumar; Patil, Deepak; Argade, Kuldeep

    2016-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  3. Solid Waste Projection Model: Database (Version 1.3). Technical reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement.

  4. Technical assessment of the bedrock waste storage at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.F.; Corey, J.C.

    1976-11-01

    An assessment of the safety and feasibility of ultimate storage of radioactive wastes produced at the Savannah River Plant (SRP) in horizontal tunnels excavated in the bedrock beneath the plant site is presented. Results indicate that a cavern with an excavated volume of 130 million gallons could contain 80 million gallons of concentrated radioactive SRP wastes with minimal risks if the cavern is located in the impermeable Triassic Basin underlying the Savannah River site. The cavern could be placed so that it would lie wholly within the boundaries of the plantsite. The document summarizes the general geological, hydrological, and chemical knowledge of the geological structures beneath the plantsite; develops evaluation guidelines; and utilizes mathematical models to conduct risk analyses. The risk models are developed from known soil and salt solution mechanics; from past, present, and future geological behavior of the onsite rock formations; and from known waste handling technology. The greatest risk is assessed to exist during transfer of the radioactive wastes to the cavern. When the cavern is filled and sealed, further population risks are asessed to be very low.

  5. Analysis of nuclear waste disposal in space, phase 3. Volume 1: Executive summary of technical report

    Science.gov (United States)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The objectives, approach, assumptions, and limitations of a study of nuclear waste disposal in space are discussed with emphasis on the following: (1) payload characterization; (2) safety assessment; (3) health effects assessment; (4) long-term risk assessment; and (5) program planning support to NASA and DOE. Conclusions are presented for each task.

  6. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  7. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  8. Generation of organic waste from institutions in Denmark: case study of the Technical University of Denmark

    OpenAIRE

    Edjabou, Maklawe Essonanawe; Boldrin, Alessio; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2016-01-01

    As a response to the growing pressure on the supply chains, developing a resource-efficient circular economy will be fundamental to satisfy the future demands for material resources. In this context, the Danish Government, in 2013, launched its Resource Strategy Plan, mandating that, by 2018 at least 60% of organic waste – that cannot be prevented or reduced –generated by service sector, should be source-segregated and collected separately. In order to establish the baseline of the current si...

  9. Wastewater Characterization and Hazardous Waste Technical Assistance Survey, Bergstrom AFB Texas

    Science.gov (United States)

    1990-01-01

    flight line and the Crossing Dining Hall. The flow In manhole 7B consists of’ discharges from industrial operations located south of the flight line. B...AGE Rags LE 67 CES Power Production Rags T 67 CRS Test Cell Rags LE 83 WASTE: NDI ETOP - TP7 7A 67 EMS ND Emu) I0’ O D 67 EMS NDI X-Ray Developer 240

  10. Index of hazard for radioactive waste (revised). Interim technical report PR 78-10-80R

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S.R.

    1978-06-01

    This is an interim report of a study to establish a risk measure for radioactive waste repositories and to generate radiological performance objectives. The problem of regulating radioactive waste repositories is reviewed, and the difficulties associated with this activity are discussed. Risk-benefit analysis as a tool for regulation has been suggested, and its contribution is assessed. Decision analysis as a development of risk-benefit analysis is suggested as an alternative approach, in particular, employing the concept of expected utility. A utility function which describes the possible consequences of a radioactive waste repository is discussed in some detail, paying particular attention to the public concerns which must be addressable through such a function and how it is recommended to capture them. A specific utility function is developed, and its elicitation from a particular subject is described. The representation of public values in a decision-analytic approach presents some problems and these are fully discussed; recommendations are made as to appropriate methods to carry this out. The vexed question of determining an acceptable safety limit is studied and recommendations are made concerning the most suitable way to determine ''how safe is safe enough.'' Finally a brief discussion is given of how these concepts may be employed to generate radiological performance objectives.

  11. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-25

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

  12. Analysis of Waste in the Production of Flour California Red Worm (eisenia foet in Manabí Technical Universitypilot Plant

    Directory of Open Access Journals (Sweden)

    Ulbio Alcívar-Cedeño

    2016-07-01

    Full Text Available The necessity for have efficient tools in the environmental assessment of production processesis treated in this paper. This work is related to a previous work made in the Technical University of Manabi, forprotein supplements production from unconventional raw materials, specifically Earthworm (Eisenia foetidaflour, using various ecotoxicological methods to evaluategeneratedwaste in pilot production, in order to contribute to compliance the environmental regulations.Liquid wastes generated in the production of earthworm flour were determined and evaluated under the following biological indicators: inhibition of seed germination, root growth in Lactuca sativa, acute toxicity in Eisenia foetida to determine the environmental toxicity of the production process. As result, the major environmental contamination that occurs during the process of obtaining meal worm (Eisenia foetida is given in the cleaning process, sacrifice, washing and milling. The waste characterization allowed determining that they are domestic water and process water. The use of ecotoxicological bioassays described, that the sacrificialwater inhibit germination and root elongation, and they are classified as slightly toxic thewash waters cause sublethal effects.

  13. Branch technical position on the use of expert elicitation in the high-level radioactive waste program

    Energy Technology Data Exchange (ETDEWEB)

    Kotra, J.P.; Lee, M.P.; Eisenberg, N.A. [Nuclear Regulatory Commission, Washington, DC (United States); DeWispelare, A.R. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1996-11-01

    Should the site be found suitable, DOE will apply to the US Nuclear Regulatory Commission for permission to construct and then operate a proposed geologic repository for the disposal of spent nuclear fuel and other high-level radioactive waste at Yucca Mountain. In deciding whether to grant or deny DOE`s license application for a geologic repository, NRC will closely examine the facts and expert judgment set forth in any potential DOE license application. NRC expects that subjective judgments of individual experts and, in some cases, groups of experts, will be used by DOE to interpret data obtained during site characterization and to address the many technical issues and inherent uncertainties associated with predicting the performance of a repository system for thousands of years. NRC has traditionally accepted, for review, expert judgment to evaluate and interpret the factual bases of license applications and is expected to give appropriate consideration to the judgments of DOE`s experts regarding the geologic repository. Such consideration, however, envisions DOE using expert judgments to complement and supplement other sources of scientific and technical information, such as data collection, analyses, and experimentation. In this document, the NRC staff has set forth technical positions that: (1) provide general guidelines on those circumstances that may warrant the use of a formal process for obtaining the judgments of more than one expert (i.e., expert elicitation); and (2) describe acceptable procedures for conducting expert elicitation when formally elicited judgments are used to support a demonstration of compliance with NRC`s geologic disposal regulation, currently set forth in 10 CFR Part 60. 76 refs.

  14. HAZARDOUS Waste Technical Assistance Survey, MacDill Air Force Base, Florida

    Science.gov (United States)

    1990-04-01

    battery acid into a container and adding calcium bicarbonate ( baking soda ). To determine neutralization, the pH is tested with Litmus paper. The...and i I I _ Supplies j 1 I _ FIRE I Extinguisher I I i PROTECTION I I I I _ I Funnels in I I J Containers I__ I__ Containers I I Closed j _ 1 1 STORAGE...5 Suggested Listing of Wastestreams 27 Figure 1 AF Form 2005 3 2 DD Form 1348-1 3 3 Waste Storage Area for Maintenance 7 4 Fire Training Fuel Storage

  15. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  16. Coolside waste management research. Quarterly technical progress report, October 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Objective was to produce sufficient information on physical and chemical nature of Coolside waste (Coolside No.1, 3 at Edgewater power plant) to design and construct stable, environmentally safe landfills. Progress during this period was centered on analytical method development, elemental and mineralogical analysis of samples, and field facilities preparation to receive lysimeter fill. Sample preparation techniques for thick target PIXE/PIGE were investigated; good agreement between measured and actual values for standard fly ash were obtained for all elements except Fe, Ba, K (PIXE).

  17. Analysis of human factors effects on the safety of transporting radioactive waste materials: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Abkowitz, M.D.; Abkowitz, S.B.; Lepofsky, M.

    1989-04-01

    This report examines the extent of human factors effects on the safety of transporting radioactive waste materials. It is seen principally as a scoping effort, to establish whether there is a need for DOE to undertake a more formal approach to studying human factors in radioactive waste transport, and if so, logical directions for that program to follow. Human factors effects are evaluated on driving and loading/transfer operations only. Particular emphasis is placed on the driving function, examining the relationship between human error and safety as it relates to the impairment of driver performance. Although multi-modal in focus, the widespread availability of data and previous literature on truck operations resulted in a primary study focus on the trucking mode from the standpoint of policy development. In addition to the analysis of human factors accident statistics, the report provides relevant background material on several policies that have been instituted or are under consideration, directed at improving human reliability in the transport sector. On the basis of reported findings, preliminary policy areas are identified. 71 refs., 26 figs., 5 tabs.

  18. Coolside waste management research. Quarterly technical report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report consists of 3 monthly progress reports. The first represents a summary of results from mineralogical studies of the field lysimeter samples. This part of the project is an ongoing task to understand the long term mineralogical reactions that occur in the lysimeters as a function of static loading (compaction) and moisture content. The data is congruent with results obtained from geotechnical characterization of pre-aged and non-aged Coolside samples with and without surcharge. The investigations are expected to aid in the understanding of the processes that control permeability and leaching potential of the materials and to produce sufficient information on the physical and chemical nature of Coolside waste to design and construct physically stable and environmentally safe landfills. The capacity of various FGD wastes to absorb CO{sub 2} has been recently investigated with the results summarized in the second monthly. The potential usage is for the removal of CO{sub 2} from multi-component gas streams, in particular, natural-gas streams. The third comprises results from ongoing geotechnical testing. The results are concurrent with mineralogical findings that suggest that ettringite, gypsum and calcium-alumino-silicate hydrate phases proceed to form within the aging materials. In specimens with higher degrees of static loading, minerals are forced to grow within available pore space and fractures, which causes less swell. This report also summarizes results from a study of the effects of Coolside leachate on natural clay liners.

  19. Summary technical report on the electrochemical treatment of alkaline nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1994-07-30

    This report summarizes the laboratory studies investigating the electrolytic treatment of alkaline solutions carried out under the direction of the Savannah River Technology Center from 1985-1992. Electrolytic treatment has been demonstrated at the laboratory scale to be feasible for the destruction of nitrate and nitrite and the removal of radioactive species such as {sup 99}Tc and {sup 106}Ru from Savannah River Site (SRS) decontaminated salt solution and other alkaline wastes. The reaction rate and current efficiency for the removal of these species are dependent on cell configuration, electrode material, nature of electrode surface, waste composition, current density, and temperature. Nitrogen, ammonia, and nitrous oxide have been identified as the nitrogen-containing reaction products from the electrochemical reduction of nitrate and nitrite under alkaline conditions. The reaction mechanism for the reduction is very complex. Voltammetric studies indicated that the electrode reactions involve surface phenomena and are not necessarily mass transfer controlled. In an undivided cell, results suggest an electrocatalytic role for oxygen via the generation of the superoxide anion. In general, more efficient reduction of nitrite and nitrate occurs at cathode materials with higher overpotentials for hydrogen evolution. Nitrate and nitrite destruction has also been demonstrated in engineering-scale flow reactors. In flow reactors, the nitrate/nitrite destruction efficiency is improved with an increase in the current density, temperature, and when the cell is operated in a divided cell configuration. Nafion{reg_sign} cation exchange membranes have exhibited good stability and consistent performance as separators in the divided-cell tests. The membranes were also shown to be unaffected by radiation at doses approximating four years of cell operation in treating decontaminated salt solution.

  20. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Ruth F.; Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Rechard, Robert Paul; Perry, Frank (Los Alamos National Laboratory, Los Alamos, NM); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Nutt, Mark (Argonne National Laboratory, Argonne, IL); Cotton, Tom (Complex Systems Group, Washington DC)

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  1. Feasible way of Human Solid and Liquid Wastes' Inclusion Into Intersystem Mass Exchange of Biological-Technical Life Support Systems

    Science.gov (United States)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Kudenko, Yurii; Griboskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The basic objective arising at use of mineralized human solid and liquid wastes serving as the source of mineral elements for plants cultivation in biological-technical life support systems appears to be NaCl presence in them. The given work is aimed at feasibility study of mineralized human metabolites' utilization for nutrient solutions' preparation for their further employment at a long-term cultivation of uneven-aged wheat and Salicornia europaea L. cenosis in a conveyer regime. Human solid and liquid wastes were mineralized by the "wet incineration" method developed by Yu. Kudenko. On their base the solutions were prepared which were used for cultivation of 5-aged wheat conveyer with the time step-interval of 14 days. Wheat was cultivated by hydroponics method on expanded clay aggregate. For partial demineralization of nutrient solution every two weeks after regular wheat harvesting 12 L of solution was withdrawn from the wheat irrigation tank and used for Salicornia europaea cultivation by the water culture method in a conveyer regime. The Salicornia europaea conveyer was represented by 2 ages with the time step-interval of 14 days. Resulting from repeating withdrawal of the solution used for wheat cultivation, sodium concentration in the wheat irrigation solution did not exceed 400 mg/l, and mineral elements contained in the taken solution were used for Salicornia europaea cultivation. The experiment lasted 7 months. Total wheat biomass productivity averaged 30.1 g*m-2*day-1 at harvest index equal to 36.8The work was carried out under support of SB RAS grant 132 and INTAS 05-1000008-8010

  2. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  3. Technical Progress Report on Single Pass Flow Through Tests of Ceramic Waste Forms for Plutonium Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Roberts, S; Bourcier, W

    2000-12-01

    This report updates work on measurements of the dissolution rates of single-phase and multi-phase ceramic waste forms in flow-through reactors at Lawrence Livermore National Laboratory. Previous results were reported in Bourcier (1999). Two types of tests are in progress: (1) tests of baseline pyrochlore-based multiphase ceramics; and (2) tests of single-phase pyrochlore, zirconolite, and brannerite (the three phases that will contain most of the actinides). Tests of the multi-phase material are all being run at 25 C. The single-phase tests are being run at 25, 50, and 75 C. All tests are being performed at ambient pressure. The as-made bulk compositions of the ceramics are given in Table 1. The single pass flow-through test procedure [Knauss, 1986 No.140] allows the powdered ceramic to react with pH buffer solutions traveling upward vertically through the powder. Gentle rocking during the course of the experiment keeps the powder suspended and avoids clumping, and allows the system to behave as a continuously stirred reactor. For each test, a cell is loaded with approximately one gram of the appropriate size fraction of powdered ceramic and reacted with a buffer solution of the desired pH. The buffer solution compositions are given in Table 2. All the ceramics tested were cold pressed and sintered at 1350 C in air, except brannerite, which was sintered at 1350 C in a CO/CO{sub 2} gas mixture. They were then crushed, sieved, rinsed repeatedly in alcohol and distilled water, and the desired particle size fraction collected for the single pass flow-through tests (SPFT). The surface area of the ceramics measured by BET ranged from 0.1-0.35 m{sup 2}/g. The measured surface area values, average particle size, and sample weights for each ceramic test are given in the Appendices.

  4. Incorporation of gypsum waste in ceramic block production: Proposal for a minimal battery of tests to evaluate technical and environmental viability of this recycling process.

    Science.gov (United States)

    Godinho-Castro, Alcione P; Testolin, Renan C; Janke, Leandro; Corrêa, Albertina X R; Radetski, Claudemir M

    2012-01-01

    Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC(20%)=69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC(50%) level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool

  5. Some technical and legal problems relating to the storage of high-level radioactive waste and the use of nuclear power sources on space satellites

    Energy Technology Data Exchange (ETDEWEB)

    Herkommer, E.; Wollenschlaeger, M.

    1985-04-01

    A brief survey is presented summarizing the main characteristics of radioactive wastes and the various waste management strategies. Subsequently, the technical and legal problems encountered with the final disposal of high-level radioactive waste and with the use of nuclear power sources on space satellites are reviewed. It is shown that both in terms of technology and law, a sound basis is already available upon which the problem of HAW disposal in space can be tackled. On the legal level, however, existing norms and regulations need to be supplemented and improved by more concrete provisions, and this task should be started now. An international agreement concerning HAW management in space is said to be indispensable.

  6. Technical Basis for the Determination that Current Characterization Data and Processes are Sufficient to Ensure Safe Storage and to Design Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    SIMPSON, B.C.

    1999-08-12

    This document presents the technical basis for closure of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 93-5 Implementation Plan milestone 5.6.3.13, ''Core sample all tanks by 2002'' (DOE-RL 1996). The milestone was based on the need for characterization data to ensure safe storage of the waste, to operate the tanks safely, and to plan and implement retrieval and processing of the waste. Sufficient tank characterization data have been obtained to ensure that existing controls are adequate for safe storage of the waste in the 177 waste tanks at the Hanford Site. In addition, a process has been developed, executed, and institutionalized to systemically identify information needs, to integrate and prioritize the needs, and to reliably obtain and analyze the associated samples. This document provides a technical case that the remaining 45 incompletely sampled tanks no longer require sampling to support the intent of the Implementation Plan milestone. Sufficient data have been obtained to close the Unreviewed Safety Questions (USQs), and to ensure that existing hazard controls are adequate and appropriately applied. However, in the future, additional characterization of tanks at the site will be required to support identified information needs. Closure of this milestone allows sampling and analytical data to be obtained in a manner that is consistent with the integrated priority process.

  7. A Technical and Practical Study of Composting as a Solid Waste Management Alternative for the Air Force

    Science.gov (United States)

    1992-09-01

    programs- With yard waste comprising approximately 20 percent of the municipal solid waste stream, composting can be an effective means to reduce... Composting Material ................ 38 8. Windrow Shapes and the Effect on Moisture Content .......... 39 9. Genexic Compost Site Layout...General Issue Composting is a nationally recognized method to safely and effectively convert organic waste into useful materials such as mulch and soil

  8. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.

    1992-08-01

    The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in Illinois are mixed with coal slurry solids (CSS) from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids.

  9. Technical evaluation of a tank-connected food waste disposer system for biogas production and nutrient recovery.

    Science.gov (United States)

    Davidsson, Å; Bernstad Saraiva, A; Magnusson, N; Bissmont, M

    2017-07-01

    In this study, a tank-connected food waste disposer system with the objective to optimise biogas production and nutrient recovery from food waste in Malmö was evaluated. The project investigated the source-separation ratio of food waste through waste composition analyses, determined the potential biogas production in ground food waste, analysed the organic matter content and the limiting components in ground food waste and analysed outlet samples to calculate food waste losses from the separation tank. It can be concluded that the tank-connected food waste disposer system in Malmö can be used for energy recovery and optimisation of biogas production. The organic content of the collected waste is very high and contains a lot of energy rich fat and protein, and the methane potential is high. The results showed that approximately 38% of the food waste dry matter is collected in the tank. The remaining food waste is either found in residual waste (34% of the dry matter) or passes the tank and goes through the outlet to the sewer (28%). The relatively high dry matter content in the collected fraction (3-5% DM) indicates that the separation tank can thicken the waste substantially. The potential for nutrient recovery is rather limited considering the tank content. Only small fractions of the phosphorus (15%) and nitrogen (21%) are recyclable by the collected waste in the tank. The quality of the outlet indicates a satisfactory separation of particulate organic matter and fat. The organic content and nutrients, which are in dissolved form, cannot be retained in the tank and are rather led to the sewage via the outlet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form even though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.

  11. Task Technical and Quality Assurance Plan for Determining Uranium and Plutonium Solubility in Actual Tank Waste Supernates

    Energy Technology Data Exchange (ETDEWEB)

    King, William D.

    2005-06-28

    Savannah River Site tank waste supernates contain small quantities of dissolved uranium and plutonium. Due to the large volume of supernates, significant quantities of dissolved uranium and plutonium are managed as part of waste transfers, evaporation and pretreatment at the Savannah River Site in tank farm operations, the Actinide Removal Project (ARP), and the Salt Waste Processing Facility (SWPF). Previous SRNL studies have investigated the effect of temperature and major supernate components on the solubility of uranium and plutonium. Based on these studies, equations were developed for the prediction of U and Pu solubility in tank waste supernates. The majority of the previous tests were conducted with simulated waste solutions. The current testing is intended to determine solubility in actual tank waste samples (as-received, diluted, and combinations of tank samples) as a function of composition and temperature. Results will be used to validate and build on the existing solubility equations.

  12. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  13. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  14. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  15. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    Science.gov (United States)

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  16. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    Science.gov (United States)

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  17. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.

    Science.gov (United States)

    Townsend, Aaron K; Webber, Michael E

    2012-07-01

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Class 1 Permit Modification Notification Addition of Structures within Technical Area 54, Area G, Pad 11, Dome 375 Los Alamos National Laboratory Hazardous Waste Facility Permit, July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Lechel, Robert A. [Los Alamos National Laboratory

    2012-08-31

    The purpose of this letter is to notify the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit issued to the Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) in November 2010. The modification adds structures to the container storage unit at Technical Area (TA) 54 Area G, Pad 11. Permit Section 3.1(3) requires that changes to the location of a structure that does not manage hazardous waste shall be changed within the Permit as a Class 1 modification without prior approval in accordance with Code of Federal Regulations, Title 40 (40 CFR), {section}270.42(a)(1). Structures have been added within Dome 375 located at TA-54, Area G, Pad 11 that will be used in support of waste management operations within Dome 375 and the modular panel containment structure located within Dome 375, but will not be used as waste management structures. The Class 1 Permit Modification revises Figure 36 in Attachment N, Figures; and Figure G.12-1 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Descriptions of the structures have also been added to Section A.4.2.9 in Attachment A, TA - Unit Descriptions; and Section 2.0 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Full description of the permit modification and the necessary changes are included in Enclosure 1. The modification has been prepared in accordance with 40 CFR {section}270.42(a)(l). This package includes this letter and an enclosure containing a description of the permit modification, text edits of the Permit sections, and the revised figures (collectively LA-UR-12-22808). Accordingly, a signed certification page is also enclosed. Three hard copies and one electronic copy of this submittal will be delivered to the NMED-HWB.

