WorldWideScience

Sample records for waste electronic devices

  1. Electronic wastes

    Science.gov (United States)

    Regel-Rosocka, Magdalena

    2018-03-01

    E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.

  2. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  3. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Inaguma, Masahiko; Takahara, Nobuaki; Hara, Satomi.

    1996-01-01

    In a processing device for filtering laundry liquid wastes and shower drains incorporated with radioactive materials, a fiber filtration device is disposed and an activated carbon filtration device is also disposed subsequent to the fiber filtration device. In addition, a centrifugal dewatering device is disposed for dewatering spent granular activated carbon in the activated carbon filtration device, and a minute filtering device is disposed for filtering the separated dewatering liquid. Filtrates filtered by the minute filtration device are recovered in a collecting tank. Namely, at first, suspended solid materials in laundry liquid wastes and shower drains are captured, and then, ingredients concerning COD are adsorbed in the activated carbon filtration device. The radioactive liquid wastes of spent granular activated carbon in the activated carbon filtration device are reduced by dewatering them by the centrifugal dewatering device, and then the granular activated carbon is subjected to an additional processing. Further, it is separated by filtration using the minute filtration device and removed as cakes. Since the filtrates are recovered to the collecting tank and filtered again, the water quality of the drains is not degraded. (N.H.)

  4. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Seki, Shuji.

    1992-01-01

    Liquid wastes are supplied to a ceramic filter to conduct filtration. In this case, a device for adding a powdery inorganic ion exchanger is disposed to the upstream of the ceramic filter. When the powdery inorganic ion exchanger is charged to the addition device, it is precoated to the surface of the ceramic filter, to conduct separation of suspended matters and separation of ionic nuclides simultaneously. Liquid wastes returned to a collecting tank are condensed while being circulated between the ceramic filter and the tank and then contained in a condensation liquid waste tank. With such a constitution, both of radioactive nuclides accompanied by suspended matters in the radioactive liquid wastes and ionic nuclides can be captured efficiently. (T.M.)

  5. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Ikeda, Takashi; Funabashi, Kiyomi; Chino, Koichi.

    1992-01-01

    In a waste processing device for solidifying, pellets formed by condensing radioactive liquid wastes generated from a nuclear power plant, by using a solidification agent, sodium chloride, sodium hydroxide or sodium nitrate is mixed upon solidification. In particular, since sodium sulfate in a resin regenerating liquid wastes absorbs water in the cement upon cement solidification, and increases the volume by expansion, there is a worry of breaking the cement solidification products. This reaction can be prevented by the addition of sodium chloride and the like. Accordingly, integrity of the solidification products can be maintained for a long period of time. (T.M.)

  6. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  7. Liquid waste processing device

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Obe, Etsuji; Wakamatsu, Toshifumi.

    1989-01-01

    In a liquid waste processing device for processing living water wastes discharged from nuclear power plant facilities through a filtration vessel and a sampling vessel, a filtration layer disposed in the filtration vessel is divided into a plurality of layers along planes vertical to the direction of flow and the size of the filter material for each of the divided layers is made finer toward the downstream. Further, the thickness of the filtration material in each of the divided layers is also reduced toward the downstream. The filter material is packed such that the porosity in each of the divided layers is substantially identical. Further, the filtration material is packed in a mesh-like bag partitioned into a desired size and laid with no gaps to the planes vertical to the direction of the flow. Thus, liquid wastes such as living water wastes can be processed easily and simply so as to satisfy circumstantial criteria without giving undesired effects on the separation performance and life time and with easy replacement of filter. (T.M.)

  8. Radioactive wastes eliminating device

    International Nuclear Information System (INIS)

    Mitsutsuka, Norimasa.

    1979-01-01

    Purpose: To eliminate impurities and radioactive wastes by passing liquid sodium in a cold trap and an adsorption device. Constitution: Heated sodium is partially extracted from the core of a nuclear reactor by way of a pump, flown into and cooled in heat exchangers and then introduced into a cold trap for removal of impurities. The liquid sodium eliminated with impurities is introduced into an adsorption separator and purified by the elimination of radioactive wastes. The purified sodium is returned to the nuclear reactor. A heater is provided between the cold trap and the adsorption separator, so that the temperature of the liquid sodium introduced into the adsorption separator is not lower than the minimum temperature in the cold trap to thereby prevent deposition of impurities in the adsorption separator. (Kawakami, Y.)

  9. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  10. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  11. Gaseous waste processing device

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1992-01-01

    In a gaseous waste processing device, if activated carbon is charged uniformly to a holdup tower, the amount of radioactive rare gases held in a first tower at the uppermost stream is increased to greater than that in other towers at the downstream since the radioactive rare gases decay in the form of an exponential function. Then in the present invention, the entire length of a plurality of activated carbon holdup towers connected in series is made longer than that of the towers in the downstream. As a result, since the amount of radioactive rare gases held in each of the holdup towers is made uniform, even if any one of connecting pipelines is ruptured, the amount of radioactive rare gases flown out is uniform. Only the body length of the holdup tower is changed because it is economical in view of the design and the manufacture of the vessel, and the cross section of the portion in which activated carbons are filled is made identical to keep the optimum flow rate of the rare gases. Thus, the radioactivity releasing amount can be minimized upon occurrence of an accident. (N.H.)

  12. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-16

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  13. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V-1·s-1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  14. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V−1·s−1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  15. Electronic security device

    Science.gov (United States)

    Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  16. Electronic security device

    International Nuclear Information System (INIS)

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-01-01

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs

  17. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  18. Liquid waste sampling device

    International Nuclear Information System (INIS)

    Kosuge, Tadashi

    1998-01-01

    A liquid pumping pressure regulator is disposed on the midway of a pressure control tube which connects the upper portion of a sampling pot and the upper portion of a liquid waste storage vessel. With such a constitution, when the pressure in the sampling pot is made negative, and liquid wastes are sucked to the liquid pumping tube passing through the sampling pot, the difference between the pressure on the entrance of the liquid pumping pressure regulator of the pressure regulating tube and the pressure at the bottom of the liquid waste storage vessel is made constant. An opening degree controlling meter is disposed to control the degree of opening of a pressure regulating valve for sending actuation pressurized air to the liquid pumping pressure regulator. Accordingly, even if the liquid level of liquid wastes in the liquid waste storage vessel is changed, the height for the suction of the liquid wastes in the liquid pumping tube can be kept constant. With such procedures, sampling can be conducted correctly, and the discharge of the liquid wastes to the outside can be prevented. (T.M.)

  19. Radioactive wastes processing device

    International Nuclear Information System (INIS)

    Takamura, Yoshiyuki; Fukujoji, Seiya.

    1986-01-01

    Purpose: To exactly recognize the deposition state of mists into conduits thereby effectively conduct cleaning. Constitution: A drier for performing drying treatment of liquid wastes, a steam decontaminating tower for decontaminating the steams generated from the drier and a condenser for condensating the decontaminating steams are connected with each other by means of conduits to constitute a radioactive wastes processing apparatus. A plurality of pressure detectors are disposed to the conduits, the pressure loss within the conduits is determined based on the detector output and the clogged state in the conduits due to the deposition of mists is detected by the magnitude of the pressure loss. If the clogging exceeds a certain level, cleaning water is supplied to clean-up the conduits thereby keep the operation to continue always under sound conditions. (Sekiya, K.)

  20. Electronic waste recycling techniques

    CERN Document Server

    Bernardes, Andréa

    2015-01-01

    This book presents an overview of the characterization of electronic waste. In addition, processing techniques for the recovery of metals, polymers and ceramics are described. This book serves as a source of information and as an educational technical reference for practicing scientists and engineers, as well as for students.

  1. Carbon footprint of electronic devices

    Science.gov (United States)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  2. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  3. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  4. Waste classifying and separation device

    International Nuclear Information System (INIS)

    Kakiuchi, Hiroki.

    1997-01-01

    A flexible plastic bags containing solid wastes of indefinite shape is broken and the wastes are classified. The bag cutting-portion of the device has an ultrasonic-type or a heater-type cutting means, and the cutting means moves in parallel with the transferring direction of the plastic bags. A classification portion separates and discriminates the plastic bag from the contents and conducts classification while rotating a classification table. Accordingly, the plastic bag containing solids of indefinite shape can be broken and classification can be conducted efficiently and reliably. The device of the present invention has a simple structure which requires small installation space and enables easy maintenance. (T.M.)

  5. Radioactive liquid wastes processing device

    International Nuclear Information System (INIS)

    Sauda, Kenzo; Koshiba, Yukihiko; Yagi, Takuro; Yamazaki, Hideki.

    1985-01-01

    Purpose: To carry out optimum photooxidizing procession following after the fluctuation in the density of organic materials in radioactive liquid wastes to thereby realize automatic remote procession. Constitution: A reaction tank is equipped with an ultraviolet lamp and an ozone dispersing means for the oxidizing treatment of organic materials in liquid wastes under the irradiation of UV rays. There are also provided organic material density measuring devices to the inlet and outlet of the reaction tank, and a control device for controlling the UV lamp power adjusting depending on the measured density. The output of the UV lamp is most conveniently adjusted by changing the applied voltage. The liquid wastes in which the radioactivity dose is reduced to a predetermined level are returned to the reaction tank by the operation of a switching valve for reprocession. The amount of the liquid wastes at the inlet is controlled depending on the measured ozone density by the adjusting valve. In this way, the amount of organic materials to be subjected to photolysis can be kept within a certain limit. (Kamimura, M.)

  6. Pressurized waterproof case electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-01

    A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed

  7. Waste Electrical and Electronic Equipment

    DEFF Research Database (Denmark)

    Bigum, Marianne Kristine Kjærgaard; Christensen, Thomas Højlund

    2011-01-01

    Waste electrical and electronic equipment (WEEE) is one of the fastest growing special waste types with an estimated growth of 3–5% per year (Cui and Forssberg, 2003). WEEE is a very heterogeneous waste type that contains many compounds that are considered to be harmful to both humans and the env......Waste electrical and electronic equipment (WEEE) is one of the fastest growing special waste types with an estimated growth of 3–5% per year (Cui and Forssberg, 2003). WEEE is a very heterogeneous waste type that contains many compounds that are considered to be harmful to both humans...

  8. ELSA electron stretcher devices

    International Nuclear Information System (INIS)

    1979-10-01

    The use of an electron stretcher ring at the Bonn electron synchrotron is discussed. The construction of the proposed ring is described, and the costs are estimated. Possible experiments using this ring are discussed. (HSI)

  9. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Murakami, Kazuo.

    1997-01-01

    In a radioactive gaseous waste processing device, a dehumidifier in which a lot of hollow thread membranes are bundled and assembled is disposed instead of a dehumidifying cooling device and a dehumidifying tower. The dehumidifier comprises a main body, a great number of hollow thread membranes incorporated in the main body, a pair of fixing members for bundling and fixing both ends of the hollow thread membranes, a pair of caps for allowing the fixing members to pass through and fixing them on both ends of the main body, an off gas flowing pipe connected to one of the caps, a gas exhaustion pipe connected to the other end of the cap and a moisture removing pipeline connected to the main body. A flowrate control valve is connected to the moisture removing pipeline, and the other end of the moisture removing pipeline is connected between a main condensator and an air extraction device. Then, cooling and freezing devices using freon are no more necessary, and since the device uses the vacuum of the main condensator as a driving source and does not use dynamic equipments, labors for the maintenance is greatly reduced to improve economical property. The facilities are reduced in the size thereby enabling to use space effectively. (N.H.)

  10. Electron accelerators for waste processing

    International Nuclear Information System (INIS)

    Kon'kov, N.G.

    1976-01-01

    The documents of the International symposium on radiation vaste processing are presented. Questions on waste utilization with the help of electron accelerators are considered. The electron accelerators are shown to have an advantage over some other ionizing radiation sources. A conclusion is made that radiation methods of waste processing are extensively elaborated in many developed countries. It has been pointed out that an electron accelerator is a most cheap and safe ionizing radiation source primarily for processing of gaseous and liquid wastes

  11. Electronic waste management approaches: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  12. Electronic waste management approaches: An overview

    International Nuclear Information System (INIS)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H.

    2013-01-01

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems

  13. Electronic waste management approaches: an overview.

    Science.gov (United States)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-01

    Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Radioactive gas waste processing device

    International Nuclear Information System (INIS)

    Soma, Koichi.

    1996-01-01

    The present invention concerns a radioactive gas waste processing device which extracts exhaust gases from a turbine condensator in a BWR type reactor and releases them after decaying radioactivity thereof during temporary storage. The turbine condensator is connected with an extracting ejector, a preheater, a recombiner for converting hydrogen gas into steams, an off gas condensator for removing water content, a flow rate control valve, a dehumidifier, a hold up device for removing radiation contaminated materials, a vacuum pump for sucking radiation decayed-off gases, a circulation water tank for final purification and an exhaustion cylinder by way of connection pipelines in this order. An exhaust gas circulation pipeline is disposed to circulate exhaust gases from an exhaust gas exit pipeline of the recycling water tank to an exhaust gas exit pipeline of the exhaust gas condensator, and a pressure control valve is disposed to the exhaust gas circulation pipeline. This enable to perform a system test for the dehumidification device under a test condition approximate to the load of the dehumidification device under actual operation state, and stabilize both of system flow rate and pressure. (T.M.)

  15. Radioactive liquid waste processing device

    International Nuclear Information System (INIS)

    Murakami, Susumu; Kuroda, Noriko; Matsumoto, Hiroyo.

    1991-01-01

    The present device comprises a radioactive liquid wastes concentration means for circulating radioactive liquid wastes between each of the tank, a pump and a film evaporator thereby obtaining liquid concentrates and a distilled water recovery means for condensing steams separated by the film evaporator by means of a condenser. It further comprises a cyclizing means for circulating the resultant distilled water to the upstream after the concentration of the liquid concentrates exceeds a predetermined value or the quality of the distilled water reaches a predetermined level. Further, a film evaporator having hydrophilic and homogeneous films is used as a film evaporator. Then, the quality of the distilled water discharged from the present device to the downstream can always satisfy the predetermined conditions. Further, by conducting operation at high concentration while interrupting the supply of the processing liquids, high concentration up to the aimed concentration can be attained. Further, since the hydrophilic homogeneous films are used, carry over of the radioactive material accompanying the evaporation is eliminated to reduce the working ratio of the vacuum pump. (T.M.)

  16. Pressurized waterproof case electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-31

    A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touchscreen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may include a small gas cartridge or may be provided from an external source.

  17. Solid waste electron beam treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1998-01-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  18. Solid waste electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1998-07-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g., cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  19. Remote detection of electronic devices

    Science.gov (United States)

    Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM

    2012-09-25

    An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.

  20. Electronic portal imaging devices

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The topics discussed include, among others, the following: Role of portal imaging; Port films vs. EPID; Image guidance: Elekta volume view; Delivery verification; Automation tasks of portal imaging; Types of portal imaging (Fluorescent screen, mirror, and CCD camera-based imaging; Liquid ion chamber imaging; Amorpho-silicon portal imagers; Fluoroscopic portal imaging; Kodak CR reader; and Other types of portal imaging devices); QA of EPID; and Portal dosimetry (P.A.)

  1. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Kishi, Tadao.

    1990-01-01

    The present invention concerns a radioactive gaseous waste processing device used in BWR power plants. A heater is disposed to the lower portion of a dryer for dehydrating radioactive off gases. Further, a thermometer is disposed to a coolant return pipeway on the exit side of the cooling portion of the dryer and signals sent from the thermometer are inputted to an automatic temperature controller. If the load on the dryer is reduced, the value of the thermometer is lowered than a set value, then an output signal corresponding to the change is supplied from the automatic temperature controller to the heater to forcively apply loads to the dryer. Therefore, defrosting can be conducted completely without operating a refrigerator, and the refrigerator can be maintained under a constant load by applying a dummy load when the load in the dryer is reduced. (I.N.)

  2. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  3. Electronic control devices

    International Nuclear Information System (INIS)

    Hartill, D.L.

    1981-01-01

    The subject of these lectures is the translation of information from particle detectors to computers. Large solid angle general purpose detectors at the intersection regions of high energy e+e- storage rings and pp and pp storage rings are discussed. Three choices for data acquisition are reviewed: use CAMAC (Computer Aided Measurement and Control), start from scratch and design a system, or wait for the final version of the proposed FASTBUS to be developed. The do-it-yourself procedure includes designs of drift chamber discriminator, time to amplitude converter, and data card block diagram. Trigger systems, the fast decision making systems judging an event interesting enough for a read-out cycle to be initiated, are discussed. Finally, a FASTBUS system layout, with its goals of minimum bus speed, general system topologies, and support multiple smart devices is given

  4. Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays

    International Nuclear Information System (INIS)

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-01-01

    Display devices such as cathode-ray tube (CRT) televisions and computer monitors are known to contain toxic substances and have consequently been banned from disposal in landfills in the State of California and elsewhere. New types of flat panel display (FPD) devices, millions of which are now purchased each year, also contain toxic substances, but have not previously been systematically studied and compared to assess the potential impact that could result from their ultimate disposal. In the current work, the focus is on the evaluation of end-of-life toxicity potential from the heavy metal content in select FPD devices with the intent to inform material selection and design-for-environment (DfE) decisions. Specifically, the metals antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc in plasma TVs, LCD (liquid crystal display) TVs, LCD computer monitors and laptop computers are considered. The human health and ecotoxicity potentials are evaluated through a life cycle assessment perspective by combining data on the respective heavy metal contents, the characterization factors in the U.S. EPA Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI), and a pathway and impact model. Principal contributors to the toxicity potentials are lead, arsenic, copper, and mercury. Although the heavy metal content in newer flat panel display devices creates less human health toxicity potential than that in CRTs, for ecological toxicity, the new devices are worse, especially because of the mercury in LCD TVs and the copper in plasma TVs.

  5. Ruthenium separation device from radioactive waste

    International Nuclear Information System (INIS)

    Ayabe, Osao.

    1988-01-01

    Purpose: To efficiently oxidize ruthenium in radioactive wastes and evaporize ruthenium tetraoxide after oxidization thereof, thereby improve the separation and recovery rate. Constitution: The device comprises an oxidization vessel for supplying an oxidizing agent into radioactive wastes to oxidize ruthenium in the wastes into ruthenium tetraoxide, and a distillation vessel for introducing radioactive wastes after oxidization, distillating under heating ruthenium tetraoxide leached into the wastes and evaporizing ruthenium tetraoxide. By dividing the device into the oxidizing vessel and the distillation vessel, the oxidizing treatment and the distilling treatment can individually be operated optimally to improve the separation and recovery rate of ruthenium. (Takahashi, M.)

  6. Electron emitting filaments for electron discharge devices

    International Nuclear Information System (INIS)

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1988-01-01

    This patent describes an electron emitting device for use in an electron discharge system. It comprises: a filament having a pair of terminal ends, electrical supply means for supplying electrical power to the terminal ends of the filament for directly heating the filament by the passage of an electrical current along the filament between the terminal ends, the filament being substantially tapered in cross section continuously in one direction from one of its pair of terminal ends to another of its pair of terminal ends to achieve uniform heating of the filament along the length thereof by compensating for the nonuniform current along the filament due to the emission of electrons therefrom

  7. Electronic device and method of manufacturing an electronic device

    NARCIS (Netherlands)

    2009-01-01

    An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units

  8. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  9. Fullerene Derived Molecular Electronic Devices

    Science.gov (United States)

    Menon, Madhu; Srivastava, Deepak; Saini, Subbash

    1998-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale electronic devices. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal grapheme sheet, more complex joints require other mechanisms. In this work we explore structural and electronic properties of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme.

  10. Capacitor ageing in electronic devices

    Directory of Open Access Journals (Sweden)

    Richard B. N. Vital

    2015-10-01

    Full Text Available The moment when an electronic component doesn’t work like requirements, previously established is a task that need to be considered since began of a system design. However, the use of different technologies, operating under several environmental conditions, makes a component choice a complex step in system design. This paper analyzes the effects that ageing phenomenon of capacitors may introduce in electronic devices operation. For this reason, reliability concepts, processes and mechanism of degradation are presented. Additionally, some mathematical models are presented to assist maintenance activities or component replacement. The presented approach compares the operability of intact and aged components.

  11. Incorporating Ethical Consumption into Electronic Device Acquisition: A Proposal

    Science.gov (United States)

    Poggiali, Jennifer

    2016-01-01

    This essay proposes that librarians practice ethical consumption when purchasing electronic devices. Though librarians have long been engaged with environmentalism and social justice, few have suggested that such issues as e-waste and sweatshop labor should impact our decisions to acquire e-readers, tablets, and other electronics. This article…

  12. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  13. Process and device for processing radioactive wastes

    International Nuclear Information System (INIS)

    1974-01-01

    A method is described for processing liquid radioactive wastes. It includes the heating of the liquid wastes so that the contained liquids are evaporated and a practically anhydrous mass of solid particles inferior in volume to that of the wastes introduced is formed, then the transformation of the solid particles into a monolithic structure. This transformation includes the compressing of the particles and sintering or fusion. The solidifying agent is a mixture of polyethylene and paraffin wax or a styrene copolymer and a polyester resin. The device used for processing the radioactive liquid wastes is also described [fr

  14. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Conducting polymers; LB films; biosensor microactuators; monolayers. ... have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices.

  15. Radioactive waste processing method and device

    International Nuclear Information System (INIS)

    Ozaki, Shigeru; Tateyama, Shinji.

    1998-01-01

    A powdery activated carbon is charged to radioactive liquid wastes to form a mixed slurry. The slurry is subjected to solid/liquid separation, and a high-molecular water absorbent is charged to the separated activated carbon sludge wastes to process them while stirring. The high-molecular water absorbent comprises a graft polymer of starch and acrylonitrile or a cross-linked polymer of sodium acrylate and a cross-linking agent. The high-molecular water absorbing agent is previously charged to a vessel for containing the wasted active carbon sludges. The device of the present invention comprises a filtration device for solid/liquid separation of the mixed slurry, a sludge-containing vessel, a device for charging the high-molecular water absorbent and a sludge stirring device. The device of charging the high-molecular water absorbent comprises a plurality of weighing devices for weighing the change of the weight of the charged products and a conveyor for transferring the sludge-containing vessels. With such a constitution, stable sludge can be obtained, and activated carbon sludge wastes can be burnt without crushing them. (T.M.)

  16. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  17. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  18. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Kawabe, Ken-ichi; Uchiyama, Yoshio; Konno, Masanobu; Suzuki, Kunihiko; Kimura, Tadahiro.

    1991-01-01

    A main steam bypass line is disposed to a main steam line of an air extractor for directly sending diluting steams to an exhaust gas line disposed upstream of a preheater not by way of the extractor. Then, a hydrogen flowmeter is disposed to a hydrogen injection line of a hydrogen supply device for measuring the amount of hydrogen to be injected. Further, a control means is disposed to the main steam bypass line for controlling the injection of the diluting steams based on a signal from the hydrogen flowmeter. With such a constitution, the amount of the hydrogen gas supplied from the hydrogen supply device is detected by the hydrogen flowmeter. The control means disposed to the main steam bypass line or the control means disposed directly to the main steam line injects the diluting steams to the exhaust gas line based on the signal from the hydrogen flowmeter. This can reduce the hydrogen concentration in the exhaust gas upstream of the pre-heater to less than an explosive limit, to enable a countermeasure for preventing hydrogen explosion upon hydrogen injection. (T.M.)

  19. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Maruki, Shin-ichiro.

    1991-01-01

    Radioactive off-gases extracted from a turbine main condensator by using an air extractor flown by way of an off-gas preheater and enter to an off-gas recombiner. Hydrogen in the off-gases is combined with oxygen into steams by the effect of catalysts in the off-gas recombiner. In this case, the off-gases are heated to a high temperature by the reaction heat due to the effect of the catalysts and discharged from the exit of the off-gas recombiner. The off-gases at a high temperature are returned once to the off-gas preheater at the upstream to be used as a heat source for the off-gas preheater. With such a constitution, since the amount of heat for exchange required for heating to about 160degC can be supplied, a heated steam supply device which has been disposed to the off-gas preheater can be saved. Further, the off-gases cooled through heat exchange upon heating the off-gas preheater are flown to the off-gas condensator and the steams are returned into the condensates. Since cooled off-gases enter into a cooling water supply device, the load thereof can be reduced compared with a conventional case. (T.M.)

  20. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  1. Advanced Materials and Devices for Bioresorbable Electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of

  2. Investigation of Electronic Corrosion at Device Level

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    This work presents device level testing of a lead free soldered electronic device tested with bias on under cyclic humidity conditions in a climatic chamber. Besides severe temperature and humidity during testing some devices were deliberately contaminated before testing. Contaminants investigated...

  3. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  4. Synaptic electronics: materials, devices and applications

    International Nuclear Information System (INIS)

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  5. Liquid wastes concentrating and solidifying device

    International Nuclear Information System (INIS)

    Kamiyoshi, Hideki; Ninokata, Yoshihide.

    1985-01-01

    Purpose: To provide a device for concentrating to solidify radioactive liquid wastes at large solidifying speed and with high decontaminating coefficient, without requirement for automatic control. Constitution: An asphalt solidifying device is disposed below a centrifugal thin film drier, and powder resulted from the drier is directly solidified with asphalt by utilizing the rotation of the drier for the mixing operation in the asphalt vessel. If abnormality should occur in the operation of the drier, resulting liquid wastes can be received and solidified in the asphalt vessel. The liquid wastes are heated to dry in a vessel main body having the heating surface at the circumferential surface. The vessel main body provided with a nozzle for supplying liquid to be treated disposed slantwise at the upper portion of the heating face, scrapers which rotate and slidingly contact the heating face and nozzles which jet out chemicals to the heating face behind the scrapers. Below the vessel main body, are disposed a funnel-like hopper for receiving falling scales, rotary vanes, and the likes by which the scales are introduced into the asphalt solidifying vessel. (Moriyama, K.)

  6. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  7. Electronic devices for analog signal processing

    CERN Document Server

    Rybin, Yu K

    2012-01-01

    Electronic Devices for Analog Signal Processing is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in Electronic Devices for Analog Signal Processing can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked by a diamon...

  8. Graphene nanoribbons for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhansong; Granzner, Ralf; Kittler, Mario; Schwierz, Frank [FG Festkoerperelektronik, Institut fuer Mikro- und Nanoelektronik und Institut fuer Mikro- und Nanotechnologien MacroNano registered, Technische Universitaet Ilmenau (Germany); Haehnlein, Bernd; Auge, Manuel; Pezoldt, Joerg [FG Nanotechnologie, Institut fuer Mikro- und Nanoelektronik und Institut fuer Mikro- und Nanotechnologien MacroNano registered, Technische Universitaet Ilmenau (Germany); Lebedev, Alexander A. [National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation); Division Solid State Electronics, Ioffe Institute, Sankt-Peterburg (Russian Federation); Davydov, Valery Y. [Division Solid State Electronics, Ioffe Institute, Sankt-Peterburg (Russian Federation)

    2017-11-15

    Graphene nanoribbons show unique properties and have attracted a lot of attention in the recent past. Intensive theoretical and experimental studies on such nanostructures at both the fundamental and application-oriented levels have been performed. The present paper discusses the suitability of graphene nanoribbons devices for nanoelectronics and focuses on three specific device types - graphene nanoribbon MOSFETs, side-gate transistors, and three terminal junctions. It is shown that, on the one hand, experimental devices of each type of the three nanoribbon-based structures have been reported, that promising performance of these devices has been demonstrated and/or predicted, and that in part they possess functionalities not attainable with conventional semiconductor devices. On the other hand, it is emphasized that - in spite of the remarkable progress achieved during the past 10 years - graphene nanoribbon devices still face a lot of problems and that their prospects for future applications remain unclear. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  10. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  11. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  12. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  13. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  14. Pressurized waterproof case for electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-01

    having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touch-screen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein

  15. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  17. Electronic waste (e-waste): Material flows and management practices in Nigeria

    International Nuclear Information System (INIS)

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    2008-01-01

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT) in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue

  18. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  19. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    OpenAIRE

    T. A. Ismailov; D. V. Evdulov; A. G. Mustafaev; D. K. Ramazanova

    2014-01-01

    In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  20. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  1. INTERFACE ELECTRONIC MEDICAL CARD ON MOBILE DEVICE

    Directory of Open Access Journals (Sweden)

    Y. L. Nechyporenko

    2013-05-01

    Full Text Available The concept designed by electronic medical card for heterogeneous environment of medical information systems at various levels. Appropriate model and technical solution. Done evaluating operating systems for mobile devices. Designed and produced by the project mobile application on Android OS as an electronic medical record on a Tablet PC Acer.

  2. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  3. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  4. Hazardous waste status of discarded electronic cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  5. Hazardous waste status of discarded electronic cigarettes

    International Nuclear Information System (INIS)

    Krause, Max J.; Townsend, Timothy G.

    2015-01-01

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers

  6. Device for solidification of gaseous wastes

    International Nuclear Information System (INIS)

    Shimada, Masayuki; Kamei, Hisashi.

    1979-01-01

    Purpose: To provide the subject device wherein gaseous wastes such as krypton 85 and the like are ionized and accelerated to be injected into solid targets and stored therein, thereby removing the redischarge of gas and making it possible to treat a large quantity of said gas. Constitution: Krypton gas is ionized and accelerated to high energy by an accelerator, and then introduced into an ion injection chamber. In the ion injection chamber a band-shaped target is delivered from a first take-up roll, and krypton ions are injected to said target. Thereafter, other band-shaped target delivered from a second take-up roll is brought into contact with the target in which krypton ions have been injected, and both targets are taken up together while compressing these targets. In this way, even when injected energy is small, the injected gas is not redischarged and can be continuously treated. (Kamimura, M.)

