WorldWideScience

Sample records for waste disposal performance

  1. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  2. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  3. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  4. Disposal of radioactive waste

    Science.gov (United States)

    Van Dorp, Frits; Grogan, Helen; McCombie, Charles

    The aim of radioactive and non-radioactive waste management is to protect man and the environment from unacceptable risks. Protection criteria for both should therefore be based on similar considerations. From overall protection criteria, performance criteria for subsystems in waste management can be derived, for example for waste disposal. International developments in this field are summarized. A brief overview of radioactive waste sorts and disposal concepts is given. Currently being implemented are trench disposal and engineered near-surface facilities for low-level wastes. For low-and intermediate-level waste underground facilities are under construction. For high-level waste site selection and investigation is being carried out in several countries. In all countries with nuclear programmes, the predicted performance of waste disposal systems is being assessed in scenario and consequence analyses. The influences of variability and uncertainty of parameter values are increasingly being treated by probabilistic methods. Results of selected performance assessments show that radioactive waste disposal sites can be found and suitable repositories can be designed so that defined radioprotection limits are not exceeded.

  5. Performance objectives of the tank waste remediation system low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-25

    Before low-level waste may be disposed of, a performance assessment must be written and then approved by the U.S. Department of Energy. The performance assessment is to determine whether {open_quotes}reasonable assurance{close_quotes} exists that the performance objectives of the disposal facility will be met. The DOE requirements for waste disposal require: the protection of public health and safety; and the protection of the environment. Although quantitative limits are sometimes stated (for example, the all exposure pathways exposure limit is 25 mrem/year), usually the requirements are stated in a general nature. Quantitative limits were established by: investigating all potentially applicable regulations as well as interpretations of the Peer Review Panel which DOE has established to review performance assessments, interacting with program management to establish their needs, and interacting with the public (i.e., the Hanford Advisory Board members; as well as affected Indian tribes) to understand the values of residents in the Pacific Northwest.

  6. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  7. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  8. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  9. RESULTS OF THE PERFORMANCE ASSESSMENT FOR THE CLASSIFIED TRANSURANIC WASTES DISPOSED AT THE NEVADA TEST SITE

    Energy Technology Data Exchange (ETDEWEB)

    J. COCHRAN; ET AL

    2001-02-01

    Most transuranic (TRU) wastes are destined for the Waste Isolation Pilot Plant (WIPP). However, the TRU wastes from the cleanup of US nuclear weapons accidents are classified for national security reasons and cannot be disposed in WIPP. The US Department of Energy (DOE) sought an alternative disposal method for these ''special case'' TRU wastes and from 1984 to 1987, four Greater Confinement Disposal (GCD) boreholes were used to place these special case TRU wastes a minimum of 21 m (70 ft) below the land surface and a minimum of 200 m (650 ft) above the water table. The GCD boreholes are located in arid alluvium at the DOE's Nevada Test Site (NTS). Because of state regulatory concerns, the GCD boreholes have not been used for waste disposal since 1989. DOE requires that TRU waste disposal facilities meet the US Environmental Protection Agency's (EPA's) requirements for disposal of TRU wastes, which are contained in 40 CFR 191. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU waste emplaced in the GCD boreholes complies with the EPA's requirements. Sandia has completed the PA using all available information and an iterative PA methodology. This paper overviews the PA of the TRU wastes in the GCD boreholes [1]. As such, there are few cited references in this paper and the reader is referred to [1] and [2] for references. The results of the PA are that disposal of TRU wastes in the GCD boreholes easily complies with the EPA's 40 CFR 191 safety standards for disposal of TRU wastes. The PA is undergoing a DOE Headquarters (DOE/HQ) peer review, and the final PA will be released in FY2001 or FY2002.

  10. WASTE CONTAINER AND WASTE PACKAGE PERFORMANCE MODELING TO SUPPORT SAFETY ASSESSMENT OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.

    2004-06-30

    Prior to subsurface burial of low- and intermediate-level radioactive wastes, a demonstration that disposal of the wastes can be accomplished while protecting the health and safety of the general population is required. The long-time frames over which public safety must be insured necessitates that this demonstration relies, in part, on computer simulations of events and processes that will occur in the future. This demonstration, known as a Safety Assessment, requires understanding the performance of the disposal facility, waste containers, waste forms, and contaminant transport to locations accessible to humans. The objective of the coordinated research program is to examine the state-of-the-art in testing and evaluation short-lived low- and intermediate-level waste packages (container and waste form) in near surface repository conditions. The link between data collection and long-term predictions is modeling. The objective of this study is to review state-of-the-art modeling approaches for waste package performance. This is accomplished by reviewing the fundamental concepts behind safety assessment and demonstrating how waste package models can be used to support safety assessment. Safety assessment for low- and intermediate-level wastes is a complicated process involving assumptions about the appropriate conceptual model to use and the data required to support these models. Typically due to the lack of long-term data and the uncertainties from lack of understanding and natural variability, the models used in safety assessment are simplistic. However, even though the models are simplistic, waste container and waste form performance are often central to the case for making a safety assessment. An overview of waste container and waste form performance and typical models used in a safety assessment is supplied. As illustrative examples of the role of waste container and waste package performance, three sample test cases are provided. An example of the impacts of

  11. Performance assessment requirements for the identification and tracking of transuranic waste intended for disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Snider, C.A. [Department of Energy, Carlsbad, NM (United States); Weston, W.W. [Westinghouse Electric Corp., Carlsbad, NM (United States)

    1997-11-01

    To demonstrate compliance with environmental radiation protection standards for management and disposal of transuranic (TRU) radioactive wastes, a performance assessment (PA) of the Waste Isolation Pilot Plant (WIPP) was made of waste-waste and waste-repository interactions and impacts on disposal system performance. An estimate of waste components and accumulated quantities was derived from a roll-up of the generator/storage sites` TRU waste inventories. Waste components of significance, and some of negligible effect, were fixed input parameters in the model. The results identified several waste components that require identification and tracking of quantities to ensure that repository limits are not exceeded. The rationale used to establish waste component limits based on input estimates is discussed. The distinction between repository limits and waste container limits is explained. Controls used to ensure that no limits are exceeded are identified. For waste components with no explicit repository based limits, other applicable limits are contained in the WIPP Waste Acceptance Criteria (WAC). The 10 radionuclides targeted for identification and tracking on either a waste container or a waste stream basis include Am-241, Pu-238, Pu-239, Pu-240, Pu-242, U-233, U-234, U-238, Sr-90, and Cs-137. The accumulative activities of these radionuclides are to be inventoried at the time of emplacement in the WIPP. Changes in inventory curie content as a function of radionuclide decay and ingrowth over time will be calculated and tracked. Due to the large margin of compliance demonstrated by PA with the 10,000 year release limits specified, the quality assurance objective for radioassay of the 10 radionuclides need to be no more restrictive than those already identified for addressing the requirements imposed by transportation and WIPP disposal operations in Section 9 of the TRU Waste Characterization Quality Assurance Program Plan. 6 refs.

  12. FIELD VALIDATION OF CORROSION RATES FOR LOW-LEVEL WASTE DISPOSAL PERFORMANCE ASSESSMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Flitton, M.K. Adler; Seitz, R.R.

    2003-02-27

    Research is being conducted at the Idaho National Engineering and Environmental Laboratory to assess corrosion rates of metals in the subsurface environment in direct support of waste management operations and environmental restoration activities. This research addresses a need identified by Department of Energy-Headquarters when reviewing the performance assessment for the low-level waste disposal facility at the Radioactive Waste Management Complex. Corrosion rates are a key factor determining release rates of long-lived radionuclides from activated metal waste streams. Radionuclide releases from these wastes are key contributors to the projected long-term dose associated with the disposal facility. Short-term results from the corrosion samples buried for one and three years suggest that the corrosion rates assumed for the assessments are conservative. However, the rates appear to be increasing, thus, future retrievals of coupons will be used to identify whether the increasing trend continues.

  13. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  14. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  15. Performance assessment overview for subseabed disposal of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R.D.

    1997-06-01

    The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed.

  16. Approaches to consider covers and liners in a low-level waste disposal facility performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Suttora, Linda [USDOE, Office of Environmental Management, Germantown, MD (United States)

    2015-03-17

    On-site disposal cells are in use and being considered at several USDOE sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the USEPA in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. One task completed by the working group addressed approaches for considering the performance of covers and liners/leachate collection systems in the context of a performance assessment (PA). A document has been prepared which provides recommendations for a general approach to address covers and liners/leachate collection systems in a PA and how to integrate assessments with defense-in-depth considerations such as design, operations and waste acceptance criteria to address uncertainties. Specific information and references are provided for details needed to address the evolution of individual components of cover and liner/leachate collection systems. This information is then synthesized into recommendations for best practices for cover and liner system design and examples of approaches to address the performance of covers and liners as part of a performance assessment of the disposal system.