  19. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 VERSION 2005.0 VOLUME 1

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2005-04-13

    The SWIFT Report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. This report is an annual update to the SWIFT 2004.1 report that was published in August 2004. The SWIFT Report is published in two volumes. SWIFT Volume II provides detailed analyses of the data, graphical representation, comparison to previous years, and waste generator specific information. The data contained in this report are the official data for solid waste forecasting. In this revision, the volume numbers have been switched to reflect the timing of their release. This particular volume provides the following data reports: (1) Summary volume data by DOE Office, company, and location; (2) Annual volume data by waste generator; (3) Annual waste specification record and physical waste form volume; (4) Radionuclide activities and dose-equivalent curies; and (5) Annual container type data by volume and count.

  20. Transformation of technical infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    1998-01-01

    article about the need of new planning forums in order to initiate transformations with in management of large technical systems for energy, waste and water supply.......article about the need of new planning forums in order to initiate transformations with in management of large technical systems for energy, waste and water supply....

  1. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  2. Evaluation of AFBC co-firing of coal and hospital wastes. Technical report, January 1989--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

  3. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Introductory part and summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan and comprises seven chapters. Chapter I briefly describes the importance of HLW management in promoting nuclear energy utilization. According to the long-term program, the HLW separated from spent fuels at reprocessing plants is to be vitrified and stored for a period of 30 to 50 years to allow cooling, then be disposed of in a deep geological formation. Chapter II mainly explains the concepts of geological disposal in Japan. Chapters III to V are devoted to discussions on three important technical elements (the geological environment of Japan, engineering technology and safety assessment of the geological disposal system) which are necessary for reliable realization of the geological disposal concept. Chapter VI demonstrates the technical ground for site selection and for setup of safety standards of the disposal. Chapter VII summarizes together with plans for future research and development. (Ohno, S.)

  4. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 14. Repository preconceptual design studies: basalt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in basalt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/15, ''Drawings for Repository Preconceptual Design Studies: Basalt.''

  5. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 12. Repository preconceptual design studies: shale

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in shale. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/13, ''Drawings for Repository Preconceptual Design Studies: Shale.''

  6. Radioactive waste storage: historical outlook and socio technical analysis; Le stockage des dechets radioactifs: perspective historique et analyse sociotechnique

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J.C.

    1993-07-01

    The radioactive waste storage remains, in most of the industrialized concerned countries, one extremely debated question. This problem may, if an acceptable socially answer is not found, to create obstacles to the whole nuclear path. This study aim was to analyze the controversy in an historical outlook. The large technological plans have always economical, political, sociological, psychological and so on aspects, that the experts may be inclined to neglect. ``Escape of radioactivity is unlikely, as long as surveillance of the waste is maintained, that is, as long as someone is present to check for leaks or corrosion or malfunctioning of and to take action, if any of these occur. 444 refs., 32 figs.

  7. UK: Technical data for waste incineration background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    UK: In life cycle assessment (LCA) the environmental impacts from a product are assessed throughout the entire life-cycle of the product, i.e. from the extraction of the raw materials from which the product is made through manufacture and use of the product to the final disposal of the product...... and possible recycling hereof. The assessment is based on an inventory of inputs and outputs (resource/material consumption and generation of energy and emissions) for all the processes that occur as part of the product life-cycle. A model is developed to estimate the inputs and outputs associated...... with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...

  8. Technical data for waste incineration - background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Erichsen, Hanne; Hauschild, Michael Zwicky

    In life cycle assessment (LCA) the environmental impacts from a product are assessed throughout the entire life-cycle of the product, i.e. from the extraction of the raw materials from which the product is made through manufacture and use of the product to the final disposal of the product...... and possible recycling hereof. The assessment is based on an inventory of inputs and outputs (resource/material consumption and generation of energy and emissions) for all the processes that occur as part of the product life-cycle. A model is developed to estimate the inputs and outputs associated...... with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...

  9. Waste management technologies for the next millenium. Technical conference; Mit MBA-Technik ins naechste Jahrtausend. Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Waste management on a federal and Laender level requires reorientation and new decisions in ever shorter intervals. In view of the fact that projecting phases are long and investment costs amount to tens of millions, communal decision-makers must constantly modify their current projects in order to optimise them. The papers in this conference report present theoretical information as well as practical experience in waste treatment plant operation. [German] Die abfallwirtschaftlichen Entwicklungen auf Bundes- und Landesebene erfordern in immer kuerzer werdenden Abstaenden neue Ueberlegungen und Weichenstellungen. Angesichts langer Planungszeitraeume und hoher Investitionskosten im zweistelligen Millionenbereich sind die Entscheidungstraeger auf kommunaler Ebene immer wieder gefordert auf Grundlage aktueller Erkenntnisse bisherige Planungen zu ueberdenken sowie anstehende Projekte zu modifizieren und zu optimieren. Die Vortraege in diesem Tagungsband weisen nicht nur theoretische Ansaetze auf, sondern beinhalten auch praktische Erfahrungen aus verschiedenen Abfallbehandlungsanlagen. (orig./SR)

  10. Summary report of first and foreign high-level waste repository concepts; Technical report, working draft 001

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, P.M.

    1987-11-04

    Reference repository concepts designs adopted by domestic and foreign waste disposal programs are reviewed. Designs fall into three basic categories: deep borehole from the surface; disposal in boreholes drilled from underground excavations; and disposal in horizontal tunnels or drifts. The repository concepts developed in Sweden, Switzerland, Finland, Canada, France, Japan, United Kingdom, Belgium, Italy, Holland, Denmark, West Germany and the United States are described. 140 refs., 315 figs., 19 tabs.

  11. Influence of waste managemental and technical planning parameters on plant costs; Einfluss abfallwirtschaftlicher und technischer Plannungsgroessen auf die Anlagenkosten

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, R. [Inst. fuer Umwelt, Sicherheits- und Energietechnik e.V., Oberhausen (Germany)

    1998-09-01

    The probable future costs of thermal waste treatment depend on a great number of influencing factors. One of the essential aims of the present contribution is to elaborate and present the sensitivity of costs to various parameters. [Deutsch] Die zukuenftig zu erwartenden Kosten der thermischen Abfallbehandlung haengen von einer Vielzahl von Einflussgroessen ab. Im Rahmen des Beitrags besteht daher ein wesentliches Ziel darin, die Sensitivitaet der Kosten hinsichtlich verschiedenster Parameter herauszuarbeiten und darzustellen. (orig./SR)

  12. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 3. Safety assessment for geological disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 3 of the progress report, concerns safety assessment for geological disposal systems definitely introduced in part 1 and 2 of this series and consists of 9 chapters. Chapter I concerns the methodology for safety assessment while Chapter II deals with diversity and uncertainty about the scenario, the adequate model and the required data of the systems above. Chapter III summarizes the components of the geological disposal system. Chapter IV refers to the relationship between radioactive wastes and human life through groundwater, i.e. nuclide migration. In Chapter V is made a reference case which characterizes the geological environmental data using artificial barrier specifications. (Ohno. S.)

  13. Risk assessment of the retrieval of transuranic waste: Pads 1, 2, and 4, Technical Area-54, Area G, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wilbert, K.A.; Lyon, B.F.; Hutchison, J.; Holmes, J.A.; Legg, J.L.; Simek, M.P.; Travis, C.C.; Wollert, D.A.

    1995-05-01

    The Risk Assessment for the Retrieval of Transuranic Waste is a comparative risk assessment of the potential adverse human health effects resulting from exposure to contaminants during retrieval and post-retrieval aboveground storage operations of post-1970 earthen-covered transuranic waste. Two alternatives are compared: (1) Immediate Retrieval and (2) Delayed Retrieval. Under the Immediate Retrieval Alternative, retrieval of the waste is assumed to begin immediately, Under the Delayed Retrieval Alternative, retrieval is delayed 10 years. The current risk assessment is on Pads 1, 2, and 4, at Technical Area-54, Area-G, Los Alamos National Laboratory (LANL). Risks are assessed independently for three scenarios: (1) incident-free retrieval operations, (2) incident-free storage operations, and (3) a drum failure analysis. The drum failure analysis evaluates container integrity under both alternatives and assesses the impacts of potential drum failures during retrieval operations. Risks associated with a series of drum failures are potentially severe for workers, off-site receptors, and general on-site employees if retrieval is delayed 10 years and administrative and engineering controls remain constant. Under the Delayed Retrieval Alternative, an average of 300 drums out of 16,647 are estimated to fail during retrieval operations due to general corrosion, while minimal drums are predicted to fail under the Immediate Retrieval Alternative. The results of the current study suggest that, based on risk, remediation of Pads 1, 2, and 4 at LANL should not be delayed. Although risks from incident-free operations in the Delayed Retrieval Alternative are low, risks due to corrosion and drum failures are potentially severe.

  14. Technical and environmental evaluation of an integrated scheme for the co-treatment of wastewater and domestic organic waste in small communities.

    Science.gov (United States)

    Lijó, Lucía; Malamis, Simos; González-García, Sara; Fatone, Francesco; Moreira, María Teresa; Katsou, Evina

    2017-02-01

    A technical and environmental evaluation of an innovative scheme for the co-treatment of domestic wastewater and domestic organic waste (DOW) was undertaken by coupling an upflow anaerobic sludge blanket (UASB), a sequencing batch reactor (SBR) and a fermentation reactor. Alternative treatment configurations were evaluated with different waste collection practices as well as various schemes for nitrogen and phosphorus removal. All treatment systems fulfilled the required quality of the treated effluent in terms of chemical oxygen demand (COD) and total suspended solids (TSS) concentrations. However, only the configurations performing the short-cut nitrification/denitrification with biological phosphorus removal met the specifications for water reuse. The environmental assessment included the analysis of impacts on climate change (CC), freshwater eutrophication (FE) and marine eutrophication (ME). A functional unit (FU) of 2000 people receiving treatment services was considered. The most relevant sources of environmental impacts were associated to the concentration of dissolved methane in the UASB effluent that is emitted to the atmosphere in the SBR process (accounting for 41% of impacts in CC), electricity consumption, mainly for aeration in the SBR (representing 14% of the impacts produced in CC), and the discharge of the treated effluent in receiving waters (contributing 98% and 57% of impacts in FE and ME, respectively). The scheme of separate waste collection together with biological nitrogen removal and phosphorus uptake via nitrite was identified as the best configuration, with good treated effluent quality and environmental impacts lower than those of the other examined configurations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Review of the geological and structural setting near the site of the proposed Transuranic Waste Facility (TRUWF) Technical Area 52 (TA-52), Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schultz-Fellenz, Emily S.; Gardner, Jamie N.

    2007-10-01

    Because of Los Alamos National Laboratory’s proximal location to active geologic structures, assessment of seismic hazards, including the potential for seismic surface rupture, must occur before construction of any facilities housing nuclear or other hazardous materials. A transuranic waste facility (TRUWF) planned for construction at Technical Area 52 (TA-52) provides the impetus for this report. Although no single seismic hazards field investigation has focused specifically on TA-52, numerous studies at technical areas surrounding TA-52 have shown no significant, laterally continuous faults exhibiting activity in the last 10 ka within 3,000 ft of the proposed facility. A site-specific field study at the footprint of the proposed TRUWF would not yield further high-precision data on possible Holocene faulting at the site because post-Bandelier Tuff sediments are lacking and the shallowest subunit contacts of the Bandelier Tuff are gradational. Given the distal location of the proposed TRUWF to any mapped structures with demonstrable Holocene displacement, surface rupture potential appears minimal at TA-52.

  16. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  17. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  18. Municipal solid waste to energy plants - the best technical options; Termovalorizzazione dei rifiuti solidi urbani - le scelte tecnologiche ottimali

    Energy Technology Data Exchange (ETDEWEB)

    Baldasella, P.; Brivio, S.; Carminati, A.; Cavallari, G

    2005-04-01

    After years of stagnation the municipal solid waste to energy plants is reaffirming as a valid disposal solution. The sell of the electric energy produced at an economically rewarding value and the last regulations on flue gas emissions have strongly influenced the technological development. The article proposes a plant scheme considered complete and optimal and in particular illustrates the options that inspired it and the related justifications. [Italian] Dopo anni di stasi la termovalorizzazione dei rifiuti solidi urbani si sta affermando come una valida soluzione di smaltimento. La vendita dell'energia elettrica prodotta ad un valore economicamente remunerativo e le ultime regolamentazioni sulle emissioni gassose hanno fortemente influenzato lo sviluppo tecnologico. L'articolo propone uno schema di impianto di termovalorizzazione ritenuto completo ed ottimale ed in particolare illustra le scelte che lo hanno ispirato e le relative giustificazioni.

  19. Environmental and technical evaluation of the management of municipal solid waste of Ouagadougou: diagrams of management and experimentation of incineration; Evaluation environnementale et technique de la gestion des dechets menagers de Ouagadougou: schemas de gestion et experimentation de traitement thermique

    Energy Technology Data Exchange (ETDEWEB)

    Tezanou, J.

    2003-05-15

    This work deals with the environmental and technical evaluation of the implementation of municipal waste management schemes for the city of Ouagadougou (Burkina Faso). The context is the one of a low income developing country with no pollution regulation and with a governmental will of decentralization of the waste management activity towards the city authorities with the participation of the private and associative sectors. A status of the existing system and of the characteristics of the municipal wastes is made first (grain size, calorific value, humidity). On the basis of the life cycle analysis (LCA) methodology, 4 management systems are proposed and analyzed: complete disposal, sorting and composting of the fermentescible part, sorting and incineration of the combustible part, and composting and incineration. An inventory analysis and a qualitative impact analysis of each of these systems is performed. An experiment of incineration of these wastes has been carried out from a mixture of wood, cardboard and plastics representative of the combustible fraction of the Ouagadougou municipal wastes. A counterflow fixed bed reactor has been used to analyze the influence of the air excess on the combustion process and on the abatement of pollutant emissions (NO and CO). Finally, a technical-economical analysis of the management systems is presented with respect to their socio-economical implementation possibilities. (J.S.)

  20. Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse.

    Science.gov (United States)

    Kasmi, Mariam; Hamdi, Moktar; Trabelsi, Ismail

    2017-01-01

    Residual fermented dairy products resulting from process defects or from expired shelf life products are considered as waste. Thus, dairies wastewater treatment plants (WWTP) suffer high input effluents polluting load. In this study, fermented residuals separation from the plant wastewater is proposed. In the aim to meet the municipal WWTP input limits, a pretreatment combining physical-chemical and biological processes was investigated to reduce residual fermented dairy products polluting effect. Yoghurt (Y) and fermented milk products (RL) were considered. Raw samples chemical oxygen demand (COD) values were assessed at 152 and 246 g.L-1 for Y and RL products, respectively. Following the thermal coagulation, maximum removal rates were recorded at 80 °C. Resulting whey stabilization contributed to the removal rates enhance to reach 72% and 87% for Y and RL samples; respectively. Residual whey sugar content was fermented using Candida strains. Bacterial growth and strains degrading potential were discussed. C. krusei strain achieved the most important removal rates of 78% and 85% with Y and RL medium, respectively. Global COD removal rates exceeded 93%.

  1. The evolution of the Italian EPR system for the management of household Waste Electrical and Electronic Equipment (WEEE). Technical and economic performance in the spotlight.

    Science.gov (United States)

    Favot, Marinella; Veit, Raphael; Massarutto, Antonio

    2016-10-01

    In this paper we analyse the Italian collective system for the management of household Waste Electrical and Electronic Equipment (WEEE), and its evolution over time, following the European Directives on WEEE, which include the Extended Producer Responsibility (EPR). The analysis focuses on the technical and economic performance of WEEE compliance organisations (consortia), as they are the key players in the Italian EPR regime. Economic results have not usually been provided in previous studies, due to the lack of available data. This study overcomes this problem by accessing the financial statements for the years 2009-2014 of all consortia. The main conclusions of the study are: The Italian EPR system barely exceeded the technical target of the first WEEE Directive (4kg per capita). Improvements are necessary to achieve the target set for 2019 by the Recast Directive. The economic performance of the Italian EPR regime improved significantly over time. The fees charged per tonne of WEEE collected decreased by almost 43% from 652 Euro per tonne in 2009 to 374 Euro per tonne in 2014, while the fees per tonne put on the market (POM) were 134 Euro in 2009 and 104 Euro in 2014. The results prove the theory which states that, competing consortia use the learning effects to reduce the contribution fees for producers rather than to increase the quantity collected. Municipalities remain the most important actor in WEEE collection operations. Consortia compensate municipalities with a reimbursement that ranges between 28 and 38 Euros per tonne collected. These repayments cover only partially their costs. Additional studies should investigate their role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2004 THRU FY2035 [VERSION 2004.1 VOL 2] [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2004-12-10

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources.

  3. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 2. Engineering technology for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the deep geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, part 2 of the progress report, concerns engineering aspect with reference to Japanese geological disposal plan, according to which the vitrified HLW will be disposed of into a deep, stable rock mass with thick containers and surrounding buffer materials at the depth of several hundred meters. It discusses on multi-barrier systems consisting of a series of engineered and natural barriers that will isolate radioactive nuclides effectively and retard their migrations to the biosphere environment. Performance of repository components, including specifications of containers for vitrified HLW and their overpacks under design as well as buffer material such as Japanese bentonite to be placed in between are described referring also to such possible problems as corrosion arising from the supposed system. It also presents plans and designs for underground disposal facilities, and the presumed management of the underground facilities. (Ohno, S.)

  4. Hazard urban wastes in Italy. Analysis of the technical and methodology opportunities; Rifiuti urbani pericolosi in Italia. Analisi delle problematiche e opportunita' tecnico metodologiche

    Energy Technology Data Exchange (ETDEWEB)

    Cafiero, F.

    2001-07-01

    In this report is illustrated the Life 99 ZERO/RUP project on the recovery of hazard urban wastes, to experiment the picking up and the recycling of the wastes, to develop more information for the waste-operators and citizens, and to archive important data on the typology, quantity and diffusion of the wastes in Italy. [Italian] Il presente rapporto scientifico illustra il progetto Life 99 ZERO/RUP sulla sperimentazione del recupero dei rifiuti pericolosi urbani, per sviluppare la conoscenza presso gli operatori e i cittadini di questi, e di raccogliere informazioni sulla tipologia, quantita' e diffusione degli stessi in Italia.

  5. A guide to the technical regulations which control the intermediate storage of small quantities of industrial wastes. Merkblatt. Technische Bestimmungen fuer Sonderabfall-Kleinmengen-Zwischenlaeger

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.; Heimbel, D.; Heinstein, B.; Hensel, H.D.; Karrach, S.; Kersting, R.; Lenz, I.; Schmal, H.J.; Schulz, W.; Seibel, R.; Stange, B.; Varescon, M.L.; Wandel, K.; Wehde, J.; Wobbe, L.

    1991-01-01

    Not always is the required care taken in disposing of residues of environmentally harzardous chemicals and products. This guide is to help prevent health hazards, accidents and fires arising from the handling and storage of such wastes, thereby making waste disposal safe and environmentally friendly. (BBR).

  6. The second iteration of the Systems Prioritization Method: A systems prioritization and decision-aiding tool for the Waste Isolation Pilot Plant: Volume 2, Summary of technical input and model implementation

    Energy Technology Data Exchange (ETDEWEB)

    Prindle, N.H.; Mendenhall, F.T.; Trauth, K.; Boak, D.M. [Sandia National Labs., Albuquerque, NM (United States); Beyeler, W. [Science Applications International Corp., Albuquerque, NM (United States); Hora, S. [Hawaii Univ., Hilo, HI (United States); Rudeen, D. [New Mexico Engineering Research Inst., Albuquerque, NM (United States)

    1996-05-01

    The Systems Prioritization Method (SPM) is a decision-aiding tool developed by Sandia National Laboratories (SNL). SPM provides an analytical basis for supporting programmatic decisions for the Waste Isolation Pilot Plant (WIPP) to meet selected portions of the applicable US EPA long-term performance regulations. The first iteration of SPM (SPM-1), the prototype for SPM< was completed in 1994. It served as a benchmark and a test bed for developing the tools needed for the second iteration of SPM (SPM-2). SPM-2, completed in 1995, is intended for programmatic decision making. This is Volume II of the three-volume final report of the second iteration of the SPM. It describes the technical input and model implementation for SPM-2, and presents the SPM-2 technical baseline and the activities, activity outcomes, outcome probabilities, and the input parameters for SPM-2 analysis.

  7. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2003-12-01

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  8. Hazardous Waste Treatment, Storage, and Disposal Facilities-Organic Air Emission Standards for Process Vents and Equipment Leaks - Technical Amendment - Federal Register Notice, April 26, 1991

    Science.gov (United States)

    This document corrects typographical errors in the regulatory text of the final standards that would limit organic air emissions as a class at hazardous waste treatment, storage, and disposal facilities (TSDF) that are subject to regulation under subtitle

  9. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    Science.gov (United States)

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. © The Author(s) 2014.