  7. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  8. Pressurized waterproof case for electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-31

    The pressurized waterproof case for an electronic device is particularly adapted for the waterproof containment and operation of a touch-screen computer or the like therein at some appreciable water depth. The case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touch-screen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may be a small gas cartridge (e.g., CO2), or may be provided from an external source, such as the diver\\'s breathing air. A pressure relief valve is also provided.

  9. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  10. Hazardous waste status of discarded electronic cigarettes.

    Science.gov (United States)

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  12. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-11-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... wireless communication devices, portable music and data processing devices, and tablet computers, by reason...

  13. Organic electronic devices using phthalimide compounds

    Science.gov (United States)

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  14. Electronic Waste: A Growing Challenge In Nigeria | Ukem | Global ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences ... growing problem of electronic waste from the Nigerian perspective, and highlights factors that can militate ... equipment, electronic waste, recycling, environmental pollution, waste management.

  15. Plasmonically enhanced hot electron based photovoltaic device.

    Science.gov (United States)

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.

  16. Remote Monitoring of Cardiac Implantable Electronic Devices.

    Science.gov (United States)

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. A device for electron gun emittance measurement

    International Nuclear Information System (INIS)

    Aune, B.; Corveller, P.; Jablonka, M.; Joly, J.M.

    1985-05-01

    In order to improve the final emittance of the beam delivered by the ALS electron linac a new gun is going to be installed. To measure its emittance and evaluate the contribution of different factors to emittance growth we have developed an emittance measurement device. We describe the experimental and mathematical procedure we have followed, and give some results of measurements

  18. Electrical and Electronical Waste Generation in Turkey: Bursa Case Study

    Directory of Open Access Journals (Sweden)

    Güray SALİHOĞLU

    2016-10-01

    Full Text Available Electrical and electronical equipment that gradually take more place in our daily life, spend their service life in short times and become an e-waste problem to be solved.  Because of the hazardous components they contain, e-waste can cause environmental and human health threats if they are not properly managed. If they are managed properly, they can be a valuable raw material source, since they contain valuable metals such as copper, silver, gold, palladium and recyclable components such as plastics and metals. According to a research conducted in 2014, the global e-waste amount accounts to a source worth 52 billion $; however, only 16% of this source has been properly recycled. It is important to know the potential e-waste amount and the behaviors of people in the production of e-waste to realize a proper e-waste management in our country. The amount and property of electrical and electronic equipment and e-waste generation potential per person in Bursa was investigated in this study. A questionnaire was prepared and applied to a group of people including 31 families (100 person. The questions were to investigate the behaviors in the use, replacement, and management of electrical and electronical equipment. The findings showed that usage of lamps (fluorescent and others were higher than the other equipment, and usage of mobile phones were found to be highest in terms of devices. It was also found that when the mobiles become e-waste since the owners do not want to use them, they are not just thrown away and kept at homes instead. E-waste generation potential of a person from the families investigated was estimated to be 8.14 kg/year.

  19. Shelf life of electronic/electrical devices

    International Nuclear Information System (INIS)

    Polanco, S.; Behera, A.K.

    1993-01-01

    This paper discusses inconsistencies which exist between various industry practices regarding the determination of shelf life for electrical and electronic components. New methodologies developed to evaluate the shelf life of electrical and electronic components are described and numerous tests performed at Commonwealth Edison Company's Central Receiving Inspection and Testing (CRIT) Facility are presented. Based upon testing and analysis using the Arrhenius methodology and typical materials used in the manufacturing of electrical and electronic components, shelf life of these devices was determined to be indefinite. Various recommendations to achieve an indefinite. Various recommendations to achieve an indefinite shelf life are presented to ultimately reduce inventory and operating costs at nuclear power plants

  20. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  1. Radioactive waste slurry dehydrating and drum filling device

    International Nuclear Information System (INIS)

    Ichihashi, Toshio; Abe, Kazuaki; Hasegawa, Akira

    1981-01-01

    Purpose: To obtain a device for simultaneously filling and dehydrating radioactive waste in a waste can without the necessity of a special device for dehydration. Constitution: This device includes a radioactive waste storage tank, a pump for supplying the waste from the tank to a can, a drain tube having a filter at the lower end and installed displaceable in the axial direction of the can, and a drain pump. The slurry stored in the radioactive waste storage tank is supplied by the pump to the can, and the feedwater in the slurry is removed by another pump through a drain pipe having a filter which does not pass solid content from the can. Accordingly, as the slurry is filled in the can, the feedwater contained therein is removed. Consequently, it can simultaneously dehydrate and fill the dehydrated waste in the can. (Yoshihara, H.)

  2. Development of an irradiation device for electron beam wastewater treatment

    International Nuclear Information System (INIS)

    Rela, Paulo Roberto

    2003-01-01

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  3. Leaching of Electronic Waste Using Biometabolised Acids

    Institute of Scientific and Technical Information of China (English)

    M. Saidan; B. Brown; M. Valix

    2012-01-01

    The revolution in information and communication technology has brought huge technical benefits and wealth, but has created a major global problem: the generation of vast amounts of electronic waste, or e-waste through product obsolesce. The challenge in managing e-waste will be in developing sustainable recycling tech- nologies that are able to address the volume and complexity of this waste using cost effective and ecologically sen-sitive methods. In this study, the capability or microorganism metabolic acids in dissolving the metallic tractions from waste printed circuit boards was examined. Several factors were considered in the examination of the activityof the acids-including secondary reactions, solution pH, temperature and the nature of ligands in solutions (or bioacid constituents). The leaching tests were cgnducted ex-situ, using synthetic organic acids. Leaching was performed for periods of up to 6 hat 70-90 ℃ and 1000 r-min-1.

  4. Electronic medical devices: a primer for pathologists.

    Science.gov (United States)

    Weitzman, James B

    2003-07-01

    Electronic medical devices (EMDs) with downloadable memories, such as implantable cardiac pacemakers, defibrillators, drug pumps, insulin pumps, and glucose monitors, are now an integral part of routine medical practice in the United States, and functional organ replacements, such as the artificial heart, pancreas, and retina, will most likely become commonplace in the near future. Often, EMDs end up in the hands of the pathologist as a surgical specimen or at autopsy. No established guidelines for systematic examination and reporting or comprehensive reviews of EMDs currently exist for the pathologist. To provide pathologists with a general overview of EMDs, including a brief history; epidemiology; essential technical aspects, indications, contraindications, and complications of selected devices; potential applications in pathology; relevant government regulations; and suggested examination and reporting guidelines. Articles indexed on PubMed of the National Library of Medicine, various medical and history of medicine textbooks, US Food and Drug Administration publications and product information, and specifications provided by device manufacturers. Studies were selected on the basis of relevance to the study objectives. Descriptive data were selected by the author. Suggested examination and reporting guidelines for EMDs received as surgical specimens and retrieved at autopsy. Electronic medical devices received as surgical specimens and retrieved at autopsy are increasing in number and level of sophistication. They should be systematically examined and reported, should have electronic memories downloaded when indicated, will help pathologists answer more questions with greater certainty, and should become an integral part of the formal knowledge base, research focus, training, and practice of pathology.

  5. Generation of electronic waste in India: Current scenario, dilemmas ...

    African Journals Online (AJOL)

    This paper tries to quantify the amount of E-waste generated in India with the related stakeholder involvement. Electronic waste (E-waste) or waste electrical and electronic equipments (WEEE), which is relatively a recent addition to the hazardous waste stream, is drawing rapid attention across the globe as the quantity ...

  6. Reading from electronic devices versus hardcopy text.

    Science.gov (United States)

    Hue, Jennifer E; Rosenfield, Mark; Saá, Gianinna

    2014-01-01

    The use of electronic reading devices has increased dramatically. However, some individuals report increased visual symptoms when reading from electronic screens. This investigation compared reading from two electronic devices (Amazon Kindle or Apple Ipod) versus hardcopy text in two groups of 20 subjects. Subjects performed a 20 min reading task for each condition. Both the accommodative response and reading rate were monitored during the trial. Immediately post-task, subjects completed a questionnaire concerning the ocular symptoms experienced during the task. In comparing the Kindle with hardcopy, no significant difference in the total symptom score was observed, although the mean score for the symptoms of tired eyes and eye discomfort was significantly higher with the Kindle. No significant differences in reading rate were found. When comparing the Ipod with hardcopy, no significant differences in symptom scores were found. The mean reading rate with the Ipod was significantly slower than for hardcopy while the mean lag of accommodation was significantly larger for the Ipod. Given the significant increase in symptoms with the Kindle, and larger lag of accommodation and reduced reading rate with the Ipod, one may conclude that reading from electronic devices is not equivalent to hardcopy.

  7. Electronic voltage and current transformers testing device.

    Science.gov (United States)

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.

  8. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  9. Ocular Tolerance of Contemporary Electronic Display Devices.

    Science.gov (United States)

    Clark, Andrew J; Yang, Paul; Khaderi, Khizer R; Moshfeghi, Andrew A

    2018-05-01

    Electronic displays have become an integral part of life in the developed world since the revolution of mobile computing a decade ago. With the release of multiple consumer-grade virtual reality (VR) and augmented reality (AR) products in the past 2 years utilizing head-mounted displays (HMDs), as well as the development of low-cost, smartphone-based HMDs, the ability to intimately interact with electronic screens is greater than ever. VR/AR HMDs also place the display at much closer ocular proximity than traditional electronic devices while also isolating the user from the ambient environment to create a "closed" system between the user's eyes and the display. Whether the increased interaction with these devices places the user's retina at higher risk of damage is currently unclear. Herein, the authors review the discovery of photochemical damage of the retina from visible light as well as summarize relevant clinical and preclinical data regarding the influence of modern display devices on retinal health. Multiple preclinical studies have been performed with modern light-emitting diode technology demonstrating damage to the retina at modest exposure levels, particularly from blue-light wavelengths. Unfortunately, high-quality in-human studies are lacking, and the small clinical investigations performed to date have failed to keep pace with the rapid evolutions in display technology. Clinical investigations assessing the effect of HMDs on human retinal function are also yet to be performed. From the available data, modern consumer electronic displays do not appear to pose any acute risk to vision with average use; however, future studies with well-defined clinical outcomes and illuminance metrics are needed to better understand the long-term risks of cumulative exposure to electronic displays in general and with "closed" VR/AR HMDs in particular. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:346-354.]. Copyright 2018, SLACK Incorporated.

  10. Guide to state-of-the-art electron devices

    CERN Document Server

    2013-01-01

    Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IEEE Electron Devices Committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists...

  11. Electronic equipment and software for device 'FAZA'

    International Nuclear Information System (INIS)

    Avdeev, S.P.; Karnaukhov, V.A.; Kuznetsov, V.D.; Petrov, L.A.; Oeschler, H.; Lips, F.; Bart, R.

    1992-01-01

    Electronic equipment and software for the device FAZA are described. The device, designed for studying the nuclear multifragmentation process, consists of 5 time-of-flight telescopes, a position-sensitive avalanche chamber and 58 PM tubes. The time resolution of the time-of-flight telescopes is 0.5 ns, which allows a velocity resolution of 1.5%. The spatial resolution of the large avalanche counter is 4 mm, which allows angular resolution of 1 deg. Analogue signals from each PM tube come to two ADCs, to which strobes are supplied with a 400 ns shift. It allows codes corresponding to Cherenkov radiation and deexcitation of CsJ(Tl) to be distinguished in a two-dimensional plot. 8 refs.; 2 figs

  12. Multiparametric electronic devices based on nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: FINK@HMI.DE; Saad, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Basic Science Department, Faculty of Science, Al Balqa University, Salt (Jordan); Dhamodaran, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Chandra, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Fahrner, W.R. [Chair of Electronic Devices, Institute of Electrotechnique, Fernuniversitaet, Hagen (Germany); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, GPO Box 4, ACT (Australia)

    2008-08-15

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r{sub ROI} around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1{mu}m leading to nanometric TEMPOS structures.

  13. Multiparametric electronic devices based on nuclear tracks

    International Nuclear Information System (INIS)

    Fink, D.; Saad, A.; Dhamodaran, S.; Chandra, A.; Fahrner, W.R.; Hoppe, K.; Chadderton, L.T.

    2008-01-01

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r ROI around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1μm leading to nanometric TEMPOS structures

  14. 14 CFR 91.21 - Portable electronic devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  15. 46 CFR 28.260 - Electronic position fixing devices.

    Science.gov (United States)

    2010-10-01

    ... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28...

  16. Method and device for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hayashi, Tadamasa.

    1981-01-01

    Purpose: To solidify radioactive waste without producing radioactive dusts by always heating and evaporating the water from liquid radioactive waste in a mixture of liquid plastic and exhausting the molten mixture of the waste residue and the plastic material. Constitution: Liquid plastic material in a tank cooled to prevent polymerization or changes of its properties is continuously supplied to the top of a heating and mixing evaporator by a constant supply pump. After the heat transfer surface of the evaporator is covered with the plastic material, radioactive waste in the tank is supplied to the evaporator via the constant supply pump. The waste is abruptly mixed with the plastic material by an agitating rotor, heated by a heater, and the evaporated water is fed to a condenser. An anhydrous molten mixture is continuously exhausted from the bottom of the evaporator into a mixture cooler, a polymerizing agent and catalyst are introduced thereinto from a polymerizing agent tank and a catalyst tank, inhibitor is introduced thereinto from a polymerization inhibitor tank as required, and is filled with the mixture a solidifying container while it is cooled for its polymerization and solidification. (Yoshino, Y.)

  17. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  18. Waste heat recovering device for reactors

    International Nuclear Information System (INIS)

    Sonoda, Masanobu; Shiraishi, Tadashi; Mizuno, Hiroyuki; Sekine, Yasuhiro.

    1982-01-01

    Purpose: To enable utilization of auxiliary-equipment-cooling water from a non-regenerative heat exchanger as a heat source, as well as prevent radioactive contamination. Constitution: A water warming device for recovering the heat of auxiliary equipment cooling water from a non-regenerative heat exchanger is disposed at the succeeding stage of the heat exchanger. Heat exchange is performed in the water warming device between the auxiliary equipment cooling water and a heat source water set to a higher pressure and recycled through the water warming device. The heat recovered from the auxiliary equipment cooling water is utilized in the heat source water for operating relevant equipments. (Aizawa, K.)

  19. A Proposal to Integrate the Management of Electronic Waste into the Curriculum of Primary Schools

    Science.gov (United States)

    de Jager, Thelma

    2015-01-01

    Today's children are growing up in an environmentally damaged and technology orientated world. The advent and advances of technology, has resulted in the production of millions of electronic devices, which eventually become waste when they reach their end-of-life. These devices contain toxic components that are not only polluting the environment…

  20. Oxide bipolar electronics: materials, devices and circuits

    International Nuclear Information System (INIS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  1. Sustainable transition of electronic products through waste policy

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2010-01-01

    regimes are described and analyzed together with the underlying regulatory principle of extended producer responsibility, which has guided the design of the directive. Conflicting interpretations of sustainability, in combination with a simplistic understanding and agency introduced from the top-down, has...... eliminated waste minimization as the main outcome of the directive. The concluding discussions raise the issues of the role of sustainable niche initiatives in electronics compared to multi-regime interaction. Guiding visions may need to be supplemented with other alignment devices in order to support co...

  2. Robust Optimal Design of Quantum Electronic Devices

    Directory of Open Access Journals (Sweden)

    Ociel Morales

    2018-01-01

    Full Text Available We consider the optimal design of a sequence of quantum barriers, in order to manufacture an electronic device at the nanoscale such that the dependence of its transmission coefficient on the bias voltage is linear. The technique presented here is easily adaptable to other response characteristics. There are two distinguishing features of our approach. First, the transmission coefficient is determined using a semiclassical approximation, so we can explicitly compute the gradient of the objective function. Second, in contrast with earlier treatments, manufacturing uncertainties are incorporated in the model through random variables; the optimal design problem is formulated in a probabilistic setting and then solved using a stochastic collocation method. As a measure of robustness, a weighted sum of the expectation and the variance of a least-squares performance metric is considered. Several simulations illustrate the proposed technique, which shows an improvement in accuracy over 69% with respect to brute-force, Monte-Carlo-based methods.

  3. Management and recycling of electronic waste

    International Nuclear Information System (INIS)

    Tanskanen, Pia

    2013-01-01

    Waste electrical and electronic equipment (WEEE) is one of the largest growing waste streams globally. Hence, for a sustainable environment and the economic recovery of valuable material for reuse, the efficient recycling of electronic scrap has been rendered indispensable, and must still be regarded as a major challenge for today’s society. In contrast to the well-established recycling of metallic scrap, it is much more complicated to recycle electronics products which have reached the end of their life as they contain many different types of material types integrated into each other. As illustrated primarily for the recycling of mobile phones, the efficient recycling of WEEE is not only a challenge for the recycling industry; it is also often a question of as-yet insufficient collection infrastructures and poor collection efficiencies, and a considerable lack of the consumer’s awareness for the potential of recycling electronics for the benefit of the environment, as well as for savings in energy and raw materials

  4. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Science.gov (United States)

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  5. Software to manage transformers using intelligent electronic device

    Directory of Open Access Journals (Sweden)

    Marcio Zamboti Fortes

    2016-01-01

    Full Text Available Power companies usually answer the increase in power demand by building new generation facilities. Nevertheless, an efficient use of energy could reduce and delay the costs of investment in new power plants. This paper shows a software system to manage transformers and evaluate losses when they work with zero loads. This system contributes to reduce the waste of energy with some simple actions such as shutting off an unused transformer or reconnecting disabled equipment based on the customer’s demand. It uses real time measurements collected from Intelligent Electronic Devices as a base for software decisions. It also measures and reports the total power saving.

  6. Reducing the tritium inventory in waste produced by fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  7. Device for the transport of radioactive waste

    International Nuclear Information System (INIS)

    Nolte, K.H.; Simmich, K.; Verhoeven, J.; Sondermann, W.; Frotscher, H.; Schuchardt, M.; Engelmann, H.J.; Kolditz, H.; Schwaegermann, H.F.

    1978-01-01

    The containers are transported purely by machine inside the loading cell of a cavern system and can be used for further overload transport after emptying and locking out of the loading cell. After unloading from the transport vehicle, the container passes through a radiation protection gate into the loading cell, where it is transported via rollers to a crane, whose rotating arm is provided with a pneumatically driven spindle screwdriver, which undoes all the screws on the container lid. After removing the lid, the electrically operated grab of a second rotating crane lifts the drum with the radioactive waste from the container and deposits them on rollers, from which they pass to a transport vessel, which transports the waste to the final storage position. The lid is then screwed back on to the empty container, the container is placed on some scales and is only transported through a window out of the loading cell if its weight agrees with the given tare weight. (HP) [de

  8. Device for the radiation centering at electron emitters

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Jessat, K.; Bahr, G.

    1985-01-01

    The invention has been directed at a device for a simplified and reliable centering of electron beams at electron emitters in particular for welding and thermal surface modifications. The electron beam has been focussed relatively to an electron-optical lens. A movable masked electron detector has been arranged at the electron beam deflection plane. The electron detector is connected with an electronic data evaluation equipment

  9. Aloe vera in active and passive regions of electronic devices towards a sustainable development

    Science.gov (United States)

    Lim, Zhe Xi; Sreenivasan, Sasidharan; Wong, Yew Hoong; Cheong, Kuan Yew

    2017-07-01

    The increasing awareness towards sustainable development of electronics has driven the search for natural bio-organic materials in place of conventional electronic materials. The concept of using natural bio-organic materials in electronics provides not only an effective solution to address global electronic waste crisis, but also a compelling template for sustainable electronics manufacturing. This paper attempts to provide an overview of using Aloe vera gel as a natural bio-organic material for various electronic applications. Important concepts such as responses of living Aloe vera plant towards electrical stimuli and demonstrations of Aloe vera films as passive and active regions of electronic devices are highlighted in chronological order. The biodegradability and biocompatibility of Aloe vera can bring the world a step closer towards the ultimate goal of sustainable development of electronic devices from "all-natural" materials.

  10. Economic analysis of evolution/devolution of electronic devices functionality

    Directory of Open Access Journals (Sweden)

    Esipov A. S.

    2017-12-01

    Full Text Available the researcher of this article has presented the analysis of evolution/devolution of electronic devices functionality as well as the analysis of the current situation at the computers and mobile devices market, and some thoughts about new products. Is a newer device better? Are corporations producing really new devices or they are only the improvement of old ones.

  11. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    International Nuclear Information System (INIS)

    Dominick, J L

    2001-01-01

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification

  12. Conferences on electronic waste in Costa Rica

    International Nuclear Information System (INIS)

    Roa Gutierrez, Floria

    2006-01-01

    The management system of electronic waste is a project organized and financed by the bilateral agreement Costa Rica - Holanda, it is integrated by governmental and non-governmental enterprises. It was divided in two phases, first performed in 2003 which provided a diagnosis on the management of electronic resources, based on the diagnosis a propose of strategy for recycling was made. The second phase is given in 2005 with the implementation and realization of the project including two pilots plans located one at the Instituto Tecnologico de Costa Rica and another in the community of Escazu, at the end some recommendations were given to strengthen the system. The electronic waste were divided in white line, gray and brown line; those with pollutants such as phosphorus, chromium, cadmium, barium, lead, beryllium, mercury are toxic and have different effects on human health. The project in Costa Rica has taken as examples several recycling plants in different countries, among them one installed in Belgica. As an outstanding figure of the diagnosis made it was determined that Costa Rica has no legal support regarding the handling of such materials. It has been accumulated in 2007 more than 24 260 tonnes and is growing rapidly year after year. Within the achieved progress in the implementation of the project are: the creation of a legal support, the organization of the compliance unit of the project, the valuation of environmental costs and the increase of enterprises offering the service of primary treatment [es

  13. Device for concentrating radioactive liquid wastes

    International Nuclear Information System (INIS)

    Adachi, Takuji; Uchiyama, Yoshio; Ukaji, Hideo.

    1981-01-01

    Purpose: To prevent the heat-transfer surface of a heat-transfer tube from adhering scale. Constitution: A differential-pressure generator is provided between a heater and an evaporator in order to make the vapor pressure at the heater side higher than that at the evaporator side. Pressure detectors are installed at the heating can outlet and at the evaporating can inlet. The detected pressure is converted to a signal, which is applied to a flow rate regulator, and so differential pressure production valve is operated. Thus, it can prevent the formation of a liquid lost region due to the evaporation under the pressure-decrease at the heating can side during the concentrating operation of the radioactive liquid waste, and also prevents the corrosion or explosion of the heat transfer tube due to the deposition of scale even if temperature of the heat transfer surface of the heat transfer tube is abnormally increased. (J.P.N.)

  14. Optimising waste from electric and electronic equipment collection systems: a comparison of approaches in European countries.

    Science.gov (United States)

    Friege, Henning; Oberdörfer, Michael; Günther, Marko

    2015-03-01

    The first European waste from electric and electronic equipment directive obliged the Member States to collect 4 kg of used devices per inhabitant and year. The target of the amended directive focuses on the ratio between the amount of waste from electric and electronic equipment collected and the mass of electric and electronic devices put on the market in the three foregoing years. The minimum collection target is 45% starting in 2016, being increased to 65% in 2019 or alternatively 85% of waste from electric and electronic equipment generated. Being aware of the new target, the question arises how Member States with 'best practice' organise their collection systems and how they enforce the parties in this playing field. Therefore the waste from electric and electronic equipment schemes of Sweden, Denmark, Switzerland, Germany and the Flemish region of Belgium were investigated focusing on the categories IT and telecommunications equipment, consumer equipment like audio systems and discharge lamps containing hazardous substances, e.g. mercury. The systems for waste from electric and electronic equipment collection in these countries vary considerably. Recycling yards turned out to be the backbone of waste from electric and electronic equipment collection in most countries studied. For discharge lamps, take-back by retailers seems to be more important. Sampling points like special containers in shopping centres, lidded waste bins and complementary return of used devices in all retail shops for electric equipment may serve as supplements. High transparency of collection and recycling efforts can encourage ambition among the concerned parties. Though the results from the study cannot be transferred in a simplistic manner, they serve as an indication for best practice methods for waste from electric and electronic equipment collection. © The Author(s) 2015.

  15. Device for processing regenerative wastes of ion exchange resin

    International Nuclear Information System (INIS)

    Kuroda, Osamu; Ebara, Katsuya; Shindo, Toshikazu; Takahashi, Sankichi

    1986-01-01

    Purpose: To facilitate the operation and maintenance of a processing device by dividing radioactive wastes produced in the regenerative process of ion exchange resin into a regenerated usable recovery liquid and wastes. Constitution: Sulfuric acid is recovered by a diffusion dialysis method from wastes containing sulfuric acid that are generated in the regenerative process of cation-exchange resin and also caustic soda is recovered by the diffusion dialysis method from wastes containing caustic soda that are generated in the regenerative process of anion-exchange resin. The sulfuric acid and caustic soda thus recovered are used for the regeneration of ion-exchange resin. A concentrator is provided for concentrating the sulfuric acid and caustic soda water solution to concentration suitable for the regeneration of these ion-exchange resins. Also provided is a recovery device for recovering water generated from the concentrator. This device is of so simple a constitution that its operation and maintenance can be performed very easily, thereby greatly reducing the quantity of waste liquid required to be stored in drums. (Takahashi, M.)

  16. Electronic Payments using Mobile Communication Devices

    NARCIS (Netherlands)

    Waaij, B.D. van der; Siljee, B.I.J.; Broekhuijsen, B.J.; Ponsioen, C.; Maas, A.; Aten, R.M.; Hoepman, J.H.; Loon, J.H. van; Smit, M.

    2009-01-01

    A method of making a payment uses a first mobile communication device (1) and a second mobile communication device (2), each mobile communication device being provided with a respective near field communication unit (11, 21) and at least one of the mobile communication devices being provided with an

  17. [Electronic Device for Retinal and Iris Imaging].

    Science.gov (United States)

    Drahanský, M; Kolář, R; Mňuk, T

    This paper describes design and construction of a new device for automatic capturing of eye retina and iris. This device has two possible ways of utilization - either for biometric purposes (persons recognition on the base of their eye characteristics) or for medical purposes as supporting diagnostic device. eye retina, eye iris, device, acquisition, image.

  18. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  19. MEMS/Electronic Device Design and Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility allows DoD to design and characterize state-of-the-art microelectromechanical systems (MEMS) and electronic devices. Device designers develop their own...

  20. Quality assurance for electronic portal imaging devices

    International Nuclear Information System (INIS)

    Shalev, S.; Rajapakshe, R.; Gluhchev, G.; Luchka, K.

    1997-01-01

    Electronic portal imaging devices (EPIDS) are assuming an ever-increasing role in the verification of radiation treatment accuracy. They are used both in a passive capacity, for the determination of field displacement distributions (''setup errors''), and also in an active role whereby the patient setup is corrected on the basis of electronic portal images. In spite of their potential impact on the precision of patient treatment, there are few quality assurance procedures available, and most of the EPIDS in clinical use are subject, at best, to only perfunctory quality assurance. The goals of this work are (a) to develop an objective and reproducible test for EPID image quality on the factory floor and during installation of the EPID on site; (b) to provide the user with a simple and accurate tool for acceptance, commissioning, and routine quality control; and (c) to initiate regional, national and international collaboration in the implementation of standardized, objective, and automated quality assurance procedures. To this end we have developed an automated test in which a simple test object is imaged daily, and the spatial and contrast resolution of the EPID are automatically evaluated in terms of ''acceptable'', ''warning'' and ''stop'' criteria. Our experience over two years shows the test to be highly sensitive, reproducible, and inexpensive in time and effort. Inter-institutional trials are under way in Canada, US and Europe which indicate large variations in EPID image quality from one EPID to another, and from one center to another. We expect the new standardized quality assurance procedure to lead to improved, and consistent image quality, increased operator acceptance of the technology, and agreement on uniform standards by equipment suppliers and health care agencies. (author)

  1. Processing method and device for radioactive waste containing surfactant

    International Nuclear Information System (INIS)

    Yukita, Atsushi; Yoshikawa, Ryozo; Izumida, Tatsuo; Nishi, Takashi; Hattori, Yasuo.

    1997-01-01

    Washing liquid wastes generated in washing facilities in a nuclear power plant are collected in a liquid waste collecting tank. A suspension containing a powdery active carbon is supplied to the liquid waste collecting tank. Organic ingredients such as of a surfactant, oil ingredients and radioactive materials in the form of ions contained in the washing liquid wastes are adsorbed to the powdery active carbon. The washing liquid wastes containing the powdery active carbon and granular radioactive materials are led into an active carbon separating and drying device. The powdery active carbon and granular radioactive materials contained in the washing liquid wastes are filtered and separated by a filtering plate, and accumulated as filtered materials on the surface of the filtering plate. The purified washing liquid wastes are discharged to the outside. The filtered materials are dried by hot steams (or hot water) and dried air. The filtered materials are peeled from the filtering plate. The filtered materials, in other word, dried powdery active carbon and granular radioactive materials are transported to and burnt in an incinerator. (I.N.)