  17. Unit cell modeling in support of interim performance assessment for low level tank waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kline, N.W., Westinghouse Hanford

    1996-08-01

    A unit cell model is used to simulate the base analysis case and related sensitivity cases for the interim performance assessment of low level tank waste disposal. Simulation case results are summarized in terms of fractional contaminant release rates to the vadose zone and to the water table at the unconfined aquifer. Results suggest that the crushed glass water conditioning layer at the top of the facility and the chemical retardation pad at the bottom of the facility can be important components of the facility. Results also suggest that the release rates to the water table are dominated by the release rate from the waste form.

  18. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    Science.gov (United States)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  19. Geological disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed. (AT)

  20. Uncertainty propagation in a radionuclide transport model for performance assessment of a nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dutfoy, A. [Electricite de France R and D Safety and Reliability Branch (EDF), 92 - Clamart (France); Bouton, M. [Electricite de France R and D National Hydraulic Lab. and Environment (EDF), 78 - Chatou (France)

    2001-07-01

    Given the complexity of the involved phenomenon, performance assessment of a nuclear waste disposal requires numerical modelling. Because many of the input parameters of models are uncertain, analysis of uncertainties and their impact on the probabilistic outcome has become of major importance. This paper presents the EDF Research and Development Division methodology to propagate uncertainties arising from the parameters through models. This reliability approach provides two important quantitative results: an estimate of the probability that the outcome exceeds some two important quantitative results: an estimate of the probability that the outcome exceeds some specified threshold level (called failure event), and a probabilistic sensitivity measure which quantifies the relative importance of each uncertain variable with respect to the probabilistic outcome. Such results could become an integral component of the decision process for the nuclear disposal. The reliability method proposed in this paper is applied to a radionuclide transport model. (authors)

  1. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  2. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  3. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  4. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  5. Performance objectives for disposal of low-level radioactive wastes on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.

    1987-07-01

    This report presents a set of performance objectives for disposal of low-level radioactive wastes in a new facility on the Oak Ridge Reservation. The principal performance objectives include a limit on annual committed effective dose equivalent averaged over a lifetime of 0.25 mSv (25 mrem) for any member of the public beyond the boundary of the disposal facility, and a limit on annual committed effective dose equivalent averaged over a lifetime of 1 mSv (0.1 rem) and a limit on committed effective dose equivalent in any year of 5 mSv (0.5 rem) for any individual who inadvertently intrudes onto the disposal site after loss of active institutional controls. In addition, releases of radioactivity beyond the site boundary shall not result in annual dose equivalents to any number of the public from all sources of exposure that exceed limits established by Federal regulatory authorities and shall be kept as low as reasonably achievable. This report reviews generally applicable radiation protection standards for the public and environmental radiation standards for specific practices that have been developed by national and international authorities and discusses the use of limits on risk rather than dose as performance objectives and consideration of chemical toxicity rather than radiation dose in establishing limits on intakes of uranium. 63 refs., 7 figs., 2 tabs.

  6. Uncertainty propagation in a 3-D thermal code for performance assessment of a nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dutfoy, A. [Electricite de France (EDF), Research and Development Div., Safety and Reliability Branch, ESF, 92 - Clamart (France); Ritz, J.B. [Electricite de France (EDF), Research and Development Div., Fluid Mechanics and Heat Transfer, MFTT, 78 - Chatou (France)

    2001-07-01

    Given the very large time scale involved, the performance assessment of a nuclear waste repository requires numerical modelling. Because we are uncertain of the exact value of the input parameters, we have to analyse the impact of these uncertainties on the outcome of the physical models. The EDF Division Research and Development has set a reliability method to propagate these uncertainties or variability through models which requires much less physical simulations than the usual simulation methods. We apply the reliability method MEFISTO to a base case modelling the heat transfers in a virtual disposal in the future site of the French underground research laboratory, in the East of France. This study is led in collaboration with ANDRA which is the French Nuclear Waste Management Agency. With this exercise, we want to evaluate the thermal behaviour of a concept related to the variation of physical parameters and their uncertainty. (author)

  7. Final disposal of radioactive waste

    OpenAIRE

    Freiesleben H.

    2013-01-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of c...

  8. Performance assessment for low-level waste disposal in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, A.B. [UK Dept. of the Environment, London (United Kingdom)

    1995-12-31

    British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Drigg site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.

  9. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  10. Strategy for identifying natural analogs of the long-term performance of low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Waugh, W.J.; Foley, M.G.; Kincaid, C.T.

    1990-07-01

    The US Department of Energy's Low-Level Waste (LLW) Management Program has asked Pacific Northwest Laboratory (PNL) to explore the feasibility of using natural analogs of anticipated waste site and conditions to help validate predictions of the performance of LLW disposal sites. Current regulations require LLW facilities to control the spread of hazardous substances into the environment for at least the next 500 years. Natural analog studies can provide information about processes affecting waste containment that cannot be fully explored through laboratory experimentation and modeling because of the extended period of required performance. For LLW applications, natural analogs include geochemical systems, pedogenic (soil formation) indicators, proxy climate data, and ecological and archaeological settings that portray long-term changes in disposal site environments and the survivability of proposed waste containment materials and structures. Analog data consist of estimates of performance assessment (PA) model input parameters that define possible future environmental states of waste sites, validation parameters that can be predicted by PA models, and descriptive information that can build public confidence in waste disposal practices. This document describes PNL's overall stategy for identifying analogs for LLW disposal systems, reviews lessons learned from past analogs work, outlines the findings of the workshop, and presents examples of analog studies that workshop participants found to be applicable to LLW performance assessment. The lessons from the high-level waste analogs experience and workshop discussions will be used to develop detailed study plans during FY 1990. 39 refs.

  11. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

    2004-09-01

    This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

  12. Investigations of subterranean microorganisms. Their importance for performance assessment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K. [Goeteborg Univ. (Sweden). General and Marine Microbiology; Karlsson, Fred [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1995-06-01

    This report presents a broad and thorough description of how microorganisms may influence safety of repositories for radioactive waste. First, an overview of the Swedish concepts for disposal is given, including a discussion of the geological, chemical and hydrological conditions in repositories. Then the limiting and stimulating factors for life of microorganisms are reviewed, such as relations to oxygen, temperature, pH, radiation, pressure, water and nutrients availability. Bacteria in the cycles of carbon, nitrogen, sulfur, iron, manganese and hydrogen are also discussed. A literature review of subterranean bacteria is given in chapter 4. Chapter 5 treats investigations of microorganisms in repository-like environments, and microbial corrosion and redox processes relevant for materials in the repository and for the mobility of radionuclides. Possibilities to predict the activity and presence of microorganisms through mathematical models are discussed in chapter 6. Chapter 7 summarizes the conclusion drawn in the report, how microorganisms may influence performance safety assessment of radioactive waste disposal, and also identifies research needs. 293 refs, 43 figs, 36 tabs.

  13. Development of performance assessment methodology for establishment of quantitative acceptance criteria of near-surface radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. R.; Lee, E. Y.; Park, J. W.; Chang, G. M.; Park, H. Y.; Yeom, Y. S. [Korea Hydro and Nuclear Power Co., Ltd., Seoul (Korea, Republic of)

    2002-03-15

    The contents and the scope of this study are as follows : review of state-of-the-art on the establishment of waste acceptance criteria in foreign near-surface radioactive waste disposal facilities, investigation of radiological assessment methodologies and scenarios, investigation of existing models and computer codes used in performance/safety assessment, development of a performance assessment methodology(draft) to derive quantitatively radionuclide acceptance criteria of domestic near-surface disposal facility, preliminary performance/safety assessment in accordance with the developed methodology.

  14. JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Mikazu; Azuma, Jiro; Shibata, Masahiro [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Isolation Research Division, Tokai, Ibaraki (Japan)

    1999-11-01

    This report is a summary of status, frozen datasets, and future tasks of the JNC (Japan Nuclear Cycle Development Institute) thermodynamic database (JNC-TDB) for assessing performance of high-level radioactive waste in geological environments. The JNC-TDB development was carried out after the first progress report on geological disposal research in Japan (H-3). In the development, thermodynamic data (equilibrium constants at 25degC, I=0) for important radioactive elements were selected/determined based on original experimental data using different models (e.g., SIT, Pitzer). As a result, the reliability and traceability of the data for most of the important elements were improved over those of the PNC-TDB used in H-3 report. For detailed information of data analysis and selections for each element, see the JNC technical reports listed in this document. (author)

  15. Final disposal of radioactive waste

    Science.gov (United States)

    Freiesleben, H.

    2013-06-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  16. Solid secondary waste testing for maintenance of the Hanford Integrated Disposal Facility Performance Assessment - FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the information necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.

  17. Development of Modern Performance Assessment Tools and Capabilities for Underground Disposal of Transuranic Waste at WIPP

    Science.gov (United States)

    Zeitler, T.; Kirchner, T. B.; Hammond, G. E.; Park, H.