  10. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-06-25

    This Streamlined Approach for Environmental Restoration (SAFER) plan was prepared as a characterization and closure report for Corrective Action Unit (CAU) 357, Mud Pits and Waste Dump, in accordance with the Federal Facility Agreement and Consent Order. The CAU consists of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the Nevada Test Site (NTS). All of the CASs are found within Yucca Flat except CAS 25-15-01 (Waste Dump). Corrective Action Site 25-15-01 is found in Area 25 in Jackass Flat. Of the 14 CASs in CAU 357, 11 are mud pits, suspected mud pits, or mud processing-related sites, which are by-products of drilling activities in support of the underground nuclear weapons testing done on the NTS. Of the remaining CASs, one CAS is a waste dump, one CAS contains scattered lead bricks, and one CAS has a building associated with Project 31.2. All 14 of the CASs are inactive and abandoned. Clean closure with no further action of CAU 357 will be completed if no contaminants are detected above preliminary action levels. A closure report will be prepared and submitted to the Nevada Division of Environmental Protection for review and approval upon completion of the field activities. Record of Technical Change No. 1 is dated 3/2004.

  11. Realization of a technical and economic referential of units of organic waste processing by methanization with and without biogas valorization. Study report; Realisation d'un referentiel technique et economique d'unites de traitement de dechets organiques par methanisation avec et sans valorisation du biogaz. Rapport d'etude

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on a literature survey and on the analysis of results obtained in operating installations in different countries (Germany, Denmark, France, Netherlands, and Switzerland), this study concerns the methanization of different substrates: domestic wastes, sludge from sewage processing plants, industrial wastes and effluents, agricultural wastes and effluents. This synthetic report describes the current status of methanization in terms of regulatory framework (for renewable energies, and for waste management, digestion residues and compost valorization in Europe and in the studied countries), and in terms of actual production and variety of base products. It gives an overview of the available technical solutions, of the products they use, and of the associated investment costs. These techniques are: completely stirred tank reactor (SCTR), upflow anaerobic sludge blanket (UASB), internal circulation (IC), 'piston', batch, percolation, contact, fluidized bed, and anaerobic filter. It reports a synthesis of answers given to a questionnaire about technical and economic aspects

  12. Introduction to Waste Engineering

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management as introduced in Chapter 1.1 builds in many ways on engineering. Waste engineering here means the skills and ability to understand quantitatively how a waste management system works in such a detail that waste management can be planned, facilities can be designed and sited...... and systems can be operated in a way that is environmentally sound, technical feasible, economically efficient and socially acceptable. This applies to all scales of relevance: (1) national surveys of energy use and material flows determining the frame for politically setting goals in waste management, (2......) regional plans for waste management, including (3) the selection of main management technologies and siting of facilities, (4) the design of individual technological units and, for example, (5) the operation of recycling schemes within a municipality. This chapter gives an introduction to waste engineering...

  13. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  14. Open absorption heat pump for waste heat utilization in the forest industry. A study of technical and economic potential; Oeppen absorptionsvaermepump foer uppgradering av spillvaerme fraan skogsindustrin. Studie av teknisk och ekonomisk potential

    Energy Technology Data Exchange (ETDEWEB)

    Westermark, Mats; Vidlund, Anna

    2006-02-15

    steam (for use in pulp and paper plants) is technically more advanced. The high temperature level demands absorption liquids with high boiling point elevation (sodium hydroxide) and driving steam at 25 bar. The example studied uses waste heat at 50 deg C for production of low pressure steam at 1.2 bar, i.e. slightly above atmospheric pressure. Such low pressure steam can be used for steam injection in paper machines or upgraded to process steam of higher pressure by steam compression.

  15. Technical guide management of waste materials with radioactive contents in biological research centers; Guia tecnica de gestion de materiales residuales con contenido radiactivo en centro de investigacion biologica

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. T.; Pulido, J.; Sastre, G.; Sanchez, A.; Usera, F.

    2013-07-01

    The guide presented offers significant improvements in the management procedures of waste materials with radioactive contents, in addition to unifying modes of action on radioactive facilities for research and teaching. The guide has been developed within the activities of the SEPR in collaboration with ENRESA. (Author)

  16. Open-cycle heat pumps for industrial waste-heat utilization. Project technical report, May 12, 1980-October 10, 1980. Phase I. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Open-Cycle Industrial Process Heat Pumps (IPHP) are potentially a cost-effective method of utilizing an industrial plant's waste heat. The objective of Phase I of the work was to determine the feasibility of an open-cycle industrial process heat pump. This was accomplished by the evaluation of four potential sites for the installation of open-cycle industrial process heat pump equipment. While it was the original plan to evaluate only three sites, the need for a fourth site became apparent upon completion of studies of the Amstar applications. On the basis of initial screening, it was decided to concentrate on the large waste stream at General Electric's NORYL facility (Selkirk, NY) and a smaller waste stream at the Schoeller Paper Company (Pulaski, NY). These two sites provided opportunities to exploit the features of the open-cyle IPHP without major site constraints. Site studies were conducted to obtain process information such as flow rates, process temperatures, dynamic behavior of the process streams, process control functions, and capacity/time schedules. Information relating to structure and utilities, floor loadings, physical space constraints, electric service, piping runs between equipment location, and waste water tapping points was gathered. These data were analyzed and resulted in the selection of two applications with acceptable thermodynamic performance.

  17. Fleet servicing facilities for servicing, maintaining, and testing rail and truck radioactive waste transport systems: functional requirements, technical design concepts and options cost estimates and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C.D.; Hudson, B.J.; Keith, D.A.; Preston, M.K. Jr.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-05-01

    This is a resource document which examines feasibility design concepts and feasibility studies of a Fleet Servicing Facility (FSF). Such a facility is intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the United States' waste handling plants presently receiving radioactive wastes have an on-site FSF, nor is there an existing third party facility providing these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the system is placed into service. Thus, a need is indicated for FSF's, or their equivalent, at various radioactive materials receiving sites. In this report, three forms of FSF's solely for spent fuel transport systems were examined: independent, integrated, and colocated. The independent concept was already the subject of a detailed report and is extensively referenced in this document so that capital cost comparisons of the three concepts could be made. These facilities probably could service high-level, intermediate-level, low-level, or other waste transportation systems with minor modification, but this study did not include any system other than spent fuel. Both the Integrated and Colocated concepts were assumed to be associated with some radioactive materials handling facility such as an AFR repository.

  18. Multi-function Waste Tank Facility path forward engineering analysis -- Technical Task 3.6, Estimate of operational risk in 200 West Area

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A.

    1995-04-28

    Project W-0236A has been proposed to provide additional waste tank storage in the 200 East and 200 West Areas. This project would construct two new waste tanks in the 200 West Area and four new tanks in the 200 East Area, and a related project (Project W-058) would construct a new cross-site line. These projects are intended to ensure sufficient space and flexibility for continued tank farm operations, including tank waste remediation and management of unforeseen contingencies. The objective of this operational risk assessment is to support determination of the adequacy of the free-volume capacity provided by Projects W-036A and W-058 and to determine related impacts. The scope of the assessment is the 200 West Area only and covers the time period from the present to the year 2005. Two different time periods were analyzed because the new cross-site tie line will not be available until 1999. The following are key insights: success of 200 West Area tank farm operations is highly correlated to the success of the cross-site transfer line and the ability of the 200 East Area to receive waste from 200 West; there is a high likelihood of a leak on a complexed single-shell tank in the next 4 years (sampling pending); there is a strong likelihood, in the next 4 years, that some combination of tank leaks, facility upsets, and cross-site line failure will require more free tank space than is currently available in Tank 241-SY-102; in the next 4 to 10 years, there is a strong likelihood that a combination of a cross-site line failure and the need to accommodate some unscheduled waste volume will require more free tank space than is presently available in Tank 241-SY-102; the inherent uncertainty in volume projections is in the range of 3 million gallons; new million-gallon tanks increase the ability to manage contingencies and unplanned events.

  19. Technical studying on design and manufacturing of the container for low level radioactive solid waste from the KRR 1 and 2 decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kook; Chung, Un Soo; Yang, Sung Hong; Lee, Dong Gyu; Jung Ki Jung

    2000-12-01

    The design requirement and manufacturing criteria have been proposed on the container for the package, storage and transportation of low level radioactive solid waste from decommissioning of KRR 1 and 2. The structure analysis was carried out based on the design criteria, and the safety of the container was assessed. The container with its capacity of 4m{sup 3} was selected for the radioactive solid waste storage. The proposed container was satisfied the criteria of ISO 1496/1 and the packaging standard of Atomic Energy Act. Manufacturing and testing standards of IAEA were also applied to the container. Stress distribution and deformation were analyzed under given condition using ANSYS code, and the maximum stress was verified to be within the yield stress without any structural deformation. From the results of lifting tests which were lifting from the four top corner fittings and fork-lift pockets, it was verified that this container was safe.

  20. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  1. 10 CFR 61.13 - Technical analyses.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Technical analyses. 61.13 Section 61.13 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.13 Technical analyses. The specific technical information must also include the following analyses...

  2. Mixed waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.B.; Kirner, N.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  3. U.S. Geological survey program on toxic waste--ground-water contamination; proceedings of the Second technical meeting, Cape Cod, Massachusetts, October 21-25, 1985

    Science.gov (United States)

    Ragone, S.E.

    1988-01-01

    This study characterizes the clay minerals in sediments associated with a plume of creosote-contaminated groundwater. The plume of contaminated groundwater near Pensacola, FL, is in shallow, permeable, Miocene to Holocene quartz sand and flows southward toward Pensacola Bay. Clay-size fractions were separated from 41 cores, chiefly split-spoon samples at 13 drill sites. The most striking feature of the chemical analyses of the clay fractions from uncontaminated site 2 and contaminated sites 4,5,6, and 7 is the variability of iron oxide (species in some samples as Fe2O3); total iron oxide abundance is lowest (2.5%) in uncontaminated sample 2-40, but is > 4.5% (4.5 to 8.5%) in the remaining assemblages. One feature suggesting interaction between the indigenous clays and the waste plume is the presence of nontronite-rich smectite. Nontronite commonly has been identified as the product of hydrothermal alteration and deep-sea weathering of submarine basalts; it is not a common constituent of Cenozoic Gulf Coast sediments. At the Pensacola site, relatively abundant nontronitic smectite is confined to contaminated sands or associated muds; it is least abundant or absent in sands and muds peripheral to the waste plume. The geochemistry of the waste plume, its substantial dissolved, (chiefly ferrous iron), mildly acidic (pH 5-6), and low redox composition, provides an environment similar to that previously determined for the low-temperature synthesis of nontronite. Data from clay-size fractions confirm conclusions that neoformed pyrite in some grain coatings occurs in an assemblage with excess iron over that required in the pyrite. Continuing studies to evaluate these tentative conclusions include: (1) chemical analysis of clay fractions from remaining sites to further examine the apparent relation between iron content and abundance of nontronitic smectite; (2) clay separation and analysis, and pore fluid extraction (squeezing or ultracentrifugation) and analysis from a

  4. Monitoring of organic loads at waste water treatment plant with due consideration of factual necessity, technical feasibility and statutory requirements; Erfassung der organischen Belastung bei Abwasserreinigungsanlagen unter Beachtung der fachlichen Notwendigkeit, der technischen Moeglichkeiten und der gesetzlichen Auflagen

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft

    1999-07-01

    Between the statutory requirement and factual necessity for monitoring organic loads in waste water discharged to municipal and industrial waste water treatment plant and effluents from these there are substantial discrepancies. The paper points out the different approaches and gives recommendations on how to proceed in the future. At plant with stable nitrification, self and external monitoring for BOD{sub 5} can be distinctly reduced without fear of impaired process transparency or water quality. Monitoring organic loads online is little expedient technically, especially where effluent from municipal sewage treatment plants is concerned. But in the industrial sector there exist the most diverse applications with a view to carbon elimination. (orig.) [German] Zwischen den gesetzlichen Anforderungen und der fachlichen Notwendigkeit bei der Erfassung der organischen Belastung im Zu- und Ablauf von kommunalen und industriellen Klaeranlagen bestehen erhebliche Diskrepanzen. In diesem Beitrag werden die unterschiedlichen Ansaetze aufgezeigt und Empfehlungen fuer die zukuenftige Vorgehensweise gegeben. Bei Anlagen mit stabiler Nitrifikation ist die Selbst- wie Fremdueberwachung bezueglich BSB{sub 5} deutlich zu reduzieren, ohne dass Einbussen fuer Prozesstransparenz und Gewaesserqualitaet zu erwarten sind. Die online-Ueberwachung der organischen Belastung ist insbesondere bei Ablaeufen in kommunalen Klaeranlagen fachlich wenig sinnvoll, im Bereich der industriellen Abwasserreinigung ergeben sich dafuer bei dem Reinigungsziel der Kohlenstoffelimination dagegen verschiedenste Anwendungsmoeglichkeiten. (orig.)

  5. High Temperature Air/Steam Gasification (HTAG). Technical report no. 2: High Temperature Air/Steam Gasification of biomass and wastes - Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, W.; Kalisz, S.; Szewczyk, D.; Lucas, C.; Abeyweera, R. [Royal Inst. of Technology, Stockholm (Sweden). Dep of Materials Science and Engineering

    2005-02-01

    This report aims to provide information on activity of Division of Energy and Furnace Technology, Royal Inst. of Technology in the field of solid biomass conversion into fuel gas within year 2003. Contrary to the conventional gasification, in this work highly preheated air and steam is used as a gasifying agent and supplied to newly designed continuous gasifier. Preheating of air and steam is realised by means of the modern high-cycle regenerative Air/steam preheater. Maximum temperature of preheated air or steam is raised up to 1600 deg C. In this work the laboratory test facility called High Temperature Air/steam Gasification (HTAG) plant with flow rate of preheated air or steam up to 110 Nm{sup 3}/h is used. Use of highly preheated gasifying media provides additional energy into the gasification, which enhances the thermal decomposition of solids being gasified. Together with continuous operation mode of the new gasifier, a stable process producing relatively clean fuel gas is reported. High Temperature Air/steam Gasification has very clear economical and environmental benefits. It will increase consumption of biomass (like wood pellets) thus decreases CO{sub 2} emissions from energy intensive industries. Apart from CO{sub 2} reduction possibility, the new process, High Temperature Gasification of wastes, fulfils all new regulations proposed by European Commission on wastes incineration since: no landfilling of ash residues is required, no need to treat ashes from gasification since there is no ash produced but slag which is non leachable and can be used as building material, clean gas for combustion and production of heat or electricity. In this work only gasification of wood pellets is reported but all efforts are targeted on later continuous gasification of other kinds of biomass and wastes.

  6. Transformation of technical infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    , the evolution of large technological systems and theories about organisational and technological transformationprocesses. The empirical work consist of three analysis at three different levels: socio-technical descriptions of each sector, an envestigation of one municipality and envestigations of one workshop......The scope of the project is to investigate the possibillities of - and the barriers for a transformation of technical infrastructure conserning energy, water and waste. It focus on urban ecology as a transformation strategy. The theoretical background of the project is theories about infrastructure...

  7. TWRS privatization process technical baseline

    Energy Technology Data Exchange (ETDEWEB)

    Orme, R.M.

    1996-09-13

    The U.S. Department of Energy (DOE) is planning a two-phased program for the remediation of Hanford tank waste. Phase 1 is a pilot program to demonstrate the procurement of treatment services. The volume of waste treated during the Phase 1 is a small percentage of the tank waste. During Phase 2, DOE intends to procure treatment services for the balance of the waste. The TWRS Privatization Process Technical Baseline (PPTB) provides a summary level flowsheet/mass balance of tank waste treatment operations which is consistent with the tank inventory information, waste feed staging studies, and privatization guidelines currently available. The PPTB will be revised periodically as privatized processing concepts are crystallized.

  8. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3 -- Appendix B: Technical findings and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. Sections B1.1 through B1.4 present an overview of the environmental setting of WAG 5, including location, population, land uses, ecology, and climate, and Sects. B1.5 through B1.7 give site-specific details (e.g., topography, soils, geology, and hydrology). The remediation investigation (RI) of WAG 5 did not entail en exhaustive characterization of all physical attributes of the site; the information presented here focuses on those most relevant to the development and verification of the WAG 5 conceptual model. Most of the information presented in this appendix was derived from the RI field investigation, which was designed to complement the existing data base from earlier, site-specific studies of Solid Waste Storage Area (SWSA) 5 and related areas.

  9. Hanford Site Secondary Waste Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  10. Technical-environmental optimisation of the activated carbon production of an agroindustrial waste by means response surface and life cycle assessment.

    Science.gov (United States)

    Sepúlveda-Cervantes, Cynthia V; Soto-Regalado, Eduardo; Rivas-García, Pasiano; Loredo-Cancino, Margarita; Cerino-Córdova, Felipe dJ; García Reyes, Refugio B

    2017-11-01

    In this study, a simultaneous optimisation of technical and environmental parameters for activated carbon production from soybean shells is presented. A 23 factorial design was developed to explore the performance of the technical responses yield and iodine number, and the single score of ReCiPe endpoint method, which was evaluated by means the life cycle assessment. The independent factors included in the design of experiments were the impregnation ratio, temperature, and time activation. Three quadratic equations were obtained and simultaneously optimised by maximisation of the overall desirability function. The principal results of the individual responses indicate that the iodine number is practically independent of the activation temperature in a range of 450 ºC-650 ºC; the yield is inversely proportional to activation time and exhibits minimum values between 500 ºC-600 ºC; and the environmental response single score presents the lowest value at a temperature and time activation of 450 ºC and 30 min, respectively. The most polluting stage of activated carbon production from soybean shells production is the impregnation stage, mainly for the use of ZnCl2 as activating agent and the energy consumption. The simultaneous optimisation of the three responses indicates that the optimal activated carbon should be produced at 180 min, 650 ºC, and an impregnation ratio of 1 g soybean shell g ZnCl2-1.

  11. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ``WAG 5``). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5.

  12. ZeroWaste

    DEFF Research Database (Denmark)

    Goltermann, Per; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2014-01-01

    The ZeroWaste research group at the Department of Civil Engineering at the Technical University of Denmark (DTU Byg) was established two years ago and covers the broad range of expertise, required for turning waste materials into attractive, new materials. Members of the group have, prior to that......, developed methods for removal of heavy metals and phosphorous from waste incineration, sewage sludge and other bio ashes, providing the basis of to make these ash types an attractive, new material for the building sector. Initial results for upgrading and using different types of ashes are presented...

  13. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  14. Disposal of NORM waste in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  15. 10 CFR 61.56 - Waste characteristics.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  16. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  17. Electronic waste recycling techniques

    CERN Document Server

    Bernardes, Andréa

    2015-01-01

    This book presents an overview of the characterization of electronic waste. In addition, processing techniques for the recovery of metals, polymers and ceramics are described. This book serves as a source of information and as an educational technical reference for practicing scientists and engineers, as well as for students.

  18. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  19. DOE FG02-03ER63557: Final Technical Report: Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn L. Nagy

    2009-05-04

    The purpose of the project was to investigate rates and mechanisms of reactions between primary sediment minerals and key components of waste tank solutions that leaked into the subsurface at the Hanford Site. Results were expected to enhance understanding of processes that cause (1) changes in porosity and permeability of the sediment and resultant changes in flow paths of the contaminant plumes, (2) formation of secondary precipitates that can take up contaminants in their structures, and (3) release of mineral components that can drive redox reactions affecting dissolved contaminant mobility. Measured rates can also be used directly in reactive transport models. Project tasks included (1) measurement of the dissolution rates of biotite mica from low to high pH and over a range of temperature relevant to the Hanford subsurface, (2) measurement of dissolution rates of quartz at high pH and in the presence of dissolved alumina, (3) measurement of the dissolution rates of plagioclase feldspar in high pH, high nitrate, high Al-bearing solutions characteristic of the BX tank farms, (4) incorporation of perrhenate in iron-oxide minerals as a function of pH, and (5) initiation of experiments to measure the formation of uranium(VI)-silicate phases under ambient conditions. Task 2 was started under a previous grant from the Environmental Management Science Program and Task 4 was partially supported by a grant to the PI from the Geosciences Program, Office of Basic Energy Sciences. Task 5 was continued under a subsequent grant from the Environmental Remediation Sciences Program, Office of Biological and Environmental Research.

  20. The technical standard IBAMA (NT01/11) and its applications in waste water treatment in offshore platforms; A NT/ 01/11 do IBAMA e suas aplicacoes no tratamento de efluentes nas plataformas offshore

    Energy Technology Data Exchange (ETDEWEB)

    Paravidino, Thadeu Crespo; Miocque, Andre; Oliveira, Cristiane Lopes de [Vicel Comercio e Industria e Servico Ltda., Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This paper aims to present the technical standard IBAMA (NT01/11) as it applies to wastewater treatment projects in maritime exploration and production of oil and gas, and the solutions proposed by the company VICEL to meet with this standard and the other existing laws in force in Brazil. To meet these objectives, the paper covers the following topics: environmental legislation applicable to maritime enterprises of exploration and production of oil and gas operating in Brazil: concepts and definitions of MARPOL and CONAMA Resolution 357 (amended by CONAMA 430), Law 9966/2000 and NT01/11; PCP - Pollution Control Project required by IBAMA; the solutions proposed by VICEL - Gray Water Policy Management and Treatment System (GWTS). Throughout its development, this paper presents in detail the analysis of the gray water effluents generated on board of a drilling rig, and the results obtained with the installation of a prototype system for treating gray water (GWTS). Finally, this paper demonstrates that IBAMA NT01/11 regulation is intended to guide and create means for monitoring all maritime enterprises of exploration and production of oil and gas operating in Brazil, in order to promote the reduction of the pollution caused by their operation (ecological footprint), concludes as compulsory the treatment for the gray water generated on board, and presents VICEL solutions for the implementation of a waste management policy and the installation of a Gray Water Treatment System (GWTS). (author)

  1. Waste minimization handbook, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  2. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  3. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source...