  2. Recent progress in power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yasuhiko; Yatsuo, Tsutomu

    1987-02-01

    Recent progress and future trends of power semiconductor devices (especially with respect to motor speed control) were described. Conventional discrete devices such as thyristors, bipolar transistors, unipolar transistors and Bi-MOS devices were referenced to. Reference was also made to High Voltage ICs. There has been steady progress with each of these power devices in current carrying capability, voltage blocking capability and switching speed. The Bipolar-MOS integreated device and the High Voltage IC are particularly interesting because their abilities and performances are much enhanced by skillful combination with conventional discrete devices. However, no one device meets all the needs, and it will always be necessary to select the right device for a specific task. (11 figs, 35 refs)

  3. 3D Printed structural electronics: embedding and connecting electronic components into freeform electronic devices

    NARCIS (Netherlands)

    Maalderink, H.H.H.; Bruning, F.B.J.; Schipper, M.M.R. de; Werff, J.J.J. van der; Germs, W.W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  4. 3D Printed structural electronics : embedding and connecting electronic components into freeform electronic devices

    NARCIS (Netherlands)

    Maalderink, H.H.; Bruning, F.B.J.; de Schipper, M.R.; van der Werff, J.J.; Germs, W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  5. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  6. The pyrolytic-plasma method and the device for the utilization of hazardous waste containing organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Opalińska, Teresa [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Wnęk, Bartłomiej, E-mail: bartlomiej.wnek@itr.org.pl [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Witowski, Artur; Juszczuk, Rafał; Majdak, Małgorzata [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Bartusek, Stanilav [VŠB—Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava − Poruba Czech Republic (Czech Republic)

    2016-11-15

    Highlights: • A first stage of the process of waste utilization consisted in pyrolysis of waste. • Then the pyrolytic gas was oxidized with a use of non-equilibrium plasma. • The device for the process implementation was built and characterized. • Correctness of the device operation was proven with a use of the decomposition of PE. • Usefulness of the method was proven in the process of utilization of EW. - Abstract: This paper is focused on the new method of waste processing. The waste, including hazardous waste, contain organic compounds. The method consists in two main processes: the pyrolysis of waste and the oxidation of the pyrolytic gas with a use of non-equilibrium plasma. The practical implementation of the method requires the design, construction and testing of the new device in large laboratory scale. The experiments were carried out for the two kinds of waste: polyethylene as a model waste and the electronic waste as a real waste. The process of polyethylene decomposition showed that the operation of the device is correct because 99.74% of carbon moles contained in the PE samples was detected in the gas after the process. Thus, the PE samples practically were pyrolyzed completely to hydrocarbons, which were completely oxidized in the plasma reactor. It turned out that the device is useful for decomposition of the electronic waste. The conditions in the plasma reactor during the oxidation process of the pyrolysis products did not promote the formation of PCDD/Fs despite the presence of the oxidizing conditions. An important parameter determining the efficiency of the oxidation of the pyrolysis products is gas temperature in the plasma reactor.

  7. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  8. Ion age transport: developing devices beyond electronics

    Science.gov (United States)

    Demming, Anna

    2014-03-01

    There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic

  9. PROCESS DEVELOPMENT FOR THE RECOVERY OF CRITICAL MATERIALS FROM ELECTRONIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Lister, T. E.; Diaz, L. A.; Clark, G. G.; Keller, P.

    2016-09-01

    As electronic technology continues to evolve there is a growing need to develop processes which recover valuable material from antiquated technology. This need follows from the environmental challenges associated with the availability of raw materials and fast growing generation of electronic waste. Although just present in small quantities in electronic devices, the availability of raw materials, such as rare earths and precious metals, becomes critical for the production of high tech electronic devices and the development of green technologies (i.e. wind turbines, electric motors, and solar panels). Therefore, the proper recycling and processing of increasing volumes of electronic waste present an opportunity to stabilize the market of critical materials, reducing the demand of mined products, and providing a proper disposal and treatment of a hazardous waste stream. This paper will describe development and techno-economic assessment of a comprehensive process for the recovery of value and critical materials from electronic waste. This hydrometallurgical scheme aims to selectively recover different value segments in the materials streams (base metals, precious metals, and rare earths). The economic feasibility for the recovery of rare earths from electronic waste is mostly driven by the efficient recovery of precious metals, such as Au and Pd (ca. 80 % of the total recoverable value). Rare earth elements contained in magnets (speakers, vibrators and hard disk storage) can be recovered as a mixture of rare earths oxides which can later be reduced to the production of new magnets.

  10. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  11. Vacuum nanoelectronic devices novel electron sources and applications

    CERN Document Server

    Evtukh, Anatoliy; Yilmazoglu, Oktay; Mimura, Hidenori; Pavlidis, Dimitris

    2015-01-01

    Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments.  This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. Unique coverage of quantum physical results for electron-field emission and novel electron sourc...

  12. Bio/Nano Electronic Devices and Sensors

    National Research Council Canada - National Science Library

    Jones, W. K

    2008-01-01

    ...) Cold cathode microwave generator and ceramic electron multiplier-ceramic multiplier using a novel secondary electron yield materials of MgO and CNT was demonstrated as well as cooling structures...

  13. Metallurgical recovery of metals from electronic waste: A review

    International Nuclear Information System (INIS)

    Cui Jirang; Zhang Lifeng

    2008-01-01

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  14. Metallurgical recovery of metals from electronic waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cui Jirang [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: Jirang.Cui@material.ntnu.no; Zhang Lifeng [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: zhanglife@mst.edu

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  15. Status of electronic waste recycling techniques: a review.

    Science.gov (United States)

    Abdelbasir, Sabah M; Hassan, Saad S M; Kamel, Ayman H; El-Nasr, Rania Seif

    2018-05-08

    The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.

  16. Automatic shadowing device for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, F W; Bogitch, S

    1960-01-01

    For the past ten years in the laboratory of the Department of Nuclear Medicine and Radiation Biology at the University of California, and before that at Rochester, New York, every evaporation was done with the aid of an automatic shadowing device. For several months the automatic shadowing device has been available at the Atomic Bomb Casualty Commission (ABCC) Hiroshima, Japan with the modifications described. 1 reference.

  17. Transparent oxide electronics from materials to devices

    CERN Document Server

    Martins, Rodrigo; Barquinha, Pedro; Pereira, Luis

    2012-01-01

    Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings. The book describes the concept of transparent electronics, passive and active oxide semiconductors, multicomponent dielectrics and their importance for a new era of novel electronic materials and products. This is followed by a short history of transistors, and how oxides have revolutionized this field. It concludes with a glance at lo

  18. Scaling of ion implanted Si:P single electron devices

    International Nuclear Information System (INIS)

    Escott, C C; Hudson, F E; Chan, V C; Petersson, K D; Clark, R G; Dzurak, A S

    2007-01-01

    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n + ) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number

  19. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  20. Scaling of ion implanted Si:P single electron devices

    Energy Technology Data Exchange (ETDEWEB)

    Escott, C C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Hudson, F E [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Chan, V C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Petersson, K D [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Clark, R G [Centre for Quantum Computer Technology, School of Physics, UNSW, Sydney, 2052 (Australia); Dzurak, A S [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)

    2007-06-13

    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n{sup +}) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number.

  1. Thermal modeling and design of electronic systems and devices

    International Nuclear Information System (INIS)

    Wirtz, R.A.; Lehmann, G.L.

    1990-01-01

    The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance

  2. Incineration and pyrolysis vs. steam gasification of electronic waste.

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2018-05-15

    Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Driver electronic device use in 2013.

    Science.gov (United States)

    2015-04-01

    The percentage of drivers text-messaging or visibly manipulating : hand-held devices increased from 1.5 percent in : 2012 to 1.7 percent in 2013; however, this was not a statistically : significant increase. Driver hand-held cell phone : use decrease...

  4. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    Directory of Open Access Journals (Sweden)

    D. Dey

    2011-01-01

    Full Text Available The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  5. Sealing method and sealing device for radioactive waste containing vessel

    International Nuclear Information System (INIS)

    Ishiwatari, Koji; Otsuki, Akira

    1998-01-01

    A radioactive waste-containing body is hoisted down into a strong-material vessel opened upwardly, and a strong-material lid is hoisted down to the opening of the strong-material-vessel and welded. The strong material vessel is hoisted up and loaded on a corrosion resistant-material bottom plate placed horizontally. A corrosion resistant-material vessel having one opening end and having a corrosion resistant-material flange on the other end and previously agreed with the strong material-vessel main body is hoisted up by a hoisting device having an inserting device so that the opening of the corrosion resistant vessel is directed downwardly. The corrosion resistant vessel is press-fitted to the outside of the strong material-vessel by the inserting device while being heated by a preheater to shrink. Subsequently, the lower end of the corrosion resistant-material vessel and the corrosion resistant-material bottom plate are welded to constitute a corrosion resistant-material vessel. Then, the radioactive waste containing body can be sealed in a sealing vessel comprising the strong-material vessel and the corrosion resistant-material vessel. (N.H.)

  6. Compression device for feeding a waste material to a reactor

    Science.gov (United States)

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  7. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    CERN Document Server

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  8. Radioactive waste processing method and processing device therefor

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Nishi, Takashi; Noge, Kenji; Matsuda, Masami; Takeshi, Kiyotaka

    1998-01-01

    Each predetermined amount of aggregates such as cements and sands as water-hardening solidification materials and kneading water are charged from a solidification material containing vessel, an aggregate containing vessel and a kneading water containing vessel to a kneading vessel of a paste supply device. The cements, the sands and the kneading water are kneaded by the rotation of a kneader. A produced solidification material paste is charged from the kneader to a drum through a paste transporting pump. Miscellaneous radioactive solid wastes have been filled in a drum. The solidification paste produced while supplying the cements, the sands and the kneading water into the kneader is discharged from the kneader. Since increase of viscosity of the solid material paste in the kneader is suppressed, the solidification paste can be easily flown into narrow gaps between radioactive miscellaneous solid wastes in the drum. (I.N.)

  9. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  10. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Science.gov (United States)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  11. Evaluation and development of a policy for waste generation control - electric and electronic waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    Although a policy to reduce waste amount and promote recycling for large electric appliances was introduced, it is still in the initial stage operated in a form of recommendation and the general management system of electric and electronic waste has not established yet. In this study, the generation and disposal of electric and electronic waste were examined and the effectiveness of present policy was evaluated. Based on the analysis, a policy for the more appropriate electric and electronic waste management was presented. 34 refs., 4 figs., 51 tabs.

  12. Holmium hafnate: An emerging electronic device material

    International Nuclear Information System (INIS)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S.; Scott, James F.

    2015-01-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho 2 Hf 2 O 7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E g of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices

  13. Holmium hafnate: An emerging electronic device material

    Science.gov (United States)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Scott, James F.; Katiyar, Ram S.

    2015-03-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ˜20 and very low dielectric loss of ˜0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  14. Holmium hafnate: An emerging electronic device material

    Energy Technology Data Exchange (ETDEWEB)

    Pavunny, Shojan P., E-mail: shojanpp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S., E-mail: shojanpp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Scott, James F. [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE (United Kingdom)

    2015-03-16

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho{sub 2}Hf{sub 2}O{sub 7} (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E{sub g} of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  15. Gaseous waste deposition preventive device for glass melting furnace

    International Nuclear Information System (INIS)

    Takano, Sueo

    1998-01-01

    The device of the present invention comprises a heater for heating pressurized air and a moisturizer for mixing steams with the pressurized air heated by the heater to make moisturized pressurized air. Steams are mixed to rise humidity by the moisturizing up to the saturated vapor pressure at the temperature of the heating by heating pressurized air as an object of moisturizing by the heater to prevent dew condensation while increasing the amount of steams to be mixed. With such procedures, moisture enriched pressurized air can be jetted out thereby enabling to prevent deposition of solid materials and crystallized materials of gaseous wastes. (T.M.)

  16. Inventory Control: A Small Electronic Device for Studying Chemical Kinetics.

    Science.gov (United States)

    Perez-Rodriguez, A. L.; Calvo-Aguilar, J. L.

    1984-01-01

    Shows how the rate of reaction can be studied using a simple electronic device that overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium. The device, used in conjunction with an oscilloscope, supplies the voltages that represent the chemical variables that take part in the equilibrium.…

  17. Electronic system of TBR tokamak device

    International Nuclear Information System (INIS)

    Silva, R.P. da.

    1980-01-01

    The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author) [pt

  18. An examination of safety reports involving electronic flight bags and portable electronic devices

    Science.gov (United States)

    2014-06-01

    The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...

  19. Electronic waste and informal recycling in Kathmandu, Nepal

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Thapa, Khim B.; Cimpan, Ciprian

    2018-01-01

    In the absence of relevant policies and supporting infrastructure, many developing countries are struggling to establish a resource-oriented waste management system. In countries like Nepal, where informal recycling practices are prevalent, the lack of understanding of the existing system hinders...... surveys, and site observations was conducted to understand the local recycling sector, the lifecycle of electronic products, and the relevant stakeholders. E-waste is found to be an integral part of the existing solid waste management chain and, therefore, needs to be addressed collectively. We identify...... any advancement in this sector. We characterize the informal recycling chain in Kathmandu, where a workforce of more than 10,000 people handles the recyclable items in various waste streams, including electronic waste (e-waste). A field study, supported by key informant interviews, questionnaire...

  20. Non-destructive Reliability Evaluation of Electronic Device by ESPI

    International Nuclear Information System (INIS)

    Yoon, Sung Un; Kim, Koung Suk; Kang, Ki Soo; Jo, Seon Hyung

    2001-01-01

    This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information

  1. Molecular and nanoscale materials and devices in electronics.

    Science.gov (United States)

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  2. Few-electron Qubits in Silicon Quantum Electronic Devices

    Science.gov (United States)

    2014-09-01

    Calculation of the charge relaxation time T1 . . . . . . . . . . . . . . 63 5.1 The absence of spin blockade in dual-gated DQD devices . . . . . . . 70...2013. 98 115 [102] M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo , K. Yoshida, T. Taniyama, and S. Tarucha. Nat. Phys., 4:776–779

  3. Charge-coupled device area detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  4. Macroscopic charge quantization in single-electron devices

    NARCIS (Netherlands)

    Burmistrov, I.S.; Pruisken, A.M.M.

    2010-01-01

    In a recent paper by the authors [I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. Lett. 101, 056801 (2008)] it was shown that single-electron devices (single-electron transistor or SET) display "macroscopic charge quantization" which is completely analogous to the quantum Hall effect observed on

  5. Radioactivity concentration measuring device for radiation waste containing vessel

    International Nuclear Information System (INIS)

    Goto, Tetsuo.

    1994-01-01

    The device of the present invention can precisely and accurately measure a radioactive concentration of radioactive wastes irrespective of the radioactivity concentration distribution. Namely, a Ge detector having a collimator and a plurality of radiation detectors are placed at the outside of the radioactive waste containing vessel in such a way that it can rotate and move vertically relative to the vessel. The plurality of radiation detectors detect radiation coefficient signals at an assumed segment unit of a predetermined length in vertical direction and for every predetermined angle unit in the rotational direction. A weight measuring device determines the weight of the vessel. A computer calculates an average density of radioactivity for the region filled with radioactivity based on the determined net weight and radiation coefficient signals assuming that the volume of the radioactivity is constant. In addition, the computer calculates the amount of radioactivity in the assumed segment by conducting γ -ray absorption compensation calculation for the material in the vessel. Each of the amount of radioactivity is integrated to determine the amount of radioactivity in the vessel. (I.S.)

  6. Reverse technological waste logistics: a study of the behavior of mobile devices consumers

    Directory of Open Access Journals (Sweden)

    Liliane de Souza Vieira da Silva

    2016-09-01

    Full Text Available The electronics industry is one of the fastest growing in the world. It is estimated that 41 million tons of electronic waste, such as computers and mobile phones, is produced worldwide each year. The indiscriminate disposal of these materials has caused a lot of damage to the environment, and indirectly to human health. RL stands out as a new field of study that seeks to reintroduce these products to the economic chain or lead them to the proper disposal. This study aimed to investigate the knowledge of the administrative staff of a public educational institution in relation to the RL of mobile devices, with a sample of 142 respondents. This research is characterized as a quantitative, descriptive, cross-sectional survey. The key results showed that 60% of the population surveyed acknowledge that the improper disposal of mobile devices creates environmental problems, however, only 35% acknowledge that their improper disposal also creates problems for human health. Most consumers still keep their old devices at home. The survey found that 44% of respondents do not know where to dispose of their mobile devices, highlighting the need to educate consumers about the risks, and to provide consumers with collection points for these devices.

  7. Frontiers and prospects for recycling Waste Electrical and Electronic ...

    African Journals Online (AJOL)

    This paper reviews the frontlines and projections for the recycling of waste electrical and electronic equipment (WEEE) in Nigeria. The paper identified the sources of WEEE, showed chemical characterization of some WEEE components and presented measures to minimize these wastes through recycling opportunities.

  8. Regional Platform on Personal Computer Electronic Waste in Latin ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Regional Platform on Personal Computer Electronic Waste in Latin America and the Caribbean. Donation of ... This project aims to identify environmentally responsible and sustainable solutions to the problem of e-waste. ... Policy in Focus publishes a special issue profiling evidence to empower women in the labour market.

  9. Trade Measures for Regulating Transboundary Movement of Electronic Waste

    Directory of Open Access Journals (Sweden)

    Gideon Emcee Christian

    2017-08-01

    Full Text Available International trade in used electrical and electronics equipment (UEEE provides an avenue for socio-economic development in the developing world and also serves as a conduit for transboundary dumping of waste electrical and electronic equipment (WEEE also referred to as electronic waste or e-waste. The latter problem arises from the absence of a regulatory framework for differentiating between functional UEEE and junk e-waste. This has resulted in both functional UEEE and junk e-waste being concurrently shipped to developing countries under the guise of international trade in used electronics. Dealing with these problems will require effective regulation of international trade in UEEE from both exporting and importing countries. Although, the export of e-waste from the European Community to developing countries is currently prohibited, significant amount of e-waste from the region continue to flow into developing countries due to lax regulatory measures in the latter. Hence, there is need for a regulatory regime in developing countries to complement the prohibitory regime in the major e-waste source countries. This paper proposes trade measures modelled in line with WTO rules which could be adopted by developing countries in addressing these problems. The proposed measures include the development of a compulsory certification and labelling system for functional UEEE as well as trade ban on commercial importation of UEEE not complying with the said certification and labelling system. The paper then goes further to examine these proposed measures in the light of WTO rules and jurisprudence.

  10. Methods for recovering metals from electronic waste, and related systems

    Science.gov (United States)

    Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A; Clark, Gemma; Dufek, Eric J; Keller, Philip

    2017-10-03

    A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.

  11. Electronic cigarette devices and oro-facial trauma (Literature review)

    Science.gov (United States)

    Ghazali, A. F.; Ismail, A. F.; Daud, A.

    2017-08-01

    Detrimental effects of cigarette smoking have been well described and recognized globally. With recent advancement of technology, electronic cigarette has been introduced and gained its popularity and became a global trend, especially among young adults. However, the safety of the electronic devices remains debatable. This paper aimed to compile and review the reported cases of oro-facial trauma related to the usage of electronic cigarette devices. A literature search was conducted using PubMed/Medline in December 2016. The search terms used were a combination of “oral trauma”, “dental trauma”, “oral injury” and “electronic cigarette”. The search included all abstract published from the inception of the database until December 2016. Abstract that was written in English, case report, letter to editors, clinical and human studies were included for analysis. All selected abstract were searched for full articles. A total of 8 articles were included for review. All of the articles were published in 2016 with mostly case reports. The sample size of the studies ranged from 1 to 15 patients. Seven of the included articles are from United States of America and one from Mexico. Our review concluded that the use of electronic cigarette devices posed not only a safety concern but also that the devices were mostly unregulated. There should be a recognized authority body to regulate the safety and standard of the electronic devices.

  12. Progress in Group III nitride semiconductor electronic devices

    International Nuclear Information System (INIS)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  13. Consumers' Use of Personal Electronic Devices in the Kitchen.

    Science.gov (United States)

    Lando, Amy M; Bazaco, Michael C; Chen, Yi

    2018-02-23

    Smartphones, tablets, and other personal electronic devices have become ubiquitous in Americans' daily lives. These devices are used by people throughout the day, including while preparing food. For example, a device may be used to look at recipes and therefore be touched multiple times during food preparation. Previous research has indicated that cell phones can harbor bacteria, including opportunistic human pathogens such as Staphylococcus and Klebsiella spp. This investigation was conducted with data from the 2016 Food Safety Survey (FSS) and from subsequent focus groups to determine the frequency with which consumers use personal electronic devices in the kitchen while preparing food, the types of devices used, and hand washing behaviors after handling these devices. The 2016 FSS is the seventh wave of a repeated cross-sectional survey conducted by the U.S. Food and Drug Administration in collaboration with the U.S. Department of Agriculture. The goal of the FSS is to evaluate U.S. adult consumer attitudes, behaviors, and knowledge about food safety. The FSS included 4,169 adults that were contacted using a dual-frame (land line and cell phone interviews) random-digit-dial sampling process. The personal electronics module was the first of three food safety topics discussed by each of eight consumer focus groups, which were convened in four U.S. cities in fall 2016. Results from the 2016 FSS revealed that of those individuals who use personal electronic devices while cooking, only about one third reported washing hands after touching the device and before continuing cooking. This proportion is significantly lower than that for self-reported hand washing behaviors after touching risky food products such as raw eggs, meat, chicken, or fish. Results from the focus groups highlight the varied usage of these devices during food preparation and the related strategies consumers are using to incorporate personal electric devices into their cooking routines.

  14. dc-plasma-sprayed electronic-tube device

    Science.gov (United States)

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  15. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-15

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  16. Terrestrial radiation effects in ULSI devices and electronic systems

    CERN Document Server

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  17. Buffer layers and articles for electronic devices

    Science.gov (United States)

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  18. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Science.gov (United States)

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  19. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  20. Electrical and electronic waste: a global environmental problem.

    Science.gov (United States)

    Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya

    2007-08-01

    The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.

  1. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  2. Electronic device for endosurgical skills training (EDEST): study of reliability.

    Science.gov (United States)

    Pagador, J B; Uson, J; Sánchez, M A; Moyano, J L; Moreno, J; Bustos, P; Mateos, J; Sánchez-Margallo, F M

    2011-05-01

    Minimally Invasive Surgery procedures are commonly used in many surgical practices, but surgeons need specific training models and devices due to its difficulty and complexity. In this paper, an innovative electronic device for endosurgical skills training (EDEST) is presented. A study on reliability for this device was performed. Different electronic components were used to compose this new training device. The EDEST was focused on two basic laparoscopic tasks: triangulation and coordination manoeuvres. A configuration and statistical software was developed to complement the functionality of the device. A calibration method was used to assure the proper work of the device. A total of 35 subjects (8 experts and 27 novices) were used to check the reliability of the system using the MTBF analysis. Configuration values for triangulation and coordination exercises were calculated as 0.5 s limit threshold and 800-11,000 lux range of light intensity, respectively. Zero errors in 1,050 executions (0%) for triangulation and 21 errors in 5,670 executions (0.37%) for coordination were obtained. A MTBF of 2.97 h was obtained. The results show that the reliability of the EDEST device is acceptable when used under previously defined light conditions. These results along with previous work could demonstrate that the EDEST device can help surgeons during first training stages.

  3. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  4. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  5. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  6. Introduction to organic electronic and optoelectronic materials and devices

    CERN Document Server

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  7. Development of beam diagnostic devices for characterizing electron guns

    International Nuclear Information System (INIS)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D.; Mishra, R.L.; Sarukte, H.; Waghmare, A.; Thakur, N.; Dixit, K.P.

    2015-01-01

    The electron guns for the DC accelerators and RF Linacs are designed and developed at EBC/APPD/BARC, Kharghar. These electron guns need to be characterized for its design and performance. Two test benches were developed for characterizing the electron guns. Various beam diagnostic devices for measuring beam currents and beam sizes were developed. Conical faraday cup, segmented faraday cup, slit scanning bellows movement arrangement, multi-plate beam size measurement setup, multi- wire beam size measurement setup, Aluminum foil puncture assembly etc. were developed and used. The paper presents the in-house development of various beam diagnostics for characterizing electron guns and their use. (author)

  8. Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons

    International Nuclear Information System (INIS)

    Su, Guozhen; Zhang, Yanchao; Cai, Ling; Su, Shanhe; Chen, Jincan

    2015-01-01

    Most electronic cooling devices are powered by an external bias applied between the cold and the hot reservoirs. Here we propose a new concept of electronic cooling, in which cooling is achieved by using a reservoir of hot electrons as the power source. The cooling device incorporates two energy filters with the Lorentzian transmission function to respectively select low- and high-energy electrons for transport. Based on the proposed model, we analyze the performances of the device varying with the resonant levels and half widths of two energy filters and establish the optimal configuration of the cooling device. It is believed that such a novel device may be practically used in some nano-energy fields. - Highlights: • A new electronic cooling device powered by hot electrons is proposed. • Two energy filters are employed to select the electrons for transport. • The effects of the resonant levels and half widths of two filters are discussed. • The maximum cooling power and coefficient of performance are calculated. • The optimal configuration of the cooling device is determined.

  9. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  10. Plykin type attractor in electronic device simulated in MULTISIM

    Science.gov (United States)

    Kuznetsov, Sergey P.

    2011-12-01

    An electronic device is suggested representing a non-autonomous dynamical system with hyperbolic chaotic attractor of Plykin type in the stroboscopic map, and the results of its simulation with software package NI MULTISIM are considered in comparison with numerical integration of the underlying differential equations. A main practical advantage of electronic devices of this kind is their structural stability that means insensitivity of the chaotic dynamics in respect to variations of functions and parameters of elements constituting the system as well as to interferences and noises.

  11. Electronic cooling using an automatic energy transport device based on thermomagnetic effect

    International Nuclear Information System (INIS)

    Xuan Yimin; Lian Wenlei

    2011-01-01

    Liquid cooling for thermal management has been widely applied in electronic cooling. The use of mechanical pumps often leads to poor reliability, high energy consumption and other problems. This paper presents a practical design of liquid cooling system by mean of thermomagnetic effect of magnetic fluids. The effects of several structure and operation factors on the system performance are also discussed. Such a device utilizes an earth magnet and the waste heat generated from a chip or other sources to maintain the flow of working fluid which transfers heat to a far end for dissipation. In the present cooling device, no additional energy other than the waste heat dissipated is consumed for driving the cooling system and the device can be considered as completely self-powered. Application of such a cooling system to a hot chip results in an obvious temperature drop of the chip surface. As the heat load increases, a larger heat dissipation rate can be realized due to a stronger thermomagnetic convection, which indicates a self-regulating feature of such devices. - Research highlights: → Automatic electronic cooling has been realized by means of thermomagnetic effect. → Application of the cooling system to a hot chip results in an obvious surface temperature drop. → The system possesses a self-regulating feature of cooling performance.

  12. Electronic firing systems and methods for firing a device

    Science.gov (United States)

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  13. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  14. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Interim status thermal treatment...

  15. Electron beam application in gas waste treatment in China

    International Nuclear Information System (INIS)

    Wu Haifeng

    2003-01-01

    In the most recent decade, electron beam waste treatment technology attracted serious attention from environment policymaker and industrial leaders in power industry in China. Starting in middle of 1980's, Chinese research institute began experiment of electron beam treatment on flue gas. By the end of 2000, two 10,000 cubic meters per hour small scale electron beam gas purifying station were established in Sichuang province and Beijing. Several electron beam gas purifying demonstration projects are under construction. With robust economy and strong energy demand, needless to say, in near future, electron beam gas purifying technology will have a bright prospect in China. (author)

  16. Linking emerging hazardous waste technologies with the electronic information era

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.E.; Suk, W.A. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Blackard, B. [Technology Planning and Management Corp., Durham, NC (United States)

    1996-12-31

    In looking to the future and the development of new approaches or strategies for managing hazardous waste, it is important to understand and appreciate the factors that have contributed to current successful approaches. In the United States, several events in the last two decades have had a significant impact in advancing remediation of hazardous waste, including environmental legislation, legislative reforms on licensing federally funded research, and electronic transfer of information. Similar activities also have occurred on a global level. While each of these areas is significant, the electronic exchange of information has no national boundaries and has become an active part of major hazardous waste research and management programs. It is important to realize that any group or society that is developing a comprehensive program in hazardous waste management should be able to take advantage of this advanced approach in the dissemination of information. 6 refs., 1 tab.

  17. 77 FR 38829 - Certain Electronic Imaging Devices; Institution of Investigation

    Science.gov (United States)

    2012-06-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-850] Certain Electronic Imaging Devices; Institution of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 23, 2012...

  18. A Web Service and Interface for Remote Electronic Device Characterization

    Science.gov (United States)

    Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.

    2011-01-01

    A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…

  19. Front and backside processed thin film electronic devices

    Science.gov (United States)

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  20. Electron density measurement in an evolving plasma. Experimental devices

    International Nuclear Information System (INIS)

    Consoli, Terenzio; Dagai, Michel

    1960-01-01

    The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr

  1. In plane optical sensor based on organic electronic devices

    NARCIS (Netherlands)

    Koetse, M.M; Rensing, P.A.; Heck, G.T. van; Sharpe, R.B.A.; Allard, B.A.M.; Wieringa, F.P.; Kruijt, P.G.M.; Meulendijks, N.M.M.; Jansen, H.; Schoo, H.F.M.