    2014-12-01

    The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. In a broad modernization effort, the DOE has overseen the transfer of these codes to modern hardware and software platforms. Additionally, there is a current effort to establish new performance assessment capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Improvements to the current computational environment will result in greater detail in the final models due to the parallelization afforded by the modern code. Parallelization will allow for relatively faster calculations, as well as a move from a two-dimensional calculation grid to a three-dimensional grid. The result of the modernization effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  18. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  19. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  20. Engineering geology of waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, S.P. [ed.] [University of Wales, Cardiff (United Kingdom). School of Engineering

    1996-12-31

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK).

  1. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  2. Clays in radioactive waste disposal

    OpenAIRE

    Delage, Pierre; Cui, Yu-Jun; Tang, Anh-Minh

    2010-01-01

    Clays and argillites are considered in some countries as possible host rocks for nuclear waste disposal at great depth. The use of compacted swelling clays as engineered barriers is also considered within the framework of the multi-barrier concept. In relation to these concepts, various research programs have been conducted to assess the thermo-hydro-mechanical properties of radioactive waste disposal at great depth. After introducing the concepts of waste isolation developed in Belgium, Fran...

  3. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  4. Performance-assessment progress for the Rozan low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smietanski, L.; Mitrega, J.; Frankowski, Z. [Polish Geological Institute, Warsaw (Poland)] [and others

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangered unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.

  5. An Evaluation of Long-Term Performance of Liner Systems for Low-Level Waste Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Arthur S. Rood; Annette L. Schafer; A. Jeffrey Sondrup

    2011-03-01

    Traditional liner systems consisting of a geosynthetic membrane underlying a waste disposal facility coupled with a leachate collection system have been proposed as a means of containing releases of low-level radioactive waste within the confines of the disposal facility and thereby eliminating migration of radionuclides into the vadose zone and groundwater. However, this type of hydraulic containment liner system is only effective as long as the leachate collection system remains functional or an overlying cover limits the total infiltration to the volumetric pore space of the disposal system. If either the leachate collection system fails, or the overlying cover becomes less effective during the 1,000’s of years of facility lifetime, the liner may fill with water and release contaminated water in a preferential or focused manner. If the height of the liner extends above the waste, the waste will become submerged which could increase the release rate and concentration of the leachate. If the liner extends near land surface, there is the potential for contamination reaching land surface creating a direct exposure pathway. Alternative protective liner systems can be engineered that eliminate radionuclide releases to the vadose zone during operations and minimizing long term migration of radionuclides from the disposal facility into the vadose zone and aquifer. Non-traditional systems include waste containerization in steel or composite materials. This type of system would promote drainage of clean infiltrating water through the facility without contacting the waste. Other alternatives include geochemical barriers designed to transmit water while adsorbing radionuclides beneath the facility. Facility performance for a hypothetical disposal facility has been compared for the hydraulic and steel containerization liner alternatives. Results were compared in terms of meeting the DOE Order 435.1 low-level waste performance objective of 25 mrem/yr all-pathways dose

  6. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  7. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  8. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  9. Validation of the Performance of High-level Waste Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Park, J. H.; Lee, J. O. (and others)

    2007-06-15

    The experimental researches to validate the integrity and safety of high-level waste disposal system were carried out. The studies on the construction of KURT, and the site rock characteristics were conducted. Thermal-hydro-mechanical behavior of engineered barrier system was investigated using the engineering-scale test facility. The migration and retardation of radionuclide through the rock fracture under anaerobic and reducing condition were studied. The distribution coefficients of radionuclides onto granite, the rock matrix diffusion coefficients, and the gap and grain boundary inventories of spent fuel were measured.

  10. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  11. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW-ACTIVITY WASTES IN RCRA-C DISPOSAL CELLS

    Science.gov (United States)

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology....

  12. DISPOSABLE CANISTER WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2001-07-30

    The purpose of this calculation is to provide the bases for defining the preclosure limits on radioactive material releases from radioactive waste forms to be received in disposable canisters at the Monitored Geologic Repository (MGR) at Yucca Mountain. Specifically, this calculation will provide the basis for criteria to be included in a forthcoming revision of the Waste Acceptance System Requirements Document (WASRD) that limits releases in terms of non-isotope-specific canister release dose-equivalent source terms. These criteria will be developed for the Department of Energy spent nuclear fuel (DSNF) standard canister, the Multicanister Overpack (MCO), the naval spent fuel canister, the High-Level Waste (HLW) canister, the plutonium can-in-canister, and the large Multipurpose Canister (MPC). The shippers of such canisters will be required to demonstrate that they meet these criteria before the canisters are accepted at the MGR. The Quality Assurance program is applicable to this calculation. The work reported in this document is part of the analysis of DSNF and is performed using procedure AP-3.124, Calculations. The work done for this analysis was evaluated according to procedure QAP-2-0, Control of Activities, which has been superseded by AP-2.21Q, Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities. This evaluation determined that such activities are subject to the requirements of DOE/RW/0333P, Quality Assurance Requirements and Description (DOE 2000). This work is also prepared in accordance with the development plan titled Design Basis Event Analyses on DOE SNF and Plutonium Can-In-Canister Waste Forms (CRWMS M&O 1999a) and Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages (CRWMS M&O 2000d). This calculation contains no electronic data applicable to any electronic data management system.

  13. A mathematical model for the performance assessment of engineering barriers of a typical near surface radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Raphaela N.; Rotunno Filho, Otto C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Hidrologia e Estudos do Meio Ambiente]. E-mail: otto@hidro.ufrj.br; Ruperti Junior, Nerbe J.; Lavalle Filho, Paulo F. Heilbron [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)]. E-mail: nruperti@cnen.gov.br

    2005-07-01

    This work proposes a mathematical model for the performance assessment of a typical radioactive waste disposal facility based on the consideration of a multiple barrier concept. The Generalized Integral Transform Technique is employed to solve the Advection-Dispersion mass transfer equation under the assumption of saturated one-dimensional flow, to obtain solute concentrations at given times and locations within the medium. A test-case is chosen in order to illustrate the performance assessment of several configurations of a multi barrier system adopted for the containment of sand contaminated with Ra-226 within a trench. (author)

  14. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  15. Historical Relationship Between Performance Assessment for Radioactive Waste Disposal and Other Types of Risk Assessment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    RECHARD,ROBERT P.

    2000-07-14

    This paper describes the evolution of the process for assessing the hazards of a geologic disposal system for radioactive waste and, similarly, nuclear power reactors, and the relationship of this process with other assessments of risk, particularly assessments of hazards from manufactured carcinogenic chemicals during use and disposal. This perspective reviews the common history of scientific concepts for risk assessment developed to the 1950s. Computational tools and techniques developed in the late 1950s and early 1960s to analyze the reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic risk assessment of nuclear power reactors, a technology for which behavior was unknown. In turn, these analyses became an important foundation for performance assessment of nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the environment from chemical hazards is built upon methods for assessing the dose response of radionuclides in the 1950s. Despite a shared background, however, societal events, often in the form of legislation, have affected the development path for risk assessment for human health, producing dissimilarities between these risk assessments and those for nuclear facilities. An important difference is the regulator's interest in accounting for uncertainty and the tools used to evaluate it.

  16. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  17. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  18. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  19. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    Science.gov (United States)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    Texas Commission on Environmental Quality has approved licenses for four landfills at the Waste Control Specialists (WCS) site located in Andrews County, West Texas. The site includes a hazardous waste landfill and three landfills for radioactive waste. An updated performance assessment is necessary prior to acceptance of waste at the landfills. The updated performance assessment a) provides for more realistic and flexible dose modeling capabilities, b) addresses all plausible release and accident scenarios as they relate to the performance objectives, c) includes impact of climate and hydrologic scenarios that may impact long-term performance of the landfill, d) addresses impact of cover naturalization and degradation on the landfill, and e) incorporates uncertainty and sensitivity analysis for critical parameters. For the updated performance assessment, WCS has developed an integrated systems level performance assessment model using the GoldSim platform. GoldSim serves as a model for integrating all of the major components of a performance assessment, which include the radionuclide source term, facility design, environmental transport pathways, exposure scenarios, and radiological doses. Unlike many computer models that are based on first principles, GoldSim is a systems level model that can be used to integrate and abstract more complex sub-models into one system. This can then be used to assess the results into a unified model of the disposal system and environment. In this particular application, the GoldSim model consists of a) hydrogeologic model that simulates flow and transport through the Dockum geologic unit that underlies all of the waste facilities, b) waste cells that represent the containment unit and simulate degradation of waste forms, radionuclide leaching, and partitioning into the liquid and vapor phase within the waste unit, c) a cover system model that simulates upward diffusive transport from the underground repository to the atmosphere. In

  20. Performance Confirmation Strategies for the Waste Isolation Pilot Plant - A Historical Perspective from an Operating Disposal Facility - 12248

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Steve [John Hart and Associate for Sandia National Laboratories, Carlsbad, New Mexico 88220 (United States)