  4. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  5. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  6. Hazardous Waste

    Science.gov (United States)

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  7. Independent technical review, handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction, and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.

  8. INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

    2011-05-31

    The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

  9. Estudo da viabilidade técnico-científica da produção de biodiesel a partir de resíduos gordurosos Evaluate the waste fatty acid by scientific and technical study to obtain biodiesel

    Directory of Open Access Journals (Sweden)

    António André Chivanga Barros

    2008-09-01

    Full Text Available Os resíduos gordurosos provenientes de caixas de gordura foram avaliados como substrato para obtenção de biodiesel, em escala laboratorial. Os resíduos foram desemulsificados, purificados e submetidos à reação química de transesterificação com catálise alcalina e esterificação com catálise ácida para a obtenção de ésteres etílicos. O produto obtido foi purificado por adsorção em coluna de sílica, e caracterizado por cromatografia gasosa com sistema de detecção de massa. Os percentuais de conversão da gordura em ésteres etílicos foram calculados com o fechamento dos balanços de massa do processo. Os produtos obtidos foram purificados com o uso de processos secundários de forma a viabilizar sua utilização como bicombustível e insumo para diversos processos industriais, respectivamente.Waste fatty acid, from fatty boxes was evaluated as feedstock to obtain biodiesel in a laboratory scale. The residues were desemulsified, purified and used to obtain ethyl esters, through the transesterification with alkaline catalysis and esterification with acid catalysis reactions. The product was purified by adsorption in column of silica, and characterized by GLC with mass detector. Using this methodology the fatty residues was converted in the ethyl esters showed the scientific e technical validation of this propose. The conversion of fatty acids in ethylic esters was calculated by mass balances processes same for the highs degradation of the residue evaluates. To purify the biodiesel and glycerol obtained was necessary secondary processes to increase the qualities of this full and to use the glycerin in many industrial processes.

  10. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  11. Technical Network

    CERN Multimedia

    2007-01-01

    In order to optimise the management of the Technical Network (TN), to facilitate understanding of the purpose of devices connected to the TN and to improve security incident handling, the Technical Network Administrators and the CNIC WG have asked IT/CS to verify the "description" and "tag" fields of devices connected to the TN. Therefore, persons responsible for systems connected to the TN will receive e-mails from IT/CS asking them to add the corresponding information in the network database at "network-cern-ch". Thank you very much for your cooperation. The Technical Network Administrators & the CNIC WG

  12. Technical Network

    CERN Multimedia

    2007-01-01

    In order to optimize the management of the Technical Network (TN), to ease the understanding and purpose of devices connected to the TN, and to improve security incident handling, the Technical Network Administrators and the CNIC WG have asked IT/CS to verify the "description" and "tag" fields of devices connected to the TN. Therefore, persons responsible for systems connected to the TN will receive email notifications from IT/CS asking them to add the corresponding information in the network database. Thank you very much for your cooperation. The Technical Network Administrators & the CNIC WG

  13. Imagining Technicities

    DEFF Research Database (Denmark)

    Liboriussen, Bjarke; Plesner, Ursula

    2011-01-01

    to the elements of taste and skill. In the final analysis those references were synthesized as five imagined technicities: the architect, the engineer, the client, the Chinese, and the Virtual World native. Because technicities are often assumed and rarely discussed as actants who influence practice, their role......, this article focuses on innovative uses of virtual worlds in architecture. We interviewed architects, industrial designers and other practitioners. Conceptually supported by an understanding of technicity found in Cultural Studies, the interviews were then coded with a focus on interviewees’ references...

  14. Radioactive waste management / NORM wastes; Gerenciamento de residuos / rejeitos NORM

    Energy Technology Data Exchange (ETDEWEB)

    Schenato, Flavia; Ruperti Junior, Nerbe Jose Ruperti

    2016-07-01

    The chapter 8 presents the waste management of the mineral industries as the main problem pointed out by the inspections, due to the the inadequate deposition with consequences to the human populations and the environment. The concepts about the criteria of exemption and the related legislation are also presented. Several different technical solutions for de NORM waste deposition are mentioned. Finally, the reutilization and recycling of NORM are covered.

  15. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC

  16. Integrated study for automobile wastes management and ...

    African Journals Online (AJOL)

    Administrator

    Despite the overwhelming advantages of mechanic villages, their heavy metal pollution of soil due to poor waste management is ... Key words: Soil contamination, storm water treatment, emission testing, EPR, heavy metals. INTRODUCTION ...... system; Civil and Environmental Engineering Texas Technical. University.

  17. Tanks Focus Area FY98 midyear technical review

    Energy Technology Data Exchange (ETDEWEB)

    Schlahta, S.N.; Brouns, T.M.

    1998-06-01

    The Tanks Focus Area (TFA) serves as the DOE`s Office of Environmental Management`s national technology and solution development program for radioactive waste tank remediation. Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. In total, 17 technologies and technical solutions were selected for review. The purpose of each review was to understand the state of development of each technology selected for review and to identify issues to be resolved before the technology or technical solution progressed to the next level of maturity. The reviewers provided detailed technical and programmatic recommendations and comments. The disposition of these recommendations and comments and their impact on the program is documented in this report.

  18. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  19. Corrective action investigation plan for Corrective Action Unit 143: Area 25 contaminated waste dumps, Nevada Test Site, Nevada, Revision 1 (with Record of Technical Change No. 1 and 2)

    Energy Technology Data Exchange (ETDEWEB)

    USDOE Nevada Operations Office (DOE/NV)

    1999-06-28

    This plan contains the US Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate correction action alternatives appropriate for the closure of Corrective Action Unit (CAU) 143 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 143 consists of two waste dumps used for the disposal of solid radioactive wastes. Contaminated Waste Dump No.1 (CAS 25-23-09) was used for wastes generated at the Reactor Maintenance Assembly and Disassembly (R-MAD) Facility and Contaminated Waste Dump No.2 (CAS 25-23-03) was used for wastes generated at the Engine Maintenance Assembly and Disassembly (E-MAD) Facility. Both the R-MAD and E-MAD facilities are located in Area 25 of the Nevada Test Site. Based on site history, radionuclides are the primary constituent of concern and are located in these disposal areas; vertical and lateral migration of the radionuclides is unlikely; and if migration has occurred it will be limited to the soil beneath the Contaminated Waste Disposal Dumps. The proposed investigation will involve a combination of Cone Penetrometer Testing within and near the solid waste disposal dumps, field analysis for radionuclides and volatile organic compounds, as well as sample collection from the waste dumps and surrounding areas for off-site chemical, radiological, and geotechnical analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  20. Tank waste remediation system mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Acree, C.D.

    1998-01-09

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

  1. Development and testing of evaluation methods for data acquired to adapt the Waste Water Ordinance (AbwasserVwV) to the technical developments in treatment and avoidance measures. Final report; Entwicklung und Ueberpruefung von Auswerteverfahren wasserrechtlicher Vollzugsdaten zur Anpassung der AbwasserVwV`en an die technische Entwicklung von Behandlungs- und Vermeidungsmassnahmen. T. 1: UDIS-Handbuch fuer Abwasserspezialisten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sterger, O.; Luedtke, T. [comps.

    1997-03-10

    This volume is part of the final report on project NO. 102 06 2212 `Development and testing of evaluation methods for data acquired to adapt the Waste Water Ordinance (AbwasserVwV) to the technical develoments in treatment and avoidance measures`. It contains the information required for practical implementation of UDIS and addresses especially the waste water experts of the German federal and state governments. [Deutsch] Dieser Band des Abschlussberichts zum Vorhaben 102 06 221 `Entwicklung und Ueberpruefung von Auswerteverfahren wasserrechtlicher Vollzugsdaten zur Anpassung der AbwasserVwV`en an die technische Entwicklung von Behandlungs- und Vermeidungsmassnahmen` umfasst die zur praktischen Anwendung von UDIS erforderlichen Anleitungen und Informationen und richtet sich vor allem an den Abwasserfachmann auf der Ebene des Bundes oder der Laender. (orig.)

  2. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  3. Operational Waste Stream Assumption for TSLCC Estimates

    Energy Technology Data Exchange (ETDEWEB)

    S. Gillespie

    2000-09-01

    This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS M&O 2000a), and AP-3.11Q, ''Technical Reports''.

  4. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  5. Pyrolysis Processing of Waste Peanuts Crisps

    Directory of Open Access Journals (Sweden)

    Grycová Barbora

    2015-12-01

    Full Text Available Wastes are the most frequent "by-product" of human society. The Czech Republic still has a considerable room for energy reduction and material intensiveness of production in connection with the application of scientific and technical expertise in the context of innovation cycles. Pyrolysis waste treatment is a promising alternative to the production of renewable hydrogen as a clean fuel. It can also reduce the environmental burden and the amount of waste in the environment at the same time.

  6. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  7. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    2010-01-01

    Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...

  8. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    2010-01-01

    Operational Experience Since the closure of the detector in February, the technical operation of CMS has been quite smooth and reliable. Some minor interventions in UXC were required to cure failures of power supplies, fans, readout boards and rack cooling connections, but all these failures were repaired in scheduled technical stops or parasitically during access dedicated to fixing LHC technical problems. The only occasion when CMS had to request an access between fills was to search for the source of an alarm from the leak-detection cables mounted in the DT racks. After a few minutes of diagnostic search, a leaking air-purge was found. Replacement was complete within 2 hours. This incident demonstrated once more the value of these leak detection cables; the system will be further extended (during the end of year technical stop) to cover more racks in UXC and the floor beneath the detector. The magnet has also been operating reliably and reacted correctly to the 14s power cut on 29 May (see below). In or...

  9. Technical Training: Technical Training Seminar

    CERN Multimedia

    2004-01-01

    TECHNICAL TRAINING Monique Duval tel. 74924 technical.training@cern.ch Monday 9 February 2004 From 10:00 to 12:00 - IT Auditorium - bldg. 31, 3rd floor ANSOFT High-Frequency Seminar David Prestaux, Application Engineer, ANSOFT F-78535 BUC, France This Technical Training seminar will present two Ansoft application products: Ansoft HFSS and Ansoft Designer. Ansoft HFSS makes use of the Finite Element Method (FEM) to calculate field solutions from first principles. It can accurately predict all high-frequency behaviours such as dispersion, mode conversion, and losses due to materials and radiation. Ansoft Designer is a suite of design tools to fully integrate high-frequency, physics-based electromagnetic simulations into a seamless system-level simulation environment. Ansoft Designer uses a simple interface to give complete control over every design task, by a method allowing multiple solvers, Solver on Demand. • Introduction • Overview of the Ansoft Total solution • Ansoft HFSS 9...

  10. Food waste

    OpenAIRE

    Arazim, Lukáš

    2015-01-01

    This thesis looks into issues related to food waste and consists of a theoretical and a practical part. Theoretical part aims to provide clear and complex definition of wood waste related problems, summarize current findings in Czech and foreign sources. Introduction chapter explains important terms and legal measures related to this topic. It is followed by description of causes, implications and possibilities in food waste reduction. Main goal of practical part is analyzing food waste in Cz...

  11. Automotive Wastes.

    Science.gov (United States)

    Guigard, Selma E; Shariaty, Pooya; Niknaddaf, Saeid; Lashaki, Masoud Jahandar; Atkinson, John D; Hashisho, Zaher

    2015-10-01

    A review of the literature from 2014 related to automotive wastes is presented. Topics include solid wastes from autobodies and tires as well as vehicle emissions to soil and air as a result of the use of conventional and alternative fuels. Potential toxicological and health risks related to automotive wastes are also discussed.

  12. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  13. Contributions to the DGMK technical meeting `Energy and products from wastes and renewable resources`. Manuscripts; Beitraege zur DGMK-Fachbereichstagung ``Energetische und stoffliche Nutzung von Abfaellen und nachwachsenden Rohstoffen``. Autorenmanuskripte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Described are several methods of energetic use of wastes (mainly plastic wastes) and biomass, as well as the recycling of plastic wastes. Processes described here are: NOELL conversion process, Thermoselect, PyroMelt process, Siemens carbonization combustion process, as well as several methods of gasification, pyrolysis, combustion, co-combustion. (SR) [Deutsch] In diesem Tagungsband werden verschiedene Moeglichkeiten der Energiegewinnung aus Abfaellen (hauptsaechlich Kunststoffen) und Biomasse, sowie das Recycling von Kunststoffabfaellen dargestellt. Es wir d auf folgende Verfahren eingegangen: NOELL-Konversionsverfahren, Thermoselect, PyroMelt-Verfahren, Siemens Schwel-Brenn-Verfahren, sowie verschiedene Methoden der Vergasung, Pyrolyse, Verbrennung, Mitverbrennung. (SR)

  14. Agricultural Waste.

    Science.gov (United States)

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014.

  15. Waste to energy – key element for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  16. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package

  17. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package

  18. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  19. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball and W. Zeuner

    2011-01-01

    In this report we will review the main achievements of the Technical Stop and the progress of several centrally-managed projects to support CMS operation and maintenance and prepare the way for upgrades. Overview of the extended Technical Stop  The principal objectives of the extended Technical Stop affecting the detector itself were the installation of the TOTEM T1 telescopes on both ends, the readjustment of the alignment link-disk in YE-2, the replacement of the light-guide sleeves for all PMs of both HFs, and some repairs on TOTEM T2 and CASTOR. The most significant tasks were, however, concentrated on the supporting infrastructure. A detailed line-by-line leak search was performed in the C6F14 cooling system of the Tracker, followed by the installation of variable-frequency drives on the pump motors of the SS1 and SS2 tracker cooling plants to reduce pressure transients during start-up. In the electrical system, larger harmonic filters were installed in ...

  20. Tank Farms Technical Safety Requirements [VOL 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  1. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    Energy Technology Data Exchange (ETDEWEB)

    Channell, J.K.; Walker, B.A.

    2000-05-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.

  2. Transuranic waste characterization sampling and analysis plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Los Alamos National Laboratory (the Laboratory) is located approximately 25 miles northwest of Santa Fe, New Mexico, situated on the Pajarito Plateau. Technical Area 54 (TA-54), one of the Laboratory`s many technical areas, is a radioactive and hazardous waste management and disposal area located within the Laboratory`s boundaries. The purpose of this transuranic waste characterization, sampling, and analysis plan (CSAP) is to provide a methodology for identifying, characterizing, and sampling approximately 25,000 containers of transuranic waste stored at Pads 1, 2, and 4, Dome 48, and the Fiberglass Reinforced Plywood Box Dome at TA-54, Area G, of the Laboratory. Transuranic waste currently stored at Area G was generated primarily from research and development activities, processing and recovery operations, and decontamination and decommissioning projects. This document was created to facilitate compliance with several regulatory requirements and program drivers that are relevant to waste management at the Laboratory, including concerns of the New Mexico Environment Department.

  3. Technical Training: Technical Training Seminar

    CERN Multimedia

    2004-01-01

    Tuesday 30 March TECHNICAL TRAINING SEMINAR From 9:00 to 12:00 and from 13:00 to 16:00 hrs - Council Chamber, Salle B, Salle des Pas Perdus National Instruments (NI) on Tour 2004 Claudia Jüngel, Evrem Yarkin, Joel Clerc, Hervé Baour / NATIONAL INSTRUMENTS The special event NI on Tour 2004, run in Germany, Austria and Switzerland, will be at CERN on March 30. Technical seminars and free introductory courses will be offered all day long in the Council Chamber, Salle B, and Salle des Pas Perdus (buildings 61 and 503). Technical conferences: 09:00 - 12:00 Data acquisition systems on PCs. Industrial measurement and control techniques. 13:00 - 16:00 Advanced LabVIEW software and PXI instrumentation. Measuring instruments and system components for teststand automation. Introductory courses: 09:00 - 12:00 DIAdem: Data analysis and presentation 13:00 - 16:00 Data acquisition with LabVIEW Language: English and French Free special seminar. Registration is recommended with National Instruments Switzerland (please sp...

  4. Technical Training: Technical Training Seminar

    CERN Multimedia

    2004-01-01

    Tuesday 30 March TECHNICAL TRAINING SEMINAR From 9:00 to 12:00 and from 13:00 to 16:00 hrs - Council Chamber, Salle B, Salle des Pas Perdus National Instruments (NI) on Tour 2004 Claudia Jüngel, Evrem Yarkin, Joel Clerc, Hervé Baour / NATIONAL INSTRUMENTS The special event NI on Tour 2004, run in Germany, Austria and Switzerland, will be at CERN on March 30. Technical seminars and free introductory courses will be offered all day long in the Council Chamber, Salle B, and Salle des Pas Perdus (buildings 61 and 503). Technical conferences: 09:00 - 12:00 Data acquisition systems on PCs. Industrial measurement and control techniques. 13:00 - 16:00 Advanced LabVIEW software and PXI instrumentation. Measuring instruments and system components for teststand automation. Introductory courses: 09:00 - 12:00 DIAdem: Data analysis and presentation 13:00 - 16:00 Data acquisition with LabVIEW Language: English and French Free special seminar. Registration is recommended with National Instruments Swi...

  5. Glass fabrication and analysis literature review and method selection for WTP waste feed qualification

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) safety basis, technical basis, and design by assuring waste acceptance requirements are met for each staged waste feed Campaign prior to transfer from the Hanford Tank Farm to the WTP.

  6. Technical factors in the site selection for a radioactive wastes storage of low and intermediate level;Factores tecnicos en la seleccion del sitio para un almacen de desechos radioactivos de bajo y medio nivel

    Energy Technology Data Exchange (ETDEWEB)

    Badillo A, V. E.; Ramirez S, J. R.; Palacios H, J. C., E-mail: veronica.badillo@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-10-15

    The storage on surface or near surface it is viable for wastes of low and intermediate level which contain radio nuclides of short half life that would decay at insignificant levels of radioactivity in some decades and also radio nuclides of long half life but in very low concentrations. The sites selection, for the construction of radioactive waste storages, that present an appropriate stability at long term, a foreseeable behavior to future and a capacity to fulfill other operational requirements, is one of the great tasks that confront the waste disposal agencies. In the selection of potential sites for the construction of a radioactive wastes storage of low and intermediate level, several basic judgments should be satisfied that concern to physiography, climatology, geologic, geo-hydrology, tectonic and seismic aspects; as well as factors like the population density, socioeconomic develops and existent infrastructure. the necessary technician-scientific investigations for the selection of a site for the construction of radioactive waste storages are presented in this work and they are compared with the pre-selection factors realized in specify areas in previous studies in different regions of the Mexican Republic. (Author)

  7. DEVELOPMENT OF SCIENTIFIC BASES OF TECHNOLOGY FOR FOOD WASTE UTILIZATION BY ANAEROBIC DIGESTION

    Directory of Open Access Journals (Sweden)

    S. Yu. Panov

    2013-01-01

    Full Text Available Performed scientific work is directed on creation of technological bases of collection and recycling of waste in place waste generation using the method of anaerobic digestion and receiving socio-economic, ecological and agro-technical effect.

  8. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...

  9. Waste indicators

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Lassen, C.; Hansen, E. [Cowi A/S, Lyngby (Denmark)

    2003-07-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  10. Swedish nuclear waste efforts

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  11. Agricultural uses of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Pile, R.S.; Behrends, L.L.; Burns, E.R.; Maddox, J.J.; Madewell, C.E.; Mays, D.A.; Meriwether, J.

    1977-11-16

    A major concern of the Tennessee Valley Authority is to ensure efficient use of Tennessee Valley resources in achieving optimum economic development without degrading the environment. As part of this effort, TVA is exploring many uses for waste heat. Activities to develop ways to use waste heat in agricultural production are described. Primary objectives are to: (1) identify potential agricultural uses of waste heat, (2) develop and test technologies and management criteria for more productive uses, (3) demonstrate technologies in commercial-scale production facilities, and (4) provide technical assistance for commercial application. Waste heat research and development projects under investigation or being planned by TVA independently or cooperatively include: (1) controlled environment greenhouses, (2) biological ecycling of nutrients from livestock manures, (3) soil heating and irrigation, and (4) environmental control for livestock housing. (MHR)

  12. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  13. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball and W. Zeuner

    2013-01-01

    For the reporting period, the CMS common systems and infrastructure worked well, without failures that caused significant data losses. One more disconnection of the magnet cold box occurred in the shadow of interruptions in data taking, caused by a series of technical faults. The recognition during 2012 that re-connection can only safely be done at around 2 T implies a minimum magnet recovery time of 12 hours and raises serious concerns about the number of ramping cycles of the magnet these incidents cause. This has triggered studies of how to make the cryo-system of the magnet more robust against failures. The proton-proton run ended just before the end-of-year CERN closure, during which CASTOR was installed on the negative end of CMS and both ZDC calorimeters were installed in TAN absorbers the LHC tunnel, in preparation for the heavy-ion run. The installation of CASTOR was an excellent “engineering test” of procedures for working in an activated environment. Despite some technical pr...