    2008-01-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils

  2. Expert system for fault diagnostic in electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, G

    1984-03-01

    Troubleshooting of electronic devices and highly complex PCBS (printed circuit boards) is an area where expert systems can be used. In addition to the difficulties intrinsic to this area it is also impossible to integrate the amount of knowledge based on experience in a traditional model. 8 references.

  3. Opto-electronic devices with nanoparticles and their assemblies

    Science.gov (United States)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au NPs has great potential in modern electronics such as solid state lighting, plasma-based nanoelectronics, and memory devices.

  4. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar

    A Metal-Insulator-Semiconductor (MIS) based device is developed for investigation of hot electron enhanced chemistry. A model of the device is presented explaining the key concepts of the functionality and the character- istics. The MIS hot electron emitter is fabricated using cleanroom technology...... and the process sequence is described. An Ultra High Vacuum (UHV) setup is modified to facilitate experiments with electron emission from the MIS hot electron emitters and hot electron chemistry. Simulations show the importance of keeping tunnel barrier roughness to an absolute minimum. The tunnel oxide...... to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...

  7. Method and device for incinerating radioactive wastes and preparing burnable wastes for non-polluting storage

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1975-01-01

    An apparatus for incinerating radioactive wastes includes a furnace which has air inlet conduits and a flue gas outlet conduit and air heaters as well as blowers connected to the air inlets for forcing hot air into the furnace. The apparatus further has a feeding device connected to the charging end of the furnace for introducing liquid or solid wastes thereinto and a device which communicates with the discharge end of the furnace for removing solid reaction products from the furnace. In the flue gas conduit there is connected a plurality of flue gas filters each containing filter candles, a flue gas chamber and a mechanism for removing ashes from the flue gas chamber. The apparatus also includes a mixer section connected with the outlet of each flue gas filter and having a mechanism for mixing cool air with the flue gas filtered by the flue gas filters. Gas blowers connected to the output of the mixer section draw the gas from the apparatus. 18 Claims, 8 Drawing Figures

  8. Electronic archive system for the management of historic radioactive waste

    International Nuclear Information System (INIS)

    Calin, M. R.; Garlea, C.; Petre, A. R.; Serbina, L.

    2005-01-01

    The development of nuclear activities in Magurele, Ilfov, during the last decades has led to the accumulation of an important quantity of radioactive waste. In addition to this, there is also a large number of former radioactive sources, now shut and removed from use, currently stored at IFIN-HH. This project deals with the discharge of historic waste storages belonging to the following nuclear units: - the WWR-S nuclear reactor - (the main reactor hall, the pump hall, the hot cells and annexes); - C.P.R. - used filters storage; - S.T.D.R. - storage for both historic radioactive waste and used filters; - shut sources in the storehouses in the 'Texas Bunker' building and annexes. For a modern management, including a proper system of quality insurance, an archiving system became needed. The electronic archive is based on several informational streams: the activity of storing historic radioactive waste; - the activity of locating historic radioactive waste; - the radiological descriptions of the storehouses and their influence areas; - the determination of the waste's composition. So as to reach these objectives, information regarding the following is necessary: the storehouse's inventory, the historic radioactive waste's characteristics and proprieties, the neighbors of this facility, the way in which the environment and the personnel involved in the operations are being influenced, the preparing of discharge operations, semblances. The data base conceived to tackle the problems of data related to nuclear waste management has been programmed in Microsoft Access (Microsoft Office). (authors)

  9. Electronic Denitration Savannah River Site Radioactive Waste

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1995-01-01

    Electrochemical destruction of nitrate in radioactive Savannah River Site Waste has been demonstrated in a bench-scale flow cell reactor. Greater than 99% of the nitrate can be destroyed in either an undivided or a divided cell reactor. The rate of destruction and the overall power consumption is dependent on the cell configuration and electrode materials. The fastest rate was observed using an undivided cell equipped with a nickel cathode and nickel anode. The use of platinized titanium anode increased the energy requirement and costs compared to a nickel anode in both the undivided and divided cell configurations

  10. Facility to disinfect medical wastes by 10 MeV electron beam

    International Nuclear Information System (INIS)

    Kerluke, D.R.

    1998-01-01

    As regulations related to the disposal of infectious hospital and other medical waste are become increasingly stringent, hospitals and governments worldwide are looking to develop more effective and economical means to disinfect such waste materials prior to them being ultimately landfilled, incinerated or recycled. With the advent of reliable high-energy, high-power industrial electron accelerators, the prospect now exists to centralize collection of much of the infectious medical waste for major metropolitan areas at a single facility, and render it harmless using irradiation. Using much of the same or similar methodologies already developed for single-use medical device sterilization and for bioburden reduction in other goods, high energy electron beam treatment offers unique process advantages which become increasingly attractive with the economies of scale available at higher power. This paper will explore some of the key issues related to the safe disposition of infectious hospital and other medical waste, related irradiation research projects, and the design and economic factors related to an electron beam facility dedicated to this application. This will be presented in the context of the Rhodotron family of electron beam accelerators manufactured by Ion Beam Applications s.a. (author)

  11. Low power signal processing electronics for wearable medical devices.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  12. On the OSL curve shape and preheat treatment of electronic components from portable electronic devices

    DEFF Research Database (Denmark)

    Woda, Clemens; Greilich, Steffen; Beerten, Koen

    2010-01-01

    The shape of the OSL decay curve and the effect of longer time delays between accidental exposure and readout of alumina-rich electronic components from portable electronic devices are investigated. The OSL decay curve follows a hyperbolic decay function, which is interpreted as an approximation ...

  13. Investigation of ceramic devices by analytical electron microscopy techniques

    International Nuclear Information System (INIS)

    Shiojiri, M.; Saijo, H.; Isshiki, T.; Kawasaki, M.; Yoshioka, T.; Sato, S.; Nomura, T.

    1999-01-01

    Ceramics are widely used as capacitors and varistors. Their electrical properties depend on the structure, which is deeply influenced not only by the composition of raw materials and additives but also by heating treatments in the production process. This paper reviews our investigations of SrTiO 3 ceramic devices, which have been performed using various microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), cathodoluminescence scanning electron microscopy (CLSEM), field emission SEM (FE-SEM), energy dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and high angle annular dark field (HAADF) imaging method in a FE-(scanning) transmission electron microscope(FE-(S)TEM). (author)

  14. Device for cementing radioactive of toxic waste into barrels

    International Nuclear Information System (INIS)

    Hempelmann, W.; Waldenmeier, G.; Mathis, P.; Mathis, B.; Mathis, F.

    1987-01-01

    The plant consists of conventional means, such as through mixers and dosing and transport spirals, which are accommodated in a glovebox. The inactive additives cement and sand and the active materials evaporation concentrates and sludges are mixed by them, and are then filled into a waste barrel which is empty or already filled with solid waste. Liquid radioactive wastes are used to concrete over the solid waste. (DG) [de

  15. Ionizing device comprising a microchannel electron multiplier with secondary electron emission

    International Nuclear Information System (INIS)

    Chalmeton, Vincent.

    1974-01-01

    The present invention relates to a ionizing device comprising a microchannel electron multiplier involving secondary electron emission as a means of ionization. A system of electrodes is used to accelerate said electrons, ionize the gas and extract the ions from thus created plasma. Said ionizer is suitable for bombarding the target in neutron sources (target of the type of nickel molybdenum coated with tritiated titanium or with a tritium deuterium mixture) [fr

  16. Organic structures design applications in optical and electronic devices

    CERN Document Server

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  17. Direction of CRT waste glass processing: Electronics recycling industry communication

    International Nuclear Information System (INIS)

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-01-01

    Highlights: ► Given a large flow rate of CRT glass ∼10% of the panel glass stream will be leaded. ► The supply of CRT waste glass exceeded demand in 2009. ► Recyclers should use UV-light to detect lead oxide during the separation process. ► Recycling market analysis techniques and results are given for CRT glass. ► Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  18. Management and Valorization of Electronic and Computer Wastes in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    So far, little is known about the extent of the problem and there is little research available to serve as a basis for persuading decision-makers to address it. This project will examine the issue of electronic and computer waste and its management, and endeavor to identify feasible and sustainable strategies for valorizing such ...

  19. Management and Valorization of Electronic and Computer Wastes in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will examine the issue of electronic and computer waste and its management, and endeavor to identify feasible and sustainable strategies for ... IDRC congratulates first cohort of Women in Climate Change Science Fellows ... titled “Climate change and adaptive water management: Innovative solutions from the ...

  20. Device for monitoring electron-ion ring parameters

    International Nuclear Information System (INIS)

    Tyutyunnikov, S.I.; Shalyapin, V.N.

    1982-01-01

    The invention is classified as the method of collective ion acceleration. The device for electron-ion ring parameters monitoring is described. The invention is aimed at increasing functional possibilities of the device at the expense of the enchance in the number of the ring controlled parameters. The device comprises three similar plane mirrors installed over accelerating tube circumference and a mirror manufactured in the form of prism and located in the tube centre, as well as the system of synchrotron radiation recording and processing. Two plane mirrors are installed at an angle of 45 deg to the vertical axis. The angle of the third plane mirror 3 α and that of prismatic mirror 2 α to the vertical axis depend on geometric parameters of the ring and accelerating tube and they are determined by the expression α=arc sin R K /2(R T -L), where R K - ring radius, R T - accelerating tube radius, L - the height of segment, formed by the mirror and inner surface of the accelerating tube. The device suggested permits to determine longitudinal dimensions of the ring, its velocity and the number of electrons and ions in the ring

  1. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  3. Learn about the Hazardous Waste Electronic Manifest System (e-Manifest)

    Science.gov (United States)

    This webpage provides information on EPA's work toward developing a hazardous waste electronic manifest system. Information on the Hazardous Waste Electronic Manifest Establishment Act, progress on the project and frequent questions are available.

  4. 3D Design Tools for Vacuum Electron Devices

    International Nuclear Information System (INIS)

    Levush, Baruch

    2003-01-01

    A reduction of development costs will have a significant impact on the total cost of the vacuum electron devices. Experimental testing cycles can be reduced or eliminated through the use of simulation-based design methodology, thereby reducing the time and cost of development. Moreover, by use of modern optimization tools for automating the process of seeking specific solution parameters and for studying dependencies of performance on parameters, new performance capabilities can be achieved, without resorting to expensive cycles of hardware fabrication and testing. Simulation-based-design will also provide the basis for sensitivity studies for determining the manufacturing tolerances associated with a particular design. Since material properties can have a critical effect on the performance of the vacuum electron devices, the design tools require precise knowledge of material characteristics, such as dielectric properties of the support rods, loss profile etc. Sensitivity studies must therefore include the effects of materials properties variation on device performance. This will provide insight for choosing the proper technological processes in order to achieve these tolerances, which is of great importance for achieving cost reduction. A successful design methodology depends on the development of accurate and efficient design tools with predictive capabilities. These design tools must be based on realistic models capable of high fidelity representation of geometry and materials, they must have optimization capabilities, and they must be easy to use

  5. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  6. Critical appraisal of cardiac implantable electronic devices: complications and management

    Directory of Open Access Journals (Sweden)

    Padeletti L

    2011-09-01

    Full Text Available Luigi Padeletti1, Giosuè Mascioli2, Alessandro Paoletti Perini1, Gino Grifoni1, Laura Perrotta1, Procolo Marchese3, Luca Bontempi3, Antonio Curnis31Istituto di Clinica Medica e Cardiologia, Università degli Studi di Firenze, Italia; 2Elettrofisiologia, Istituto Humanitas Gavazzeni, Bergamo, Italia; 3Elettrofisiologia, Spedali Civili, Brescia, ItaliaAbstract: Population aging and broader indications for the implant of cardiac implantable electronic devices (CIEDs are the main reasons for the continuous increase in the use of pacemakers (PMs, implantable cardioverter-defibrillators (ICDs and devices for cardiac resynchronization therapy (CRT-P, CRT-D. The growing burden of comorbidities in CIED patients, the greater complexity of the devices, and the increased duration of procedures have led to an augmented risk of infections, which is out of proportion to the increase in implantation rate. CIED infections are an ominous condition, which often implies the necessity of hospitalization and carries an augmented risk of in-hospital death. Their clinical presentation may be either at pocket or at endocardial level, but they can also manifest themselves with lone bacteremia. The management of these infections requires the complete removal of the device and subsequent, specific, antibiotic therapy. CIED failures are monitored by competent public authorities, that require physicians to alert them to any failures, and that suggest the opportune strategies for their management. Although the replacement of all potentially affected devices is often suggested, common practice indicates the replacement of only a minority of devices, as close follow-up of the patients involved may be a safer strategy. Implantation of a PM or an ICD may cause problems in the patients' psychosocial adaptation and quality of life, and may contribute to the development of affective disorders. Clinicians are usually unaware of the psychosocial impact of implanted PMs and ICDs. The

  7. Method and device of decontaminating radioactive solid wastes

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Tamada, Masami.

    1983-01-01

    Purpose: To surely enable grinding for the inner surface of hollow radioactive solid wastes such as pipeways or valves, as well as enable to decontaminate these solid wastes to such a level as being capable of processing in the same manner for the ordinary wastes. Method: A grinding piece abutting resiliently against the inner surface of a hollow radioactive solid wastes to be contaminated is attached at the top end of a flexible shaft, and the inner surface of the radioactive solid wastes is ground while rotating and slightly reciprocating, as well as axially moving the flexible shaft. Consequently, since the grinding piece is always abutted against the inner surface of the radioactive solid wastes just following after the profile of the inner surface, and the flexible shaft is resiliently flexed corresponding to the profile of the inner surface of the radioactive solid wastes, even an inner surface of radioactive solid wastes with a complicated configuration can surely be ground entirely. This surely enables to remove radioactive claddings and contaminated layers deposited on the surface. (Yoshihara, H.)

  8. 77 FR 15390 - Certain Mobile Electronic Devices Incorporating Haptics; Receipt of Amended Complaint...

    Science.gov (United States)

    2012-03-15

    ... INTERNATIONAL TRADE COMMISSION [DN 2875] Certain Mobile Electronic Devices Incorporating Haptics.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received an amended complaint entitled Certain Mobile Electronic Devices...

  9. 78 FR 52211 - Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing...

    Science.gov (United States)

    2013-08-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing Same; Commission Determination Not To Review an... States after importation of certain electronic devices having placeshifting or display replication...

  10. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  11. Melting method for radioactive solid wastes and device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Masahiko; Abe, Takashi; Nakayama, Junpei; Kusamichi, Tatsuhiko; Sakamoto, Koichi

    1998-11-17

    Upon melting radioactive solid wastes mixed with radioactive metal wastes and non metal materials such as concrete by cold crucible high frequency induction heating, induction coils are wound around the outer circumference of a copper crucible having a water cooling structure to which radioactive solid wastes are charged. A heating sleeve formed by a material which generates heat by an induction heating function of graphite is disposed to the inside of the crucible at a height not in contact with molten metals in the crucible vertically movably. Radioactive solid wastes are melted collectively by the induction heat of the induction coils and thermal radiation and heat conduction of the heating sleeve heated by the induction heat. With such procedures, non metal materials such as concrete and radioactive metal wastes in a mixed state can be melt collectively continuously highly economically. (T.M.)

  12. Electronic SSKIN pathway: reducing device-related pressure ulcers.

    Science.gov (United States)

    Campbell, Natalie

    2016-08-11

    This article describes how an interprofessional project in a London NHS Foundation Trust was undertaken to develop an intranet-based medical device-related pressure ulcer prevention and management pathway for clinical staff working across an adult critical care directorate, where life-threatening events require interventions using medical devices. The aim of this project was to improve working policies and processes to define key prevention strategies and provide clinicians with a clear, standardised approach to risk and skin assessment, equipment use, documentation and reporting clinical data using the Trust's CareVue (electronic medical records), Datix (incident reporting and risk-management tool) and eTRACE (online clinical protocol ordering) systems. The process included the development, trial and local implementation of the pathway using collaborative teamwork and the SSKIN care bundle tool. The experience of identifying issues, overcoming challenges, defining best practice and cascading SSKIN awareness training is shared.

  13. Indium antimonide quantum well structures for electronic device applications

    Science.gov (United States)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  14. Flexible organic electronic devices: Materials, process and applications

    International Nuclear Information System (INIS)

    Logothetidis, Stergios

    2008-01-01

    The research for the development of flexible organic electronic devices (FEDs) is rapidly increasing worldwide, since FEDs will change radically several aspects of everyday life. Although there has been considerable progress in the area of flexible inorganic devices (a-Si or solution processed Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. Furthermore, the development and encapsulation of organic electronic devices onto flexible polymeric substrates by large-scale and low-cost roll-to-roll production processes will allow their market implementation in numerous application areas, including displays, lighting, photovoltaics, radio-frequency identification circuitry and chemical sensors, as well as to a new generation of modern exotic applications. In this work, we report on some of the latest advances in the fields of polymeric substrates, hybrid barrier layers, inorganic and organic materials to be used as novel active and functional thin films and nanomaterials as well as for the encapsulation of the materials components for the production of FEDs (flexible organic light-emitting diodes, and organic photovoltaics). Moreover, we will emphasize on the real-time optical monitoring and characterization of the growing films onto the flexible polymeric substrates by spectroscopic ellipsometry methods. Finally, the potentiality for the in-line characterization processes for the development of organic electronics materials will be emphasized, since it will also establish the framework for the achievement of the future scientific and technological breakthroughs

  15. Analysis of patient setup accuracy using electronic portal imaging device

    International Nuclear Information System (INIS)

    Onogi, Yuzo; Aoki, Yukimasa; Nakagawa, Keiichi

    1996-01-01

    Radiation therapy is performed in many fractions, and accurate patient setup is very important. This is more significant nowadays because treatment planning and radiation therapy are more precisely performed. Electronic portal imaging devices and automatic image comparison algorithms let us analyze setup deviations quantitatively. With such in mind we developed a simple image comparison algorithm. Using 2459 electronic verification images (335 ports, 123 treatment sites) generated during the past three years at our institute, we evaluated the results of the algorithm, and analyzed setup deviations according to the area irradiated, use of a fixing device (shell), and arm position. Calculated setup deviation was verified visually and their fitness was classified into good, fair, bad, and incomplete. The result was 40%, 14%, 22%, 24% respectively. Using calculated deviations classified as good (994 images), we analyzed setup deviations. Overall setup deviations described in 1 SD along axes x, y, z, was 1.9 mm, 2.5 mm, 1.7 mm respectively. We classified these deviations into systematic and random components, and found that random error was predominant in our institute. The setup deviations along axis y (cranio-caudal direction) showed larger distribution when treatment was performed with the shell. Deviations along y (cranio-caudal) and z (anterior-posterior) had larger distribution when treatment occurred with the patient's arm elevated. There was a significant time-trend error, whose deviations become greater with time. Within all evaluated ports, 30% showed a time-trend error. Using an electronic portal imaging device and automatic image comparison algorithm, we are able to analyze setup deviations more precisely and improve setup method based on objective criteria. (author)

  16. Air-tight disposing device for solid radioactive waste

    International Nuclear Information System (INIS)

    Aoyama, Saburo.

    1976-01-01

    Object: In a construction for air-tightly connecting radioactive material handling equipment with a radioactive waste container through a vinyl bag, to use a multi-stage expansion tube to introduce the radioactive waste into the waste container in safe and positive manner. Structure: During normal operation in the radioactive material handling equipment, a multi-stage expansion cylinder is extended by operation of a remote shaft to suitably throw the waste in a state with a vinyl bag protected, whereas when the waste is disposed away from the equipment, the multi-stage expansion cylinder is contracted and received into a holder, and the vinyl bag is heated and sealed at a given position and cut, after which a cover of an outer container for disposal is closed and carried out. The vinyl bag remained on the side of the holder after sealed and cut is put into the waste container after a fresh vinyl bag, in which another waste container is received, has been secured to the holder. (Taniai, N.)

  17. Patient perspective on remote monitoring of cardiovascular implantable electronic devices

    DEFF Research Database (Denmark)

    Versteeg, H; Pedersen, Susanne S.; Mastenbroek, M H

    2014-01-01

    -implantation, other check-ups are performed remotely. Patients are asked to complete questionnaires at five time points during the 2-year follow-up. CONCLUSION: The REMOTE-CIED study will provide insight into the patient perspective on remote monitoring in ICD patients, which could help to support patient......BACKGROUND: Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. OBJECTIVES: The primary...

  18. EMC, RF, and Antenna Systems in Miniature Electronic Devices

    DEFF Research Database (Denmark)

    Ruaro, Andrea

    Advanced techniques for the control of electromagnetic interference (EMI) and for the optimization of the electromagnetic compatibility (EMC) performance has been developed under the constraints typical of miniature electronic devices (MED). The electromagnetic coexistence of multiple systems....... The structure allows for effective suppression of radiation from the MED, while taking into consideration the integration and miniaturization aspects. To increase the sensitivity of the system, a compact LNA suitable for on-body applications has been developed. The LNA allows for an increase in the overall...

  19. Electronic transport properties in [n]cycloparaphenylenes molecular devices

    Science.gov (United States)

    Hu, Lizhi; Guo, Yandong; Yan, Xiaohong; Zeng, Hongli; Zhou, Jie

    2017-07-01

    The electronic transport of [n]cycloparaphenylenes ([n]CPPs) is investigated based on nonequilibrium Green's function formalism in combination with the density-functional theory. Negative differential resistance (NDR) phenomenon is observed. Further analysis shows that the reduction of the transmission peak induced by the bias changing near Fermi energy results in the NDR effect. Replacing the electrode (from carbon chain to Au electrode), doping with N atom and changing the size of the nanohoop (n = 5, 6, 8, 10) have also been studied and the NDR still exists, suggesting the NDR behavior is the intrinsic feature of such [n]CPPs systems, which would be quite useful in future nanoelectronic devices.

  20. 77 FR 24764 - Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices

    Science.gov (United States)

    2012-04-25

    ...-0053] Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices AGENCY... proposed voluntary NHTSA Driver Distraction Guidelines for in-vehicle electronic devices. The agency... Driver Distraction Guidelines for in-vehicle electronic devices (77 FR 11200). The proposed NHTSA...

  1. Characterization of electronics devices for computed tomography dosimetry

    International Nuclear Information System (INIS)

    Paschoal, Cinthia Marques Magalhaes

    2012-01-01

    Computed tomography (CT) is an examination of high diagnostic capability that delivers high doses of radiation compared with other diagnostic radiological examinations. The current CT dosimetry is mainly made by using a 100 mm long ionization chamber. However, it was verified that this extension, which is intended to collect ali scattered radiation of the single slice dose profile in CT, is not enough. An alternative dosimetry has been suggested by translating smaller detectors. In this work, commercial electronics devices of small dimensions were characterized for CT dosimetry. The project can be divided in five parts: a) pre-selection of devices; b) electrical characterization of selected devices; e) dosimetric characterization in Iaboratory, using radiation qualities specific to CT, and in a tomograph; d) evaluation of the dose profile in CT scanner (free in air and in head and body dosimetric phantom); e) evaluation of the new MSAD detector in a tomograph. The selected devices were OP520 and OP521 phototransistors and BPW34FS photodiode. Before the dosimetric characterization, three configurations of detectors, with 4, 2 and 1 OP520 phototransistor working as a single detector, were evaluated and the configuration with only one device was the most adequate. Hence, the following tests, for all devices, were made using the configuration with only one device. The tests of dosimetric characterization in laboratory and in a tomograph were: energy dependence, response as a function of air kerma (laboratory) and CTDI 100 (scanner), sensitivity variation and angular dependence. In both characterizations, the devices showed some energy dependence, indicating the need of correction factors depending on the beam energy; their response was linear with the air kerma and the CTDI 100 ; the OP520 phototransistor showed the largest variation in sensitivity with the irradiation and the photodiode was the most stable; the angular dependence was significant in the laboratory and

  2. The challenge of electronic waste (e-waste) management in developing countries.

    Science.gov (United States)

    Osibanjo, O; Nnorom, I C

    2007-12-01

    Information and telecommunications technology (ICT) and computer Internet networking has penetrated nearly every aspect of modern life, and is positively affecting human life even in the most remote areas of the developing countries. The rapid growth in ICT has led to an improvement in the capacity of computers but simultaneously to a decrease in the products lifetime as a result of which increasingly large quantities of waste electrical and electronic equipment (e-waste) are generated annually. ICT development in most developing countries, particularly in Africa, depends more on secondhand or refurbished EEEs most of which are imported without confirmatory testing for functionality. As a result large quantities of e-waste are presently being managed in these countries. The challenges facing the developing countries in e-waste management include: an absence of infrastructure for appropriate waste management, an absence of legislation dealing specifically with e-waste, an absence of any framework for end-of-life (EoL) product take-back or implementation of extended producer responsibility (EPR). This study examines these issues as they relate to practices in developing countries with emphasis on the prevailing situation in Nigeria. Effective management of e-waste in the developing countries demands the implementation of EPR, the establishment of product reuse through remanufacturing and the introduction of efficient recycling facilities. The implementation of a global system for the standardization and certification/labelling of secondhand appliances intended for export to developing countries will be required to control the export of electronic recyclables (e-scarp) in the name of secondhand appliances.

  3. Passive direct methanol fuel cells for portable electronic devices

    International Nuclear Information System (INIS)

    Achmad, F.; Kamarudin, S.K.; Daud, W.R.W.; Majlan, E.H.

    2011-01-01

    Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm 2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm -2 . The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W -1 , and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.

  4. Observation of molecular level behavior in molecular electronic junction device

    Science.gov (United States)

    Maitani, Masato

    In this dissertation, I utilize AFM based scanning probe measurement and surface enhanced Raman scattering based vibrational spectroscopic analysis to directly characterize topographic, electronic, and chemical properties of molecules confined in the local area of M3 junction to elucidate the molecular level behavior of molecular junction electronic devices. In the introduction, the characterization of molecular electronic devices with different types of metal-molecule-metal (M3) structures based upon self-assembled monolayers (SAMs) is reviewed. A background of the characterization methods I use in this dissertation, conducting probe atomic force microscopy (cp-AFM) and surface enhanced Raman spectroscopy (SERS), is provided in chapter 1. Several attempts are performed to create the ideal top metal contacts on SAMs by metal vapor phase deposition in order to prevent the metal penetration inducing critical defects of the molecular electronic devices. The scanning probe microscopy (SPM), such as cp-AFM, contact mode (c-) AFM and non-contact mode (nc-) AFM, in ultra high vacuum conditions are utilized to study the process of the metal-SAM interface construction in terms of the correlation between the morphological and electrical properties including the metal nucleation and filament generation as a function of the functionalization of long-chain alkane thiolate SAMs on Au. In chapter 2, the nascent condensation process of vapor phase Al deposition on inert and reactive SAMs are studied by SPM. The results of top deposition, penetration, and filament generation of deposited Al are discussed and compared to the results previously observed by spectroscopic measurements. Cp-AFM was shown to provide new insights into Al filament formation which has not been observed by conventional spectroscopic analysis. Additionally, the electronic characteristics of individual Al filaments are measured. Chapter 3 reveals SPM characterization of Au deposition onto --COOH terminated SAMs

  5. Selecting device for processing method of radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Sasaki, Ryoichi; Komoda, Norihisa.

    1976-01-01

    Object: To extend the period of replacement of a filter for adsorbing radioactive material by discharging waste gas containing radioactive material produced from an atomic power equipment after treating it by a method selected on the basis of the results of measurement of wind direction. Structure: Exhaust gas containing radioactive material produced from atomic power equipment is discharged after it is treated by a method selected on the basis of the results of wind direction measurement. For Instance, in case of sea wind the waste gas passes through a route selected for this case and is discharged through the waste gas outlet. When the sea wind disappears (that is, when a land wind or calm sets in), the exhaust gas is switched to a route for the case other than that of the sea wind, so that it passes through a filter consisting of active carbon where the radioactive material is removed through adsorption. The waste gas now free from the radioactive material is discharged through the waste gas outlet. (Moriyama, K.)

  6. Theoretical modeling of electronic transport in molecular devices

    Science.gov (United States)

    Piccinin, Simone

    In this thesis a novel approach for simulating electronic transport in nanoscale structures is introduced. We consider an open quantum system (the electrons of structure) accelerated by an external electromotive force and dissipating energy through inelastic scattering with a heat bath (phonons) acting on the electrons. This method can be regarded as a quantum-mechanical extension of the semi-classical Boltzmann transport equation. We use periodic boundary conditions and employ Density Functional Theory to recast the many-particle problem in an effective single-particle mean-field problem. By explicitly treating the dissipation in the electrodes, the behavior of the potential is an outcome of our method, at variance with the scattering approaches based on the Landauer formalism. We study the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, the electrical characteristics, the behavior of the self-consistent potential and the density of states of the system. We apply the method to the study of electronic transport in several molecular devices, consisting of small organic molecules or atomic wires sandwiched between gold surfaces. For gold wires we recover the experimental evidence that transport in short wires is ballistic, independent of the length of the wire and with conductance of one quantum. In benzene-1,4-dithiol we find that the delocalization of the frontier orbitals of the molecule is responsible for the high value of conductance and that, by inserting methylene groups to decouple the sulfur atoms from the carbon ring, the current is reduced, in agreement with the experimental measurements. We study the effect a geometrical distortion in a molecular device, namely the relative rotation of the carbon rings in a biphenyl-4,4'-dithiol molecule. We find that the reduced coupling between pi orbitals of the rings induced by the rotation leads to a reduction of the conductance and that this behavior is captured by a

  7. Recent progress in printed 2/3D electronic devices

    Science.gov (United States)

    Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.