    2012-07-01

    Performance confirmation is an important element of the Waste Isolation Pilot Plant (WIPP) program. Performance confirmation was first used during the early WIPP site characterization phase to focus experimental activities that address the development of probabilistic repository performance models and to address stakeholder assurance needs. The program is currently used to analyze the conditions of the repository and its surroundings to ensure that the basis for the repository's long-term radioactive waste containment predictions is valid. This basis is related to the parameters, assumptions, conceptual and numerical models that are used to predict or validate the potential radioactive waste containment performance of the system. The concept of performance confirmation for the WIPP is one that has evolved since the first repository work was initiated decades ago and plays an important role in assuring adequate repository performance both now and in the long-term. The WIPP mission has progressed from a pilot project to an operational disposal facility and will progress to eventual site closure when disposal operations are completed. Performance confirmation is an important part of each of these progressions. The concept of disposing radioactive waste in a geologic repository today involves a complete understanding of many technical, political, regulatory, societal and economic elements. Many of these elements overlap and solving all relevant issues necessary to site, operate and decommission a disposal facility should be done with knowledge of each element's requirements and impacts. Performance confirmation is one tool that can help to coordinate many of these elements into a program that actively investigates what is thought to be adequately understood about the system and what information is lacking. A performance confirmation program is used to determine ways to challenge and verify those areas that are thought to be understood and to find ways to

  1. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  2. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  3. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  4. Evaluation of a performance assessment methodology for low-level radioactive waste disposal facilities: Validation needs. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, M.W.; Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1995-02-01

    In this report, concepts on how validation fits into the scheme of developing confidence in performance assessments are introduced. A general framework for validation and confidence building in regulatory decision making is provided. It is found that traditional validation studies have a very limited role in developing site-specific confidence in performance assessments. Indeed, validation studies are shown to have a role only in the context that their results can narrow the scope of initial investigations that should be considered in a performance assessment. In addition, validation needs for performance assessment of low-level waste disposal facilities are discussed, and potential approaches to address those needs are suggested. These areas of topical research are ranked in order of importance based on relevance to a performance assessment and likelihood of success.

  5. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  6. TECHNOLOGICAL WASTE DISPOSAL BY SUBSURFACE INJECTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Janković Branimir

    2002-12-01

    Full Text Available The application of oilfield and solution mining technology to subsurface disposal of technological wastes has proven to be an environmentally, technically and economically suitable method for the disposal of the waste generated in petroleum industry as well as other industrial branches. This paper describes the subsurface injection technology, the disposal formation characteristics, the waste disposal well design, evaluates the environmental impact of above mentioned technology and proposes a solutions for disposing of technological wastes in Croatia or nerby region by implementing underground injection technology according to the world experience (the paper is published in Croatian.

  7. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2001-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued.

  8. Mine waste disposal and managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young Wook; Min, Jeong Sik; Kwon, Kwang Soo; Kim, Ok Hwan; Kim, In Kee; Song, Won Kyong; Lee, Hyun Joo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Acid Rock Drainage (ARD) is the product formed by the atmospheric oxidation of the relatively common pyrite and pyrrhotite. Waste rock dumps and tailings containing sulfide mineral have been reported at toxic materials producing ARD. Mining in sulphide bearing rock is one of activity which may lead to generation and release of ARD. ARD has had some major detrimental affects on mining areas. The purpose of this study was carried out to develop disposal method for preventing contamination of water and soil environment by waste rocks dump and tailings, which could discharge the acid drainage with high level of metals. Scope of this study was as following: environmental impacts by mine wastes, geochemical characteristics such as metal speciation, acid potential and paste pH of mine wastes, interpretation of occurrence of ARD underneath tailings impoundment, analysis of slope stability of tailings dam etc. The following procedures were used as part of ARD evaluation and prediction to determine the nature and quantities of soluble constituents that may be washed from mine wastes under natural precipitation: analysis of water and mine wastes, Acid-Base accounting, sequential extraction technique and measurement of lime requirement etc. In addition, computer modelling was applied for interpretation of slope stability od tailings dam. (author). 44 refs., 33 tabs., 86 figs.

  9. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  10. 10 CFR 850.32 - Waste disposal.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and beryllium-contaminated equipment and other...

  11. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-02-27

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

  12. Long{sub t}erm performance of structural component of intermediate- and low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Whang, J. H.; Kim, S. S.; Chun, T. H.; Lee, J. M.; Yum, M. O.; Kim, J. H.; Kim, M. S. [Kyunghee Univ., Seoul (Korea, Republic of)

    1997-03-15

    Underground repository for intermediate- and low-level radioactive waste is to be sealed and closed after operation. Structural components, which are generally made of cement concrete, are designed and accommodated in the repository for the purpose of operational convenience and stability after closure. To forecast the change of long-term integrity of the structural components, experimental verification, using in-situ or near in-situ conditions, is necessary. Domestic and foreign requirements with regard to the selection criteria and the performance criteria for structural components in disposal facility were surveyed. Characteristics of various types of cement were studied. Materials and construction methods of structural components similar to those of disposal facility was investigated and test items and methods for integrity of cement concrete were included. Literature survey for domestic groundwater characteristics was performed together with Ca-type bentonite ore which is a potential backfill material. Causes or factors affecting the durability of the cement structures were summarized. Experiments to figure out the ions leaching out from and migrating into cement soaked in distilled water and synthetic groundwater, respectively, were carried out. And finally, diffusion of chloride ion through cement was experimentally measured.

  13. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  14. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Directory of Open Access Journals (Sweden)

    Sociu F.

    2013-07-01

    Full Text Available Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa, to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  15. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Science.gov (United States)

    Fako, R.; Barariu, Gh.; Toma, R.; Georgescu, R.; Sociu, F.

    2013-07-01

    Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa), to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module) where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  16. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  17. Nuclear waste disposal educational forum

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-18

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base.

  18. Disposal of medical waste: a legal perspective.

    Science.gov (United States)

    Du Toit, Karen; Bodenstein, Johannes

    2013-09-03

    The Constitution of the Republic of South Africa provides that everyone has the right to an environment that is not harmful to their health and well-being. The illegal dumping of hazardous waste poses a danger to the environment when pollutants migrate into water sources and ultimately cause widespread infection or toxicity, endangering the health of humans who might become exposed to infection and toxins. To give effect to the Constitution, the safe disposal of hazardous waste is governed by legislation in South Africa. Reports of the illegal disposal of waste suggest a general lack of awareness and training in regard to the safe disposal of medical waste

  19. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  20. Marine disposal of radioactive wastes

    Science.gov (United States)

    Woodhead, D. S.

    1980-03-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the absorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strengths and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area.

  1. Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G G

    2001-03-28

    Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to

  2. The Challenges of Waste Disposal in a Secondary City: Calabar ...

    African Journals Online (AJOL)

    The Challenges of Waste Disposal in a Secondary City: Calabar Metropolis – Cross ... Waste disposal is a major aspect in environmental preservation for healthy living. ... irregular collection and evacuation of waste materials and lack of funds. ... agencies to partner in waste disposal, create awareness on waste disposal, ...

  3. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  4. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  5. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  6. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  7. A Probabilistic Performance Assessment Model for General Corrosion of Alloy 22 for High Level Nuclear Waste Disposal Container

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Lee; H. A. Elayat

    2003-12-11

    Alloy 22 (UNS N06022) is the candidate material for the corrosion barrier of the double-wall waste package (WP) for the disposal of high-Gel nuclear waste at the proposed Yucca Mountain repository. A probabilistic temperature-dependent general corrosion model for the WP outer barrier (WPOB) was developed based on the 5-year weight-loss measurements of Alloy 22 crevice samples. The 5-year corrosion rate distribution is represented by a Weibull distribution, with scale factors = 8.88, shape factor b = 1.62, and location factor l = 0. The temperature-dependence of the general corrosion rate was modeled using an Arrhenius relation. An activation energy of 25.91 {+-} 2.46 kJ/mol was determined from the corrosion rates obtained from the short-term polarization resistance data for Alloy 22 specimens tested for a wide range of sample configurations, metallurgical conditions, and exposure conditions (temperature and water chemistry). Analysis of the data from the current study and the literature indicates that the activation energies of general corrosion rate of highly corrosion resistant Ni-Cr-Mo alloys including Alloy 22 are similar and do not change significantly, as the general corrosion rate decreases with the exposure time. The 5-year corrosion rates were conservatively selected for extrapolation over the repository time scale. Because of very low general corrosion rates of the WPOB for the conditions expected in the proposed repository, the WP performance will not be limited by general corrosion for the repository regulatory time period. The current conservative approach for the constant (time-independent) general corrosion rate at a given temperature provides an additional confidence for the general corrosion model.

  8. Transuranic advanced disposal systems: preliminary /sup 239/Pu waste-disposal criteria for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Aaberg, R.L.; Napier, B.A.; Soldat, J.K.

    1982-09-01

    This report contains the draft results of a study sponsored by the US Department of Energy (DOE) to determine preliminary /sup 239/Pu waste disposal criteria for the Hanford Site. The purpose of this study is to provide a preliminary evaluation of the feasibility of various defense TRU advanced disposal options at the Hanford Site. Advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. They will be used to complement the waste geologic disposal in achieving permanent disposal of selected TRU wastes. An example systems analysis is discussed with assumed performance objectives and Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000-year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/yr to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 5 figures, 7 tables.