  14. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball and W. Zeuner

    2011-01-01

      Operational experience 2011 CMS is approaching the end of a very successful year of operation. Proton- proton running ended in the late afternoon of 30th October with a stunning 5.73 fb–1 delivered by LHC, of which CMS recorded 5.22 fb–1. During heavy-ion operation, which continues until 7th December, both the accelerator and the CMS detector have also performed very well. Despite the encouraging overall reliability of technical operation, several infrastructure failures which occurred since the last Bulletin are worthy of mention, with one leading for the first time to significant data-loss. On 10th July, a CERN-wide power failure brought down essentially all services including the magnet, due to an MCS setting being left in “manual” after the recent technical stop, but there was no significant damage and the detector was operational before the LHC, despite a slow and tortuous recovery (one of several indications this year that there is room for improve...

  15. TECHNICAL COORDINATION

    CERN Multimedia

    Austin Ball

    Summary of progress since last CMS week. Ten years of construction work have been completed. CMS is closed, in very close to the ideal low luminosity configuration, and performed well in the first tests with LHC beam. Behind this encouraging news is the story of a summer of intense commitment by many teams (from the collaboration and 3 CERN departments) working together, against the clock and despite many minor setbacks, to ensure that the experiment was ready to play a leading role in the excitement of September 10. Following beampipe bakeout and refill with pure neon, a magnificent effort by the ECAL group and the pt 5 technical crew made it possible to install and commission all 4 ECAL endcap Dees before the end of August. In the shadow of this activity, the barrel and forward pixel trackers and part of the beam monitoring were installed within the vac tank. The pt 5 technical teams then succeeded in safely removing the 20t installation tables and their support blocks from beneath the already installed ...

  16. Renewable Energy Production from DoD Installation Solid Wastes By Anaerobic Digestion

    Science.gov (United States)

    2016-08-06

    methane. The technical objectives of this demonstration/validation project included:  Demonstrate anaerobic digestion of food waste and FOG at a DoD...to estimate the QAC concentration in Mitchell Hall food wastes. Nevertheless, the QAC concentration in Mitchell Hall food waste was conservatively ...DRIVERS Non- technical cost drivers included installation population, local costs of food waste disposal alternatives (e.g., landfilling or composting

  17. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-04-19

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  18. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  19. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  20. Technical presentation

    CERN Multimedia

    FP Department

    2009-01-01

    07 April 2009 Technical presentation by Leuze Electronics: 14.00 – 15.00, Main Building, Room 61-1-017 (Room A) Photoelectric sensors, data identification and transmission systems, image processing systems. We at Leuze Electronics are "the sensor people": we have been specialising in optoelectronic sensors and safety technology for accident prevention for over 40 years. Our dedicated staff are all highly customer oriented. Customers of Leuze Electronics can always rely on one thing – on us! •\tFounded in 1963 •\t740 employees •\t115 MEUR turnover •\t20 subsidiaries •\t3 production facilities in southern Germany Product groups: •\tPhotoelectric sensors •\tIdentification and measurements •\tSafety devices

  1. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball and W. Zeuner

    2010-01-01

    Overview Once again, the bulk of this article reviews the intense activity of a recently completed shutdown, which, although quite unforeseeable until a few weeks before it started, proved by its success that our often advertised capability to conduct major maintenance within a two month period is real. Although safely completed, on-time to remarkable precision, the activity was not without incident, and highlighted our dependence on many experienced, specialist teams and their precise choreography. Even after the yoke was safely closed, magnet re-commissioning and beampipe pumpdown showed new and thought-provoking behaviour. The struggle to maintain adequate technical resources will be a pre-occupation over the coming months, in parallel with the start of truly sustained operation, for which various procedures are still being put in place. Planning for future shutdowns must now become a high priority, with many working groups and task forces already in existence to prepare infrastructure improvements and to...

  2. Technical presentation

    CERN Multimedia

    FI Department

    2008-01-01

    RADIOSPARES, the leading catalogue distributor of components (electronic, electrical, automation, etc.) and industrial supplies will be at CERN on Friday 3 October 2008 (Main Building, Room B, from 9.00 a.m. to 3.00 p.m.) to introduce its new 2008/2009 catalogue. This will be the opportunity for us to present our complete range of products in more detail: 400 000 part numbers available on our web site (Radiospares France, RS International, extended range of components from other manufacturers); our new services: quotations, search for products not included in the catalogue, SBP products (Small Batch Production: packaging in quantities adapted to customers’ requirements); partnership with our focus manufacturers; demonstration of the on-line purchasing tool implemented on our web site in conjunction with CERN. RADIOSPARES will be accompanied by representatives of FLUKE and TYCO ELECTRONICS, who will make presentations, demonstrate materials and answer any technical questio...

  3. Technical presentation

    CERN Multimedia

    GS Department

    2010-01-01

    10 March 2010 DYNEOS 10:00 – 12:00 - Main Building, Room B, 61-1-009 Dyneos AG is active in the fields of photonics, laser and high-precision positioning. Our highly qualified engineer team has more than 30 years of experience in electro-optical solutions sales. The engineers are supported by a technical and administrative team. We are focused on the Swiss market and represent six suppliers (Coherent, PI Physik Instrumente, SIOS, Nanonics Imaging, APE, Ekspla) in order to give a qualified sales and service support to our customers. Our products are dedicated to the research field as well as to industry. In addition to standard catalog products, we offer custom designs to fulfill the specific needs of OEM customers or specific applications.

  4. Technical Training: Technical Training Seminar

    CERN Multimedia

    2004-01-01

    TECHNICAL TRAINING Monique Duval tel. 74924 technical.training@cern.ch Tuesday 3 February 2004 From 09:00 to 13:30 - Training Centre Auditorium - bldg. 593, room 11 USB (Universal Serial Bus) CYPRESS Seminar Claudia Colombini, Field Application Engineer CYPRESS ActiveComp Electronic GmbH D-85077 MANCHING, Germany As a pioneer in USB, CYPRESS sets the standard for cost-effective solutions without sacrificing functionality, performance or reliability. Having shipped over 200 million USB devices, Cypress is the undisputed market leader and demonstrates unmatched USB expertise. With the industry's broadest selection of USB solutions, Cypress has the right silicon, software and support for every USB application, from Low-speed to High-Speed and USB On-The-Go (OTG). 9:00 - 10:30 Overview of USB systems. USB CYPRESS product overview. Peripherals: Low Speed, Full Speed, High Speed (1.1 and 2.0). Hub Solutions, Embedded Host Solutions, On-The-Go (OTG) and wireless USB. USB Development Tools (first part) 10:30 -...

  5. Technical Support for Contaminated Sites | Science Inventory ...

    Science.gov (United States)

    In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled ORD to provide effective technical assistance by ensuring ORD scientists and engineers were accessible to the Agency’s Office and Regional decision makers, including Remedial Project Managers, On-Scene Coordinators, and corrective action staff. Five ORD Technical Support Centers (TSCs) were created to facilitate this technical assistance. Three of the five TSCs are supported by the Sustainable and Healthy Communities Research Program, and are summarized in the poster being presented:• Engineering Technical Support Center (ETSC) in Cincinnati, Ohio• Ground Water Technical Support Center (GWTSC) in Ada, Oklahoma• Site Characterization and Monitoring Technical Support Center (SCMTSC) in Atlanta, GeorgiaOver the past 29 years, the Technical Support Centers have provided numerous influential products to its internal Agency clients and to those at the State level (through the EPA Regions). These products include, but are not limited to the following: Annual TSC reports from the three Centers, a hard-rock mining conference every other year, PRO-UCL software development for site characterization statistics, groundwater modeling using state-of-the-art modeling software, numerical mo

  6. BIOSYNTHESIS OF SURFACTANTS ON INDUSTRIAL WASTE

    Directory of Open Access Journals (Sweden)

    Pirog T. P.

    2014-10-01

    Full Text Available The literature and own experimental data on the synthesis of microbial surfactants of different chemical nature (rhamnolipids, sophorolipids, manozylerythritollipids, lipopeptides at various waste (vegetable oil and fat, sugar, dairy industry, agriculture, forestry, biodiesel, as well as waste — fried vegetable oils are presented. Most suitable substrates for the synthesis of microbial surfactants are oil containing waste that, unlike, for example, lignocellulose, whey, technical glycerol do not require pre-treatment and purification. Replacing traditional substrates for the biosynthesis of surfactant with industrial waste will help to reduce the cost of technology by several times, dispose of unwanted waste, solve the problem of storage or disposal of large amounts of waste from the food industry, agricultural sector and companies that produce biodiesel, which spent large amount of energy and money for such needs

  7. Technical progress report for the quarter 1 October-31 December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This report describes the technical accomplishments on the commercial nuclear waste management programs and on the geologic disposal of nuclear wastes. The program is organized into eight tasks: systems, waste package, site, repository, regulatory and institutional, test facilities and excavations, land acquisition, and program management. (DLC)

  8. Waste tire recycling by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  9. Waste tire recycling by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  10. TECHNICAL COORDINATION

    CERN Multimedia

    Austin Ball

    2013-01-01

      Since the last report, much visible progress has been made, as the LS1 programme approaches the halfway point. From early October, technical and safety shift-crew have been present around the clock, allowing detectors to stay switched on overnight, ensuring that safety systems are operational and instructions for non-expert shift-crew are clear. LS1 progress Throughout the summer, whilst the solenoid vacuum tank and YB0 surfaces were accessible, an extensive installation programme took place to prepare for Tracker colder operation and the PLT installation, in 2014, the Phase 1 Pixel Tracker installation, in 2016–’17, and the HCAL Phase 1 upgrade completion, ending in LS2. This included pipework for N2 or dry air to flush the Tracker bulkhead region, many sensors to monitor temperature and dew point in the Tracker and its service channels, heating wires outside the Tracker cooling bundles, supports for the new vacuum-jacketed, concentric, CO2 Pixel cooling lines, the PLT cool...

  11. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball and W. Zeuner

    2012-01-01

      UXC + detectors As explained in detail in the November 2011 bulletin, the bellows unit at −18.5 m from the CMS interaction point was identified as a prime candidate for the regularly occurring pressure spikes which occasionally led to sustained severe background conditions in 2011, affecting dead time and data quality. Similar regions in LHC with vacuum instabilities were observed to be close to bellows, which radiography showed to have distorted RF-fingers — on removal, they proved to have been severely overheated. The plans for the Year-End Technical Stop were adapted to prioritise radiography of the bellows at 16 m to 18 m either end of CMS. Excellent work by the beam pipe, survey and heavy mechanical teams allowed the X-rays to be taken as planned on 20th December, showing that the bellow at −18.5m had an obvious non-conformity. The RF-fingers were found inside the end of the opposing flared pipe instead of outside. In addition, the overlap between fingers and...

  12. Toward integrated design of waste management technologies

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, S.A.; Wolfe, A.K.

    1993-11-01

    What technical, economic and institutional factors make radioactive and/or hazardous waste management technologies publicly acceptable? The goal of this paper is to initiate an identification of factors likely to render radioactive and hazardous waste management technologies publicly acceptable and to provide guidance on how technological R&D might be revised to enhance the acceptability of alternative waste management technologies. Technology development must attend to the full range of technology characteristics (technical, engineering, physical, economic, health, environmental, and socio-institutional) relevant to diverse stakeholders. ORNL`s efforts in recent years illustrate some attempts to accomplish these objectives or, at least, to build bridges toward the integrated design of waste management technologies.

  13. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  14. Low-level waste forum meeting reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This paper provides highlights from the spring meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: state and compact reports; New York`s challenge to the constitutionality of the Low-Level Radioactive Waste Amendments Act of 1985; DOE technical assistance for 1993; interregional import/export agreements; Department of Transportation requirements; superfund liability; nonfuel bearing components; NRC residual radioactivity criteria.

  15. Engineered barriers for radioactive waste confinement

    OpenAIRE

    Fernández, R

    2011-01-01

    Nuclear power plants generate long-lived radioactive waste of high toxicity. The security assessment of repositories destined to definitive confinement of radioactive waste has been studied for several decades. Deep geological repositories are technically feasible and begin to be built by some pioneer countries. The scientific evaluation of interactions between the different engineered barriers is studied by laboratory experiments, natural analogues and modeling studies. The three methods are...

  16. Introduction to Energy Conservation and Production at Waste Cleanup Sites

    Science.gov (United States)

    This issue paper, prepared by EPA's Engineering Forum under the Technical Support Project, provides an overview on the considerations for energy conservation and production during the design and (O&M) phases of waste cleanup projects.

  17. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  19. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed......Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational...... by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables...

  20. Solid waste generation and characterization in the University of Lagos for a sustainable waste management.

    Science.gov (United States)

    Adeniran, A E; Nubi, A T; Adelopo, A O

    2017-09-01

    Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Defense Waste Processing Facility prototypic analytical laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-12-31

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R & D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R & D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy.

  2. The use of urban wood waste as an energy resource

    Science.gov (United States)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  3. WASTE PROCESSING ANNUAL NUCLEAR SAFETY RELATED R AND D REPORT FOR CY2008

    Energy Technology Data Exchange (ETDEWEB)

    Fellinger, A.

    2009-10-15

    The Engineering and Technology Office of Waste Processing identifies and reduces engineering and technical risks associated with key waste processing project decisions. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment (TDD). The Office of Waste Processing TDD program prioritizes and approves research and development scopes of work that address nuclear safety related to processing of highly radioactive nuclear wastes. Thirteen of the thirty-five R&D approved work scopes in FY2009 relate directly to nuclear safety, and are presented in this report.

  4. Decentralized Urban Solid Waste Management in Indonesia | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will develop and validate four models of decentralized solid waste management in low-income urban areas of Tangerang, Sidoarjo, Denpasar and ... Decentralized urban solid waste management in Indonesia : final technical report. Contenus connexes. Les chaînes de valeur comme leviers stratégiques.

  5. An Investigation into Waste Management Practices in Nigeria (A ...

    African Journals Online (AJOL)

    In developed countries like Europe, there are effective systems for the removal of waste from different settlements, although ultimate and final disposal usually pose problem in the environment due to lack Basic facilities:- This paper investigate the waste management problems and the various methods and technical ...

  6. Lactic acid fermentation from refectory waste: Factorial design analysis

    African Journals Online (AJOL)

    Lactic acid fermentation from refectory waste: Factorial design analysis. ... African Journal of Biotechnology ... Abstract. A factorial experimental design method was used to optimize the lactic acid production using Lactobacillus bulgaricus from refectory waste obtained from Istanbul Technical University mess hall, Turkey.

  7. Organic Waste Diversion in Columbia, South Carolina, Feasibility Study

    Science.gov (United States)

    The study found that a variety of methods are technically and economically feasible for diverting food wastes and providing a positive return on investment for the source. Potential barriers and considerations for food waste diversion are identified in the study. Given the E...

  8. 40 CFR 761.75 - Chemical waste landfills.

    Science.gov (United States)

    2010-07-01

    ... paragraph (c)(3) of this section. (b) Technical requirements. Requirements for chemical waste landfills used..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil... unit liner. This design is recommended for use when semi-solid or leachable solid wastes are placed in...

  9. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  10. Use of waste plastic in construction of bituminous road

    OpenAIRE

    Abhijeet Jirge; Karan patil; Mrs.Vidula Swami; Suhas patil; Sushil patil; Karan salokhe

    2012-01-01

    Bottles, containers and packing strips etc. is increasing day by day. As a result amount of waste plastic also increases. This leads to various environmental problems. Many of the wastes produced today will remain in the environment for many years leading to various environmental concerns. Therefore it is necessary to utilize thewastes effectively with technical development in each field. Many by-products are being produced using the plastic wastes. Our present work is helping to take care of...

  11. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  12. The Nuclear Waste Policy Act, as amended with appropriations acts appended

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Nuclear Waste Policy Act of 1982 provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel. Titles 1 and 2 cover these subjects. Also included in this Act are: Title 3: Other provisions relating to radioactive waste; Title 4: Nuclear waste negotiation; Title 5: Nuclear waste technical review board; and Title 6: High-level radioactive waste. An appendix contains excerpts from appropriations acts from fiscal year 1984--1994.

  13. Technical working criteria about the retrieval and the waste disposal of materials containing amanita's (MCA); Criteri tecnici operativi per la bonifica e lo smaltimento dei materiali contenenti amianto

    Energy Technology Data Exchange (ETDEWEB)

    Coduti, A. [Eco International Service S.r.l., Foggia (Italy)

    2000-04-01

    The retrieval of the MCA (Materials Containing Amiantus) is a complex operation either to realize in an operative way or to be subject to a restrict regulation. The risks for the public health because of the amiantus are well-known, even if not well done acts of the retrieval can increase the concentration of the air lost fibres by consequently increasing the risk for workers. Recently concerning the regulation in force, the market has been addressing to the MCA maintenance which surely reduces either the risk of releasing the air lost fibres or the costs. It is important, at last, that the removal operations produce a large amount of wastes containing amiantus which will represent a real and big danger for the environment and the public health if they are not wasted as well as possible. [Italian] La bonifica dei materiali contenenti amianto e' un'operazione complessa sia da realizzarsi operativamente sia perche' soggetta ad obblighi normativi rigidi. I rischi sulla salute pubblica indotti dalla presenza di amianto sono ormai risaputi, anche se le operazioni di bonifica, se non adeguatamente eseguite, possono incrementare la concentrazione di fibre aerodisperse accrescendone il rischio per gli addetti alle operazioni di lavoro. Di recente con l'entrata in vigore di nuove regolamentazioni, il mercato si sta orientando sugli interventi di manutenzione dei materiali contenenti amianto, che senz'altro, riducono la possibilita' di rilascio di fibre aerodisperse oltre ovviamente ad una riduzione dei costi. Si ricorda, infatti, che le operazioni di rimozione generano ingenti quantitativi di rifiuti contenenti amianto che, se non adeguatamente smaltiti, rappresentano un vero e grosso pericolo per l'ambiente e la salute pubblica.

  14. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  15. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  16. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  17. Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

  18. Comparative considerations on the radionuclide inventories of radioactive wastes; Vergleichende Betrachtungen zu Radionuklidinventaren von radioaktiven Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, Rainer [Nuclear Control and Consulting GmbH, Braunschweig (Germany)

    2015-07-01

    The radioactive waste disposal is not only a geoscientific and technical challenge, but also a social one. Besides the scientific discussion of experts knowledge and technical information has to be communicated to the interested public. Descriptive comparisons are used to demonstrate abstract terms like activities or radiation doses. This concept is illustrated in the contribution using the example of heat generating wastes and the prognostic amount of wastes.

  19. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  20. Improved waste management services – Will the Act make a difference?

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2009-05-01

    Full Text Available This document focuses on the improved waste management services and the Waste Act 59 of 2008. It provide in formation on the Integrated Waste Management Plans, technical capacity – infrastructure, the backlog in adequate service provision, the facts...

  1. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  2. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  3. Human waste

    NARCIS (Netherlands)

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-01-01

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in

  4. Dairy Wastes.

    Science.gov (United States)

    Pico, Richard F.

    1978-01-01

    Presents a literature review of wastes from the dairy industry covering publications of 1976-77. This review covers: (1) government regulations; (2) ion-plant control of dairy effluents; (3) dairy effluent treatment methods; and (4) research on dairy effluents. A list of 26 references is also presented. (HM)

  5. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  6. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL`s Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL`s research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL`s acceptance criteria for hazardous chemical waste.

  7. Teaching Technical Writing - Towards Technical Writing

    DEFF Research Database (Denmark)

    Kastberg, Peter

    2000-01-01

    In this paper I will present key aspects of the curriculum for the university degree in technical translation that I have designed for and subsequently implemented at the German Department of the Aarhus School of Business, Denmark. My starting point will be a critical discussion of the norm that ...... of technical writing....

  8. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 6, Technical memorandums 06-13, 06-14, and 06-15

    Energy Technology Data Exchange (ETDEWEB)

    Kannard, J. R.; Wilson, R. C.; Zondlo, T. F.

    1991-09-01

    This report describes the borehole geophysical logging performed at selected monitoring wells at waste area grouping (WAG) 6 of Oak Ridge National Laboratory in support of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI). It identifies the locations and describes the methods, equipment used in the effort, and the results of the activity. The actual logs for each well logged are presented in Attachment 1 through 4 of the TM. Attachment 5 provide logging contractor service literature and Attachment 6 is the Oak Ridge National Laboratory (ORNL) Procedure for Control of a Nuclear Source Utilized in Geophysical logging. The primary objectives of the borehole geophysical logging program were to (1) identify water-bearing fractured bedrock zones to determine the placement of the screen and sealed intervals for subsequent installation, and (2) further characterize local bedrock geology and hydrogeology and gain insight about the deeper component of the shallow bedrock aquifer flow system. A secondary objective was to provide stratigraphic and structural correlations with existing logs for Hydraulic Head Monitoring Station (HHMS) wells, which display evidence of faulting.

  9. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 5, Technical Memorandums 06-09A, 06-10A, and 06-12A

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-09-01

    This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).

  10. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  11. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  12. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  13. Technical Report Writing Today

    DEFF Research Database (Denmark)

    Riordan, Daniel G.

    2014-01-01

    Section 1: Technical Communication Basics (8 chapters on tech com, audiences, tech com process, tech com style, researching, designing pages, using visual aids, describing). Section 2: Technical Communication Applications (7 chapters on sets of instructions, informal reports and email, developing...