    2015-09-01

    New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.

  8. Metastable State Diamond Growth and its Applications to Electronic Devices.

    Science.gov (United States)

    Jeng, David Guang-Kai

    Diamond which consists of a dense array of carbon atoms joined by strong covalent bonds and formed into a tetrahedral crystal structure has remarkable mechanical, thermal, optical and electrical properties suitable for many industrial applications. With a proper type of doping, diamond is also an ideal semiconductor for high performance electronic devices. Unfortunately, natural diamond is rare and limited by its size and cost, it is not surprising that people continuously look for a synthetic replacement. It was believed for long time that graphite, another form of carbon, may be converted into diamond under high pressure and temperature. However, the exact condition of conversion was not clear. In 1939, O. I. Leipunsky developed an equilibrium phase diagram between graphite and diamond based on thermodynamic considerations. In the phase diagram, there is a low temperature (below 1000^ circC) and low pressure (below 1 atm) region in which diamond is metastable and graphite is stable, therefore establishes the conditions for the coexistence of the two species. Leipunsky's pioneer work opened the door for diamond synthesis. In 1955, the General Electric company (GE) was able to produce artificial diamond at 55k atm pressure and a temperature of 2000^ circC. Contrary to GE, B. Derjaguin and B. V. Spitzyn in Soviet Union, developed a method of growing diamonds at 1000^circC and at a much lower pressure in 1956. Since then, researchers, particularly in Soviet Union, are continuously looking for methods to grow diamond and diamond film at lower temperatures and pressures with slow but steady progress. It was only in the early 80's that the importance of growing diamond films had attracted the attentions of researchers in the Western world and in Japan. Recent progress in plasma physics and chemical vapor deposition techniques in integrated electronics technology have pushed the diamond growth in its metastable states into a new era. In this research, a microwave plasma

  9. The possibilities to develop the logistics of electrical and electronic waste in the military defence system of the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Dragutin V. Jovanović

    2013-12-01

    Full Text Available The military defence system of the Republic of Serbia (the Ministry of Defence and the Serbian Army represents a complex organisational and technical-technological system. The nature of its operations imposes it to be equipped with a considerable amount of electrical and electronic equipment and devices. Such equipment and devices during operation, over time, lose their primary function, become useless and turn into electrical and electronic equipment waste; therefore, they must be handled properly. This article discusses the problems and possible directions of the logistics of development and implementation of electrical and electronic waste generated in the defence as the logistics of waste and reverse waste logistics, which is, in a narrower sense, a part of waste materials management. For the purpose of this paper, the logistics of electrical and electronic waste in the defence is regarded as the process of planning, implementation, control and realisation of flows, processes and activities of electrical and electronic waste materials from their place of origin to their place of disposal, through collecting and transportation to the final destination (places of  treatment, reuse, disposal and destruction in order to meet the requirements of all stakeholders at minimal cost. The legislation and European initiatives in the area of electrical and electronic waste In 2003, the European Union, stimulated by the rapid emergence and amount of e-waste, as well as its hazardous influence on the environment, adopted two directives: Directive 2002/96/EC of the European Parliament and the European Council on 27.01.2003 on the management of electrical and electronic waste (WEEE - Waste from Electrical and Electronic Equipment and Directive 2002/95/EC of the European Parliament and the Council of Europe 27.01.2003 on the restrictions on the use of hazardous substances in electronic and electrical equipment (RoHS - Restriction of the use of hazardous

  10. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices

    KAUST Repository

    Beljonne, David; Cornil, Jérôme; Muccioli, Luca; Zannoni, Claudio; Brédas, Jean-Luc; Castet, Frédéric

    2011-01-01

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational

  11. Forecasting waste compositions: A case study on plastic waste of electronic display housings.

    Science.gov (United States)

    Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R

    2015-12-01

    Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Electron cyclotron beam measurement system in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, S., E-mail: kamio@nifs.ac.jp; Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  13. Ultralarge area MOS tunnel devices for electron emission

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar; Nielsen, Gunver; Vendelbo, Søren Bastholm

    2007-01-01

    density. Oxide thicknesses have been extracted by fitting a model based on Fermi-Dirac statistics to the C-V characteristics. By plotting I-V characteristics in a Fowler plot, a measure of the thickness of the oxide can be extracted from the tunnel current. These apparent thicknesses show a high degree......A comparative analysis of metal-oxide-semiconductor (MOS) capacitors by capacitance-voltage (C-V) and current-voltage (I-V) characteristics has been employed to characterize the thickness variations of the oxide on different length scales. Ultralarge area (1 cm(2)) ultrathin (similar to 5 nm oxide......) MOS capacitors have been fabricated to investigate their functionality and the variations in oxide thickness, with the use as future electron emission devices as the goal. I-V characteristics show very low leakage current and excellent agreement to the Fowler-Nordheim expression for the current...

  14. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  15. The safety of non-incineration waste disposal devices in four hospitals of Tehran.

    Science.gov (United States)

    Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid

    2014-01-01

    The safe management of hospital waste is a challenge in many developing countries. The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries.

  16. The safety of non-incineration waste disposal devices in four hospitals of Tehran

    Science.gov (United States)

    Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid

    2014-01-01

    Background: The safe management of hospital waste is a challenge in many developing countries. Objectives: The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. Methods: VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. Results: There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. Conclusions: There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries. PMID:25000113

  17. Processing method and processing device for liquid waste containing surface active agent and radioactive material

    International Nuclear Information System (INIS)

    Nishi, Takashi; Matsuda, Masami; Baba, Tsutomu; Yoshikawa, Ryozo; Yukita, Atsushi.

    1998-01-01

    Washing liquid wastes containing surface active agents and radioactive materials are sent to a deaerating vessel. Ozone is blown into the deaerating vessel. The washing liquid wastes dissolved with ozone are introduced to a UV ray irradiation vessel. UV rays are irradiated to the washing liquid wastes, and hydroxy radicals generated by photodecomposition of dissolved ozone oxidatively decompose surface active agents contained in the washing liquid wastes. The washing liquid wastes discharged from the UV ray irradiation vessel are sent to an activated carbon mixing vessel and mixed with powdery activated carbon. The surface active agents not decomposed in the UV ray irradiation vessel are adsorbed to the activated carbon. Then, the activated carbon and washing liquid wastes are separated by an activated carbon separating/drying device. Radioactive materials (iron oxide and the like) contained in the washing liquid wastes are mostly granular, and they are separated and removed from the washing liquid wastes in the activated carbon separating/drying device. (I.N.)

  18. Bifunctional electroluminescent and photovoltaic devices using bathocuproine as electron-transporting material and an electron acceptor

    International Nuclear Information System (INIS)

    Chen, L.L.; Li, W.L.; Li, M.T.; Chu, B.

    2007-01-01

    Electroluminescence (EL) devices, using 4, 4',4''-tris (2-methylphenyl- phenylamino) triphenylamine (m-MTDATA) as hole-transporting material and bathocuproine (BCP) as an electron-transporting material, were fabricated, which emitted bright green light peaked at 520 nm instead of the emission of m-MTDATA or BCP. It was attributed to the exciplex formation and emission at the interface of m-MTDATA and BCP. EL performance was significantly enhanced by a thin mixed layer (5 nm) of m-MTDATA and BCP inserted between the two organic layers of the original m-MTDATA/BCP bilayer device. The trilayer device showed maximum luminance of 1,205 cd/m 2 at 8 V. At a luminance of 100 cd/m 2 , the power efficiency is 1.64 cd/A. Commission International De L'Eclairoge (CIE) color coordinates of the output spectrum of the devices at 8 V are x=0.244 and y=0.464. These devices also showed photovoltaic (PV) properties, which were sensitive to UV light. The PV diode exhibits high open-circuit voltage (V oc ) of 2.10 V under illumination of 365 nm UV light with 2 mW/cm 2 . And the short-circuit current (I sc ) of 92.5x10 -6 A/cm 2 , fill factor (FF) of 0.30 and power conversion efficiency (η e ) of 2.91% are respectively achieved. It is considered that strong exciplex emission in an EL device is a good indicator of efficient charge transfer at the organic interface, which is a basic requirement for good PV performance. Both the bilayer and trilayer devices showed EL and PV properties, suggesting their potential use as multifunction devices

  19. Bifunctional electroluminescent and photovoltaic devices using bathocuproine as electron-transporting material and an electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.L. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (China); Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (China); Li, W.L. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)]. E-mail: wllioel@yahoo.com.cn; Li, M.T. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (China); Chu, B. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2007-01-15

    Electroluminescence (EL) devices, using 4, 4',4''-tris (2-methylphenyl- phenylamino) triphenylamine (m-MTDATA) as hole-transporting material and bathocuproine (BCP) as an electron-transporting material, were fabricated, which emitted bright green light peaked at 520 nm instead of the emission of m-MTDATA or BCP. It was attributed to the exciplex formation and emission at the interface of m-MTDATA and BCP. EL performance was significantly enhanced by a thin mixed layer (5 nm) of m-MTDATA and BCP inserted between the two organic layers of the original m-MTDATA/BCP bilayer device. The trilayer device showed maximum luminance of 1,205 cd/m{sup 2} at 8 V. At a luminance of 100 cd/m{sup 2}, the power efficiency is 1.64 cd/A. Commission International De L'Eclairoge (CIE) color coordinates of the output spectrum of the devices at 8 V are x=0.244 and y=0.464. These devices also showed photovoltaic (PV) properties, which were sensitive to UV light. The PV diode exhibits high open-circuit voltage (V {sub oc}) of 2.10 V under illumination of 365 nm UV light with 2 mW/cm{sup 2}. And the short-circuit current (I {sub sc}) of 92.5x10{sup -6} A/cm{sup 2}, fill factor (FF) of 0.30 and power conversion efficiency ({eta} {sub e}) of 2.91% are respectively achieved. It is considered that strong exciplex emission in an EL device is a good indicator of efficient charge transfer at the organic interface, which is a basic requirement for good PV performance. Both the bilayer and trilayer devices showed EL and PV properties, suggesting their potential use as multifunction devices.

  20. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Science.gov (United States)

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  1. Electronics Related to Nuclear Medicine Imaging Devices. Chapter 7

    Energy Technology Data Exchange (ETDEWEB)

    Ott, R. J. [Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Surrey (United Kingdom); Stephenson, R. [Rutherford Appleton Laboratory, Oxfordshire (United Kingdom)

    2014-12-15

    Nuclear medicine imaging is generally based on the detection of X rays and γ rays emitted by radionuclides injected into a patient. In the previous chapter, the methods used to detect these photons were described, based most commonly on a scintillation counter although there are imaging devices that use either gas filled ionization detectors or semiconductors. Whatever device is used, nuclear medicine images are produced from a very limited number of photons, due mainly to the level of radioactivity that can be safely injected into a patient. Hence, nuclear medicine images are usually made from many orders of magnitude fewer photons than X ray computed tomography (CT) images, for example. However, as the information produced is essentially functional in nature compared to the anatomical detail of CT, the apparently poorer image quality is overcome by the nature of the information produced. The low levels of photons detected in nuclear medicine means that photon counting can be performed. Here each photon is detected and analysed individually, which is especially valuable, for example, in enabling scattered photons to be rejected. This is in contrast to X ray imaging where images are produced by integrating the flux entering the detectors. Photon counting, however, places a heavy burden on the electronics used for nuclear medicine imaging in terms of electronic noise and stability. This chapter will discuss how the signals produced in the primary photon detection process can be converted into pulses providing spatial, energy and timing information, and how this information is used to produce both qualitative and quantitative images.

  2. How people with cognitive disabilities experience electronic planning devices.

    Science.gov (United States)

    Adolfsson, Päivi; Lindstedt, Helena; Janeslätt, Gunnel

    2015-01-01

    People with cognitive disabilities have difficulties in accomplishing everyday tasks. Electronic planning devices (EPDs) may compensate for the gap between a person's capacity and everyday challenges. However, the devices are not always used as intended. Despite that, cognitive assistive technology has been investigated in several studies, knowledge regarding when and what makes adults decide to use EPDs is incomplete. The aim was to explore the subjective experiences of people with cognitive disabilities in relation to the use of EPDs. A qualitative approach was applied with a qualitative content analysis. Twelve respondents were interviewed with support from a study specific guide. A model representing the respondents' experiences in the use of EPDs, comprising one theme, Possibility to master my daily life, four categories, Degree of fit to my needs, I am aware of my cognitive disability, I get help to structure my everyday life and The EPD improves my volition and ten subcategories, was developed. EPDs allow people with cognitive disabilities the possibility to deal with daily challenges; those who find EPDs beneficial tend to use them. EPDs can help people with cognitive disabilities in organisation, managing time and improve volition.

  3. Determining Hermeticity of Electron Devices by Dye Penetration

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1972-01-01

    1.1 These practices cover procedures that will normally detect and locate the sites of gross leaks in electron devices. 1.2 These procedures are suitable for use on selected parts during receiving inspection or to verify and locate leakage sites for production control. They are not quantitative; no indication of leak size can be inferred from the test. 1.3 These procedures are most suitable for use on transparent glass-encased devices; all methods are applicable to transparent parts with an internal cavity. Method A, Penetrant-Capillary, is also applicable to parts, such as terminals, end seals or base assemblies, without an internal cavity, and Method C, Penetrant-Pressure Followed by Vacuum, can be used on opaque parts with an internal cavity. Method B, Penetrant-Pressure, can also be used on opaque parts with an internal cavity if the part is opened after dye penetration and before inspection. Parts that have an internal cavity may either contain gas (such as air, nitrogen, nitrogen-helium mixture, etc.) o...

  4. Electronic and optoelectronic materials and devices inspired by nature

    Science.gov (United States)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  5. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.

    Science.gov (United States)

    Campbell, Michael G; Dincă, Mircea

    2017-05-12

    In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

  6. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    Science.gov (United States)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  7. Waste treatment by microwave and electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Craciun, G.; Manaila, E.; Ighigeanu, D; Oproiu, C.; Iacob, N.; Togoe, I.; Margaritescu, I.

    2007-01-01

    Comparative results obtained by applying separate and combined (successive and simultaneous) electron beam (EB) and microwave (MW) irradiation to waste treatment, such as food residuals (minced beef, wheat bran and wheat flour) and sewage sludge performed from a food industry wastewater treatment station (vegetable oil plant), are presented. The research results demonstrated that the simultaneous EB and MW irradiation produces the biggest reduction of microorganisms. The tests also demonstrated that the irradiation time and the upper limit of required EB absorbed dose, which ensures a complete sterilization effect, could be reduced by a factor of two by an additional use of MW energy to EB irradiation

  8. Processing method and device for radioactive liquid waste

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Nishi, Takashi; Matsuda, Masami; Yukita, Atsushi.

    1997-01-01

    When only suspended particulate ingredients are contained as COD components in radioactive washing liquid wastes, the liquid wastes are heated by a first process, for example, an adsorption step to adsorb the suspended particulate ingredients to an activated carbon, and then separating and removing the suspended particulate ingredients by filtration. When both of the floating particle ingredients and soluble organic ingredients are contained, the suspended particulate ingredients are separated and removed by the first process, and then soluble organic ingredients are removed by other process, or both of the suspended particulate ingredients and the soluble organic ingredients are removed by the first process. In an existent method of adding an activated carbon and then filtering them at a normal temperature, the floating particle ingredients cover the layer of activated carbon formed on a filter paper or fabric to sometimes cause clogging. However, according to the method of the present invention, since disturbance by the floating particle ingredients does not occur, the COD components can be separated and removed sufficiently without lowering liquid waste processing speed. (T.M.)

  9. Prospective clinical evaluation of an electronic portal imaging device

    International Nuclear Information System (INIS)

    Michalski, Jeff M.; Graham, Mary V.; Bosch, Walter R.; Wong, John; Gerber, Russell L.; Cheng, Abel; Tinger, Alfred; Valicenti, Richard K.

    1996-01-01

    Purpose: To determine whether the clinical implementation of an electronic portal imaging device can improve the precision of daily external beam radiotherapy. Methods and Materials: In 1991, an electronic portal imaging device was installed on a dual energy linear accelerator in our clinic. After training the radiotherapy technologists in the acquisition and evaluation of portal images, we performed a randomized study to determine whether online observation, interruption, and intervention would result in more precise daily setup. The patients were randomized to one of two groups: those whose treatments were actively monitored by the radiotherapy technologists and those that were imaged but not monitored. The treating technologists were instructed to correct the following treatment errors: (a) field placement error (FPE) > 1 cm; (b) incorrect block; (c) incorrect collimator setting; (d) absent customized block. Time of treatment delivery was recorded by our patient tracking and billing computers and compared to a matched set of patients not participating in the study. After the patients radiation therapy course was completed, an offline analysis of the patient setup error was planned. Results: Thirty-two patients were treated to 34 anatomical sites in this study. In 893 treatment sessions, 1,873 fields were treated (1,089 fields monitored and 794 fields unmonitored). Ninety percent of the treated fields had at least one image stored for offline analysis. Eighty-seven percent of these images were analyzed offline. Of the 1,011 fields imaged in the monitored arm, only 14 (1.4%) had an intervention recorded by the technologist. Despite infrequent online intervention, offline analysis demonstrated that the incidence of FPE > 10 mm in the monitored and unmonitored groups was 56 out of 881 (6.1%) and 95 out of 595 (11.2%), respectively; p 10 mm was confined to the pelvic fields. The time to treat patients in this study was 10.78 min (monitored) and 10.10 min (unmonitored

  10. Lean manufacturing implementation in reducing waste for electronic assembly line

    Directory of Open Access Journals (Sweden)

    Zakaria Nurul Husna

    2017-01-01

    Full Text Available Lean manufacturing is the most convenient way to eliminate unnecessary waste and can provide what customers demand. This paper presents possibilities and sustainability of application of lean manufacturing method by using a virtual simulation of the workers performance in a line production of small and medium industry. Actual case study and Witness simulation were used in this study to find the waste that exists in the production and identified the performance of workers in the production line. Lean manufacturing concept has identified and rectified problems related to low productivity in the assembly line. The case study is involved a line production for electronic part assembly. The result of this preliminary study should illustrate the relationship of worker’s performance by lean manufacturing method as well as the productivity improvements which help to reduce cost for manufacturer. Lean manufacturing method has been used during the study to reduce the cost when waste is eliminated by reducing the workstation without reducing the performance of the production. The performance of the production is increased when allocating the labor in a needed working area. Lastly, the study also proves that the new layout has improved the process to be used for future production process.

  11. Effect of interior geometry on local climate inside an electronic device enclosure

    DEFF Research Database (Denmark)

    Joshy, Salil; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    Electronic enclosure design and the internal arrangement of PCBs and components influence microclimate inside the enclosure. This work features a general electronic unit with parallel PCBs. One of the PCB is considered to have heat generating components on it. The humidity and temperature profiles...... geometry of the device and related enclosure design parameters on the humidity and temperature profiles inside the electronic device enclosure....

  12. 76 FR 72439 - Certain Consumer Electronics and Display Devices and Products Containing Same; Receipt of...

    Science.gov (United States)

    2011-11-23

    ... INTERNATIONAL TRADE COMMISSION [DN 2858] Certain Consumer Electronics and Display Devices and.... International Trade Commission has received a complaint entitled In Re Certain Consumer Electronics and Display... importation of certain consumer electronics and display devices and products containing same. The complaint...

  13. 77 FR 14422 - Certain Consumer Electronics and Display Devices and Products Containing Same; Notice of Receipt...

    Science.gov (United States)

    2012-03-09

    ... INTERNATIONAL TRADE COMMISSION [DN 2882] Certain Consumer Electronics and Display Devices and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... importation of certain consumer electronics and display devices and products containing same. The complaint...

  14. PROMETHEE: a versatile R and D measurement device for low level waste assay

    International Nuclear Information System (INIS)

    Romeyer Dherby, J.; Passard, C.; Mariani, A.

    1996-01-01

    The accurate measurement of heavy nuclide masses and activities in radioactive wastes drums is an important part of waste management. The Active/Passive non destructive assay of radioactive waste drums using a 14 MeV neutron generator is particularly interesting for alpha low level measurements or for gamma irradiating wastes. The development, optimisation, and validation of such a device for industrial use necessitate the building of a demonstrator. In 1985, the CEA decided to build at Cadarache the PROMETHEE modular system for experimenting the pulsed generator techniques, and since then, this device has led us to define several specific systems. At the present time, in the frame of COGEMA actions to reduce the volume of the reprocessing waste, a new strategy of drumming and incineration is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this goal, a developments and tests are carried out on the PROMETHEE research and development facility at CEA CADARACHE, in order to obtain the required performances

  15. PROMETHEE: a versatile R and D measurement device for low level waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer Dherby, J.; Passard, C.; Mariani, A

    1996-12-31

    The accurate measurement of heavy nuclide masses and activities in radioactive wastes drums is an important part of waste management. The Active/Passive non destructive assay of radioactive waste drums using a 14 MeV neutron generator is particularly interesting for alpha low level measurements or for gamma irradiating wastes. The development, optimisation, and validation of such a device for industrial use necessitate the building of a demonstrator. In 1985, the CEA decided to build at Cadarache the PROMETHEE modular system for experimenting the pulsed generator techniques, and since then, this device has led us to define several specific systems. At the present time, in the frame of COGEMA actions to reduce the volume of the reprocessing waste, a new strategy of drumming and incineration is going to start at LA HAGUE and MARCOULE, for the low level waste planned for surface storage. This strategy depends on the performance improvement of non destructive measurements systems used for the alpha waste evaluation. In this goal, a developments and tests are carried out on the PROMETHEE research and development facility at CEA CADARACHE, in order to obtain the required performances.

  16. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    KAUST Repository

    Eita, Mohamed S.; El, Labban Abdulrahman; Usman, Anwar; Beaujuge, Pierre; Mohammed, Omar F.

    2016-01-01

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc

  17. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    Science.gov (United States)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  18. Lanthanum Gadolinium Oxide: A New Electronic Device Material for CMOS Logic and Memory Devices

    Directory of Open Access Journals (Sweden)

    Shojan P. Pavunny

    2014-03-01

    Full Text Available A comprehensive study on the ternary dielectric, LaGdO3, synthesized and qualified in our laboratory as a novel high-k dielectric material for logic and memory device applications in terms of its excellent features that include a high linear dielectric constant (k of ~22 and a large energy bandgap of ~5.6 eV, resulting in sufficient electron and hole band offsets of ~2.57 eV and ~1.91 eV, respectively, on silicon, good thermal stability with Si and lower gate leakage current densities within the International Technology Roadmap for Semiconductors (ITRS specified limits at the sub-nanometer electrical functional thickness level, which are desirable for advanced complementary metal-oxide-semiconductor (CMOS, bipolar (Bi and BiCMOS chips applications, is presented in this review article.

  19. Electronic and optoelectronic materials and devices inspired by nature

    International Nuclear Information System (INIS)

    Meredith, P; Schwenn, P E; Bettinger, C J; Irimia-Vladu, M; Mostert, A B

    2013-01-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist. (review article)

  20. Method and device for marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Tsuda, Shigeo.

    1978-01-01

    Purpose: To provide the subject method and device wherein a unit thrown away can body formed by firmly tying a several drum vessels is thrown away in seawater thereby carrying out a throw-away operation rapidly, safely and highly efficiently. Method: In the hatch is stacked in multistage a unit throw-away can body formed by firmly tying four drums. A self-travelling suspended bedplate with a thrown away rail device runs on rails, and is fixed to a necessary position. An accomodation and throwing away operation control chamber applied with radiation protection is attached to this self-travelling suspended bedplate to perform surveillance of the interior of the chamber, and accommodation and throwing away operation is carried out by a picture image sent from a television camera and safe and accurate operations. (Nakamura, S.)

  1. Device for the disposal of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Tomizawa, Toshi; Inoue, Tadashi.

    1976-01-01

    Object: To adsorb and collect radioactive nuclide ions contained in the radioactive liquid waste to select and separate thereof. Structure: A unitary disposing tank comprises an insulative cylindrical tank, an unsoluble cathode plate positioned thereunder and formed with a number of liquid inlet holes, an adsorbent layer filled with unsoluble electrically conductive substances having a large surface area in contact with the cathode plate, and an unsoluble anode plate positioned at the upper part of the cylindrical disposing tank so as not to come into contact with the adsorbent layer and formed with a number of liquid inlets, whereby one or more disposing tanks are stacked in a layer fashion, and a DC voltage is applied between the anode and cathode plates to flow a liquid to be disposed into the disposing tanks so that the radioactive metal ion nuclide in the liquid may be adsorbed and collected by the cathode and the adsorbent layer for selection and separation. (Ohara, T.)

  2. Development of devices for handling with BN-350 radioactive waste

    International Nuclear Information System (INIS)

    Iksanov, A.G.; Pustobaev, S.N.; Shirobokov, Yu.P.; Pugachyev, G.P.; Baldov, A.N.; Tikhomirov, L.N.; Tkachenko, V.V.; Tazhibayeva, I.L.; Klepikov, A.Kh.; Romanenko, O.G.; Kenzhin, E.A.; Yakovlev, V.V.; Khametov, S.; Kalinkin, V.L.; Skvortsov, A.I.; Dmitriev, S.A.; Arustamov, A.E.; Zelenski, D.I.; Serebrennikov, Yu.A.

    2010-01-01

    The package of activity performed proves the correctness of the concept accepted by the Government of the Republic of Kazakhstan on the BN-350 decommissioning (three successive steps above) targeted at minimization of cost, exposure and amount of radioactive waste. Decommissioning of the high power fast breeder reactor plant is carried out for the first time and therefore the normative documents and design decisions elaborated, accepted technologies and estimation of capital expenditure and maintenance costs may enrich the database and serve as orientation for decommissioning of similar units. According to the concept accepted the BN-350 decommissioning is the process of top level of complexity that is characterized with the requirement of concurrent execution of a large scope of work by means of international teams from Kazakhstan, Russia, USA, EC, etc. Such approach needs the creation of modern effective organization schemes of interfaces and management of the Projects and will be further used in other complicated Projects

  3. Thermoelectric air-cooling module for electronic devices

    International Nuclear Information System (INIS)

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  4. Method and device for the dry preparation of ceramic uranium dioxide nuclear fuel wastes

    International Nuclear Information System (INIS)

    Pirk, H.; Roepenack, H.; Goeldner, U.

    1977-01-01

    Reprocessing of waste, resulting from the production of ceramic sintered bodies from uranium dioxide for use as nuclear fuel, in a dry process into very finely dispersed pure U 3 O 8 powder may be improved by applying vibrating screening during oxidation. An appropriate device is described. (UWI) [de

  5. Characterization of high Tc materials and devices by electron microscopy

    National Research Council Canada - National Science Library

    Browning, Nigel D; Pennycook, Stephen J

    2000-01-01

    ..., and microanalysis by scanning transmission electron microscopy. Ensuing chapters examine identi®cation of new superconducting compounds, imaging of superconducting properties by lowtemperature scanning electron microscopy, imaging of vortices by electron holography and electronic structure determination by electron energy loss spectro...

  6. Separation and extraction device for mixed radioactive waste water

    International Nuclear Information System (INIS)

    Tamachi, Kimio; Takebe, Tsukasa.

    1989-01-01

    The separation device for radioactive sludges comprises cyclone separators each made of conical vessel and arranged in a plurality of stages in series, in which only oils of low density are extracted at the initial stage and heavy sludges are separated from a mixture of water and sludges in the succeeding stage. When sludges are injected at high velocity to the conical vessel in the tangential direction at the edge thereof. The heavy components in the sewage sludges move from the central portion to the outer circumference of the voltex flow and impinge against the inner wall of the vessel. If the vessel is a cylindrical shape or such a shape having a small slope spproximate to that of a cylinder and has short length, the entire portion is swirled and the heavy components are deposited to the inner circumference of the cylinder of the centrifugal force making it difficult for discharge. However, in a vessel of conical shape, since the inner wall of the vessel is inclined, the stream is directed downward by the vertical component thereof and only the heavy components move selectively downward. Thus the size of the device is reduced as a whole and the consumption of filter is reduced. (N.H.)

  7. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  8. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  9. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  10. Characterization of Airborne Particles in an Electronic Waste Recycling Facility and Their Toxicity Assessment

    Science.gov (United States)

    Improper disposal of electronic waste (e-waste) can lead to release of toxic chemicals into the environment and also may pose health risks. Thus, recycling e-waste, instead of landfilling, is considered to be an effective way to reduce pollutant release and exposure. However, lit...

  11. Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices

    Science.gov (United States)

    Pron, G; Ieraci, L; Kaulback, K

    2012-01-01

    Executive Summary Objective The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions. Clinical Need: Condition and Target Population Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD. Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities. Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs. Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however

  12. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    International Nuclear Information System (INIS)

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-01-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  13. The Effect of Electronic Devices Self-Efficacy, Electronic Devices Usage and Information Security Awareness on Identity-Theft Anxiety Level

    Science.gov (United States)

    Sanga, Sushma

    2016-01-01

    Identity-theft means stealing someone's personal information and using it without his or her permission. Each year, millions of Americans are becoming the victims of identity-theft, and this is one of the seriously growing and widespread issues in the U.S. This study examines the effect of electronic devices self-efficacy, electronic devices…

  14. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  15. 77 FR 31875 - Certain Electronic Imaging Devices; Notice of Receipt of Complaint; Solicitation of Comments...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices; Notice of... Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the Commission is...