  9. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  10. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/ processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  11. NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-04-01

    At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories.

  12. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  13. Advanced disposal systems for transuranic waste: Preliminary disposal criteria for Plutonium-239 at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E.; Napier, B.A.; Soldat, J.K.

    1983-01-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford site. The advanced waste disposal options include those developed to provide ''greater confinement'' than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the allowable residual contamination level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site specific analysis of the potential for radiation exposure to individuals. A 10,000-year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/yr to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth.

  14. Transuranic advanced disposal systems: preliminary /sup 239/Pu waste-disposal criteria for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables.

  15. Annual summary of Immobilized Low-Activity Waste (ILAW) Performance Assessment for 2003 Incorporating the Integrated Disposal Facility Concept

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F M

    2003-09-01

    To Erik Olds 09/30/03 - An annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a full performance assessment is not issued.

  16. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  17. Mixed waste characterization, treatment & disposal focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  18. Mobile fission and activation products in nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Umeki, H.; Evans, N.; Czervinski, K.; Bruggeman, Ch.; Poineau, F.; Breynaert, A.; Reiler, P.; Pablo, J. de; Pipon, Y.; Molnar, M.; Nishimura, T.; Kienzler, B.; Van Iseghem, P.; Crovisier, J.L.; Wieland, E.; Mace, N.; Pablo, J. de; Spahiu, K.; Cui, D.; Lida, Y.; Charlet, L.; Liu, X.; Sato, H.; Goutelard, F.; Savoye, S.; Glaus, M.; Poinssot, C.; Seby, F.; Sato, H.; Tournassat, Ch.; Montavon, G.; Rotenberg, B.; Spahiu, K.; Smith, G.; Marivoet, J.; Landais, P.; Bruno, J.; Johnson, H.; Umeki, L.; Geckeis, H.; Giffaut, E.; Grambow, B.; Dierckx, A

    2007-07-01

    This document gathers 33 oral presentations that were made at this workshop dedicated to the mobility of some radionuclides in nuclear waste disposal. The workshop was organized into 6 sessions: 1) performance assessment, 2) speciation/interaction in aqueous media, 3) radioactive wastes, 4) redox processes at interfaces, 5) diffusion processes, and 6) retention processes.

  19. Evaluating pharmaceutical waste disposal in pediatric units.

    Science.gov (United States)

    Almeida, Maria Angélica Randoli de; Wilson, Ana Maria Miranda Martins; Peterlini, Maria Angélica Sorgini

    2016-01-01

    To verify the disposal of pharmaceutical waste performed in pediatric units. A descriptive and observational study conducted in a university hospital. The convenience sample consisted of pharmaceuticals discarded during the study period. Handling and disposal during preparation and administration were observed. Data collection took place at pre-established times and was performed using a pre-validated instrument. 356 drugs disposals were identified (35.1% in the clinic, 31.8% in the intensive care unit, 23.8% in the surgical unit and 9.3% in the infectious diseases unit). The most discarded pharmacological classes were: 22.7% antimicrobials, 14.8% electrolytes, 14.6% analgesics/pain killers, 9.5% diuretics and 6.7% antiulcer agents. The most used means for disposal were: sharps' disposable box with a yellow bag (30.8%), sink drain (28.9%), sharps' box with orange bag (14.3%), and infectious waste/bin with a white bag (10.1%). No disposal was identified after drug administration. A discussion of measures that can contribute to reducing (healthcare) waste volume with the intention of engaging reflective team performance and proper disposal is necessary. Verificar o descarte dos resíduos de medicamentos realizado em unidades pediátricas. Estudo descritivo e observacional, realizado em um hospital universitário. A amostra de conveniência foi constituída pelos medicamentos descartados durante o período de estudo. Observaram-se a manipulação e o descarte durante o preparo e a administração. A coleta dos dados ocorreu em horários preestabelecidos e realizada por meio de instrumento pré-validado. Identificaram-se 356 descartes de medicamentos (35,1% na clínica, 31,8% na unidade de cuidados intensivos, 23,8% na cirúrgica e 9,3% na infectologia). As classes farmacológicas mais descartadas foram: 22,7% antimicrobianos, 14,8% eletrólitos, 14,6% analgésicos, 9,5% diuréticos e 6,7% antiulcerosos. Vias mais utilizadas: caixa descartável para perfurocortante com

  20. Performance assessment and licensing issues for United States commercial near-surface low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Birk, S.M.

    1997-10-01

    The final objective of performance assessment for a near-surface LLW disposal facility is to demonstrate that potential radiological impacts for each of the human exposure pathways will not violate applicable standards. This involves determining potential pathways and specific receptor locations for human exposure to radionuclides; developing appropriate scenarios for each of the institutional phases of a disposal facility; and maintaining quality assurance and control of all data, computer codes, and documentation. The results of a performance assessment should be used to demonstrate that the expected impacts are expected to be less than the applicable standards. The results should not be used to try to predict the actual impact. This is an important distinction that results from the uncertainties inherent in performance assessment calculations. The paper discusses performance objectives; performance assessment phases; scenario selection; mathematical modeling and computer programs; final results of performance assessments submitted for license application; institutional control period; licensing issues; and related research and development activities.

  1. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  2. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources

  3. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  4. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  5. Mine Waste Disposal and Managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young-Wook; Min, Jeong-Sik; Kwon, Kwang-Soo [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research project deals with: Analysis and characterization of mine waste piles or tailings impoundment abandoned in mining areas; Survey of mining environmental pollution from mine waste impounds; Modelling of pollutants in groundwater around tailings impoundment; Demonstration of acid rock drainage from coal mine waste rock piles and experiment of seeding on waste rock surface; Development of a liner using tailings. Most of mine wastes are deposited on natural ground without artificial liners and capping for preventing contamination of groundwater around mine waste piles or containments. In case of some mine waste piles or containments, pollutants have been released to the environment, and several constituents in drainage exceed the limit of discharge from landfill site. Metals found in drainage exist in exchangeable fraction in waste rock and tailings. This means that if when it rains to mine waste containments, mine wastes can be pollutant to the environment by release of acidity and metals. As a result of simulation for hydraulic potentials and groundwater flow paths within the tailings, the simulated travel paths correlated well with the observed contaminant distribution. The plum disperse, both longitudinal and transverse dimensions, with time. Therefore liner system is a very important component in tailings containment system. As experimental results of liner development using tailings, tailings mixed with some portion of resin or cement may be used for liner because tailings with some additives have a very low hydraulic conductivity. (author). 39 refs.

  6. The disposal of nuclear waste in space

    Science.gov (United States)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  7. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change

  8. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  9. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  10. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.B.; Barnard, J.W.; Bird, G.A. [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  11. Radioactive Waste Streams: Waste Classification for Disposal

    Science.gov (United States)

    2006-12-13

    acidity with caustic soda or sodium nitrate to condition it for storage in the carbon-steel tanks. (The neutralization reaction formed a...waste ranges between from 47 to 147 curies/cubic-meter based on the Waste Isolation Pilot Plant inventory. The vitrified high-level waste processed by...Facility St T Assembly MTHM 1. Arkansas Nuclear One AK P 1,517 666.7 46. Shearon Harris Nuclear Power Plant NC P 3,814 964.5 I 552 241.4 47. Cooper

  12. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Serne, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.

  13. Radioactive waste disposal in thick unsaturated zones.

    Science.gov (United States)

    Winogard, I J

    1981-06-26

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolatic is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere.

  14. Laboratory Waste Disposal Manual. Revised Edition.

    Science.gov (United States)

    Stephenson, F. G., Ed.

    This manual is designed to provide laboratory personnel with information about chemical hazards and ways of disposing of chemical wastes with minimum contamination of the environment. The manual contains a reference chart section which has alphabetical listings of some 1200 chemical substances with information on the health, fire and reactivity…

  15. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  16. Waste Disposal: The PRACLAY Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D

    2000-07-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation.

  17. Long-term performance of structural component of intermediate- and low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Joo Ho; Kim, Seong Soo; Lee, Jae Min; Kang, Dong Koo; Yu, Jeong Beom; Lim, Goon Taek [Kyunghee Univ., Seoul (Korea, Republic of)

    1998-03-15

    Domestic and foreign requirements with regard to the selection criteria and the performance criteria for structural components of disposal facility were surveyed. Characteristics of presently available cements were studied. Types and characteristics of high performance concrete and construction methods similar to disposal facility are also included in the study. Definitions of the term durability and the limit of the term were surveyed. Literature survey for the important factors affecting the durability and modeling methods to assess durability was performed. Deterioration and crack forming mechanisms were studied. Characteristics of domestic ground water were collected from KAERI data. Experiments were carried out with synthetic ground water to study the reactions between cement and constituents in the ground water. Experiments lasted up to 130 days and penetration of cations and anions was investigated. Ions of importance were Ca{sup 2-}. Mg{sup 2-}, SO{sub 4}{sup 2+}, Cl{sup -} . Changes of ionic concentrations and compressive strength after 110 to 130 days of soaking in synthetic ground water with accelerated conditions were measured. Based upon ASTM's standard for accelerated testing, procedures to assess the durability of cement concrete were suggested.