  14. Technical training: places available

    CERN Multimedia

    2013-01-01

    If you would like more information on a course, or for any other inquiry/suggestions, please contact Technical.Training@cern.ch. Eva Stern and Elise Romero, Technical Training Administration (Tel: 74924)

  15. Technical training: places available

    CERN Document Server

    2014-01-01

    If you would like more information on a course, or have any other inquiry/suggestions, please contact Technical.Training@cern.ch. Eva Stern and Elise Romero, Technical Training Administration (Tel: 74924)

  16. Technical training - places available

    CERN Multimedia

    2013-01-01

    If you would like more information on a course, or have any other inquiry/suggestions, please contact Technical.Training@cern.ch. Eva Stern and Elise Romero, Technical Training Administration (Tel: 74924)

  17. Technical training: places available

    CERN Multimedia

    2014-01-01

    If you would like more information on a course, or have any other inquiry/suggestions, please contact Technical.Training@cern.ch. Eva Stern and Marie Lahchimi, Technical Training Administration (Tel: 74924)

  18. Technical training: places available

    CERN Document Server

    2013-01-01

    If you would like more information on a course, or for any other inquiry/suggestions, please contact Technical.Training@cern.ch. Eva Stern and Elise Romero, Technical Training Administration (Tél : 74924)  

  19. 2013 Technical Roundtable

    Science.gov (United States)

    On December 9, 2013, EPA reconvened the study’s Technical Roundtable. Subject-matter experts discussed the outcomes of the 2013 Technical Workshops, stakeholder engagement, and plans for draft assessment report.

  20. The management of industrial wastes in hydrology; La gestion des dechets industriels en hydrologie

    Energy Technology Data Exchange (ETDEWEB)

    Elbaz-Seboun, V.

    1998-07-08

    The industrial wastes are made of different kind of wastes: the inert wastes, the banal wastes (municipal wastes), the special wastes containing noxious elements with respect to human health and environment, and the radioactive wastes. Each industry generates its own effluents (sludges from water treatment plants and leachates from rubbish dumps). The main water pollutions are due to the fermentescible organic matters, nitrates and heavy metals from the industrial waste waters. The aim of the public water agencies is to better protect the environment and to give help to the industrialists in the management of their wastes: reduction at the source, selective collection, valorization, transportation and processing. Non-valorizable wastes must be processed: physico-chemical and biological processing (bio-filtering, coagulation-flocculation, membranes and industrial gases), incineration (organic wastes), disposal in class 1 technical burial centres after stabilization (ultimate wastes). Since July 2002, only the ultimate wastes will be disposed off and all class 2 and 3 dumps must have been rehabilitated. This work is divided into 2 parts: part 1 gives a presentation of the different types of industrial wastes and of their management (origin of wastes, effluents, heavy metals, environmental impact, legal aspects, wastes management, valorization). The second part describes the different processes for the treatment of industrial wastes (conventional processes, physico-chemical and biological processes, incineration, tipping, processing of radioactive wastes). (J.S.)

  1. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  2. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-07-01

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondary waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.

  3. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  4. Preclosure analysis of conceptual waste package designs for a nuclear waste repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, W.C.; Gregg, D.W.; Hockman, J.N.; Russell, E.W.; Stein, W.

    1984-11-01

    This report discusses the selection and analysis of conceptual waste package developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for possible disposal of high-level nuclear waste at a candidate site at Yucca Mountain, Nevada. The design requirements that the waste package must conform to are listed, as are several desirable design considerations. Illustrations of the reference and alternative designs are shown. Four austenitic stainless steels (316L SS, 321 SS, 304L SS and Incoloy 825 high nickel alloy) have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and ecnonmic analyses supporting the selection of the conceptual waste package designs is included. Postclosure containment and release rates are not analyzed in this report.

  5. Working towards a zero waste environment in Taiwan.

    Science.gov (United States)

    Young, Chea-Yuan; Ni, Shih-Piao; Fan, Kuo-Shuh

    2010-03-01

    It is essential to the achievement of zero waste that emphasis is concentrated on front-end preventions rather than end-of-pipe (EOP) treatment. Zero waste is primarily based on cleaner production, waste management, the reduction of unnecessary consumption and the effective utilization of waste materials. The aim of this study was to briefly review the tasks undertaken and future plans for achieving zero waste in Taiwan. Waste prevention, source reduction, waste to product, waste to energy, EOP treatment, and adequate disposal are the sequential principal procedures to achieve the goal of zero waste. Six strategies have been adopted to implement the zero waste policy in Taiwan. These are regulatory amendments, consumption education, financial incentives, technical support, public awareness, and tracking and reporting. Stepwise targets have been set for 2005, 2007, 2011, and 2020 for both the municipal solid waste (MSW) and industrial waste to reach the goal of zero waste. The eventual aim is to achieve 70% MSW minimization and 85% industrial waste minimization by 2020. Although tools and measures have been established, some key programmes have higher priority. These include the establishment of a waste recycling programme, promotion of cleaner production, a green procurement programme, and promotion of public awareness. Since the implementation of the zero waste policy started in 2003, the volume of MSW for landfill and incineration has declined dramatically. The recycling and/or minimization of MSW quantity in 2007 was 37%, which is much higher than the goal of 25%. Industrial waste reached almost 76% minimization by the end of 2006, which is 1 year before the target year.

  6. Rethinking the waste hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, C.; Vigsoe, D. (eds.)

    2005-03-01

    There is an increasing need to couple environmental and economic considerations within waste management. Consumers and companies alike generate ever more waste. The waste-policy challenges of the future lie in decoupling growth in waste generation from growth in consumption, and in setting priorities for the waste management. This report discusses the criteria for deciding priorities for waste management methods, and questions the current principles of EU waste policies. The basis for the discussion is the so-called waste hierarchy which has dominated the waste policy in the EU since the mid-1970s. The waste hierarchy ranks possible methods of waste management. According to the waste hierarchy, the very best solution is to reduce the amount of waste. After that, reuse is preferred to recycling which, in turn, is preferred to incineration. Disposal at a landfill is the least favourable solution. (BA)

  7. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste.......In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...

  8. Technical progress report, 1 April-30 June 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    This report describes the technical accomplishments during the quarter ending June 1981, on the commercial nuclear waste management programs under the direction of the Office of Nuclear Waste Isolation (ONWI). The ONWI program is organized into 8 tasks entitled: systems, waste package, site, repository, regulatory and institutional, test facilities and excavations, land acquisition, and program management. Principal investigators in each of these areas have submitted summaries of quarterly highlights for inclusion in this report. Separate abstracts have been prepared for 5 of these tasks for inclusion in the Energy Data Base. (DMC)

  9. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W. [ed.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  10. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  11. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  12. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Science.gov (United States)

    2011-10-17

    ... Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November 29... addressing risks to reliability that were identified in earlier Commission technical conferences. The...

  13. Polymer Solidification Technology - Technical Issues and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Charles [Diversified Technologies Services, Inc., Knoxville (United States); Kim, Juyoul [Seoul National Univ., Seoul (Korea, Republic of)

    2010-07-01

    Many factors come into play, most of which are discovered and resolved only during full-scale solidification testing of each of the media commonly used in nuclear power plants. Each waste stream is unique, and must be addressed accordingly. This testing process is so difficult that Diversified's Vinyl Ester Styrene and Advanced Polymer Solidification are the only two approved processes in the United States today. This paper summarizes a few of the key obstacles that must be overcome to achieve a reliable, repeatable process for producing an approved Stable Class B and C waste form. Before other solidification and encapsulation technologies can be considered compliant with the requirements of a Stable waste form, the tests, calculations and reporting discussed above must be conducted for both the waste form and solidification process used to produce the waste form. Diversified's VERI{sup TM} and APS{sup TM} processes have gained acceptance in the UK. These processes have also been approved and gained acceptance in the U. S. because we have consistently overcome technical hurdles to produce a complaint product. Diversified Technologies processes are protected intellectual property. In specific instances, we have patents pending on key parts of our process technology.

  14. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  15. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  16. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  17. Waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-01-17

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  18. Waste Reduction Model

    Science.gov (United States)

    To help solid waste planners and organizations track/report GHG emissions reductions from various waste management practices. To assist in calculating GHG emissions of baseline and alternative waste management practices and provide the history of WARM.

  19. Hazardous Waste Generators

    Data.gov (United States)

    Vermont Center for Geographic Information — The HazWaste database contains generator (companies and/or individuals) site and mailing address information, waste generation, the amount of waste generated etc. of...

  20. The temporality of waste

    DEFF Research Database (Denmark)

    Madsen, Katrine Dahl; Jordt Jørgensen, Nanna; Læssøe, Jeppe

    Waste is, indisputably, one of the key issues of environmental concerns of our times. In an environment and sustainability education perspective, waste offers concrete entry points to issues of consumption, sustainability and citizenship. Still, waste education has received relatively little...

  1. Household hazardous waste

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, Thomas Højlund

    2007-01-01

    .) comprised 15-25% and foreign items comprised 10-20%. Water-based paint was the dominant part of the paint waste. The chemical composition of the paint waste and the paint-like waste was characterized by an analysis of 27 substances in seven waste fractions. The content of critical substances was tow......'Paint waste', a part of the 'household hazardous waste', amounting to approximately 5 tonnes was collected from recycling stations in two Danish cities. Sorting and analyses of the waste showed paint waste comprised approximately 65% of the mass, paint-like waste (cleaners, fillers, etc...... and the paint waste was less contaminated with heavy metals than was the ordinary household waste. This may suggest that households no longer need to source-segregate their paint if the household waste is incinerated, since the presence of a small quantity of solvent-based paint will not be harmful when...

  2. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  3. Informative document packaging waste

    NARCIS (Netherlands)

    Joosten JM; Nagelhout D; Duvoort GL; Weerd M de

    1989-01-01

    This "informative document packaging waste" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the instructions of the Direcotrate General for the Environment, Waste Materials Directorate, in behalf of the program of

  4. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2000-09-15

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR).

  5. Supermarket food waste

    OpenAIRE

    Eriksson, Mattias

    2015-01-01

    Food waste occurs along the entire food supply chain and gives rise to great financial losses and waste of natural resources. The retail stage of the supply chain contributes significant masses of waste. Causes of this waste need to be identified before potential waste reduction measures can be designed, tested and evaluated. Therefore this thesis quantified retail food waste and evaluated selected prevention and valorisation measures, in order to determine how the carbon footprint of food ca...

  6. Support for designing waste sorting systems: A mini review.

    Science.gov (United States)

    Rousta, Kamran; Ordoñez, Isabel; Bolton, Kim; Dahlén, Lisa

    2017-11-01

    This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.

  7. STUDY ON ULTRASONIC DEGREASING OF SHEEPSKIN WASTE

    Directory of Open Access Journals (Sweden)

    BĂLĂU MÎNDRU Tudorel

    2014-05-01

    Full Text Available Leather industry is a relatively large source of waste from raw material, so skin waste recovery is a goal of clean technologies. Capitalization of skin waste aims to obtain: chemical auxiliaries, technical articles, hydrolyzed protein, artificial leather, composite building materials, heat sources and collagen biomaterials with applications in medicine, cosmetics, etc. A first step in the recovery of skin waste is the degreasing operation. Ultrasound is an effective tool to improve the efficiency of the conventional degreasing affecting the chemical substances as well as the treated skin. In addition, the processing time is reduced. Ultrasound is known to enhance the emulsification and dispersion of oils/fat. The usual degreasing methods requires more emulsifier/solvent ratio and process time for emulsification and additional solvent for washing out the emulsified fat. This paper investigates the possibility of recovery through ecological processes of leather waste from finishing operations for further capitalization. The present study aims emulsification and subsequent removal of the fat present in the chamois powder waste from polishing operation with the aid of ultrasound by an aqueous ecofriendly method. The study also took into account the ultrasonic treatment of the leather waste using trichlorethylene as a medium of propagation-degreasing, and realized a comparative analysis of efficiency of fat extraction by Soxhlet method and via ultrasonication. IR-ATR and optical microscopy highlight both morphological and chemical-structural changes of treated materials by different degreasing methods

  8. Greenhouse gas accounting and waste management.

    Science.gov (United States)

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  9. Radioactive waste management in the former USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  10. Hanford Waste Vitrification Plant applied technology plan

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs.

  11. Engineering Technical Support Center Annual Report Fiscal ...

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provides engineering expertise to Agency program and regional offices and remediation teams working at contaminated sites across the country. The ETSC is operated within ORD’s Land Remediation and Pollution Control Division (LRPCD) of the National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio. The ETSC’s mission is to provide site-specific scientific and engineering technical support to Remedial Project Managers, On-Scene Coordinators, and other remediation personnel at contaminated sites. This allows local, regional, or national authorities to work more quickly, efficiently, and cost effectively, while also increasing the technical experience of the remediation team. Since its inception, the ETSC has supported countless projects across all EPA Regions in almost all states and territories. This report highlights significant projects the ETSC supported in fiscal year 2015 (FY15). These projects addressed an array of environmental scenarios, such as remote mining contamination, expansive landfill waste, cumulative impacts from multiple contamination sources, and persistent threats from abandoned industrial sites. Constructing and testing new and innovative treatment technol

  12. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  13. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  14. Chemical Waste and Allied Products.

    Science.gov (United States)

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  15. Pollutant Assessments Group procedures manual: Volume 2, Technical procedures

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This is volume 2 of the manuals that describes the technical procedures currently in use by the Pollution Assessments Group. This manual incorporates new developments in hazardous waste assessment technology and administrative policy. Descriptions of the equipment, procedures and operations of such things as radiation detection, soil sampling, radionuclide monitoring, and equipment decontamination are included in this manual. (MB)

  16. Technical Baseline Summary Description for the Tank Farm Contractor

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-04-21

    This document is a revision of the document titled above, summarizing the technical baseline of the Tank Farm Contractor. It is one of several documents prepared by CH2M HILL Hanford Group, Inc. to support the U.S. Department of Energy Office of River Protection Tank Waste Retrieval and Disposal Mission at Hanford.

  17. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that

  18. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  19. KWL Lingen nuclear plant. Technical annual report 2016; KWL Kernkraftwerk Lingen. Technischer Jahresbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    The technical annual report 2016 for KWL (Lingen nuclear plant) covers the following sections: dismantling project management and operation, monitoring and clearance; waste management, technical qualification, security and safety, central tasks; licensing and supervision procedures, operational data, radiation monitoring, radioactive materials, in-service inspections.

  20. Technical change in forest sector models: the global forest products model approach

    Science.gov (United States)

    Joseph Buongiorno; Sushuai Zhu

    2015-01-01

    Technical change is developing rapidly in some parts of the forest sector, especially in the pulp and paper industry where wood fiber is being substituted by waste paper. In forest sector models, the processing of wood and other input into products is frequently represented by activity analysis (input–output). In this context, technical change translates in changes...

  1. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  2. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  3. Transuranic contaminated waste form characterization and data base

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report.

  4. Towards the effective plastic waste management in Bangladesh: a review.

    Science.gov (United States)

    Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain

    2017-12-01

    The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.

  5. Waste site grouping for 200 Areas soil investigations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models.

  6. The Office of Environmental Management technical reports: A bibliography

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Office of Environmental Management`s (EM) technical reports bibliography is an annual publication that contains information on scientific and technical reports sponsored by the Office of Environmental Management added to the Energy Science and Technology Database from July 1, 1995--that were published from October 1, 1996--September 30, 1997. This information is divided into the following categories: Miscellaneous, Focus Areas and Crosscutting Programs, Support Programs, Technology Integration and International Technology Exchange, are now included in the Miscellaneous category. The Office of Environmental Management within the Department of Energy (DOE) is responsible for environmental restoration, waste management, technology development and facility transition and management. Subjects include: subsurface contaminants; mixed waste characterization, treatment and disposal; radioactive tank waste remediation; plutonium; deactivation and decommissioning; robotics; characterization, monitoring, and sensor technology; and efficient separations. 880 refs.

  7. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  8. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  9. Technical and economic assessment of energy conversion technologies for MSW

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.

    2002-07-01

    Thermal processes for municipal solid wastes (MSW) based on pyrolysis and/or gasification that have relevance to the emerging UK market are described in this report, and the results of the technical and economical assessment of these processes are presented. The Mitsui R21 Technology, the Thermoselect Process, the Nippon Steel Waste Melting Process, the Pyropleq Process, and the Compact Power Process are selected for detailed comparison on the basis of the overall technical concept, the energy balance and the requirements for consumables, environmental performance, and the technical and commercial status of the technology. Details are also given of a comparison of the novel thermal technologies with conventional mass burn incineration for MSW.

  10. Reducing the tritium inventory in waste produced by fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  11. 100-D Area technical baseline report

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R.W.

    1993-08-20

    This document is prepared in support of the 100 Area Environmental Restoration activity at the US Department of Energy`s Hanford Site near Richland, Washington. It provides a technical baseline of waste sites located at the 100-D Area. The report is based on an environmental investigation undertaken by the Westinghouse Hanford Company (WHC) History Office in support of the Environmental Restoration Engineering Function and on review and evaluation of numerous Hanford Site current and historical reports, drawings, and photographs, supplemented by site inspections and employee interviews. No intrusive field investigation or sampling was conducted. All Hanford coordinate locations are approximate locations taken from several different maps and drawings of the 100-D Area. Every effort was made to derive coordinate locations for the center of each facility or waste site, except where noted, using standard measuring devices. Units of measure are shown as they appear in reference documents. The 100-D Area is made up of three operable units: 100-DR-1, 100-DR-2, and 100-DR-3. All three are addressed in this report. These operable units include liquid and solid waste disposal sites in the vicinity of, and related to, the 100-D and 100-DR Reactors. A fourth operable unit, 100-HR-3, is concerned with groundwater and is not addressed here. This report describes waste sites which include cribs, trenches, pits, french drains, retention basins, solid waste burial grounds, septic tanks, and drain fields. Each waste site is described separately and photographs are provided where available. A complete list of photographs can be found in Appendix A. A comprehensive environmental summary is not provided here but may be found in Hanford Site National Environmental Policy Act Characterization (Cushing 1988), which describes the geology and soils, meteorology, hydrology, land use, population, and air quality of the area.

  12. Technical area status report for chemical/physical treatment. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.H. Jr. [Oak Ridge National Lab., TN (United States); Schwinkendorf, W.E. [BDM Federal, Inc., Arlington, VA (United States)

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs and activities throughout the DOE Complex. The Mixed Waste Integrated Program (MWIP) was created by the DOE Office of Technology Development (OTD) to develop, deploy, and complete appropriate technologies for the treatment of an DOE low-level mixed waste (LLMW). The MWIP mission includes development of strategies related to enhanced waste form production, improvements to and testing of the EM-30 baseline flowsheet for mixed waste treatment, programmatic oversight for ongoing technical projects, and specific technical tasks related to the site specific Federal Facilities Compliance Agreement (FFCA). The MWIP has established five Technical Support Groups (TSGs) based on primary functional areas of the Mixed Waste Treatment Plant) identified by EM-30. These TSGs are: (1) Front-End Waste Handling, (2) Chemical/Physical Treatment, (3) Waste Destruction and Stabilization, (4) Second-stage Destruction and Offgas Treatment, and (5) Final Waste Forms. The focus of this document is the Chemical/Physical Treatment System (CPTS). The CPTS performs the required pretreatment and/or separations on the waste streams passing through the system for discharge to the environment or efficient downstream processing. Downstream processing can include all system components except Front-End Waste Handling. The primary separations to be considered by the CPTS are: (1) removal of suspended and dissolved solids from aqueous and liquid organic streams, (2) separation of water from organic liquids, (3) treatment of wet and dry solids, including separation into constituents as required, for subsequent thermal treatment and final form processing, (4) mercury removal and control, and (5) decontamination of equipment and waste classified as debris.

  13. Update of technical coordinating committee activities

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, R.A.

    1995-12-31

    The Technical Coordinating Committee has its origins in the earliest days of implementing the Low-Level Radioactive Waste Policy Act. Between 1982 and 1985, individuals in several of the states felt that coordination among the states would be beneficial to all by affording states a cost-effective method for sharing ideas, discussing alternatives, and presenting solutions to common problems. At the current time, the committee comprises members from each of the sited states. Various compacts, federal agencies, and industry groups participate in committee activities. The Low-Level Management Program provides support for the committee through the provision of logistical support and limited manpower allocation. Activities of the committee have recently focused on waste treatment and minimization technologies. The committee also has worked diligently to see the review of the 3RSTAT computer code completed. The committee has taken a position on various regulatory proposals the past year. The committee expects to continue its work until new sites are brought online.

  14. The Office of Industrial Technologies technical reports

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  15. Waste Package Lifting Calculation

    Energy Technology Data Exchange (ETDEWEB)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  16. Commercial and Institutional Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Commercial and institutional waste is primarily from retail (stores), hotels, restaurants, health care (except health risk waste), banks, insurance companies, education, retirement homes, public services and transport. Within some of these sectors, e.g. retail and restaurants, large variations...... is handled in the municipal waste system, where information is easily accessible. An important part of commercial and institutional waste is packaging waste, and enterprises with large quantities of clean paper, cardboard and plastic waste may have their own facilities for baling and storing their waste...

  17. Data Quality Objectives for Tank Farms Waste Compatibility Program

    Energy Technology Data Exchange (ETDEWEB)

    BANNING, D.L.

    1999-07-02

    There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presently in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.