  16. 77 FR 32995 - Certain Electronic Imaging Devices Corrected: Notice of Receipt of Complaint; Solicitation of...

    Science.gov (United States)

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices Corrected.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the...

  17. 78 FR 73563 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    Science.gov (United States)

    2013-12-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has issued (1) a limited exclusion order against infringing electronic devices...

  18. 77 FR 31876 - Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-836] Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not To Review Initial Determination To Amend... electronics and display devices and products containing the same by reason of infringement of U.S. Patent Nos...

  19. 77 FR 49458 - Certain Mobile Electronic Devices Incorporating Haptics; Amendment of the Complaint and Notice of...

    Science.gov (United States)

    2012-08-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices.... 1337 in the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics, by reason of the infringement of claims of six...

  20. 78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation

    Science.gov (United States)

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices... the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics that infringe certain claims of six Immersion patents. 77...

  1. Electronic device, system on chip ad method of monitoring data traffic

    NARCIS (Netherlands)

    2011-01-01

    Therefore, an electronic device is provided which comprises a plurality of processing units (IP1-IP6), and a network-based interconnect (N) coupling the processing units (IP1-IP6) for enabling at least one first communication path (C) between the processing units (IP1-IP6). The electronic device

  2. Hardening device, by inserts, of electronic component against radiation

    International Nuclear Information System (INIS)

    Val, C.

    1987-01-01

    The hardening device includes at least two materials, one with high atomic number with respect to the other. One of these materials is set as inserts in a layer of the other material. The hardening device is then made by stacking of such layers, the insert density varying from one layer to the other, making thus vary the atomic number resulting from the hardening device along its thickness, following a predefined law [fr

  3. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    Science.gov (United States)

    Koo, Hyung-Jun; Velev, Orlin D

    2013-05-09

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.

  4. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  5. Management of waste electrical and electronic equipment in Romania: A mini-review.

    Science.gov (United States)

    Ciocoiu, Carmen Nadia; Colesca, Sofia Elena; Rudăreanu, Costin; Popescu, Maria-Loredana

    2016-02-01

    Around the world there are growing concerns for waste electrical and electronic equipment. This is motivated by the harmful effects of waste electrical and electronic equipment on the environment, but also by the perspectives of materials recovery. Differences between countries regarding waste electrical and electronic equipment management are notable in the European Union. Romania is among the countries that have made significant efforts to comply with European Union regulations, but failed reaching the collection target. The article presents a mini review of the waste electrical and electronic equipment management system in Romania, based on legislation and policy documents, statistical data, research studies and reports published by national and international organisations. The article debates subjects like legislative framework, the electrical and electronic equipment Romanian market, the waste electrical and electronic equipment collection system, waste electrical and electronic equipment processing and waste electrical and electronic equipment behaviour. The recast of the European directive brings new challenges to national authorities and to other stakeholders involved in the waste electrical and electronic equipment management. Considering the fact that Romania has managed a collection rate of roughly 1 kg capita(-1) in the last years, the new higher collection targets established by the waste electrical and electronic equipment Directive offer a serious challenge for the management system. Therefore, another aim of the article is to highlight the positive and negative aspects in the Romanian waste electrical and electronic equipment field, in order to identify the flows that should be corrected and the opportunities that could help improve this system to the point of meeting the European standards imposed by the European Directive. © The Author(s) 2015.

  6. iPosture: The Size of Electronic Consumer Devices Affects our Behavior

    OpenAIRE

    Bos, Maarten W.; Cuddy, Amy J. C.

    2013-01-01

    We examined whether incidental body posture, prompted by working on electronic devices of different sizes, affects power-related behaviors. Grounded in research showing that adopting expansive body postures increases psychological power, we hypothesized that working on larger devices, which forces people to physically expand, causes users to behave more assertively. Participants were randomly assigned to interact with one of four electronic devices that varied in size: an iPod Touch, an iPad,...

  7. Modeling and simulation of ventilation devices in nuclear waste storage

    International Nuclear Information System (INIS)

    Zhang, Yumeng

    2015-01-01

    The objective of this thesis is to develop models and algorithms to simulate efficiently the mass exchanges occurring at the interface between the nuclear waste deep geological repositories and the ventilation excavated galleries. To model such physical processes, one needs to account in the porous medium for the flow of the liquid and gas phases including the vaporization of the water component in the gas phase and the dissolution of the gaseous components in the liquid phase. In the free flow region, a single phase gas free flow is considered assuming that the liquid phase is instantaneously vaporized at the interface. This gas free flow has to be compositional to account for the change of the relative humidity in the free flow region which has a strong feedback on the liquid flow rate at the interface. In chapter 1, three formulations of the gas liquid compositional Darcy flow are studied. Their equivalence from the point of phase transitions is shown and they are compared numerically on 1D and 3D test cases including gas appearance and liquid disappearance. The 3D discretization is based on the Vertex Approximate Gradient (VAG) scheme and takes into account discontinuous capillary pressures. In chapter 2, a reduced model coupling a 3D gas liquid compositional Darcy flow in a fractured porous medium, and a 1D compositional free gas flow is introduced. The VAG discretization is extended to such models taking into account the coupling between the 3D matrix, the 2D network of fractures and the 1D gallery. Its convergence is studied both for the linear single phase stationary model and for a non linear model coupling the Richards equation to a single phase 1D flow or a 1D tracer equation in the gallery. Different test cases with Andra data sets are presented. In Chapter 3, a splitting algorithm to solve the coupling between the gas liquid compositional Darcy flow in the porous medium and the gas compositional free flow in the gallery is developed. The idea is to

  8. Potential of Electronic Plastic Waste as a Source of Raw Material and Energy Recovery

    International Nuclear Information System (INIS)

    Norazli Othman; Nor Ezlin Ahmad Basri; Lariyah Mohd Sidek

    2009-01-01

    Nowadays, the production of electronic equipment is one of the fastest growing industrial activities in this world. The increase use of plastic in this sector resulted in an increase of electronic plastic waste. Basically, electronic plastic material contains various chemical elements which act as a flame retardant when electronic equipment is operated. In general, the concept of recycling electronic plastic waste should be considered in order to protect the environment. For this purpose, research has been conducted to different resins of electronic plastic waste to identify the potential of electronic plastic waste as a source of raw material and energy recovery. This study was divided into two part for example determination of physical and chemical characteristics of plastic resins and calculation of heating value for plastic resins based on Dulong formula. Results of this research show that the average calorific value of electronic waste is 30,872.42 kJ/ kg (7,375 kcal/ kg). The emission factor analysis showed that the concentration of emission value that might occur during waste management activities is below the standard set by the Environment Quality Act 1974. Basically, this research shows that electronic plastic waste has the potential to become the source of raw material and energy recovery. (author)

  9. Recent progress on thin-film encapsulation technologies for organic electronic devices

    Science.gov (United States)

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  10. Trend of Energy Saving in Electronic Devices for Research and Development

    Directory of Open Access Journals (Sweden)

    Rahmayanti R.

    2016-01-01

    Full Text Available In electronic industry, energy saving is one of the performance indicators of competitiveness beside price, speed, bandwidth and reliability. This affects research and development (R&D activity in mechatronic systems which uses electronic components and electronic systems. A review of trend of electronic devices technology development has been conducted with focus on energy saving. This review includes electronic devices, semiconductor, and nanotechnology. It can be concluded that the trend in electronic devices is mainly dictated by semiconductor technology development. The trend can be concluded as smaller size, lower voltage leading to energy saving, less heat, higher speed, more reliable, and cheaper. In accordance to such technology development, R&D activities in mechatronics especially in Indonesia is being pushed to make proper alignment.Some of such alignment actions are surface mount technology (SMT for installing surface mount devices components (SMD, design layout and SMD troubleshooting tools as well as human resources training and development.

  11. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Science.gov (United States)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  12. Device and process for binding toxic or radioactive wastes in plastic

    International Nuclear Information System (INIS)

    Metscher, K.

    1978-01-01

    The first section of the process is provided with supply devices for the plastic and a heater to melt it. The second section contains devices for injecting waste and means for compressing the plastic melt and for dispersing the waste to be bound in the plastic melt. The third section is heated and is provided with outgoing pipes for volatile and/or evaporated liquids at normal pressure or sub-pressure. A further section can follow for homogenizing the mixture directly. A condenser for liquefaction is included in the outgoing pipes for the volatile components. A thermoplastic, preferably low molecule polystyrol in granulate form is used, which melts at temperatures above 130 0 C. (PW) [de

  13. Functional nanomaterials and devices for electronics, sensors and energy harvesting

    CERN Document Server

    Balestra, Francis; Kilchytska, Valeriya; Flandre, Denis

    2014-01-01

    This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between “More Moore” and “More than Moore” are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.

  14. Opto-electronic devices from block copolymers and their oligomers.

    NARCIS (Netherlands)

    Hadziioannou, G

    1997-01-01

    This paper presents research activities towards the development of polymer materials and devices for optoelectronics, An approach to controlling the conjugation length and transferring the luminescence properties of organic molecules to polymers through black copolymers containing well-defined

  15. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    Science.gov (United States)

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  16. A passive-active neutron device for assaying remote-handled transuranic waste

    International Nuclear Information System (INIS)

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1990-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established

  17. Printed Organic and Inorganic Electronics: Devices To Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-11-11

    Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed electronics have been based on organic molecular electronics. Still some fundamental challenges remain: thermal instability, modest charge transport characteristics, and limited lithographic resolution. In the last decade, one-dimensional nanotubes and nanowires, like carbon nanotubes and silicon nanowires, followed by two-dimensional materials, like graphene and transitional dichalcogenide materials, have shown interesting promise as next-generation printed electronic materials. Challenges, such as non-uniformity in growth, limited scalability, and integration issues, need to be resolved for the viable application of these materials to technology. Recently, the concept of printed high-performance complementary metal\\\\text-oxide semiconductor electronics has also emerged and been proven successful for application to electronics. Here, we review progress in CMOS technology and applications, including challenges faced and opportunities revealed.

  18. 77 FR 68829 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements...

    Science.gov (United States)

    2012-11-16

    ... electronic digital media devices and components thereof imported by respondents Samsung Electronics Co, Ltd. of Korea; Samsung Electronics America, Inc. of Ridgefield Park, New Jersey; and Samsung Telecommunications America, LLC of Richardson, Texas (collectively ``Samsung''), and cease and desist orders against...

  19. 77 FR 21584 - Certain Consumer Electronics and Display Devices and Products Containing Same; Institution of...

    Science.gov (United States)

    2012-04-10

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-836] Certain Consumer Electronics and Display... electronics and display devices and products containing same by reason of infringement of certain claims of U... importation, or the sale within the United States after importation of certain consumer electronics and...

  20. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Science.gov (United States)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  1. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    Science.gov (United States)

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  2. Current voltage perspective of an organic electronic device

    Science.gov (United States)

    Mukherjee, Ayash K.; Kumari, Nikita

    2018-05-01

    Nonlinearity in current (I) - voltage (V) measurement is a well-known attribute of two-terminal organic device, irrespective of the geometrical or structural arrangement of the device. Most of the existing theories that are developed for interpretation of I-V data, either focus current-voltage relationship of charge injection mechanism across the electrode-organic material interface or charge transport mechanism through the organic active material. On the contrary, both the mechanisms work in tandem charge conduction through the device. The transport mechanism is further complicated by incoherent scattering from scattering centres/charge traps that are located at the electrode-organic material interface and in the bulk of organic material. In the present communication, a collective expression has been formulated that comprises of all the transport mechanisms that are occurring at various locations of a planar organic device. The model has been fitted to experimental I-V data of Au/P3HT/Au device with excellent degree of agreement. Certain physical parameters such as the effective area of cross-section and resistance due to charge traps have been extracted from the fit.

  3. Lab-scale thermal analysis of electronic waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong, E-mail: jhong@ustc.edu.cn; Yu, Han-Qing

    2016-06-05

    Highlights: • We provided the experimental evidence that WEEE can be recovered by pyrolysis method. • We explored the thermochemical behaviors of WEEE using online TG–FTIR–MS technology. • The intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs. - Abstract: In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric–fourier transform infrared–mass spectroscopy (TG–FTIR–MS) system, a high resolution gas chromatography/high resolution mass (HRGC–MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the ·Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.

  4. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    Science.gov (United States)

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.

  5. An electron cooling device in the one MeV energy region

    International Nuclear Information System (INIS)

    Busso, L.; Tecchio, L.; Tosello, F.

    1987-01-01

    The project of an electron cooling device at 700 KeV electron energy is reported. The single parts of the device is described in detail. Electron beam diagnostics and technical problems is discussed. The electron gun, the accelerating/decelerating column and the collector have been studied by menas of the Herrmannsfeldt's program and at present are under construction. The high voltage system and the electron cooling magnet are also under construction. Vacuum tests with both hot and cold cathodes have demonstrated that the vacuum requirements can be attained by the use of non-evaporable getter (NEG) pumps between gun, collector and the cooling region. Both kinds of diagnostic for longitudinal and transversal electron temperature measurements are in progress. A first prototype of the synchronous picj-up was successfully tested at CERN SPS. At present the diagnostic with laser beam is in preparation. During the next year the device will be assembled and the laboratory test will be started

  6. The influence of residents' behaviour on waste electrical and electronic equipment collection effectiveness.

    Science.gov (United States)

    Nowakowski, Piotr

    2016-11-01

    Government agencies have implemented regulations to reduce the volume of waste electrical and electronic equipment to protect the environment and encourage recycling. The effectiveness of systems through which waste electrical and electronic equipment is collected and recycled depends on (a) the development and operation of new programmes to process this material and (b) on information dissemination programmes aimed at manufacturers, retail sellers, and the consuming public. This study analyses these two elements. The main focus is to better understand household residents' behaviour in regards to the proper methods of handling waste electrical and electronic equipment and possible storage of the obsolete equipment that brings disturbances with collection of the waste equipment. The study explores these issues depending on size of municipality and the household residents' knowledge about legal methods of post-consumer management of waste electrical and electronic equipment in Poland, where the collection rate of that type of waste is about 40% of the total mass of waste electrical and electronic equipment appearing in the market.The research was informed by various sources of information, including non-government organisations, Inspectorate of Environmental Protection and Central Statistics Office in Poland, questionnaires, and interviews with the household residents. The questionnaires were distributed to daytime and vocational students from different universities and the customers of an electronic equipment superstore. The results show that a resident's behaviour in regards to the handling of obsolete waste electrical and electronic equipment can significantly reduce the collection rate, especially when the waste is discarded improperly - mixed with municipal waste or sold in scrapyards. It is possible to identify points that are necessary to be improved to achieve a higher collection rate. © The Author(s) 2016.

  7. Electronic properties of organic monolayers and molecular devices

    Indian Academy of Sciences (India)

    These devices exhibit a marked current–voltage rectification behavior due to resonant transport between the Si conduction band and the molecule highest occupied molecular orbital of the molecule. We discuss the role of metal Fermi level pinning in the current–voltage behavior of these molecular junctions. We also ...

  8. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    Science.gov (United States)

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  9. Electron transport in nano-scaled piezoelectronic devices

    Science.gov (United States)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  10. Recent developments of truly stretchable thin film electronic and optoelectronic devices.

    Science.gov (United States)

    Zhao, Juan; Chi, Zhihe; Yang, Zhan; Chen, Xiaojie; Arnold, Michael S; Zhang, Yi; Xu, Jiarui; Chi, Zhenguo; Aldred, Matthew P

    2018-03-29

    Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e.g. buckling), and the whole device can be bent, twisted, or stretched to meet the demands for practical applications, which are beyond the capability of conventional flexible devices that can only bend or twist. Recently, great achievements have been made toward truly stretchable electronics. Here, the contribution of this review is an effort to provide a panoramic view of the latest progress concerning truly stretchable electronic devices, of which we give special emphasis to three kinds of thin film electronic and optoelectronic devices: (1) thin film transistors, (2) electroluminescent devices (including organic light-emitting diodes, light-emitting electrochemical cells and perovskite light-emitting diodes), and (3) photovoltaics (including organic photovoltaics and perovskite solar cells). We systematically discuss the device design and fabrication strategies, the origin of device stretchability and the relationship between the electrical and mechanical behaviors of the devices. We hope that this review provides a clear outlook of these attractive stretchable devices for a broad range of scientists and attracts more researchers to devote their time to this interesting research field in both industry and academia, thus encouraging more intelligent lifestyles for human beings in the coming future.

  11. Printed Organic and Inorganic Electronics: Devices To Systems

    KAUST Repository

    Sevilla, Galo T.; Hussain, Muhammad Mustafa

    2016-01-01

    Affordable and versatile printed electronics can play a critical role for large area applications, such as for displays, sensors, energy harvesting, and storage. Significant advances including commercialization in the general area of printed

  12. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.

    Science.gov (United States)

    Priya, Anshu; Hait, Subrata

    2017-03-01

    Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

  13. Humidity effects on the electronic transport properties in carbon based nanoscale device

    International Nuclear Information System (INIS)

    He, Jun; Chen, Ke-Qiu

    2012-01-01

    By applying nonequilibrium Green's functions in combination with the density functional theory, we investigate the effect of humidity on the electronic transport properties in carbon based nanoscale device. The results show that different humidity may form varied localized potential barrier, which is a very important factor to affect the stability of electronic transport in the nanoscale system. A mechanism for the humidity effect is suggested. -- Highlights: ► Electronic transport in carbon based nanoscale device. ► Humidity affects the stability of electronic transport. ► Different humidity may form varied localized potential barrier.

  14. GaN nano-membrane for optoelectronic and electronic device applications

    KAUST Repository

    Ooi, Boon S.

    2014-01-01

    The ~25nm thick threading dislocation free GaN nanomembrane was prepared using ultraviolet electroless chemical etching method offering the possibility of flexible integration of (Al,In,Ga)N optoelectronic and electronic devices.

  15. Recent progress in organic electronics and photonics: A perspective on the future of organic devices

    KAUST Repository

    Bredas, Jean-Luc

    2016-01-01

    The fields of organic electronics and photonics have witnessed remarkable advances over the past few years. This progress bodes well for the increased utilization of organic materials as the active layers in devices for applications as diverse

  16. Effect of electronic device use on pedestrian safety : a literature review.

    Science.gov (United States)

    2016-04-01

    This literature review on the effect of electronic device use on pedestrian safety is part of a research project sponsored by the Office of Behavioral Safety Research in the National Highway Traffic Safety Administration (NHTSA). An extensive literat...

  17. Infective endocarditis and risk of death after cardiac implantable electronic device implantation

    DEFF Research Database (Denmark)

    Özcan, Cengiz; Raunsø, Jakob; Lamberts, Morten

    2017-01-01

    AIMS: To determine the incidence, risk factors, and mortality of infective endocarditis (IE) following implantation of a first-time, permanent, cardiac implantable electronic device (CIED). METHODS AND RESULTS: From Danish nationwide administrative registers (beginning in 1996), we identified all...

  18. System Testability Analysis for Complex Electronic Devices Based on Multisignal Model

    International Nuclear Information System (INIS)

    Long, B; Tian, S L; Huang, J G

    2006-01-01

    It is necessary to consider the system testability problems for electronic devices during their early design phase because modern electronic devices become smaller and more compositive while their function and structure are more complex. Multisignal model, combining advantage of structure model and dependency model, is used to describe the fault dependency relationship for the complex electronic devices, and the main testability indexes (including optimal test program, fault detection rate, fault isolation rate, etc.) to evaluate testability and corresponding algorithms are given. The system testability analysis process is illustrated for USB-GPIB interface circuit with TEAMS toolbox. The experiment results show that the modelling method is simple, the computation speed is rapid and this method has important significance to improve diagnostic capability for complex electronic devices

  19. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    Science.gov (United States)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  20. Electronic health records and cardiac implantable electronic devices: new paradigms and efficiencies.

    Science.gov (United States)

    Slotwiner, David J

    2016-10-01

    The anticipated advantages of electronic health records (EHRs)-improved efficiency and the ability to share information across the healthcare enterprise-have so far failed to materialize. There is growing recognition that interoperability holds the key to unlocking the greatest value of EHRs. Health information technology (HIT) systems including EHRs must be able to share data and be able to interpret the shared data. This requires a controlled vocabulary with explicit definitions (data elements) as well as protocols to communicate the context in which each data element is being used (syntactic structure). Cardiac implantable electronic devices (CIEDs) provide a clear example of the challenges faced by clinicians when data is not interoperable. The proprietary data formats created by each CIED manufacturer, as well as the multiple sources of data generated by CIEDs (hospital, office, remote monitoring, acute care setting), make it challenging to aggregate even a single patient's data into an EHR. The Heart Rhythm Society and CIED manufacturers have collaborated to develop and implement international standard-based specifications for interoperability that provide an end-to-end solution, enabling structured data to be communicated from CIED to a report generation system, EHR, research database, referring physician, registry, patient portal, and beyond. EHR and other health information technology vendors have been slow to implement these tools, in large part, because there have been no financial incentives for them to do so. It is incumbent upon us, as clinicians, to insist that the tools of interoperability be a prerequisite for the purchase of any and all health information technology systems.

  1. Research on the Environmental Performance Evaluation of Electronic Waste Reverse Logistics Enterprise

    Science.gov (United States)

    Yang, Yu-Xiang; Chen, Fei-Yang; Tong, Tong

    According to the characteristic of e-waste reverse logistics, environmental performance evaluation system of electronic waste reverse logistics enterprise is proposed. We use fuzzy analytic hierarchy process method to evaluate the system. In addition, this paper analyzes the enterprise X, as an example, to discuss the evaluation method. It's important to point out attributes and indexes which should be strengthen during the process of ewaste reverse logistics and provide guidance suggestions to domestic e-waste reverse logistics enterprises.

  2. Development of the ''measurement and sorting'' device for bituminized waste drums at Cogema Marcoule

    International Nuclear Information System (INIS)

    Chabalier, B.; Artaud, J.L.; Perot, B.; Passard, C.; Romeyer Dherbey, J.; Raoux, A.; Misraki, J.

    2000-01-01

    This programme is included in the scope of a specific task to retrieve bituminized waste drums stored on the Marcoule site. The objective is to define a non-destructive nuclear measurement facility that makes it possible to: - sort the packages stored on the site according to the radiological acceptance criteria for the waste packages in the surface storage facility, - establish the β and α activities of the packages to be stored in the surface storage facility, - estimate the activity of the packages that will be stored in the ''Entreposage Intermediaire Polyvalent'' (multiple purpose intermediate storage) built on the Marcoule site. A measurement facility, with measurement times compatible with the industrial flow of retrieval of the waste drums was studied, developed and will be validated. It features gamma spectrometry measurements and neutron measurement devices, associated to an imaging device by photonic transmission and an expert system. Studies associated to the definition of this facility mainly concern: - the imaging station: it enables to know up to what height the packages are filled, the actual density of the matrix, and to detect lacks of homogeneity. These data are required for a correct analysis of the neutron or gamma measurements and to minimise uncertainties, - the interpretation of active neutron measurement signals: a simultaneous detection of the prompt and delayed neutrons makes it possible to differentiate the masses of U-235 and of Pu-239 present in the packages, - the reduction of the detection limits: to that end, an ''asti-Compton'' detector was defined providing a gain on the detection limits at low energies according to the type of GeHP semi-conductor detector. - the expert system which performs the interpretation and coupling of measured data with data coming from the waste production files in order to determine the activity of the β γ, pure β and α radionuclides at 300 years. The validation program that will be conducted on a

  3. Use of portable electronic devices in a hospital setting and their potential for bacterial colonization.

    Science.gov (United States)

    Khan, Amber; Rao, Amitha; Reyes-Sacin, Carlos; Hayakawa, Kayoko; Szpunar, Susan; Riederer, Kathleen; Kaye, Keith; Fishbain, Joel T; Levine, Diane

    2015-03-01

    Portable electronic devices are increasingly being used in the hospital setting. As with other fomites, these devices represent a potential reservoir for the transmission of pathogens. We conducted a convenience sampling of devices in 2 large medical centers to identify bacterial colonization rates and potential risk factors. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Human Powered PiezoelectricBatteries to Supply Power to Wearable Electronic Devices.

    OpenAIRE

    Gonzalez, Jose' Luis; Rubio, Antonio; Moll, Francesc

    2002-01-01

    Consumer electronic equipments are becoming small, portable devices that provide users with a wide range of functionality, from communication to music playing. The battery technology and the power consumption of the device limit the size, weight and autonomous lifetime. One promising alternative to batteries (and fuel cells, that must be refueled as well) is to use the parasitic energy dissipated in the movement of the wearer of the device to power it. We analyze in this work the current stat...

  5. A device for determination of the electrical potential of a rocket carrying an electron gun

    International Nuclear Information System (INIS)

    Gringauz, K.I.; Musatov, L.S.; Shutte, N.M.; Beliashin, A.P.; Denstchikova, L.I.; Kopilov, V.F.

    1978-01-01

    Data on the principle of operation, sensors and electronics of a device for determination of the electrical potential relative to the surrounding medium of a rocket carrying an electric gun are presented. The device operated successfully on board an Eridan rocket during the ARAKS experiment. (Auth.)

  6. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  7. Silicon based nanogap device for investigating electronic transport through 12 nm long oligomers

    DEFF Research Database (Denmark)

    Strobel, S.; Albert, E.; Csaba, G.

    2009-01-01

    We have fabricated vertical nanogap electrode devices based on Silicon-on-Insulator (SOI) substrates for investigating the electronic transport properties of long, conjugated molecular wires. Our nanogap electrode devices comprise smooth metallic contact pairs situated at the sidewall of an SOI s...

  8. 76 FR 79708 - Certain Portable Electronic Devices And Related Software; Submission for OMB Review; Comment...

    Science.gov (United States)

    2011-12-22

    ... present in the pdQ device. 6. Do the Accused iPhones meet the ``switching the mobile phone system from... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-721] Certain Portable Electronic Devices... into the United States, the sale for importation, and sale within the United States after importation...

  9. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  10. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum

    Science.gov (United States)

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689

  11. Electronic transport in disordered graphene antidot lattice devices

    DEFF Research Database (Denmark)

    Power, Stephen; Jauho, Antti-Pekka

    2014-01-01

    Nanostructuring of graphene is in part motivated by the requirement to open a gap in the electronic band structure. In particular, a periodically perforated graphene sheet in the form of an antidot lattice may have such a gap. Such systems have been investigated with a view towards application...

  12. Reactor oscillator - I - III, Part III - Electronic device

    International Nuclear Information System (INIS)

    Lolic, B.; Jovanovic, S.

    1961-12-01

    This report describes functioning of the reactor oscillator electronic system. Two methods of oscillator operation were discussed. The first method is so called method of amplitude modulation of the reactor power, and the second newer method is phase method. Both methods are planned for the present reactor oscillator

  13. Low-Cost and Green Fabrication of Polymer Electronic Devices by Push-Coating of the Polymer Active Layers.

    Science.gov (United States)

    Vohra, Varun; Mróz, Wojciech; Inaba, Shusei; Porzio, William; Giovanella, Umberto; Galeotti, Francesco

    2017-08-02

    Because of both its easy processability and compatibility with roll-to-roll processes, polymer electronics is considered to be the most promising technology for the future generation of low-cost electronic devices such as light-emitting diodes and solar cells. However, the state-of-the-art deposition technique for polymer electronics (spin-coating) generates a high volume of chlorinated solution wastes during the active layer fabrication. Here, we demonstrate that devices with similar or higher performances can be manufactured using the push-coating technique in which a poly(dimethylsiloxane) (PDMS) layer is simply laid over a very small amount of solution (less than 1μL/covered cm 2 ), which is then left for drying. Using mm thick PDMS provides a means to control the solvent diffusion kinetics (sorption/retention) and removes the necessity for additional applied pressure to generate the desired active layer thickness. Unlike spin-coating, push-coating is a slow drying process that induces a higher degree of crystallinity in the polymer thin film without the necessity for a post-annealing step. The polymer light-emitting diodes and solar cells prepared by push-coating exhibit slightly higher performances with respect to the reference spin-coated devices, whereas at the same time reduce the amounts of active layer materials and chlorinated solvents by 50 and 20 times, respectively. These increased performances can be correlated to the higher polymer crystallinities obtained without applying a post-annealing treatment. As push-coating is a roll-to-roll compatible method, the results presented here open the path to low-cost and eco-friendly fabrication of a wide range of emerging devices based on conjugated polymer materials.

  14. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  15. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  16. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  17. Electronic device for automatic control of exposure in radiography

    International Nuclear Information System (INIS)

    Pendharkar, A.S.; Jayakumar, T.K.

    1977-01-01

    An electronic instrument for calculating and controlling exposure in radiography practice using radioisotopes is described. When using this equipment, only factor to be known is the dose required by the film for a given density and the thickness of material inspected. It eliminates all the problems arising out of various parameters such as source decay etc in the conventional procedure for calculating exposure time. Principle of operation, the electronic circuitry adopted and the functional aspects of the system are described in detail. Exposure doses for different industrial films have been related to the instrumental readouts. The system reproducibility and reliability have been evaluated. The advantages and limitations of the present system and the future development to overcome the problems are indicated. (author)

  18. Activating students' interest in lectures and practical courses using their electronic devices

    NARCIS (Netherlands)

    Wijtmans, M.; van Rens, L.; van Muijlwijk- Koezen, J.E.