  18. Ecological Risk Assessment of Jarosite Waste Disposal

    Directory of Open Access Journals (Sweden)

    Mihone Kerolli-Mustafa

    2015-07-01

    Full Text Available Jarosite waste, originating from zinc extraction industry, is considered hazardous due to the presence and the mobility of toxic metals that it contains. Its worldwide disposal in many tailing damps has become a major ecological concern. Three different methods, namely modified Synthetic Precipitation Leaching Procedure (SPLP, three-stage BCR sequential extraction procedure and Potential Ecological Risk Index (PERI Method were used to access the ecological risk of jarosite waste disposal in Mitrovica Industrial Park, Kosovo. The combination of these methods can effectively identify the comprehensive and single pollution levels of heavy metals such as Zn, Pb, Cd, Cu, Ni and As present in jarosite waste. Moreover, the great positive relevance between leaching behavior of heavy metals and F1 fraction was supported by principal component analysis (PCA. PERI results indicate that Cd showed a very high risk class to the environment. The ecological risk of heavy metals declines in the following order: Cd>Zn>Cu>Pb>Ni>As.

  19. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service 7 CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and... (RUS) proposes to amend the regulations pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water and waste disposal facilities and services to...

  20. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... CFR Part 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service... related to the Section 306C Water and Waste Disposal (WWD) Loans and Grants Program, which provides water... additional priority points to the colonias that lack access to water or waste disposal systems and...

  1. Regulating the disposal of cigarette butts as toxic hazardous waste

    OpenAIRE

    Barnes, Richard L

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste...

  2. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    Science.gov (United States)

    2009-02-06

    pr_121508_energysecnom.cfm. 13 Lawrence Berkeley National Laboratory, “Growing energy: Berkeley Lab’s Steve Chu on what termite guts have to do with global warming...does not seem an attractive alternative to the geological 60 Steven Nadis, “The Sub-Seabed Solution...could be done at Yucca Mountain.82 Such “salt creep” occurs more quickly at higher temperatures , which could result from the disposal of high-level waste

  3. Investigations of subterranean microorganisms and their importance for performance assessment of radioactive waste disposal. Results and conclusions achieved during the period 1995 to 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K. [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology

    1997-11-01

    In 1987, microbiology became a part of the Swedish scientific program for the safe disposal of high level nuclear waste (HLW). The goal of the microbiology sub-program is to understand how subterranean microorganisms will interact with the performance of a future HLW repository. The Swedish research program on subterranean microbiology has mainly been performed at two sites in granitic rock aquifers at depths ranging from 70 m down to 1240 m; the Stripa research mine in the middle of Sweden and the Aespoe hard rock laboratory (HRL) situated on the south eastern coast of Sweden. Some work has also been performed in co-operation with other national or international research groups in Sweden, Canada and at the natural analogue sites in Oklo in Gabon and Maqarin in Jordan. The most recent report in the SKB technical report series on microbiology and performance assessment, SKB-TR--95-10, gave the state of the art regarding microorganisms and their importance for performance assessment. That report is recommended as a source of knowledge about basic microbiology, microbial ecology of subterranean environments and the nuclear waste disposal concept in a microbiological perspective. The present report summarises results and conclusions achieved during the period 1995 to 1997 and is a continuation of SKB TR 95-10. The report is structured as summary which explains and analyses the obtained results and conclusions in a performance assessment perspective. The scientific basis for the summary is an enclosed series of eleven papers of which eight have gone through an international peer review process for publication in international scientific journals and reports and papers published earlier. 413 refs, 56 figs, 39 tabs.

  4. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  5. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  6. Disposal and degradation of pesticide waste.

    Science.gov (United States)

    Felsot, Allan S; Racke, Kenneth D; Hamilton, Denis J

    2003-01-01

    Generation of pesticide waste is inevitable during every agricultural operation from storage to use and equipment cleanup. Large-scale pesticide manufacturers can afford sophisticated recovery, treatment, and cleanup techniques. Small-scale pesticide users, for example, single farms or small application businesses, struggle with both past waste problems, including contaminated soils, and disposal of unused product and equipment rinsewater. Many of these problems have arisen as a result of inability to properly handle spills during, equipment loading and rinsewater generated after application. Small-scale facilities also face continued problems of wastewater handling. Old, obsolete pesticide stocks are a vexing problem in numerous developing countries. Pesticide waste is characterized by high concentrations of a diversity of chemicals and associated adjuvants. Dissipation of chemicals at elevated concentrations is much slower than at lower concentrations, in part because of microbial toxicity and mass transfer limitations. High concentrations of pesticides may also move faster to lower soil depths, especially when pore water becomes saturated wish a compound. Thus, if pesticide waste is not properly disposed of, groundwater and surface water contamination become probable. The Waste Management Hierarchy developed as an Australian Code of Practice can serve as a guide for development of a sound waste management plan. In order of desirability, the course of actions include waste avoidance, waste reduction, waste recycling, waste treatment, and waste disposal. Proper management of pesticide stocks, including adequate storage conditions, good inventory practices, and regular turnover of products,. will contribute to waste avoidance and reduction over the long-term. Farmers can also choose to use registered materials that have the lowest recommended application rates or are applied in the least volume of water. Wastewater that is generated during equipment rinsing can be

  7. Safety in the final disposal of radioactive waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K.; Carugati, S.; Brodersen, K. [and others

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG) 33 refs.

  8. Radioactive waste disposal fees-Methodology for calculation

    Science.gov (United States)

    Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich

    2014-11-01

    This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.

  9. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Science.gov (United States)

    2010-07-01

    ...-approved solid waste disposal area. Disposal sites in the permit area shall be designed and constructed to... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section 816.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE...

  10. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Science.gov (United States)

    2010-07-01

    ...-approved solid waste disposal area. Disposal sites in the permit area shall be designed and constructed to... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section 817.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE...

  11. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  12. Moisture monitoring in waste disposal surface barriers.

    Science.gov (United States)

    Brandelik, Alex; Huebner, Christof

    2003-05-01

    Surface barriers for waste disposal sites should prevent waste water and gas emission into the environment. It is necessary to assess their proper operation by monitoring the water regime of the containment. A set of three new water content measuring devices has been developed that provide an economical solution for monitoring the moisture distribution and water dynamic. They will give an early warning service if the barrier system is at risk of being damaged. The cryo soil moisture sensor 'LUMBRICUS' is an in situ self-calibrating absolute water content measuring device. It measures moisture profiles at spot locations down to 2.5 m depth with an accuracy of better than 1.5% and a depth resolution of 0.03 m. The sensor inherently measures density changes and initial cracks of shrinking materials like clay minerals. The large area soil moisture sensor 'TAUPE' is a moisture sensitive electric cable network to be buried in the mineral barrier material of the cover. A report will be given with results and experiences on an exemplary installation at the Waste Disposal Facility Karlsruhe-West. 800 m2 of the barrier construction have been continuously monitored since December 1997. Volumetric water content differences of 1.5% have been detected and localised within 4 m. This device is already installed in two other waste disposal sites. A modified 'TAUPE' was constructed for the control of tunnels and river dams as well. Thin sheet moisture sensor 'FORMI' is specifically designed for moisture measurements in liners like bentonite, textile and plastic. Due to its flexibility it follows the curvature of the liner. The sensor measures independently from neighbouring materials and can be matched to a wide range of different thickness of the material. The sensors are patented in several countries.

  13. Humic substances in performance assessment of nuclear waste disposal: Actinide and iodine migration in the far-field. Second technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Buckau, G. (ed.)

    2004-07-01

    The present report describes progress within the second year of the EC-project ''Humic Substances in Performance Assessment of Nuclear Waste Disposal: Actinide and Iodine Migration in the Far-Field''. Without being a formal requirement of the commission or co-funding bodies, this report documents results in great technical detail. It is an open report and thus makes the detailed results available to a broad scientific community. The report contains an executive summary written by the coordinator. More detailed results are given as individual contributions in the form of 23 annexes. Not all results are discussed or referred to in the executive summary report and thus readers with a deeper interest also need to consult the annexes. (orig.)

  14. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  15. Periglacial phenomena affecting nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Niini, H.

    1997-12-01

    Full Text Available Slow future changes in astronomic phenomena seem to make it likely that Finland nll suffer several cold periods during the next 100,000 years. The paper analyses the characteristics of the periglacial factors that are most likely to influence the long-term safety of high-level radioactive waste disposed of in bedrock. These factors and their influences have been divided into two categories, natural and human. It is concluded that the basically natural phenomena are theoretically better understood than the complicated phenomena caused by man. It is therefore important in future research into periglacial phenomena, as well as of the disposal problem, to emphasize not only the proper applications of the results of natural sciences, but especially the effects and control of mankind's own present and future activities.