  18. Technical efficiency, efficiency change, technical progress and ...

    African Journals Online (AJOL)

    In May 2006, the Ministers of Health of all the countries on the African continent, at a special session of the African Union, undertook to institutionalise efficiency monitoring within their respective national health information management systems. The specific objectives of this study were: (i) to assess the technical efficiency of ...

  19. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  20. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Alan H. [Fusion Theory and Computation Inc., Kingston, WA (United States)

    2018-02-02

    Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.

  1. Technical Manual. The ACT®

    Science.gov (United States)

    ACT, Inc., 2014

    2014-01-01

    This manual contains technical information about the ACT® college readiness assessment. The principal purpose of this manual is to document the technical characteristics of the ACT in light of its intended purposes. ACT regularly conducts research as part of the ongoing formative evaluation of its programs. The research is intended to ensure that…

  2. Scientific and Technical English.

    Science.gov (United States)

    Vaclavik, Jaroslav

    Technical English differs from everyday English because of the specialized contexts in which it is used and because of the specialized interests of scientists and engineers. This text provides exercises in technical and scientific exposition in the following fields: mathematics, physics, temperature effects, mechanics, dynamics, conservation of…

  3. Developing Technical Skill Assessments

    Science.gov (United States)

    Hyslop, Alisha

    2009-01-01

    One of the biggest challenges facing the career and technical education (CTE) community as it works to implement the 2006 Perkins Act is responding to more rigorous requirements for reporting on CTE students' technical skill attainment. The U.S. Department of Education suggested in non-regulatory guidance that states and locals use the number of…

  4. Summer Technical Students 2004

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    About 100 technical and doctoral students arrive each year, undergraduates and post-graduates who are preparing diploma or doctoral theses in applied science and technology. They spend up to two years at the Laboratory, as technical students as part of their formal training for a recognised degree or its equivalent.

  5. Melting of metallic intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva [Studsvik Nuclear AB, Nykoeping (Sweden)

    2013-08-15

    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety.

  6. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-09

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  7. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  8. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  9. Technical Agency in Practice

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina

    2015-01-01

    ) description of hybrid networks in which human and non-human actants are granted agency without differentiating different kinds of agency, EMCA focuses on the member's perspectives and the situated construction of technical agency that is made relevant within an ongoing interaction. Based on an EMCA analysis......The paper combines the discussion of technical agency and hybrid networks of Actor-Network Theory (ANT) with an ethnomethodological/conversation analytical (EMCA) perspective on situated practices in which participants ascribe agency to technical artefacts. While ANT works with (ethnographic...... of three video recordings of situations in which technical agency is made relevant by the human participants, the paper demonstrates different ways in which agency is granted to technical artefacts. Human participants can treat a technology as communication partner, as an active part (and actant...

  10. Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.

  11. Handbook of Combustion of urban solid wastes; Manual de Incineracion de Residuos Solidos Urbanos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The book presents the state of the art of urban solid wastes combustion in the European Union and more specifically in Spain. the technical, economics, environmental and administrative aspects are analyzed.

  12. Transuranic contaminated waste container characterization and data base. Revision I

    Energy Technology Data Exchange (ETDEWEB)

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

  13. Geotechnical support and topical studies for nuclear waste geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technical and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled Geoscience Technical Support for Nuclear Waste Geologic Repositories.''

  14. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Philip Malte

    2004-11-30

    The objective of the research is the reduction of emissions of NOx and carbon from wood waste combustion and dryer systems. Focus in on suspension (dust) burners, especially the cyclone burners that are widely used in the industry. Computational fluid dynamics (CFD) is used to help understand the details of combustion and pollutant formation in wood waste combustion systems, and to help determine the potential of combustion modification for reducing emissions. Field burners are examined with the modeling.

  15. Hanford tank clean up: A guide to understanding the technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, R.E.; Lundgren, R.E.

    1995-12-31

    One of the most difficult technical challenges in cleaning up the US Department of Energy`s (DOE) Hanford Site in southeast Washington State will be to process the radioactive and chemically complex waste found in the Site`s 177 underground storage tanks. Solid, liquid, and sludge-like wastes are contained in 149 single- and 28 double-shelled steel tanks. These wastes contain about one half of the curies of radioactivity and mass of hazardous chemicals found on the Hanford Site. Therefore, Hanford cleanup means tank cleanup. Safely removing the waste from the tanks, separating radioactive elements from inert chemicals, and creating a final waste form for disposal will require the use of our nation`s best available technology coupled with scientific advances, and an extraordinary commitment by all involved. The purpose of this guide is to inform the reader about critical issues facing tank cleanup. It is written as an information resource for the general reader as well as the technically trained person wanting to gain a basic understanding about the waste in Hanford`s tanks -- how the waste was created, what is in the waste, how it is stored, and what are the key technical issues facing tank cleanup. Access to information is key to better understanding the issues and more knowledgeably participating in cleanup decisions. This guide provides such information without promoting a given cleanup approach or technology use.

  16. Management of biomedical waste in two medical laboratories in ...

    African Journals Online (AJOL)

    The surface technicians had significantly better knowledge about tetanus vaccine than the medical-technical staff (χ2 = 4.976, p=0.047). They had also a significantly higher risk of exposure to accidents due to waste handling than medical-technical (χ2=10.276, p=0.009). The 30-39 age group had a significantly higher risk of ...

  17. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  18. Waste catalysts for waste polymer.

    Science.gov (United States)

    Salmiaton, A; Garforth, A

    2007-01-01

    Catalytic cracking of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Two fresh and two steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as two used FCC catalysts (E-Cats) with different levels of metal poisoning. Also, inert microspheres (MS3) were used as a fluidizing agent to compare with thermal cracking process at BP pilot plant at Grangemouth, Scotland, which used sand as its fluidizing agent. The results of HDPE degradation in terms of yield of volatile hydrocarbon product are fresh FCC catalysts>steamed FCC catalysts approximately used FCC catalysts. The thermal cracking process using MS3 showed that at 450 degrees C, the product distribution gave 46 wt% wax, 14% hydrocarbon gases, 8% gasoline, 0.1% coke and 32% nonvolatile product. In general, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.

  19. Solid waste digestors: process performance and practice for municipal solid waste digestion.

    Science.gov (United States)

    Lissens, G; Vandevivere, P; De Baere, L; Biey, E M; Verstrae, W

    2001-01-01

    The most common types of anaerobic digesters for solid wastes have been compared based on biological and technical performance and reliability. Batch systems have the most simple designs and are the least expensive solid waste digesters. They have high potential for application in developing countries. Two-stage systems are the most complex and most expensive systems. Their greatest advantage lies in the equalisation of the organic loading rate in the first stage, allowing a more constant feeding rate of the methanogenic second stage. Two-stage systems with biomass accumulation devices in the second stage display a larger resistance toward toxicants and inhibiting substances such as ammonia. However, the large majority of industrial applications use one-stage systems and these are evenly split between "dry" systems (wastes are digested as received) and "wet" systems (wastes are slurried to about 12% total solids). Regarding biological performance, this study compares the different digester systems in terms of organic loading rates and biogas yields considering differences in input waste composition. As a whole, "dry" designs have proven reliable due to their higher biomass concentration, controlled feeding and spatial niches. Moreover, from a technical viewpoint the "dry" systems are more robust and flexible than "wet' systems.

  20. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    of the available inventories, so LCAs would represent the industry better if consensus was found in industry and branch organisations regarding the provision of data for the LCA community or if the ISO standard for producing inventory data were followed, which in turn would help to increase transparency....... A critical lack of background information in external databases was highlighted as well as a lack of transparency. Therefore, the assessment of the quality of data was difficult when no description was available. Some industries and branch organisations provide data for databases, which improves the quality...

  1. Hazardous Waste Technical Assistance Survey, Luke AFB, Arizona

    Science.gov (United States)

    1990-03-01

    the electrolyte is neutralized with baking soda before being discharged to a holding tank. The empty battery casings are disposed through RMO. A new...Materials and I I Supplies I i i__ FIRE i Extinguisher PROTECTION I I I I I Funnels in { { I 1 Containers i i I I Containers 1 I i I , Closed I J...rags are taken to linen exchange for cleaning and reis s:e. Allied Trades personnel are also responsible for cleaning and maintaining a caustic soda

  2. Hazardous Waste Technical Assistance Survey Elmendorf AFB, Alaska

    Science.gov (United States)

    1990-07-01

    basic electrolyte drained from Ni-Cad batteries. The pH of the solution is checked; the solution is further neutralized with baking soda if needed, and...to drain waterl _ I _ I Empty Overpackl I I SPILL I Container _ I I _ EQUIPMENT I Materials and I 1 V I Supplies I I I _ FIRE Extinguisher I I I I...21 SPS) Shop: Indoor Firing Range Bldg: 22-007 Contact: MSgt Langley AUTOVON: 317-552-4807 Shop personnel maintain and operate the indoor firing range

  3. Technical Feasibility of Centrifugal Techniques for Evaluating Hazardous Waste Migration

    Science.gov (United States)

    1987-12-01

    biodegradation (Borden et al., 1984) or a variety of rheological phenomena associated with multiple phase (e.g, air-water-oil) flow systems, including the pure...developed. The triaxial apparatus coffines the soil sample in a flexible membrane whi.c-h allows transmittal of confining pressures to the soil specimen. Flw...Borden, R. C., M. D. Lee, J. T. Wilson, C. H.. Ward, and P. B. Bedient, Modeling the migration and biodegradation of hydrocarbonsý derived from a wood

  4. Hazardous Waste Technical Assistance Survey, Fairchild AFB, Washington

    Science.gov (United States)

    1988-09-01

    cf, the 92nd Bombardmrent Wing. The ktase serves as a host unit for v::.r~o-js icnpr-1.s such as: the ,3636th Comb-at Cre-w- Tra-;inino \\’ Vino ; 141st...filters and distillation units ; however, at the present time there is not a market for recycled materials in the Spokane area. In addition, operational ...drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation , the Government incurs no

  5. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  6. Hazardous Waste: Learn the Basics of Hazardous Waste

    Science.gov (United States)

    ... Agency Search Search Hazardous Waste Contact Us Share Learn the Basics of Hazardous Waste Hazardous waste that ... Regulations part 261 . Select a question below to learn more about each step in the hazardous waste ...

  7. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  8. CEEM Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, John [Univ. of California, Santa Barbara, CA (United States)

    2014-11-26

    The mission of the Center for Energy Efficient Materials (CEEM) was to serve the Department of Energy and the nation as a center of excellence dedicated to advancing basic research in nano-structured materials and devices for applications to solar electricity, thermoelectric conversion of waste heat to electricity, and solidstate lighting. The foundation of CEEM was based on the unique capabilities of UCSB and its partner institutions to control, synthesize, characterize, model, and apply materials at the nanoscale for more efficient sustainable energy resources. This unique expertise was a key source of the synergy that unified the research of the Center. Although the Center’s focus was basic research, It’s longer-term objective has been to transfer new materials and devices into the commercial sector where they will have a substantial impact on the nation’s need for efficient sustainable energy resources. As one measure of the impact of the Center, two start-up companies were formed based on its research. In addition, Center participants published a total of 210 archival journal articles, of which 51 were exclusively sponsored by the DOE grant. The work of the Center was structured around four specific tasks: Organic Solar Cells, Solid-State Lighting, Thermoelectrics, and High Efficiency Multi-junction Photovoltaic devices. A brief summary of each follows – detailed descriptions are in Sections 4 & 5 of this report. Research supported through CEEM led to an important shift with respect to the choice of materials used for the fabrication of solution deposited organic solar cells. Solution deposition opens the opportunity to manufacture solar cells via economically-viable high throughput tools, such as roll to roll printing. Prior to CEEM, most organic semiconductors utilized for this purpose involved polymeric materials, which, although they can form thin films reliably, suffer from batch to batch variations due to the statistical nature of the chemical

  9. International perspectives on municipal solid wastes and sanitary landfilling

    Energy Technology Data Exchange (ETDEWEB)

    Carra, J.S. (U.S. Environmental Protection Agency, Washington, DC (US)); Cossu, R. (Universita di Cagliari (IT))

    1990-01-01

    This book provides a perspective on how different countries cope with the municipal solid waste problem politically, administratively, and technically with a particular focus on sanitary landfilling. Fifteen countries report on the quantities of such waste generated, its composition, and on various management methods used. In addition, they report on sanitary landfilling, the impacts of past practices, current practices for leachate control, and landfill gas management. Finally the role of government, new handling strategies, and likely future directions in waste management are also discussed.

  10. Modeling and low-level waste management: an interagency workshop

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.A.; Stratton, L.E. (comps.)

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.

  11. Socio-technical Betwixtness

    DEFF Research Database (Denmark)

    Bossen, Claus

    2017-01-01

    the intrinsically social and technical interwovenness of design, and the necessity of including affected people and stakeholders in the design process. This betwixtness of socio-technical design is demonstrated by the analysis of two IT systems for healthcare: a foundational model for electronic healthcare records......This chapter focusses on two challenges for socio-technical design: Having to choose between different rationales for design, and the adequate understanding and depiction of the work to be redesigned. These two challenges betwixt the otherwise strong tenets of socio-technical design of pointing out......, and an IT system organizing hospital porters’ work. The conceptual background for the analysis of the cases is provided by a short introduction to different rationales for organizational design, and by pointing to the differences between a linear, rationalistic versus an interactional depiction of work....

  12. Superfund Technical Assistance Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes data related to the Superfund Technical Assistance Grant program, including grant number, award amounts, award dates, period of performance,...

  13. NCDC Technical Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCDC Technical Reports is a set of retrospective analyses produced by the Research Customer Service Group and the National Climatic Data Center from 1995 to 2008....

  14. Applying technical versatility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1970-01-01

    The breadth and depth of the diversified technical programs at Mound Laboratory since its inception are characterized by a record of competence and versatility during the past generation. A spectrum of mission assignments has been completed successfully in such diverse technical areas as process development and manufacturing of explosive components, research on fuels for the Civilian Power Reactor Program, separation of radioactive materials, fabrication of radioisotopic heat sources, stable gaseous isotope separation and purification, and many other areas. Mound Laboratory is one of the key U.S. Atomic Energy Commission sites that has demonstrated its technical competence in both weapons and non-weapons activities. This report has been prepared to complement the AEC’s vigorous program of scientific information dissemination. Three broad areas of technical competence are highlighted here: explosive technology, radionuclide technology, and stable gaseous isotope separation, which encompass a broad variety of techniques and supporting disciplines.

  15. Technical report writing today

    CERN Document Server

    Riordan, Daniel G

    2014-01-01

    "Technical Report Writing Today" provides thorough coverage of technical writing basics, techniques, and applications. Through a practical focus with varied examples and exercises, students internalize the skills necessary to produce clear and effective documents and reports. Project worksheets help students organize their thoughts and prepare for assignments, and focus boxes highlight key information and recent developments in technical communication. Extensive individual and collaborative exercises expose students to different kinds of technical writing problems and solutions. Annotated student examples - more than 100 in all - illustrate different writing styles and approaches to problems. Numerous short and long examples throughout the text demonstrate solutions for handling writing assignments in current career situations. The four-color artwork in the chapter on creating visuals keeps pace with contemporary workplace capabilities. The Tenth Edition offers the latest information on using electronic resum...

  16. Technical knowledge creation

    DEFF Research Database (Denmark)

    Søberg, Peder Veng

    2017-01-01

    Purpose - The purpose of the paper is to amend shortcomings of existing theory concerning organizational learning and knowledge management. Design/methodology/approach – The paper reviews and refines existing theory. Findings - Findings from cognitive neuroscience suggest that technical knowledge...

  17. OSH technical reference manual

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  18. Let’s limit our waste production and let’s’ sort it!

    CERN Multimedia

    HSE Unit

    2013-01-01

    Let’s limit our waste production! – Why ? Preventing the production of waste is the best solution to avoid environmental issues, economic impacts and technical constraints. So, whenever you are involved in the design, manufacturing, distribution, use or dismantling of a product or an activity in general, always remember that the best waste is that which is not produced. The limitation of waste production being an HSE objective declared in 2013 by the CERN Director-General, we encourage everyone to help limit the amount of waste produced through CERN activities. Let’s sort it! – Why ? Since the 90s, CERN has implemented a policy to promote recovery of the waste* generated by its activities. Nowadays, CERN is committed to continuously improving its sorting and recovery and therefore various initiatives have been started by GS-IS to improve the recovery of waste (e.g. recovery of organic waste from restaurants; implementation of solar trash compactors - see Bulletin 27-...

  19. E-Waste Supply Chain in Mexico: Challenges and Opportunities for Sustainable Management

    Directory of Open Access Journals (Sweden)

    Samantha E. Cruz-Sotelo

    2017-03-01

    Full Text Available Electronic waste is a widespread environmental problem. From all waste streams, e-waste is registering one of the largest growing rates (between 3% and 5%. In Mexico, the e-waste recovery system comprises a mix of formal and informal sectors not well known to date. The goal of this article was to analyze electronic waste in Mexico through the active actors in the recovery chain. This article presents the evolution of studies on electronic waste in Mexico. The legal regulations and public policies were analyzed, as were the existing practices of electronic waste handling, and some challenges facing this country for waste flow management. A management model is proposed which highlights components that must be considered in the model and the opportunities and challenges to transition from an unbundled handling, which still has practices that lack environmental and technical support, to sustainable management.

  20. Thermal plasma technology for the treatment of wastes: a critical review.

    Science.gov (United States)

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  1. Retention of technical professionals

    OpenAIRE

    2012-01-01

    M.Ing. The loss of skills and knowledge of technical professionals experienced by many organizations in South Africa has serious implications on the competitiveness of these organizations in the local and international markets. Organizations should come to realize that they should find creative ways to retain critical skills and knowledge and ensure continuity in terms of succession management. Technical professionals play a crucial role in society. They are responsible for maintaining the...

  2. Public debate - radioactive wastes management; Debat public - gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  3. Memo of waste management; Aide-memoire de gestion des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Balet, J.M.

    2005-04-01

    This memo proposes a technical synthesis of waste management. It deals successively with: the different types of wastes (characteristics, quantities produced, main regulatory texts), the collection and management means (constraints, advantages and drawbacks), the processing ways and their perspectives, the actors and the main economical and financial data of the sector. (J.S.)

  4. Basalt Waste Isolation Project. Quarterly report, July 1, 1980-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1980-11-01

    This report presents the technical progress for the Basalt Waste Isolation Project for the fourth quarter of fiscal year 1980. The overall Basalt Waste Isolation Project is divided into the following principal work areas: systems integration; geosciences; hydrology; engineered barriers; near-surface test facility; engineering testing; and repository studies. Summaries of major accomplishments for each of these areas are reported.

  5. Solid Waste Management Available Information Materials. Total Listing 1966-1976.

    Science.gov (United States)

    Larsen, Julie L.

    This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…

  6. 78 FR 33986 - Indiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-06-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION... rule): Burning of Hazardous Wastes in Boilers and Industrial Furnaces, Checklist 85, February 21, 1991... Technical Amendments I, Checklist 94, July 17, 1991 (56 FR 32688); Burning of Hazardous Wastes in Boilers...

  7. Reclamation chain of waste concrete: A case study of Shanghai.

    Science.gov (United States)

    Xiao, Jianzhuang; Ma, Zhiming; Ding, Tao

    2016-02-01

    A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Solid Waste Management in Nigeria: Problems and Issues.

    Science.gov (United States)

    AGUNWAMBA

    1998-11-01

    / This paper is a presentation of the problems of solid waste management in Nigeria and certain important issues that must be addressed in order to achieve success. At the core of the problems of solid waste management are the absence of adequate policies, enabling legislation, and an environmentally stimulated and enlightened public. Government policies on the environment are piecemeal where they exist and are poorly implemented. Public enlightenment programs lacked the needed coverage, intensity, and continuity to correct the apathetic public attitude towards the environment. Up to now the activities of the state environmental agencies have been hampered by poor funding, inadequate facilities and human resources, inappropriate technology, and an inequitable taxation system. Successful solid waste management in Nigeria will require a holistic program that will integrate all the technical, economic, social, cultural, and psychological factors that are often ignored in solid waste programs.KEY WORDS: Solid waste; Management; Problems; Solutions; Nigeria

  9. Anaerobic digestion of food waste - Challenges and opportunities.

    Science.gov (United States)

    Xu, Fuqing; Li, Yangyang; Ge, Xumeng; Yang, Liangcheng; Li, Yebo

    2018-01-01

    The disposal of large amounts of food waste has caused significant environmental pollution and financial costs globally. Compared with traditional disposal methods (i.e., landfilling, incineration, and composting), anaerobic digestion (AD) is a promising technology for food waste management, but has not yet been fully applied due to a few technical and social challenges. This paper summarizes the quantity, composition, and methane potential of various types of food waste. Recent research on different strategies to enhance AD of food waste, including co-digestion, addition of micronutrients, control of foaming, and process design, is discussed. It is envisaged that AD of food waste could be combined with an existing AD facility or be integrated with the production of value-added products to reduce costs and increase revenue. Further understanding of the fundamental biological and physicochemical processes in AD is required to improve the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Radioactive waste management in Brazil: a realistic view

    Energy Technology Data Exchange (ETDEWEB)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador, E-mail: paulo@cnen.gov.br, E-mail: jperez@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Xavier, Ana Maria, E-mail: axavier@cnen.gov.br [Comissao Nacional de Energia Nuclear (ESPOA/CNEN-RS), Porto Alegre, RS (Brazil)

    2014-07-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  11. An innovative simulation tool for waste to energy generation opportunities

    Directory of Open Access Journals (Sweden)

    Bilal Abderezzak

    2017-03-01

    Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.