    2014-01-01

    Interactive teaching with larger groups of students can be a challenge, but the use of mobile electronic devices by students (smartphones, tablets, laptops) can be used to improve classroom interaction. We have examined several types of tasks that can be electronically enacted in classes and

  19. 78 FR 16707 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    Science.gov (United States)

    2013-03-18

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2943] Certain Electronic Devices Having Placeshifting... International Trade Commission (USITC): http://edis.usitc.gov . \\3\\ Electronic Document Information System (EDIS...; Solicitation of Comments Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION...

  20. 78 FR 2437 - Corrected: Certain Cases For Portable Electronic Devices; Notice of Receipt of Complaint...

    Science.gov (United States)

    2013-01-11

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2927] Corrected: Certain Cases For Portable Electronic...: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Cases For Portable Electronic Devices...

  1. 77 FR 4059 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt...

    Science.gov (United States)

    2012-01-26

    ... INTERNATIONAL TRADE COMMISSION [DN 2869] Certain Electronic Devices for Capturing and Transmitting... Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled In Re Certain Electronic...

  2. Thermal protection of electronic devices with the Nylon6/66-PEG nanofiber membranes

    OpenAIRE

    Li Ya; Li Xue-Weis; He Ji-Huan; Wang Ping

    2014-01-01

    Phase change materials for thermal energy storage have been widely applied to clothing insulation, electronic products of heat energy storage. The thermal storage potential of the nanofiber membranes was analyzed using the differential scanning calorimetry. Effect of microstructure of the membrane on energy storage was analyzed, and its applications to electronic devices were elucidated.

  3. 78 FR 56737 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-09-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... on the Commission's electronic docket (EDIS) at http://edis.usitc.gov . Hearing-impaired persons are...

  4. 78 FR 49764 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-08-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review n... for this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc...

  5. 78 FR 72712 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-12-03

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov...

  6. Exploring coherent transport through π-stacked systems for molecular electronic devices

    DEFF Research Database (Denmark)

    Li, Qian; Solomon, Gemma

    2014-01-01

    Understanding electron transport across π-stacked systems can help to elucidate the role of intermolecular tunneling in molecular junctions and potentially with the design of high-efficiency molecular devices. Here we show how conjugation length and substituent groups influence the electron trans...

  7. Double deflection system for an electron beam device

    International Nuclear Information System (INIS)

    Parker, N.W.; Crewe, A.V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations

  8. Electronics: Mott Transistor: Fundamental Studies and Device Operation Mechanisms

    Science.gov (United States)

    2016-03-21

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Harvard University Office for Sponsored Programs...including journal references , in the following categories: (b) Papers published in non-peer-reviewed journals (N/A for none) 03/21/2016 03/21/2016 03...limited kinetics of electron doping in correlated oxides, Applied Physics Letters (07 2015) TOTAL: 1 Books Number of Manuscripts: Patents Submitted

  9. Latest progress in gallium-oxide electronic devices

    Science.gov (United States)

    Higashiwaki, Masataka; Wong, Man Hoi; Konishi, Keita; Nakata, Yoshiaki; Lin, Chia-Hung; Kamimura, Takafumi; Ravikiran, Lingaparthi; Sasaki, Kohei; Goto, Ken; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao

    2018-02-01

    Gallium oxide (Ga2O3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power switching and harsh environment electronics by virtue of the excellent material properties and the relative ease of mass wafer production. In this proceedings paper, an overview of our recent development progress of Ga2O3 metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes will be reported.

  10. An analysis of radiation effects on electronics and soi-mos devices as an alternative

    International Nuclear Information System (INIS)

    Ikraiam, F. A.

    2013-01-01

    The effects of radiation on semiconductors and electronic components are analyzed. The performance of such circuitry depends upon the reliability of electronic devices where electronic components will be unavoidably exposed to radiation. This exposure can be detrimental or even fatal to the expected function of the devices. Single event effects (SEE), in particular, which lead to sudden device or system failure and total dose effects can reduce the lifetime of electronic devices in such systems are discussed. Silicon-on-insulator (SOI) technology is introduced as an alternative for radiation-hardened devices. I-V Characteristics Curves for SOI-MOS devices subjected to a different total radiation doses are illustrated. In addition, properties of some semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, and AlGaN/GaN are compared with those of SOI devices. The recognition of the potential usefulness of SOI-MOS semiconductor materials for harsh environments is discussed. A summary of radiation effects, impacts and mitigation techniques is also presented. (authors)

  11. Volumetric change of simulated radioactive waste glass irradiated by electron accelerator. [Silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Seichi; Furuya, Hirotaka; Inagaki, Yaohiro; Kozaka, Tetsuo; Sugisaki, Masayasu

    1987-11-01

    Density changes of simulated radioactive waste glasses, silica glass and Pyrex glass irradiated by an electron accelerator were measured by a ''sink-float'' technique. The density changes of the waste and silica glasses were less than 0.05 %, irradiated at 2.0 MeV up to the fluence of 1.7 x 10/sup 17/ ecm/sup 2/, while were remarkably smaller than that of Pyrex glass of 0.18 % shrinkage. Precision of the measurements in the density changes of the waste glass was lower than that of Pyrex glass possibly because of the inhomogeneity of the waste glass

  12. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices

    KAUST Repository

    Beljonne, David

    2011-02-08

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational techniques used to assess the morphology of organic: organic heterojunctions; we highlight the compromises that are necessary to handle large systems and multiple time scales while preserving the atomistic details required for subsequent computations of the electronic and optical properties. We then review some recent theoretical advances in describing the ground-state electronic structure at heterojunctions between donor and acceptor materials and highlight the role played by charge-transfer and long-range polarization effects. Finally, we discuss the modeling of the excited-state electronic structure at organic:organic interfaces, which is a key aspect in the understanding of the dynamics of photoinduced electron-transfer processes. © 2010 American Chemical Society.

  13. Environmental impact assessment of waste electronic and electric ...

    African Journals Online (AJOL)

    Wuhib.Z

    Key words: Printed circuit boards (PCBs), e-waste, leaching tests, heavy metals, ..... Maximum leachability (in mg/kg) of metals versus leaching test methods (all tests were in triplicate). and c) ..... Environmental threats of discarded picture tubes.

  14. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    International Nuclear Information System (INIS)

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  15. Electronic spectrum of a deterministic single-donor device in silicon

    International Nuclear Information System (INIS)

    Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2013-01-01

    We report the fabrication of a single-electron transistor (SET) based on an individual phosphorus dopant that is deterministically positioned between the dopant-based electrodes of a transport device in silicon. Electronic characterization at mK-temperatures reveals a charging energy that is very similar to the value expected for isolated P donors in a bulk Si environment. Furthermore, we find indications for bulk-like one-electron excited states in the co-tunneling spectrum of the device, in sharp contrast to previous reports on transport through single dopants

  16. The use of electronic devices for communication with colleagues and other healthcare professionals - nursing professionals' perspectives.

    Science.gov (United States)

    Koivunen, Marita; Niemi, Anne; Hupli, Maija

    2015-03-01

    The aim of the study is to describe nursing professionals' experiences of the use of electronic devices for communication with colleagues and other healthcare professionals. Information and communication technology applications in health care are rapidly expanding, thanks to the fast-growing penetration of the Internet and mobile technology. Communication between professionals in health care is essential for patient safety and quality of care. Implementing new methods for communication among healthcare professionals is important. A cross-sectional survey was used in the study. The data were collected in spring 2012 using an electronic questionnaire with structured and open-ended questions. The target group comprised the nursing professionals (N = 567, n = 123) in one healthcare district who worked in outpatient clinics in publically funded health care in Finland. Nursing professionals use different electronic devices for communication with each other. The most often used method was email, while the least used methods were question-answer programmes and synchronous communication channels on the Internet. Communication using electronic devices was used for practical nursing, improving personnel competences, organizing daily operations and administrative tasks. Electronic devices may speed up the management of patient data, improve staff cooperation and competence and make more effective use of working time. The obstacles were concern about information security, lack of technical skills, unworkable technology and decreasing social interaction. According to our findings, despite the obstacles related to use of information technology, the use of electronic devices to support communication among healthcare professionals appears to be useful. © 2014 John Wiley & Sons Ltd.

  17. Design and Testing of Electronic Devices for Harsh Environments

    CERN Document Server

    Nico, Costantino

    This thesis reports an overview and the main results of the research activity carried out within the PhD programme in Information Engineering of the University of Pisa (2010-2012). The research activity has been focused on different fields, including Automotive and High Energy Physics experiments, according to a common denominator: the development of electroni c devices and systems operating in harsh environments. There are many applications that forc e the adoption of design methodologies and strategies focused on this type of envir onments: military, biom edical, automotive, industrial and space. The development of solutions fulfilling specific operational requirements, therefore represents an interesting field of research. The first research activity has been framed within the ATHENIS project, funded by the CORDIS Commission of the European Community, and aiming at the development of a System-on-Chip, a r egulator for alternators employed on vehicles, presenting both configurability an d t...

  18. Informal electronic waste recycling: a sector review with special focus on China.

    Science.gov (United States)

    Chi, Xinwen; Streicher-Porte, Martin; Wang, Mark Y L; Reuter, Markus A

    2011-04-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Informal electronic waste recycling: A sector review with special focus on China

    International Nuclear Information System (INIS)

    Chi Xinwen; Streicher-Porte, Martin; Wang, Mark Y.L.; Reuter, Markus A.

    2011-01-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.

  20. Performance evaluation of air cleaning devices of an operating low level radioactive solid waste incinerator

    International Nuclear Information System (INIS)

    Subramanian, V.; Surya Narayana, D.S.; Sundararajan, A.R.; Satyasai, P.M.; Ahmed, Jaleel

    1997-01-01

    Particle removal efficiencies of a cyclone separator, baghouse filters and a high efficiency particulate activity (HEPA) filter bank of an incinerator have been determined during the incineration of combustible low level solid radioactive wastes with surface dose of 20 - 50 gy/h. Experimental runs have been carried out to collect the particulates in various aerodynamic size ranges using an eight stage Andersen sampler and a low pressure impactor (LPI) while the incinerator is in operation. The collection efficiencies of the cyclone, baghouse and HEPA filters have been found to be 100 per cent for particles of size greater than 4.7, 2.1 and 1.1 μm respectively. The results of our investigations indicate that the air cleaning devices of the incinerator are working according to their design criteria. The data will be useful in the design and operation of air cleaning devices for toxic gaseous effluents. (author). 3 refs., 2 figs., 1 tab

  1. Nanoporous metal film: An energy-dependent transmission device for electron waves

    International Nuclear Information System (INIS)

    Grech, S.; Degiovanni, A.; Lapena, L.; Morin, R.

    2011-01-01

    We measure electron transmission through free-standing ultrathin nanoporous gold films, using the coherent electron beam emitted by sharp field emission tips in a low energy electron projection microscope setup. Transmission coefficient versus electron wavelength plots show periodic oscillations between 75 and 850 eV. These oscillations result from the energy dependence of interference between paths through the gold and paths through the nanometer-sized pores of the film. We reveal that these films constitute high transmittance quantum devices acting on electron waves through a wavelength-dependent complex transmittance defined by the porosity and the thickness of the film.

  2. New characterisation method of electrical and electronic equipment wastes (WEEE)

    Energy Technology Data Exchange (ETDEWEB)

    Menad, N., E-mail: n.menad@brgm.fr [BRGM, 3 av. C. Guillemin, 45060 Orléans (France); Guignot, S. [BRGM, 3 av. C. Guillemin, 45060 Orléans (France); Houwelingen, J.A. van, E-mail: recy.cling@iae.nl [Recycling Consult, Eindhoven (Netherlands)

    2013-03-15

    Highlights: ► A novel method of characterisation of components contained in WEEE has been developed. ► This technique was applied on several samples generated from different recycling plants. ► Handheld NIR and XRF were used to determine types of plastics and flame retardants. ► WEEE processing flow-sheet was suggested. - Abstract: Innovative separation and beneficiation techniques of various materials encountered in electrical and electronic equipment wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterisation of WEEE was conducted in an attempt to evaluate the amenability of mechanical separation processes. Properties such as liberation degree of fractions (plastics, metals ferrous and non-ferrous), which are essential for mechanical separation, are analysed by means of a grain counting approach. Two different samples from different recycling industries were characterised in this work. The first sample is a heterogeneous material containing different types of plastics, metals (ferrous and non-ferrous), printed circuit board (PCB), rubber and wood. The second sample contains a mixture of mainly plastics. It is found for the first sample that all aluminium particles are free (100%) in all investigated size fractions. Between 92% and 95% of plastics are present as free particles; however, 67% in average of ferromagnetic particles are liberated. It can be observed that only 42% of ferromagnetic particles are free in the size fraction larger than 20 mm. Particle shapes were also quantified manually particle by particle. The results show that the particle shapes as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, the separability of various materials was ascertained by a sink–float analysis and eddy current separation. The second sample was separated by automatic sensor sorting in four different products: ABS, PC–ABS, PS and rest product. The

  3. New characterisation method of electrical and electronic equipment wastes (WEEE)

    International Nuclear Information System (INIS)

    Menad, N.; Guignot, S.; Houwelingen, J.A. van

    2013-01-01

    Highlights: ► A novel method of characterisation of components contained in WEEE has been developed. ► This technique was applied on several samples generated from different recycling plants. ► Handheld NIR and XRF were used to determine types of plastics and flame retardants. ► WEEE processing flow-sheet was suggested. - Abstract: Innovative separation and beneficiation techniques of various materials encountered in electrical and electronic equipment wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterisation of WEEE was conducted in an attempt to evaluate the amenability of mechanical separation processes. Properties such as liberation degree of fractions (plastics, metals ferrous and non-ferrous), which are essential for mechanical separation, are analysed by means of a grain counting approach. Two different samples from different recycling industries were characterised in this work. The first sample is a heterogeneous material containing different types of plastics, metals (ferrous and non-ferrous), printed circuit board (PCB), rubber and wood. The second sample contains a mixture of mainly plastics. It is found for the first sample that all aluminium particles are free (100%) in all investigated size fractions. Between 92% and 95% of plastics are present as free particles; however, 67% in average of ferromagnetic particles are liberated. It can be observed that only 42% of ferromagnetic particles are free in the size fraction larger than 20 mm. Particle shapes were also quantified manually particle by particle. The results show that the particle shapes as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, the separability of various materials was ascertained by a sink–float analysis and eddy current separation. The second sample was separated by automatic sensor sorting in four different products: ABS, PC–ABS, PS and rest product. The

  4. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  5. Integrated electronic device for processing impulses from neutron detectors

    International Nuclear Information System (INIS)

    Stoica, Mihai; Pirvu, Ion

    2009-01-01

    The developing of nuclear power is a key factor in decreasing energy Romania's dependence on imports of fossil fuels (oil, natural gas). An important point in achieving this goal is to use the experience acquired in the design and use of the equipment produced with the participation of INR specialists for Cernavoda NPP, Units 1 and 2. The design based on Surface Mount Technology (SMT) and the implementation of electronic interface modules of computer processing and detectors of radiation or nuclear particles contribute both to modernize and increase the performance of equipment. (authors)

  6. Interfacial and Thin Film Chemistry in Electron Device Fabrication

    Science.gov (United States)

    1992-01-01

    Chemistry During Electronic Processing" by Professor Richard Osgood, Jr.; "In Situ Optical Diagnostics of Semiconductors Prepared by Laser Chemical Processing...N(Igde Area Code) 22c OFF ft SYMBO. Professors Georee Flynn and Richard Os~ood I MSL DD Form 1473, JUN 86 Previous edotions are obsolete SECURITY...and D. L. Smith, Phys.I Rev. Lett. 62, 649 (1989). 19. E. A. Caridi, T. Y. Chang, K. W. Goossen and L. F. Eastman, AOLi Phvs. Tett. 56, 659 (1990). 1

  7. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    Science.gov (United States)

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A comparison of electronic waste recycling in Switzerland and in India

    International Nuclear Information System (INIS)

    Sinha-Khetriwal, Deepali; Kraeuchi, Philipp; Schwaninger, Markus

    2005-01-01

    Electronic waste, commonly known as e-waste, is comprised of discarded computers, television sets, microwave ovens and other such appliances that are past their useful lives. As managing e-waste becomes a priority, countries are being forced to develop new models for the collection and environmentally sound disposal of this waste. Switzerland is one of the very few countries with over a decade of experience in managing e-waste. India, on the other hand, is only now experiencing the problems that e-waste poses. The paper aims to give the reader insight into the disposal of end-of-life appliances in both countries, including appliance collection and the financing of recycling systems as well as the social and environmental aspects of the current practices

  9. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households

    International Nuclear Information System (INIS)

    Lau, Winifred Ka-Yan; Chung, Shan-Shan; Zhang, Chan

    2013-01-01

    Highlights: ► Most household TWARC waste is sold directly to private e-waste collectors in HK. ► The current e-waste recycling network is popular with HK households. ► About 80% of household generated TWARC is exported overseas each year. ► Over 7000 tonnes/yr of household generated TWARC reach landfills. ► It is necessary to upgrade safety and awareness in HK’s e-waste recycling industry. - Abstract: A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced

  10. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Winifred Ka-Yan [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Chung, Shan-Shan, E-mail: sschung@hkbu.edu.hk [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Zhang, Chan [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2013-03-15

    Highlights: ► Most household TWARC waste is sold directly to private e-waste collectors in HK. ► The current e-waste recycling network is popular with HK households. ► About 80% of household generated TWARC is exported overseas each year. ► Over 7000 tonnes/yr of household generated TWARC reach landfills. ► It is necessary to upgrade safety and awareness in HK’s e-waste recycling industry. - Abstract: A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.

  11. Ballistic electron emission spectroscopy on Ag/Si devices

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, A; Bobisch, C A; Matena, M; Moeller, R [Department of Physics, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: amin.bannani@uni-due.de

    2008-09-17

    In this work we report on ballistic electron emission spectroscopy (BEES) studies on epitaxial layers of silver grown on silicon surfaces, with either a Si(111)-(7 x 7) or Si(100)-(2 x 1) surface reconstruction. The experiments were done at low temperature and in ultra-high vacuum (UHV). In addition, BEES measurements on polycrystalline Ag films grown on hydrogen-terminated H:Si(111)-(1 x 1) and H:Si(100)-(2 x 1) surfaces were performed. The Schottky barrier heights were evaluated by BEES. The results are compared to the values for the barrier height reported for macroscopic Schottky diodes. We show that the barrier heights for the epitaxial films substantially differ from the values measured on polycrystalline Ag films, suggesting a strong effect of the interface on the barrier height.

  12. PROTEOTRONICS: The emerging science of protein-based electronic devices

    International Nuclear Information System (INIS)

    Alfinito, Eleonora; Pousset, Jeremy; Reggiani, Lino

    2015-01-01

    Protein-mediated charge transport is of relevant importance in the design of protein based electronics and in attaining an adequate level of understanding of protein functioning. This is particularly true for the case of transmembrane proteins, like those pertaining to the G protein coupled receptors (GPCRs). These proteins are involved in a broad range of biological processes like catalysis, substance transport, etc., thus being the target of a large number of clinically used drugs. This paper briefly reviews a variety of experiments devoted to investigate charge transport in proteins and present a unified theoretical model able to relate macroscopic experimental results with the conformations of the amino acids backbone of the single protein. (paper)

  13. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    Science.gov (United States)

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Impact of stand-by energy losses in electronic devices on smart network performance

    Directory of Open Access Journals (Sweden)

    Mandić-Lukić Jasmina S.

    2012-01-01

    Full Text Available Limited energy resources and environmental concerns due to ever increasing energy consumption, more and more emphasis is being put on energy savings. Smart networks are promoted worldwide as a powerful tool used to improve the energy efficiency through consumption management, as well as to enable the distributed power generation, primarily based on renewable energy sources, to be optimally explored. To make it possible for the smart networks to function, a large number of electronic devices is needed to operate or to be in their stand-by mode. The consumption of these devices is added to the consumption of many other electronic devices already in use in households and offices, thus giving rise to the overall power consumption and threatening to counteract the primary function of smart networks. This paper addresses the consumption of particular electronic devices, with an emphasis placed on their thermal losses when in stand-by mode and their total share in the overall power consumption in certain countries. The thermal losses of electronic devices in their stand-by mode are usually neglected, but it seems theoretically possible that a massive increase in their number can impact net performance of the future smart networks considerably so that above an optimum level of energy savings achieved by their penetration, total consumption begins to increase. Based on the current stand-by energy losses from the existing electronic devices, we propose that the future penetration of smart networks be optimized taking also into account losses from their own electronic devices, required to operate in stand-by mode.

  15. Rational design of metal-organic electronic devices: A computational perspective

    Science.gov (United States)

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device

  16. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.

    Science.gov (United States)

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A

    2015-11-01

    Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Transmission electron microscopy of InP-based compound semiconductor materials and devices

    International Nuclear Information System (INIS)

    Chu, S.N.G.

    1990-01-01

    InP/InGaAsP-based heteroepitaxial structures constitute the major optoelectronic devices for state-of-the-art long wavelength optical fiber communication system.s Future advanced device structures will require thin heteroepitaxial quantum wells and superlattices a few tens of angstrom or less in thickness, and lateral dimensions ranging from a few tens angstrom for quantum dots and wires to a few μm in width for buried heterostructure lasers. Due to the increasing complexity of the device structure required by band-gap engineering, the performance of these devices becomes susceptible to any lattice imperfections present in the structure. Transmission electron microscopy (TEM), therefore, becomes the most important technique in characterizing the structural integrity of these materials. Cross-section transmission electron microscopy (XTEM) not only provides the necessary geometric information on the device structure; a careful study of the materials science behind the observed lattice imperfections provides directions for optimization of both the epitaxial growth parameters and device processing conditions. Furthermore, for device reliability studies, TEM is the only technique that unambiguously identifies the cause of device degradation. In this paper, the authors discuss areas of application of various TEM techniques, describe the TEM sample preparation technique, and review case studies to demonstrate the power of the TEM technique

  18. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    Science.gov (United States)

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p 90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  19. Ignitor electrode system design for the pulses electron irradiators device

    International Nuclear Information System (INIS)

    Lely Susita RM; Ihwanul Aziz

    2016-01-01

    The designed ignitor electrode system is a system used to initiate the plasma discharge. It consists of two pieces which are placed on both side of the plasma vessel. Each of the ignitor electrode system consists of a cathode, an anode and insulator between the cathode and the anode. The best cathode material for ignitor electrode system is Mg due to its lowest ion erosion rate (γi =11.7 μg/C) and its low cohesive energy (1.51 eV). The specifications of ignitor electrode system designed for the pulse electron irradiators is as follow: Mg cathode materials in the form of rod having a diameter of 6.35 mm and length of 76.75 mm. Anode material are made of non magnetic of SS 304 cylinder shaped with an outer diameter of 88.53 mm, an inner diameter of 81.53 mm and a thickness of 3.50 mm. Insulating material between the cathode and the anode is made of teflon cylinder shaped, outer diameter of 9.50 mm, an inner diameter of 6.35 mm and a length of 30 mm. Based on the ignitor electrode system design, the next step is construction and function test of the ignitor electrode system. (author)

  20. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, P.; Wood, J.; Snyder, E. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Boe, T. [Oak Ridge Inst. for Science and Education, Research Triangle Park, NC (United States); Schulthiesz, D.; Peake, T.; Ierardi, M. [U.S. Environmental Protection Agency, Washington, DC (United States); Hayes, C.; Rodgers, M. [Eastern Research Group, Inc., Morrisville, NC (United States)

    2011-07-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  1. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    International Nuclear Information System (INIS)

    Lemieux, P.; Wood, J.; Snyder, E.; Boe, T.; Schulthiesz, D.; Peake, T.; Ierardi, M.; Hayes, C.; Rodgers, M.

    2011-01-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  2. Chromium Waste Treatment from Leather Manufacture Using Electron Beam Radiation Technic

    International Nuclear Information System (INIS)

    Didiek Herhady, R.; Sukarsono, R.

    2007-01-01

    Leather manufacture chromium waste treatment using chemical methods have an essential disadvantage, because of the production of the secondary contamination of wastes and separated sediments used by reagents. Therefore, a new technique is needed to solve this problem. The aim of the research to learn the advantages of electron beam radiation for chromium waste treatment. Water radiolysis can be produced by the interaction between electron beam and water or liquid substances. This phenomenon produces many reducing agents and ions that could reduce chromium concentrations in the liquid waste. Ethyl alcohol as a scavenger was added in the waste samples, then the pH of varied from 1, 4, 8 to 12, then were irradiated. Irradiation were done by Electron Beam Machine with dose 15, 25, and 35 kGy. After irradiation, chromium concentration in the samples were analyzed by AAS and UV-vis spectrophotometer. The results had shown that chromium could be reduced by high dose electron beam. The optimum reduction of chromium was achieved at liquid waste pH 8 and irradiation dose 35 kGy. (author)

  3. An electroluminescence device for printable electronics using coprecipitated ZnS:Mn nanocrystal ink

    International Nuclear Information System (INIS)

    Toyama, T; Hama, T; Adachi, D; Nakashizu, Y; Okamoto, H

    2009-01-01

    Electroluminescence (EL) devices for printable electronics using coprecipitated ZnS:Mn nanocrystal (NC) ink are demonstrated. The EL properties of these devices were investigated along with the structural and optical properties of ZnS:Mn NCs with an emphasis on their dependence on crystal size. Transmission electron microscopy and x-ray diffraction studies revealed that the NCs, with a crystal size of 3-4 nm, are nearly monodisperse; the crystal size can be controlled by the Zn 2+ concentration in the starting solution for coprecipitation. The results of optical studies indicate the presence of quantum confinement effects; in addition, the NC surfaces are well passivated, regardless of the crystal size. Finally, an increase in the luminance of EL devices with a decrease in crystal size is observed, which suggests the excitation mechanism of ZnS:Mn NC EL devices.

  4. Personalized Remote Monitoring of the Atrial Fibrillation Patients with Electronic Implant Devices

    Directory of Open Access Journals (Sweden)

    Gokce B. Laleci

    2011-01-01

    Full Text Available Cardiovascular Implantable Electronic Devices (CIED are gaining popularity in treating patients with heart disease. Remote monitoring through care management systems enables continuous surveillance of such patients by checking device functions and clinical events. These care management systems include decision support capabilities based on clinical guidelines. Data input to such systems are from different information sources including medical devices and Electronic Health Records (EHRs. Although evidence-based clinical guidelines provides numerous benefits such as standardized care, reduced costs, efficient and effective care management, they are currently underutilized in clinical practice due to interoperability problems among different healthcare data sources. In this paper, we introduce the iCARDEA care management system for atrial fibrillation patients with implant devices and describe how the iCARDEA care plan engine executes the clinical guidelines by seamlessly accessing the EHR systems and the CIED data through standard interfaces.

  5. Off-axis electron holography for the measurement of active dopants in silicon semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, David

    2016-01-01

    There is a need in the semiconductor industry for a dopant profiling technique with nm-scale resolution. Here we demonstrate that off-axis electron holography can be used to provide maps of the electrostatic potential in semiconductor devices with nm-scale resolution. In this paper we will discuss issues regarding the spatial resolution and precision of the technique. Then we will discuss problems with specimen preparation and how this affects the accuracy of the measurements of the potentials. Finally we show results from experimental off-axis electron holography applied to nMOS and pMOS CMOS devices grown on bulk silicon and silicon- on-insulator type devices and present solutions to common problems that are encountered when examining these types of devices. (paper)

  6. Medical device integration: CIOs must bridge the digital divide between devices and electronic medical records.

    Science.gov (United States)

    Raths, David

    2009-02-01

    To get funding approved for medical device integration, ClOs suggest focusing on specific patient safety or staff efficiency pain points. Organizations that make clinical engineering part of their IT team report fewer chain-of-command issues. It also helps IT people understand the clinical goals because the engineering people have been working closely with clinicians for years. A new organization has formed to work on collaboration between clinical engineers and IT professionals. For more information, go to www.ceitcollaboration.org. ECRI Institute has written a guide to handling the convergence of medical technology and hospital networks. Its "Medical Technology for the IT Professional: An Essential Guide for Working in Today's Healthcare Setting" also details how IT professionals can assist hospital technology planning and acquisition, and provide ongoing support for IT-based medical technologies. For more information, visit www.ecri.org/ITresource.

  7. The impact of an electronic monitoring and reminder device on patient compliance with antihypertensive therapy

    DEFF Research Database (Denmark)

    Christensen, Arne; Christrup, Lona Louring; Fabricius, Paul Erik

    2010-01-01

    . In the first half of the study, patients using the device reported 91% compliance versus 85% in the control group. This difference diminished after crossover (88 versus 86%). BP was not affected. Electronic monitoring data on compliance revealed taking, dosing and timing compliance between 45 and 52% in study...... to be effective in improving patient compliance to some extent, but the combined effect has not been documented. OBJECTIVE: To assess the impact of an electronic reminder and monitoring device on patient compliance and BP control. METHODS: All patients received medical treatment with telmisartan once daily...... and were randomized to either electronic compliance monitoring with a reminder and monitoring device or standard therapy for 6 months. Both groups were crossed over after 6 months. Intervention effectiveness was assessed using self-reported compliance and BP. RESULTS: Data from 398 patients were analysed...