  16. 50 CFR 27.94 - Disposal of waste.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a... manager, or the draining or dumping of oil, acids, pesticide wastes, poisons, or any other types of...

  17. Disposal of radioactive waste. Some ethical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian

    2014-07-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  18. Total System Performance Assessment - Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain - Input to Final Environmental Impact Statement and Site Suitability Evaluation, Rev. 00

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2001-09-17

    This Letter Report presents the results of calculations to assess long-term performance of commercial spent nuclear fuel (CSNF), U.S. Department of Energy (DOE) spent nuclear fuel (DSNF), high-level radioactive waste (HLW), and Greater Than Class C (GTCC) radioactive waste and DOE Special Performance Assessment Required (SPAR) radioactive waste at the potential Yucca Mountain repository in Nye County Nevada with respect to the 10,000-year performance period specified in 40 CFR Part 197.30 (66 FR 32074 [DIRS 155216], p. 32134) with regard to radiation-protection standards. The EPA Final Rule 40 CFR Part 197 has three separate standards, individual-protection, human-intrusion, and groundwater-protection standards, all with a compliance timeframe of 10,000 years. These calculations evaluate the dose to receptors for each of these standards. Further, this Letter Report includes the results of simulations to the 1,000,000-year performance period described in 40 CFR Part 197.35 (66 FR 32074 [DIRS 155216], p. 32135) which calls for the calculation of the peak dose to the Reasonably Maximally Exposed Individual (RMEI) that would occur after 10,000 years and within the period of geological stability. In accordance with TSPA-SR the ''period of geologic stability'' is from zero to 1,000,000 years after repository closure. The calculations also present the 5th and 95th percentiles, and the mean and median of the set of probabilistic simulations used to evaluate various disposal scenarios.

  19. Respiratory Health in Waste Collection and Disposal Workers.

    Science.gov (United States)

    Vimercati, Luigi; Baldassarre, Antonio; Gatti, Maria Franca; De Maria, Luigi; Caputi, Antonio; Dirodi, Angelica A; Cuccaro, Francesco; Bellino, Raffaello Maria

    2016-06-24

    Waste management, namely, collection, transport, sorting and processing, and disposal, is an issue of social concern owing to its environmental impact and effects on public health. In fact, waste management activities are carried out according to procedures that can have various negative effects on the environment and, potentially, on human health. The aim of our study was to assess the potential effects on respiratory health of this exposure in workers in the waste management and disposal field, as compared with a group of workers with no occupational exposure to outdoor pollutants. The sample consisted of a total of 124 subjects, 63 waste collectors, and 61 office clerks. Informed consent was obtained from all subjects before inclusion in the study. The entire study population underwent pulmonary function assessments with spirometry and completed two validated questionnaires for the diagnosis of rhinitis and chronic bronchitis. Statistical analyses were performed using STATA 13. Spirometry showed a statistically significant reduction in the mean Tiffenau Index values in the exposed workers, as compared with the controls, after adjusting for the confounding factors of age, BMI, and smoking habit. Similarly, the mean FEV1 values were lower in the exposed workers than in the controls, this difference being again statistically significant. The FVC differences measured in the two groups were not found to be statistically significant. We ran a cross-sectional study to investigate the respiratory health of a group of workers in the solid waste collection and disposal field as compared with a group of office workers. In agreement with most of the data in the literature, our findings support the existence of a prevalence of respiratory deficits in waste disposal workers. Our data suggest the importance of adopting preventive measures, such as wearing specific individual protection devices, to protect this particular category of workers from adverse effects on respiratory

  20. Sulfuric Acid Regeneration Waste Disposal Technology.

    Science.gov (United States)

    1986-11-01

    tons calcium sulfate (gypsum) per ton of titanium oxide (TiO2 ) produced. Because of the shear magnitude of the calcium sulfate disposal problem, one... pickling liquors that used as high as a 40:1 seed recycle ratio (we did not talk directly with Bethlehem Steel on their process). The Dorr Oliver...I I I 4-14 / Arthur D. Little, Inc. SECTION 5 BIBLIOGRAPHY 1. Aarons, R. and Taylor, R.A. (1967), The DuPont Waste Pickle Liquor Process, 22 Ind

  1. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  2. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  3. Challenges in Disposing of Anthrax Waste

    Energy Technology Data Exchange (ETDEWEB)

    Lesperance, Ann M.; Stein, Steven L.; Upton, Jaki F.; Toomey, Christopher

    2011-09-01

    Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration’s (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material will require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussion was the identification of three primary topical areas that must be addressed: 1) Planning; 2) Unresolved research questions, and resolving regulatory issues.

  4. Constraints to waste utilization and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  5. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  6. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  7. Microbial processes in radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Karsten [Goeteborg Univ. (Sweden). Dept. of Cell and Molecular Biology, Microbiology

    2000-04-15

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  8. Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.S.Y.; Bernard, E.A.

    1991-12-01

    Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

  9. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T. [SCK/CEN, Mol (Belgium); Kanyar, B. [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P.; Simon, I. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U.; Hallberg, B. [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S.; Chen, Q.; Kowe, R. [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  10. Distilling Complex Model Results into Simple Models for use in Assessing Compliance with Performance Standards for Low Level Waste Disposal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Arthur S. Rood

    2007-02-01

    Assessing the long term performance of waste disposal facility requires numerical simulation of saturated and unsaturated groundwater flow and contaminant transport. Complex numerical models have been developed to try to realistically simulate subsurface flow and transport processes. These models provide important information about system behavior and identify important processes, but may not be practical for demonstrating compliance with performance standards because of excessively long computer simulation times and input requirements. Two approaches to distilling the behavior of a complex model into simpler formulations that are practical for demonstrating compliance with performance objectives are examined in this paper. The first approach uses the information obtained from the complex model to develop a simple model that mimics the complex model behavior for stated performance objectives. The simple model may need to include essential processes that are important to assessing performance, such as time-variable infiltration and waste emplacement rates, subsurface heterogeneity, sorption, decay, and radioactive ingrowth. The approach was applied to a Low-Level Waste disposal site at the Idaho National Laboratory where a complex three dimensional vadose zone model was developed first to understand system behavior and important processes. The complex model was distilled down to a relatively simple one-dimensional vadose zone model and three-dimensional aquifer transport model. Comparisons between the simple model and complex model of vadose zone fluxes and groundwater concentrations showed relatively good agreement between the models for both fission and activation products (129I, 36Cl, 99Tc) and actinides (238U, 239Pu, 237Np). Application of the simple model allowed for Monte Carlo uncertainty analysis and simulations of numerous disposal and release scenarios. The second approach investigated was the response surface model. In the response surface model approach

  11. A comparative study on the medical waste disposal in some hospitals in Alexandria.

    Science.gov (United States)

    Hosny, Gihan; El-Zarka, Eman M A

    2005-01-01

    Though healthcare services aim to reduce the health problems and prevent the potential risks to the health of the community. These services create wastes which are considered as hazardous materials due to the higher potential of infection and injury possessed by these wastes than any other type of waste. Healthcare waste management is an integral part of healthcare services, and can create harm through inadequate waste management; thus reducing the overall benefits provided by healthcare centers. In the current study, a survey for medical waste disposal was performed in order to examine the current status of medical waste disposal in some hospitals in Alexandria and to properly assess management of this type of hazardous waste. A questionnaire was designed for hospitals to assess the quantity of medical waste, collection, sorting, storage, transportation and way of final disposal. From the total waste generated by healthcare activities, almost 80% are waste similar to domestic waste. The remaining approximate of 20% is considered as hazardous waste. As Alexandria has about 3911 healthcare facilities providing medical services for people, a huge amount of medical waste are generated daily with about 208 tons generated per month. The results revealed that the most common problems associated with healthcare wastes are the absence of waste management, lack of awareness about their health hazards, insufficient financial and human resources for proper management, and poor control of waste disposal. The current situation of medical waste disposal in Alexandria is depending on incinerators. Some of these incinerators are not working anymore. Incinerations as a system is not accepted at the time being in most developed countries due to the risks associated with it and suitable substitution management system for medical waste disposal is now taking its place.

  12. Annual Summary of the Integrated Disposal Facility Performance Assessment 2012

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R. [INTERA, Austin, TX (United States); Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-12-27

    An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1;2 and DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste.

  13. Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

    2012-07-01

    Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

  14. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  15. Land suitability for waste disposal in metropolitan areas.