  12. Energy recovery from solid waste. Volume 1: Summary report

    Science.gov (United States)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  13. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  14. Preparation of radiological effluent technical specifications for nuclear power plants. a guidance manual for users of standard technical specifications

    Energy Technology Data Exchange (ETDEWEB)

    Boegli, J.S.; Bellamy, R.R.; Britz, W.L.; Waterfield, R.L. (eds.)

    1978-10-01

    The purpose of this manual is to describe methods found acceptable to the staff of the U.S. Nuclear Regulatory Commission (NRC) for the calculation of certain key values required in the preparation of proposed radiological effluent Technical Specifications using the Standard Technical Specifications for light-water-cooled nuclear power plants. This manual also provides guidance to applicants for operating licenses for nuclear power plants in the preparation of proposed radiological effluent Technical Specifications or in preparing requests for changes to existing radiological effluent Technical Specifications for operating licenses. The manual additionally describes current staff positions on the methodology for estimating radiation exposure due to the release of radioactive materials in effluents and on the administrative control of radioactive waste treatment systems.

  15. The extraction of vanadium pentoxide from waste of titanium tetrachloride by various methods

    Directory of Open Access Journals (Sweden)

    Инна Михайловна Гунько

    2015-04-01

    Full Text Available In article the recovery possibility of vanadium pentoxide from wastes, formed as a result of purification from impurities of technical titanium tetrachloride is researched. The purification from impurities is realized by different methods – pulp of lower titanium chlorides, hydrocarbonic reducer and cascade-rectifying purification. Usage of these purification methods leads to formation of anthropogenic wastes. The researches is shown that processing of these wastes is reasonable for the purpose of vanadium pentoxide extraction

  16. Banal industrial waste: the charms of banality; Les DIB: les charmes de la banalite

    Energy Technology Data Exchange (ETDEWEB)

    Vernier, J.

    1997-11-01

    Waste from shops or craftsmen's workshops, tyres, worn out vehicles or computers, plastic bins, beetroot pulp... all these different kinds of waste sum up into one single family: banal industrial waste which 1992 law considers as household garbage. The limits of this family being rather hazy, no wonder its assessment is problematic and its management can not be reduced to a mere technical problem. (author)

  17. The economics of biomedical waste irradiation: Key issues influencing total cost

    Science.gov (United States)

    Wilson, Bruce K.

    1993-07-01

    Each application of gamma irradiation technology is different in one or more significant respects. Disinfections of Biomedical Wastes presents similar technical challenges to sterilization of Medical Supplies, but the economic issues are dramatically different. Regulatory requirements, site and technology approvals, waste separation/mixing, transportation, irradiation utilization, economies of scale, and end-product disposal can each have a probibitive or enabling effect on whether irradiation of biomedical wastes makes good financial sense in particular situation. This paper discusses each of these issues.

  18. Independent engineering review of the Hanford Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  19. Characterization recommendations for waste sites at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil.

  20. Waste in health information systems: a systematic review.

    Science.gov (United States)

    Awang Kalong, Nadia; Yusof, Maryati

    2017-05-08

    Purpose The purpose of this paper is to discuss a systematic review on waste identification related to health information systems (HIS) in Lean transformation. Design/methodology/approach A systematic review was conducted on 19 studies to evaluate Lean transformation and tools used to remove waste related to HIS in clinical settings. Findings Ten waste categories were identified, along with their relationships and applications of Lean tool types related to HIS. Different Lean tools were used at the early and final stages of Lean transformation; the tool selection depended on the waste characteristic. Nine studies reported a positive impact from Lean transformation in improving daily work processes. The selection of Lean tools should be made based on the timing, purpose and characteristics of waste to be removed. Research limitations/implications Overview of waste and its category within HIS and its analysis from socio-technical perspectives enabled the identification of its root cause in a holistic and rigorous manner. Practical implications Understanding waste types, their root cause and review of Lean tools could subsequently lead to the identification of mitigation approach to prevent future error occurrence. Originality/value Specific waste models for HIS settings are yet to be developed. Hence, the identification of the waste categories could guide future implementation of Lean transformations in HIS settings.

  1. Construction and Demolition Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Andersen, L.

    2011-01-01

    Construction and demolition waste (C&D waste) is the waste generated during the building, repair, remodeling or removal of constructions. The constructions can be roads, residential housing and nonresidential buildings. C&D waste has traditionally been considered without any environmental problems...... and has just been landfilled. However, in recent years more focus has been put on C&D waste and data are starting to appear. One reason is that it has been recognized that C&D waste may include many materials that are contaminated either as part of their original design or through their use and therefore...... should be managed accordingly. Another reason is that it has been documented that a large fraction of C&D waste (about 90 %) can be easily recycled and thus can conserve landfill capacity. C&D waste may conveniently be divided into three subcategories: Buildings, roads and excavations. This chapter...

  2. 78 FR 27963 - Reliability Technical Conference; Notice of Technical Conference

    Science.gov (United States)

    2013-05-13

    ... Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, July 9, 2013... to the webcast. The Capitol Connection provides technical support for webcasts and offers the option...

  3. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  4. Business unusual - Waste Act implementation: solid waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2013-08-01

    Full Text Available The preamble to the Waste Act (2008) is very clear that, as a result of this legislation, waste management in South Africa will never be the same again. This should send a clear message that ‘business as usual’ will no longer be sufficient....

  5. Biohazardous waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.

    2004-01-01

    This plan describes the process for managing non-medical biohazardous waste at Sandia National Laboratories California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of biohazardous waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to non-medical biohazardous waste.

  6. Medical waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  7. INTEGRATED WASTE MANAGEMENT SYSTEM

    OpenAIRE

    Truptimala Patanaik; Ambika Priyadarshini Mishra; Aishariya Durga; Gayatri Avipsa

    2016-01-01

    The towns and cities have become the centres of population growth and require three essential services viz., water supply, waste water treatment and solid wastes disposal. The tremendous increase in population accelerates the amount of municipal solid waste (MSW) generation. Hence, the solid waste management (SWM) is one of the essential municipal services, to protect the environment, safeguard public health services and improve productivity.   In this context the case study is c...

  8. Solid waste handling

    Energy Technology Data Exchange (ETDEWEB)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  9. Household food waste

    NARCIS (Netherlands)

    Wahlen, S.; Winkel, Thomas

    2017-01-01

    Food waste is debated not only in the light of sustainable consumption in research and policy, but also in the broader public. This article focuses on food waste in household contexts, what is widely believed the end of the food chain. However, household food waste is far more complex and intricate

  10. Nuclear wastes; Dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  11. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  12. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  13. Rock & Roll : Waste seperation

    NARCIS (Netherlands)

    Beunder, L.; Rem, P.C.; Van Den Berg, R.

    2000-01-01

    Five hundred tonnes of glass, 1 million tonnes of plastic,14 million tonnes of building and demolition waste, 7 million tonnes of household waste, 3 million tonnes of packaging, 3.5 million tonnes of paper and board, and 300,000 old cars. All part of the annual harvest of waste materials in the

  14. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  15. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  16. Radioactive Waste Burial Grounds. Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Jaegge, W.J.; Kolb, N.L.; Looney, B.B.; Marine, I.W.; Towler, O.A.; Cook, J.R.

    1987-03-01

    This document provides environmental information on postulated closure options for the Radioactive Waste Burial Grounds at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations. The closure options considered for the Radioactive Waste Burial Grounds are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

  17. Disposal of radioactive waste. Some ethical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian

    2014-07-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  18. Guide to radioactive waste management literature

    Energy Technology Data Exchange (ETDEWEB)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.

  19. Cultural change and support of waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Boylan, M.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    The process of bringing a subject like pollution prevention to top of mind awareness, where designed to prevent waste becomes part of business as usual, is called cultural change. With Department of Energy orders and management waste minimization commitment statements on file, the REAL work is just beginning at the Idaho National Engineering Laboratory (INEL); shaping the attitudes of 11,000+ employees. The difficulties of such a task are daunting. The 890 square mile INEL site and in-town support offices mean a huge diversity of employee jobs and waste streams; from cafeteria and auto maintenance wastes to high-level nuclear waste casks. INEL is pursuing a three component cultural change strategy: training, publicity, and public outreach. To meet the intent of DOE orders, all INEL employees are slated to receive pollution prevention orientation training. More technical training is given to targeted groups like purchasing and design engineering. To keep newly learned pollution prevention concepts top-of-mind, extensive site-wide publicity is being developed and conducted, culminating in the April Pollution Prevention Awareness Week coinciding with Earth Day 1992. Finally, news of INEL pollution prevention successes is shared with the public to increase their overall environmental awareness and their knowledge of INEL activities. An important added benefit is the sense of pride the program instills in INEL employees to have their successes displayed so publicly.

  20. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  1. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  2. Municipal-waste combustion study: recycling of solid waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cheverly, D.

    1987-06-01

    In this report, background information on recycling, its status in the United States and abroad, and its technical feasibility are examined. Also, because recycling is expected to be an integral part of a solid-waste management plan that includes combustion, potential effects on combustion of removing materials from the waste are considered. The report is designed to convey a sense of the current status of recycling and its technical feasibility, rather than to embody comprehensive authoritative reference material. Subjects addressed in the report include the current extent of recycling in the United States and in several other countries; feasibility of recycling; methods for separation of materials; information on uses and markets for recovered materials; and questions concerning the effects of recycling activities on combustion processes.

  3. Determinants of sustainability in solid waste management--the Gianyar Waste Recovery Project in Indonesia.

    Science.gov (United States)

    Zurbrügg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Küper, David

    2012-11-01

    According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  5. Decentralized Urban Solid Waste Management in Indonesia | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will develop and validate four models of decentralized solid waste management in low-income urban areas of Tangerang, Sidoarjo, Denpasar and Mataram. The four models will be evaluated in terms of cost-recovery, technical sustainability and social acceptability. Efforts will be made to achieve recognition of ...

  6. Guidelines for Local Governments on Solid Waste Management.

    Science.gov (United States)

    National Association of Counties, Washington, DC. Research Foundation.

    This document consists of ten guides on Solid Waste Management to assist local elected and appointed policy-making officials. They are entitled: Areawide Approaches; Legal Authority, Planning, Organization Design and Operation, Financing, Technical and Financial Assistance, Citizen Support, Personnel, and Action Plan and Bibliography. The guides…

  7. Radioactive Waste...The Problem and Some Possible Solutions

    Science.gov (United States)

    Olivier, Jean-Pierre

    1977-01-01

    Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)

  8. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  9. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  10. Eliminating Medical Waste Liabilities Through Mobile Maceration and Disinfection

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Rankin; N. R. Soelberg; K. M. Klingler; C. W. Lagle; L. L. Byers

    2006-02-01

    Commercial medical waste treatment technologies include incineration, melting, autoclaving, and chemical disinfection. Incineration disinfects, destroys the original nature of medical waste, and reduces the waste volume by converting organic waste content to carbon dioxide and water, leaving only residual inorganic ash. However, medical waste incinerator numbers have plummeted from almost 2,400 in 1995 to 115 in 2003 and to about 62 in 2005, due to negative public perception and escalating compliance costs associated with increasingly strict regulations. High-temperature electric melters have been designed and marketed as incinerator alternatives, but they are also costly and generally must comply with the same incinerator emissions regulations and permitting requirements. Autoclave processes disinfect medical waste at much lower operating temperatures than incinerators operate at, but are sometimes subject to limitations such as waste segregration requirements to be effective. Med-Shred, Inc. has developed a patented mobile shredding and chemical disinfecting process for on-site medical waste treatment. Medical waste is treated on-site at customer facilities by shredding and disinfecting the waste. The treated waste can then be transported in compliance with Health Insurance Portability and Accountability Act of 1996 (HIPAA) requirements to a landfill for disposal as solid municipal waste. A team of Idaho National Laboratory engineers evaluated the treatment process design. The process effectiveness has been demonstrated in mycobacterium tests performed by Analytical Services Incorporated. A process description and the technical and performance evaluation results are presented in the paper. A treatment demonstration and microbiological disinfecting tests show that the processor functions as it was intended.

  11. Sustainable solutions for solid waste management in Southeast Asian countries.

    Science.gov (United States)

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  12. Issues for the long term management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.; Schieber, C. [CEPN, 92 - Fontenay-aux-Roses (France); Lavelle, S. [ICAM, 59 - Lille (France)

    2006-07-01

    High-level radioactive waste are currently managed in interim storage installations, providing an adequate protection of the public and the workers for the short term period. However, the long-term persistence of the radioactivity of the waste gives a new timescale dimension, never experimented by the society for the development of protection systems. In the framework of the European Commission research project 'COWAM-2' (COmmunity WAste Management) dedicated to the governance of radioactive waste management, the issues of 'long term governance' have been addressed by exploring the elements which can contribute to a better integration of the technical and societal time dimensions, taking into account technical, ethical, economic and organizational considerations. The originality of this project is to address the various issues within working groups involving stakeholders from different origins and European countries together with a research team. After a discussion on the time dimensions to be taken into account from the technical and societal perspective, this paper presents, mainly based on the findings of the COWAM-2 project, a brief analysis of the ethical criteria to be considered when future generations are concerned as well as some performance criteria regarding long term governance. Finally, it proposes a discussion on the interest for the radiation protection experts to engage a process with stakeholders concerned by radioactive waste management in order to favour the emergence of a sustainable management responding to the issues at stake and including radiation protection considerations for long term periods. (authors)

  13. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Chris [Altamont Environmental, Inc.

    2014-11-13

    The project, Capital Investment to Fund Equipment Purchases and Facility Modifications to Create a Sustainable Future for EnergyXchange served to replace landfill gas energy with alternative energy resources, primarily solar and wood waste. This is the final project closeout report.

  14. Feasibility Study of Food Waste Co-Digestion at U.S. Army Installations

    Science.gov (United States)

    2017-03-01

    data from Fort Huachuca DPW, graphed by ERDC-CERL). 3.3 Technical issues Fort Huachuca has implemented water conservation strategies that have... food supply. Note that the reclaimed water input would simply recycle back to the headworks. Technically possible, but not desirable due to...Huachuca DPW. San Diego, CA: All Star Technical Services. Arsova, L. May 2010. Anaerobic Digestion of Food Waste: Current Status, Problems, and an

  15. Technical training - Places available

    CERN Multimedia

    2012-01-01

    If you would like more information on a course, or for any other inquiry/suggestions, please contact Technical.Training@cern.ch Valeria Perez Reale, Learning Specialist, Technical Programme Coordinator (Tel.: 62424) Eva Stern and Elise Romero, Technical Training Administration (Tel.: 74924)   Electronics design Next Session Duration Language Availability Certified LabVIEW Associate Developer (CLAD) 06-Dec-12 to 06-Dec-12 1 hour English One more place available Compatibilité électromagnetique (CEM): Applications 23-Nov-12 to 23-Nov-12 3.5 hours English 3 places available Compatibilité électromagnétique (CEM): Introduction 23-Nov-12 to 23-Nov-12 3 hours English 43 places available Effets des Radiations sur les composants et systèmes électroniques 11-Dec-12 to 12-Dec-12 1 day 4 hours French 9 places available LabVIEW for beginners ...

  16. Technical training: places available

    CERN Multimedia

    2013-01-01

    If you would like more information on a course, or for any other inquiry/suggestions, please contact Technical.Training@cern.ch Valeria Perez Reale, Learning Specialist, Technical Programme Coordinator (Tel.: 62424) Eva Stern and Elise Romero, Technical Training Administration (Tel.: 74924)   Electronics design Next Session Duration Language Introduction to VHDL 21-Feb-13 to 22-Feb-13 2 days English Mechanical design Next Session Duration Language ANSYS - Introduction à ANSYS Mechanical APDL 04-Feb-13 to 07-Feb-13 4 days English Applications de la cotation fonctionnelle et du langage ISO 06-Feb-13 to 08-Feb-13 2 days 4 hours French CATIA V5 – Surfacique 14-Jan-13 to 15-Jan-13 2 days French Office software Next Session Duration Language ACCESS 2010 - niveau 2 : ECDL 06-Feb-13 to 07-Feb-13 2 days French Dreamweaver CS3 - Niveau 1 14-Jan-13 to 15-Jan-13 2 d...

  17. Technical training - places available

    CERN Multimedia

    2012-01-01

    If you would like more information on a course, or for any other inquiry/suggestions, please contact Technical.Training@cern.ch Valeria Perez Reale, Learning Specialist, Technical Programme Coordinator (Tel.: 62424) Eva Stern and Elise Romero, Technical Training Administration (Tel.: 74924) HR Department »Electronics design Next Session Duration Language Availability Comprehensive VHDL for FPGA Design 08-Oct-12 to 12-Oct-12 5 days English 3 places available Foundations of Electromagnetism and Magnet Design (EMAG) 14-Nov-12 to 27-Nov-12 6 days English 20 places available Impacts de la suppression du plomb (RoHS) en électronique 26-Oct-12 to 26-Oct-12 8 hours French 15 places available Introduction to VHDL 10-Oct-12 to 11-Oct-12 2 days English 7 places available LabVIEW Real Time and FPGA 13-Nov-12 to 16-Nov-12 5 days French 5 places available »Mechanical design Next Se...

  18. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  19. Mixed waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  20. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    You are running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  1. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2009-01-01

    Are you running Vista on your new PC – or are you planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual session of this course will take place on 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  2. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    Are you running Vista on your new PC – or are you planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  3. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    You are running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced using Windows XP. The next bilingual sessions of this course will take place on December 12, 2008 and January 30, 2009. Register using our catalogue : http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at Technical.Training@cern.ch

  4. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    Are you running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at Technical.Training@cern.ch

  5. KSC Technical Capabilities Website

    Science.gov (United States)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.

    2010-01-01

    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  6. Nuclear waste management in Canada : critical issues, critical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Durant, D.; Fuji Johnson, G. (eds.)

    2009-07-01

    As Canada plans to build more nuclear reactors to increase energy production, the benefits and hazards of nuclear power and nuclear waste management continue to be debated. This book provided a discerning opposition to the supportive position taken by government and industry regarding the management of high-level nuclear fuel waste and the nuclear generation of electricity. The contributors explored key issues associated with nuclear energy development, such as safety, risk assessment, site selection and the public consultation process in Canada and its failure to address ethical and social issues. The technical challenges of nuclear waste management were reviewed along with the nature and means of developing social and ethical frameworks within which to assess technical options, consultative practices and decision-making processes. Strategies for thinking of the long term were also discussed. refs.

  7. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  8. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    Energy Technology Data Exchange (ETDEWEB)

    A. Alsaed

    2005-07-28

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to

  9. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  10. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  11. WASTE PACKAGE DESIGN SENSITIVITY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    P. Mecharet

    2001-03-09

    The purpose of this technical report is to present the current designs for waste packages and determine which designs will be evaluated for the Site Recommendation (SR) or Licence Application (LA), to demonstrate how the design will be shown to comply with the applicable design criteria. The evaluations to support SR or LA are based on system description document criteria. The objective is to determine those system description document criteria for which compliance is to be demonstrated for SR; and, having identified the criteria, to refer to the documents that show compliance. In addition, those system description document criteria for which compliance will be addressed for LA are identified, with a distinction made between two steps of the LA process: the LA-Construction Authorization (LA-CA) phase on one hand, and the LA-Receive and Possess (LA-R&P) phase on the other hand. The scope of this work encompasses the Waste Package Project disciplines for criticality, shielding, structural, and thermal analysis.

  12. Test Plan: WIPP bin-scale CH TRU waste tests

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

  13. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  14. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  15. Cleaning Up Electronic Waste (E-Waste)

    Science.gov (United States)

    While accurate data on the amount of e-waste being exported from the U.S. are not available, the United States government is concerned that these exports are being mismanaged abroad, causing serious public health and environmental hazards.

  16. Towards zero waste production in the minerals and metals sector

    Science.gov (United States)

    Rankin, William J.

    The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.

  17. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  18. Recovery and reuse of asphalt roofing waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  19. Tank waste remediation system fiscal year 1997 multi-year workplan WBS 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.E.

    1996-09-23

    The U.S. Department of Energy (DOE) established the Tank Waste Remediation System (TWRS) Program to manage and immobilize for disposal the waste contained in underground storage tanks at the Hanford Site. The TWRS program was established as a DOE major system acquisition under an approved Justification of Mission Need (JMN) dated January 19, 1993. The JMN states that the purpose of the TWRS Program is to: Resolve the tank waste safety issues; Integrate the waste disposal mission with the ongoing waste management mission; Assess the technical bases for tank waste management and disposal; Determine the technology available and develop any needed technologies; and Establish a dedicated organization and provide the resources to meet the technical challenge. The principal objectives of management of existing and future tank wastes is to cost-effectively minimize the environmental, safety, and health risks associated with stored wastes, with reduction of safety risks given the highest priority. The potentials must be minimized for release of tank wastes to the air and to the ground (and subsequently to the groundwater) and for exposure of the operating personnel to tank wastes.

  20. Final Technical Report

    International Development Research Centre (IDRC) Digital Library (Canada)

    Tommy Ngai

    2014-03-31

    Mar 31, 2014 ... capacity building activities) to upgrade the technical and management capacities of governments and NGOs .... Furthermore, as described in the original proposal, CAWST provided practical perspectives in ..... when a funder or manager refuses to include important and central issues in the evaluation.