  8. Proceedings of the national conference on vacuum electronic devices and applications: souvenir and extended abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    Vacuum electronic devices have carved out a strategic niche for themselves in the areas of satellite based communications and broadcasting, industrial and medical accelerators, and, high power RF systems required in high energy particle accelerators, accelerator driven sub-critical systems, plasma heating systems in nuclear fusion reactors for power generation etc. Besides, these devices continue to have their major applications in various defence related communication, RADAR and ECM systems. Papers relevant to INIS are indexed separately

  9. Theory of semiconductor junction devices a textbook for electrical and electronic engineers

    CERN Document Server

    Leck, J H

    1967-01-01

    Theory of Semiconductor Junction Devices: A Textbook for Electrical and Electronic Engineers presents the simplified numerical computation of the fundamental electrical equations, specifically Poisson's and the Hall effect equations. This book provides the fundamental theory relevant for the understanding of semiconductor device theory. Comprised of 10 chapters, this book starts with an overview of the application of band theory to the special case of semiconductors, both intrinsic and extrinsic. This text then describes the electrical properties of conductivity, semiconductors, and Hall effe

  10. Electronic Equipment of Self-Actuated Mobile Device for Load Carrying

    Directory of Open Access Journals (Sweden)

    T. Janecka

    1994-12-01

    Full Text Available The device dealt in this work is determined namely for carrying invalid persons on various types of stairs or other not flat surfaces. But it can serve also to other purposes.To enable fulfilling all given demands, the design was consulted with other research workers solving the tasks of similar features.Resulting mechanical device, enabling aspects of movement required, is controlled by electronic and microprocessor circuits that obtain the input information from sensitive units investigating the terrain.

  11. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  12. Association between lead exposure from electronic waste recycling and child temperament alterations.

    Science.gov (United States)

    Liu, Junxiao; Xu, Xijin; Wu, Kusheng; Piao, Zhongxian; Huang, Jinrong; Guo, Yongyong; Li, Weiqiu; Zhang, Yuling; Chen, Aimin; Huo, Xia

    2011-08-01

    We aimed to evaluate the dose-dependent effects of lead exposure on temperament alterations in children from a primitive e-waste (obsolete electrical and electronic devices) recycling area in Guiyu of China and a control area (Chendian, China). Blood lead levels (BLL) might be correlated with temperament, health, and relevant factors that were evaluated through Parent Temperament Questionnaire (PTQ), physical examination, and residential questionnaires. We collected venipuncture blood samples from 303 children (aged 3-7 years old) between January and February 2008. Child BLL were higher in Guiyu than in Chendian (median 13.2 μg/dL, range 4.0-48.5 μg/dL vs. 8.2 μg/dL, 0-21.3 μg/dL) (Pchildren (all Pchildren with low BLL (BLLchildren by increasing BLL and altering children temperament, although the exposure to other toxicants needs to be examined in future studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. A video-amplifier device for the transmission-type electron microscope ELMISCOP I of Siemens

    International Nuclear Information System (INIS)

    Groboth, G.; Hoerl, E.M.

    1975-01-01

    In order to get a visual image of the sample at the final screen of a transmission-type electron microscope and to keep at the same time the sample at low temperature a video-amplifier device has been developed by the authors. Details about its design and the necessary reconstruction of the electron microscope equipment are given. The beam current density at the transparent screen is reduced to 10 -12 -10 -13 A.cm -2 . Moreover the costs of this video-amplifier device are lower than those available. (CR)

  14. Electronic Devices for Controlling the Very High Voltage in the ALICE TPC Detector

    CERN Document Server

    Boccioli, Marco

    2007-01-01

    The Time Projection Chamber (TPC) is the core of the ALICE experiment at CERN. The TPC Very High Voltage project covers the development of the control system for the power supply that generates the 100kV necessary for the drift field in the TPC. This paper reports on the project progress, introducing the control system architecture from the electronics up to the control level. All the electronic devices will be described, highlighting their communication issues, and the challenges in integrating these devices in a PLC-based control system.

  15. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Nam; Lee, Seung Min; Mishra, Anurag [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-01-01

    Recently, non-equilibrium atmospheric pressure plasma, especially those operated at low gas temperatures, have become a topic of great interest for the processing of flexible and printed electronic devices due to several benefits such as the reduction of process and reactor costs, the employment of easy-to-handle apparatuses and the easier integration into continuous production lines. In this review, several types of typical atmospheric pressure plasma sources have been addressed, and the processes including surface treatment, texturing and sintering for application to flexible and printed electronic devices have been discussed.

  16. Radiation effects and soft errors in integrated circuits and electronic devices

    CERN Document Server

    Fleetwood, D M

    2004-01-01

    This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes th

  17. European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (5th)

    Science.gov (United States)

    1994-10-07

    Associazione Elettrotecnica e Elettronica Italia Circuiti Componente Tecnologia Elettroniche CECC CENELEC Electronic Components Committee EC The Commission...compared to the results of 2D transient device simulations in cylinder coordinates as well as to 3D transient device simulations (Table 1, 2). M3 In...non- Sabs. abs. drift charge 3.3 3.7 6.3 6.1 M Qdrft / feCM 3D diffusion 6.3 13.6 3.0 12.8 device charge simu- Qdiffl fC V M (E Wl ation "R’ L L

  18. Emerging technologies to power next generation mobile electronic devices using solar energy

    Institute of Scientific and Technical Information of China (English)

    Dewei JIA; Yubo DUAN; Jing LIU

    2009-01-01

    Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples' lives.However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation.In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem.

  19. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    Science.gov (United States)

    Cronin, Edmond M; Varma, Niraj

    2012-07-01

    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  20. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    KAUST Repository

    Eita, Mohamed S.

    2016-08-04

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc oxide. The plurality of layers can be prepared by layer-by-layer processing in which alternating layers are built up step-by-step due to electrostatic attraction. The efficiency of the device can be increased by this processing method compared to a comparable method like sputtering. The number of layers can be controlled to improve device efficiency. Aqueous solutions can be used which is environmentally friendly. Annealing can be avoided. A quantum dot layer can be used next to the metal oxide layer to form a quantum dot heterojunction solar device.

  1. Compact toroidal energy storage device with relativistically densified electrons through the use of travelling magnetic waves

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.

    1983-01-01

    A new concept for a small compact multimegajoule energy storage device utilizing relativistically densified electron beam circulating in a torus is presented. The electron cloud is produced through inductive charge injection by a travelling magnetic wave circulating the torus. Parameters are given for two representative toroidal energy storage devices, consisting of 1 m and 32 m in radius respectively, which could store more than 4 x 10 17 electrons and 30' MJ in energy. The concept utilizes the idea that large electric and magnetic fields can be produced by a partially space-charge neutralized intense relativistic electron beam which could become many orders of magnitude greater than the externally applied field confining the beam. In the present approach, the electron cloud densification can be achieved gradually by permitting multiple traversals of the magnetic wave around the torus. The magnetic mirror force acts on the orbital magnetic electron dipole moment and completely penetrates the entire electron cloud. As the electrons gain relativistic energies, the beam can be continuously densified at the front of the travelling wave, where the magnetic field is rising with time. The use of travelling magnetic wave to accelerate an electron cloud and the use of large electric field at the thusly accelerated cloud form the basis for a high beam intensity and hence high energy storage. Technical considerations and several potential applications, which include the driving of a powerful gyrotron, are discussed

  2. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Gh; Marcuta, M [SC ICPE Electrostatica SA, Bucharest (Romania); Jipa, S [' Valahia' University, Targoviste (Romania)

    2001-07-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process.

  3. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    International Nuclear Information System (INIS)

    Marin, Gh.; Marcuta, M.; Jipa, S.

    2001-01-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process

  4. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2005-01-01

    The use of a thinned back-side illuminated charge coupled device chip as two-dimensional sensor working in direct electron bombarded mode at optimum energy of the incident signal electrons is demonstrated and the measurements of the modulation transfer function (MTF) and detective quantum efficiency (DQE) are described. The MTF was measured for energy of electrons 4 keV using an edge projection method and a stripe projection method. The decrease of the MTF for a maximum spatial frequency of 20.8 cycles/mm, corresponding to the pixel size 24x24 μm, is 0.75≅-2.5 dB, and it is approximately the same for both horizontal and vertical directions. DQE was measured using an empty image and the mixing factor method. Empty images were acquired for energies of electrons from 2 to 5 keV and for various doses, ranging from nearly dark image to a nearly saturated one. DQE increases with increasing energy of bombarded electrons and reaches 0.92 for electron energy of 5 keV. For this energy the detector will be used for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope

  5. Designing electronic anisotropy of three-dimensional carbon allotropes for the all-carbon device

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li-Chun, E-mail: xulichun@tyut.edu.cn; Song, Xian-Jiang; Yang, Zhi; Li, Xiu-Yan [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Ru-Zhi; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2015-07-13

    Extending two-dimensional (2D) graphene nanosheets to a three-dimensional (3D) network can enhance the design of all-carbon electronic devices. Based on the great diversity of carbon atomic bonding, we have constructed four superlattice-type carbon allotrope candidates, containing sp{sup 2}-bonding transport channels and sp{sup 3}-bonding insulating layers, using density functional theory. It was demonstrated through systematic simulations that the ultra-thin insulating layer with only three-atom thickness can switch off the tunneling transport and isolate the electronic connection between the adjacent graphene strips, and these alternating perpendicular strips also extend the electron road from 2D to 3D. Designing electronic anisotropy originates from the mutually perpendicular π bonds and the rare partial charge density of the corresponding carriers in insulating layers. Our results indicate the possibility of producing custom-designed 3D all-carbon devices with building blocks of graphene and diamond.

  6. Utilization of high energy electron beam in the treatment of drinking and waste water

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-08-01

    Samples of drinking water and waste water were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% tri halomethanes (THM) in drinking water (concentration from 2.7 μg/1 to 45μg/1, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid waste water. (author)

  7. A Novel Electronic Device for Measuring Urine Flow Rate: A Clinical Investigation

    OpenAIRE

    Aliza Goldman; Hagar Azran; Tal Stern; Mor Grinstein; Dafna Wilner

    2017-01-01

    Objective: Currently, most vital signs in the intensive care unit (ICU) are electronically monitored. However, clinical practice for urine output (UO) measurement, an important vital sign, usually requires manual recording of data that is subject to human errors. In this study, we assessed the ability of a novel electronic UO monitoring device to measure real-time hourly UO versus current clinical practice. Design: Patients were connected to the RenalSense Clarity RMS Sensor Kit with a sensor...

  8. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  9. Vertical GaN Devices for Power Electronics in Extreme Environments

    Science.gov (United States)

    2016-03-31

    Vertical GaN Devices for Power Electronics in Extreme Environments Isik C. Kizilyalli (1), Robert J. Kaplar (2), O. Aktas (1), A. M. Armstrong (2...electronics applications. In this paper vertical p-n diodes and transistors fabricated on pseudo bulk low defect density (104 to 106 cm-2) GaN substrates are...discussed. Homoepitaxial MOCVD growth of GaN on its native substrate and being able to control doping has allowed the realization of vertical

  10. Spectromicroscopic Insights into the Morphology and Interfaces of Operational Organic Electronic Devices

    OpenAIRE

    Du, Xiaoyan

    2017-01-01

    Organic electronics, e.g., organic field-effect transistors (OFETs), organic solar cells (OSCs) and organic light-emitting diodes (OLEDs), have attracted strong interest in both academia and industry during the last decades due to their unique capabilities offered by organic semiconductors. The micro-/nano-structures in active layers and the interface engineering in organic electronics are extremely important for desired device functionalities. In this thesis, the structure-function relations...

  11. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco

    2015-01-01

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron...... holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  12. Evolution of electronic waste toxicity: Trends in innovation and regulation.

    Science.gov (United States)

    Chen, Mengjun; Ogunseitan, Oladele A; Wang, Jianbo; Chen, Haiyan; Wang, Bin; Chen, Shu

    2016-01-01

    Rapid innovation in printed circuit board, and the uncertainties surrounding quantification of the human and environmental health impacts of e-waste disposal have made it difficult to confirm the influence of evolving e-waste management strategies and regulatory policies on materials. To assess these influences, we analyzed hazardous chemicals in a market-representative set of Waste printed circuit boards (WPCBs, 1996-2010). We used standard leaching tests to characterize hazard potential and USEtox® to project impacts on human health and ecosystem. The results demonstrate that command-and-control regulations have had minimal impacts on WPCBs composition and toxicity risks; whereas technological innovation may have been influenced more by resource conservation, including a declining trend in the use of precious metals such as gold. WPCBs remain classified as hazardous under U.S. and California laws because of excessive toxic metals. Lead poses the most significant risk for cancers; zinc for non-cancer diseases; copper had the largest potential impact on ecosystem quality. Among organics, acenaphthylene, the largest risk for cancers; naphthalene for non-cancer diseases; pyrene has the highest potential for ecotoxicological impacts. These findings support the need for stronger enforcement of international policies and technology innovation to implement the strategy of design-for-the-environment and to encourage recovery, recycling, and reuse of WPCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Spatial distribution of electrons on a superfluid helium charge-coupled device

    International Nuclear Information System (INIS)

    Takita, Maika; Bradbury, F R; Lyon, S A; Gurrieri, T M; Wilkel, K J; Eng, Kevin; Carroll, M S

    2012-01-01

    Electrons floating on the surface of superfluid helium have been suggested as promising mobile spin qubits. Three micron wide channels fabricated with standard silicon processing are filled with superfluid helium by capillary action. Photoemitted electrons are held by voltages applied to underlying gates. The gates are connected as a 3-phase charge-coupled device (CCD). Starting with approximately one electron per channel, no detectable transfer errors occur while clocking 10 9 pixels. One channel with its associated gates is perpendicular to the other 120, providing a CCD which can transfer electrons between the others. This perpendicular channel has not only shown efficient electron transport but also serves as a way to measure the uniformity of the electron occupancy in the 120 parallel channels.

  14. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  15. The use and risk of portable electronic devices while cycling among different age groups.

    NARCIS (Netherlands)

    Goldenbeld, C. Houtenbos, M. Ehlers, E. & Waard, D. de

    2012-01-01

    In The Netherlands, a survey was set up to monitor the extent of the use of portable, electronic devices while cycling amongst different age groups of cyclists and to estimate the possible consequences for safety. The main research questions concerned age differences in the self-reported use of

  16. The use and risk of portable electronic devices while cycling among different age groups

    NARCIS (Netherlands)

    Goldenbeld, C.; Houtenbos, M.; Ehlers, E.; De Waard, D.

    Introduction: In the Netherlands, a survey was set up to monitor the extent of the use of portable, electronic devices while cycling amongst different age groups of cyclists and to estimate the possible consequences for safety. Method: The main research questions concerned age differences in the

  17. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2013-10-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...

  18. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-06-08

    ... Phones and Tablet Computers, and Components Thereof Institution of Investigation AGENCY: U.S... the United States after importation of certain electronic devices, including mobile phones and tablet... mobile phones and tablet computers, and components thereof that infringe one or more of claims 1-3 and 5...

  19. Near field resonant inductive coupling to power electronic devices dispersed in water

    NARCIS (Netherlands)

    Kuipers, J.; Bruning, H.; Bakker, S.; Rijnaarts, H.H.M.

    2012-01-01

    The purpose of this research was to investigate inductive coupling as a way to wirelessly power electronic devices dispersed in water. The most important parameters determining this efficiency are: (1) the coupling between transmitting and receiving coils, (2) the quality factors of the transmitting

  20. Radiation effects and hardness of semiconductor electronic devices for nuclear industry

    International Nuclear Information System (INIS)

    Payat, R.; Friant, A.

    1988-01-01

    After a brief review of industrial and nuclear specificity and radiation effects in electronics components (semiconductors) the need for a specific test methodology of semiconductor devices is emphasized. Some studies appropriate for nuclear industry at D. LETI/DEIN/CEN-SACLAY are related [fr

  1. 76 FR 50253 - Certain Portable Electronic Devices and Related Software; Notice of Institution of Investigation...

    Science.gov (United States)

    2011-08-12

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-797] Certain Portable Electronic Devices and....C. 1337 AGENCY: U.S. International Trade Commission. ACTION: Notice SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on July 8, 2011, under section...

  2. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-05-31

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices... Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled...

  3. 78 FR 22899 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    Science.gov (United States)

    2013-04-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having... pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on March 12, 2013...

  4. 78 FR 116 - Certain Cases for Portable Electronic Devices: Notice of Receipt of Complaint; Solicitation of...

    Science.gov (United States)

    2013-01-02

    ... INTERNATIONAL TRADE COMMISSION [DN 2927] Certain Cases for Portable Electronic Devices: Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest AGENCY: International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has...

  5. 78 FR 6834 - Certain Cases for Portable Electronic Devices; Institution of Investigation

    Science.gov (United States)

    2013-01-31

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-867] Certain Cases for Portable Electronic Devices; Institution of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on...

  6. 76 FR 60870 - In the Matter of Certain Electronic Devices With Communication Capabilities, Components Thereof...

    Science.gov (United States)

    2011-09-30

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-808] In the Matter of Certain Electronic Devices... Investigation; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on August 16, 2011, under section 337 of the Tariff Act of 1930, as amended, 19 U...

  7. 77 FR 68828 - Certain Cases for Portable Electronic Devices; Institution of Investigation Pursuant to the...

    Science.gov (United States)

    2012-11-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-861] Certain Cases for Portable Electronic Devices; Institution of Investigation Pursuant to the Tariff Act of 1930, as Amended AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with...

  8. 76 FR 70490 - Certain Electronic Devices With Graphics Data Processing Systems, Components Thereof, and...

    Science.gov (United States)

    2011-11-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-813] Certain Electronic Devices With... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on September 22, 2011, under section 337 of...

  9. 76 FR 47610 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Institution of...

    Science.gov (United States)

    2011-08-05

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-796] Certain Electronic Digital Media Devices and.... 1337 AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on July 5, 2011, under section...

  10. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Science.gov (United States)

    2010-07-01

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-724] In the Matter of Certain Electronic Devices... AGENCY: U.S. International Trade Commission. ACTION: Institution of investigation pursuant to 19 U.S.C. 1337. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade...

  11. 77 FR 11588 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof

    Science.gov (United States)

    2012-02-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-831] Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof AGENCY: U.S. International Trade Commission... Trade Commission on January 10, 2012, under section 337 of the Tariff Act of 1930, as amended, 19 U.S.C...

  12. 75 FR 39971 - In the Matter of Certain Electronic Imaging Devices; Notice of Investigation

    Science.gov (United States)

    2010-07-13

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-726] In the Matter of Certain Electronic Imaging Devices; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION: Institution of....S. International Trade Commission on May 13, 2010, under section 337 of the Tariff Act of 1930, as...

  13. 77 FR 20847 - Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to...

    Science.gov (United States)

    2012-04-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on February 7, 2012, and an amended complaint was filed with the U.S...

  14. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Science.gov (United States)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  15. Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: a review

    Science.gov (United States)

    Ronald Sabo; Aleksey Yermakov; Chiu Tai Law; Rani Elhajjar

    2016-01-01

    Cellulose nanomaterials have a number of interesting and unique properties that make them well-suited for use in electronics applications such as energy harvesting devices, actuators and sensors. Cellulose nanofibrils and nanocrystals have good mechanical properties, high transparency, and low coefficient of thermal expansion, among other properties that facilitate...

  16. A benchmark study of commercially available copper nanoparticle inks for application in organic electronic devices

    NARCIS (Netherlands)

    Polino, G.; Abbel, R.; Shanmugam, S.; Bex, G.J.P.; Hendriks, R.; Brunetti, F.; Di Carlo, A.; Andriessen, R.; Galagan, Y.

    2016-01-01

    A set of three commercial copper nanoparticle based inkjet inks has been benchmarked with respect to their potential to form conducting printed structures for future applications in organic electronic devices. Significant differences were observed in terms of jetting properties, spreading behaviour

  17. 75 FR 3154 - Children's Products Containing Lead; Exemptions for Certain Electronic Devices

    Science.gov (United States)

    2010-01-20

    ... that use solar power or other power sources), such as music players, headphones, some toys and games... basis that replacing or installing parts of a children's electronic device is not a children's activity... are not installed. We decline to revise the rule as suggested by some commenters. We have determined...

  18. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Science.gov (United States)

    2011-04-29

    ..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  19. Effect of interface of electronics devices constructed with different materials to X-ray

    International Nuclear Information System (INIS)

    Mu Weibing; Chen Panxun

    2003-01-01

    The behavior of X-ray nearby interface which is constructed with different materials is introduced in this paper. And the affect to electronics devices of this behavior is analyzed, the affect factors of four interfaces are calculated by Monte-Carlo method

  20. Five Ways to Hack and Cheat with Bring-Your-Own-Device Electronic Examinations

    Science.gov (United States)

    Dawson, Phillip

    2016-01-01

    Bring-your-own-device electronic examinations (BYOD e-exams) are a relatively new type of assessment where students sit an in-person exam under invigilated conditions with their own laptop. Special software restricts student access to prohibited computer functions and files, and provides access to any resources or software the examiner approves.…

  1. Cardiac implantable electronic device and associated risk of infective endocarditis in patients undergoing aortic valve replacement

    DEFF Research Database (Denmark)

    Østergaard, Lauge; Valeur, Nana; Bundgaard, Henning

    2017-01-01

    Aims: Patients undergoing aortic valve replacement (AVR) are at increased risk of infective endocarditis (IE) as are patients with a cardiac implantable electronic device (CIED). However, few data exist on the IE risk after AVR surgery in patients with a CIED. Methods and results: Using the Danish...

  2. 77 FR 11157 - Certain Portable Electronic Devices and Related Software; Final Determination Finding No...

    Science.gov (United States)

    2012-02-24

    ... investigation). The complaint named Apple Inc. as the Respondent. On October 17, 2011, the ALJ issued his final... Commission has subject matter jurisdiction and that Apple did not contest that the Commission has in rem and... electronic devices and related software. Regarding infringement, the ALJ found that Apple does not infringe...

  3. Complex composition film condensation in the sluice device of an electron microscope

    International Nuclear Information System (INIS)

    Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.

    1994-01-01

    Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films

  4. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Science.gov (United States)

    2010-01-28

    ..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...

  5. Electronic device, system on chip and method for monitoring a data flow

    NARCIS (Netherlands)

    2012-01-01

    An electronic device is provided which comprises a plurality of processing units (IP1-IP6), a network-based inter-connect (N) coupled to the processing units (IP1-IP6) and at least one monitoring unit (P1, P2) for monitoring a data flow of at least one first communication path between the processing

  6. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    Science.gov (United States)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  7. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  8. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  9. Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

    Directory of Open Access Journals (Sweden)

    Adrian Iovan

    2012-12-01

    Full Text Available Patterning of materials at sub-10 nm dimensions is at the forefront of nanotechnology and employs techniques of various complexity, efficiency, areal scale, and cost. Colloid-based patterning is known to be capable of producing individual sub-10 nm objects. However, ordered, large-area nano-arrays, fully integrated into photonic or electronic devices have remained a challenging task. In this work, we extend the practice of colloidal lithography to producing large-area sub-10 nm point-contact arrays and demonstrate their circuit integration into spin-photo-electronic devices. The reported nanofabrication method should have broad application areas in nanotechnology as it allows ballistic-injection devices, even for metallic materials with relatively short characteristic relaxation lengths.

  10. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  11. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    International Nuclear Information System (INIS)

    Do, Van-Nam

    2014-01-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)

  12. Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices

    NARCIS (Netherlands)

    Wünscher, S.; Abbel, R.; Perelaer, J.; Schubert, U.S.

    2014-01-01

    Well-defined high resolution structures with excellent electrical conductivities are key components of almost every electronic device. Producing these by printing metal based conductive inks on polymer foils represents an important step forward towards the manufacturing of plastic electronic

  13. Microdiffraction imaging—a suitable tool to characterize organic electronic devices

    Directory of Open Access Journals (Sweden)

    Clemens Liewald

    2015-10-01

    Full Text Available Tailoring device architecture and active film morphology is crucial for improving organic electronic devices. Therefore, knowledge about the local degree of crystallinity is indispensable to gain full control over device behavior and performance. In this article, we report on microdiffraction imaging as a new tool to characterize organic thin films on the sub-micron length scale. With this technique, which was developed at the ID01 beamline at the ESRF in Grenoble, a focused X-ray beam (300 nm diameter, 12.5 keV energy is scanned over a sample. The beam size guarantees high resolution, while material and structure specificity is gained by the choice of Bragg condition.Here, we explore the possibilities of microdiffraction imaging on two different types of samples. First, we measure the crystallinity of a pentacene thin film, which is partially buried beneath thermally deposited gold electrodes and a second organic film of fullerene C60. The data shows that the pentacene film structure is not impaired by the subsequent deposition and illustrates the potential of the technique to characterize artificial structures within fully functional electronic devices. Second, we investigate the local distribution of intrinsic polymorphism of pentacene thin films, which is very likely to have a substantial influence on electronic properties of organic electronic devices. An area of 40 μm by 40 μm is scanned under the Bragg conditions of the thin-film phase and the bulk phase of pentacene, respectively. To find a good compromise between beam footprint and signal intensity, third order Bragg condition is chosen. The scans show complementary signal distribution and hence demonstrate details of the crystalline structure with a lateral resolution defined by the beam footprint (300 nm by 3 μm.The findings highlight the range of applications of microdiffraction imaging in organic electronics, especially for organic field effect transistors and for organic solar

  14. Innovative, wearable snap connector technology for improved device networking in electronic garments

    Science.gov (United States)

    Kostrzewski, Andrew A.; Lee, Kang S.; Gans, Eric; Winterhalter, Carole A.; Jannson, Tomasz P.

    2007-04-01

    This paper discusses Physical Optics Corporation's (POC) wearable snap connector technology that provides for the transfer of data and power throughout an electronic garment (e-garment). These connectors resemble a standard garment button and can be mated blindly with only one hand. Fully compatible with military clothing, their application allows for the networking of multiple electronic devices and an intuitive method for adding/removing existing components from the system. The attached flexible cabling also permits the rugged snap connectors to be fed throughout the standard webbing found in military garments permitting placement in any location within the uniform. Variations of the snap electronics/geometry allow for integration with USB 2.0 devices, RF antennas, and are capable of transferring high bandwidth data streams such as the 221 Mbps required for VGA video. With the trend towards providing military officers with numerous electronic devices (i.e., heads up displays (HMD), GPS receiver, PDA, etc), POC's snap connector technology will greatly improve cable management resulting in a less cumbersome uniform. In addition, with electronic garments gaining widespread adoption in the commercial marketplace, POC's technology is finding applications in such areas as sporting good manufacturers and video game technology.

  15. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires

    Science.gov (United States)

    Saranti, Konstantina; Alotaibi, Sultan; Paul, Shashi

    2016-06-01

    The work described in this paper focuses on the utilisation of silicon nanowires as the information storage element in flash-type memory devices. Silicon nanostructures have attracted attention due to interesting electrical and optical properties, and their potential integration into electronic devices. A detailed investigation of the suitability of silicon nanowires as the charge storage medium in two-terminal non-volatile memory devices are presented in this report. The deposition of the silicon nanostructures was carried out at low temperatures (less than 400 °C) using a previously developed a novel method within our research group. Two-terminal non-volatile (2TNV) memory devices and metal-insulator-semiconductor (MIS) structures containing the silicon nanowires were fabricated and an in-depth study of their characteristics was carried out using current-voltage and capacitance techniques.

  16. Study of device of electron-ion treatment of mother baking yeasts

    International Nuclear Information System (INIS)

    Ostapenkov, A.M.; Merinov, N.S.; Nazarov, V.N.; Balan, E.L.

    1980-01-01

    Devices for electron- ion treatment of mother baking yeasts are considered and classified by the way of aerions removal from the ionization zone: the first ones - by means of the electric field, the other - by air directed flux. Devices of the first type require high voltage - 20-60 kV. Electrodynamic ion generator has been applied as a device of the second type; considered is its construction, principal of operation, given are diagrams of ion flux dependence. The methods of process calculations in the generator and experimental results are presented. The main advantage of the generator of the second type is operation at low (3-5 kV) voltages. It is shown, that the yeast growth module can achieve 36% at essential increase of biomass when using these yeasts as sowing. The device can be used for biostimulation and antisepting of food raw materials

  17. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  18. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  19. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiao, E-mail: xiao.shen@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  20. Measurements of hot spots and electron beams in Z-pinch devices

    International Nuclear Information System (INIS)

    Deeney, C.

    1988-04-01

    Hot spots and Electron Beams have been observed in different types of Z-pinches. There is, however, no conclusive evidence on how either are formed although there has been much theoretical interest in both these phenomena. In this thesis, nanosecond time resolved and time correlated, X-ray and optical diagnostics, are performed on two different types of Z-pinch: a 4 kJ, 30 kV Gas Puff Z-pinch and a 28 kJ, 60 kV Plasma Focus. The aim being to study hot spots and electron beams, as well as characterise the plasma, two different Z-pinch devices. Computer codes are developed to analyse the energy and time resolved data obtained in this work. These codes model both, X-ray emission from a plasma and X-ray emission due to electron beam bombardment of a metal surface. The hot spot and electron beam parameters are measured, from the time correlated X-ray data using these computer codes. The electron beams and the hot spots are also correlated to the plasma behaviour and to each other. The results from both devices are compared with each other and with the theoretical work on hot spot and electron beam formation. A previously unreported 3-5 keV electron temperature plasma is identified, in the gas puff Z-pinch plasma, prior to the formation of the hot spots. it is shown, therefore, that the hot spots are more dense but not hotter than the surrounding plasma. Two distinct periods of electron beam generation are identified in both devices. (author)