    Science.gov (United States)

    Baiocchi, Valerio; Lelo, Keti; Polettini, Alessandra; Pomi, Raffaella

    2014-08-01

    Site selection for waste disposal is a complex task that should meet the requirements of communities and stakeholders. In this article, three decision support methods (Boolean logic, index overlay and fuzzy gamma) are used to perform land suitability analysis for landfill siting. The study was carried out in one of the biggest metropolitan regions of Italy, with the objective of locating suitable areas for waste disposal. Physical and socio-economic information criteria for site selection were decided by a multidisciplinary group of experts, according to state-of-the-art guidelines, national legislation and local normative on waste management. The geographic information systems (GIS) based models used in this study are easy to apply but require adequate selection of criteria and weights and a careful evaluation of the results. The methodology is arranged in three steps, reflecting the criteria defined by national legislation on waste management: definition of factors that exclude location of landfills or waste treatment plants; classification of the remaining areas in terms of suitability for landfilling; and evaluation of suitable sites in relation to preferential siting factors (such as the presence of quarries or dismissed plants). The results showed that more than 80% of the provincial territory falls within constraint areas and the remaining territory is suitable for waste disposal for 0.72% or 1.93%, according to the model. The larger and most suitable sites are located in peripheral areas of the metropolitan system. The proposed approach represents a low-cost and expeditious alternative to support the spatial decision-making process.

  16. Operating room waste: disposable supply utilization in neurosurgical procedures.

    Science.gov (United States)

    Zygourakis, Corinna C; Yoon, Seungwon; Valencia, Victoria; Boscardin, Christy; Moriates, Christopher; Gonzales, Ralph; Lawton, Michael T

    2017-02-01

    OBJECTIVE Disposable supplies constitute a large portion of operating room (OR) costs and are often left over at the end of a surgical case. Despite financial and environmental implications of such waste, there has been little evaluation of OR supply utilization. The goal of this study was to quantify the utilization of disposable supplies and the costs associated with opened but unused items (i.e., "waste") in neurosurgical procedures. METHODS Every disposable supply that was unused at the end of surgery was quantified through direct observation of 58 neurosurgical cases at the University of California, San Francisco, in August 2015. Item costs (in US dollars) were determined from the authors' supply catalog, and statistical analyses were performed. RESULTS Across 58 procedures (36 cranial, 22 spinal), the average cost of unused supplies was $653 (range $89-$3640, median $448, interquartile range $230-$810), or 13.1% of total surgical supply cost. Univariate analyses revealed that case type (cranial versus spinal), case category (vascular, tumor, functional, instrumented, and noninstrumented spine), and surgeon were important predictors of the percentage of unused surgical supply cost. Case length and years of surgical training did not affect the percentage of unused supply cost. Accounting for the different case distribution in the 58 selected cases, the authors estimate approximately $968 of OR waste per case, $242,968 per month, and $2.9 million per year, for their neurosurgical department. CONCLUSIONS This study shows a large variation and significant magnitude of OR waste in neurosurgical procedures. At the authors' institution, they recommend price transparency, education about OR waste to surgeons and nurses, preference card reviews, and clarification of supplies that should be opened versus available as needed to reduce waste.

  17. Storage and disposal of radioactive waste as glass in canisters

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal.

  18. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  19. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Excreta and liquid waste disposal. 654.406 Section 654.406 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406 Excreta and liquid waste disposal....

  20. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    OpenAIRE

    Sociu F.; Georgescu R.; Toma R.; Barariu Gh.; Fako R.

    2013-01-01

    Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa), to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module) where it is intended to rema...

  1. Possibilities of composting disposable diapers with municipal solid wastes.

    Science.gov (United States)

    Colón, Joan; Ruggieri, Luz; Sánchez, Antoni; González, Aina; Puig, Ignasi

    2011-03-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process performance and the characteristics of the compost obtained when compared with that of composting OFMSW without diapers. The experiments demonstrated that the composting process presented similar trends in terms of evolution of routine parameters (temperature, oxygen content, moisture and organic matter content) and biological activity (measured as respiration index). In relation to the quality of both composts, it can be concluded that both materials were identical in terms of stability, maturity and phytotoxicity and showed no presence of pathogenic micro-organisms. However, compost coming from OFMSW with a 3% of disposable diapers presented a slightly higher level of zinc, which can prevent the use of large amounts of diapers mixed with OFMSW.

  2. Department of Energy low-level radioactive waste disposal concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  3. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    Science.gov (United States)

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  4. Low-Level Waste Disposal Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  5. Systems engineering programs for geologic nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

    1980-06-01

    The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

  6. Crushing leads to waste disposal savings for FUSRAP

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J. [Department of Energy, Oak Ridge, TN (United States)

    1997-02-01

    In this article the author discusses the application of a rock crusher as a means of implementing cost savings in the remediation of FUSRAP sites. Transportation and offsite disposal costs are at present the biggest cost items in the remediation of FUSRAP sites. If these debris disposal problems can be handled in different manners, then remediation savings are available. Crushing can result in the ability to handle some wastes as soil disposal problems, which have different disposal regulations, thereby permitting cost savings.

  7. Status report on the disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Culler, F.L. Jr.; McLain, S. (comps.)

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontamination are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.

  8. Plant Test of Industrial Waste Disposal in a Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    刘阳生; 韩杰; 等

    2003-01-01

    Destruction of industrial waste in cement rotary kilins(CRKs) is an alternative technology for the treatment of certain types of industrial waste(IW).In this paper,three typical types of industrial wastes were co-incinerated in the CRK at Beijing Cement Plant to determine the effects of waste disposal(especially solid waste disposal )on the quality of clinker and the concentration of pollutants in air emission.Experimental results show that(1) waste disposal does not affect the quality of clinker and fly ash,and fly ash after the IW disposal can still be used in the cement production,(2) heavy metals from IW are immobilized and stabilized in the clinker and cement,and (3) concentration of pollutants in air emission is far below than the permitted values in the China National Standard-Air Pollutants Emission Standard(GB 16297-1996).

  9. Options and cost for disposal of NORM waste.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-10-22

    Oil field waste containing naturally occurring radioactive material (NORM) is presently disposed of both on the lease site and at off-site commercial disposal facilities. The majority of NORM waste is disposed of through underground injection, most of which presently takes place at a commercial injection facility located in eastern Texas. Several companies offer the service of coming to an operator's site, grinding the NORM waste into a fine particle size, slurrying the waste, and injecting it into the operator's own disposal well. One company is developing a process whereby the radionuclides are dissolved out of the NORM wastes, leaving a nonhazardous oil field waste and a contaminated liquid stream that is injected into the operator's own injection well. Smaller quantities of NORM are disposed of through burial in landfills, encapsulation inside the casing of wells that are being plugged and abandoned, or land spreading. It is difficult to quantify the total cost for disposing of NORM waste. The cost components that must be considered, in addition to the cost of the operation, include analytical costs, transportation costs, container decontamination costs, permitting costs, and long-term liability costs. Current NORM waste disposal costs range from $15/bbl to $420/bbl.

  10. Possibilities of composting disposable diapers with municipal solid wastes

    OpenAIRE

    Colón Jordà, Joan; Ruggieri, Luz; Sánchez Ferrer, Antoni; González Puig, Aina; PUIG VENTOSA, Ignasi

    2011-01-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process per...

  11. IJER@2014 Page 57 Disposal Criteria of Bhanpur Solid Waste Landfill Site: Investigation and Suggestions

    Directory of Open Access Journals (Sweden)

    Tapas Dasgpta

    2014-03-01

    Full Text Available The solid waste management and design assist waste management officials in developing and encouraging environmentally sound methods for the disposal of "nonhazardous" solid waste. Promulgated under the authority of municipal act, the Municipal Solid Waste Landfill (MSWLF regulation act establish a framework for planning and implementing municipal solid waste landfill programs at the state and local levels. This framework sets minimum standards for protecting human health and the environment, while allowing states to develop more flexible MSWLF criteria. Intension to mitigate or expeditiously remediate potential adverse environmental impacts resulting from municipal landfills. However, other regulations existed prior to the revised MSWLF standards discussed in this module. The promulgation Criteria for Classification of Solid Waste Disposal Facilities and Practices. The established regulatory standards to satisfy the minimum national performance criteria for sanitary landfills governs only those solid waste disposal facilities and practices that do not meet the definition of a MSWLF. Such facilities include waste piles, industrial nonhazardous waste landfills, surface impoundments, and land application units. Environmental Protect Authority (EPA modified address the fact that these non-municipal non-hazardous wastes landfills may receive Conditionally Exempt Small Quantity Generator (CESQG hazardous waste, further clarify that construction and demolition landfills may receive residential lead-based paint waste as Solid Waste Disposal Facilities without for MSWLFs as long as all conditions are met.

  12. DISPOSAL OF LOW AND INTERMEDIATE LEVEL WASTE IN HUNGARY

    Directory of Open Access Journals (Sweden)

    Bálint Nős

    2012-07-01

    Full Text Available There are two operating facilities for management of low and intermediate level radioactive waste in Hungary. Experience with radioactive waste has a relatively long history and from its legacy some problems are to be solved, like the question of the historical waste in the Radioactive Waste Treatment and Disposal Facility (RWTDF. Beside the legacy problems the current waste arising from the Nuclear Power Plant (NPP has to be dealt with a safe and economically optimized way.

  13. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, W.M. [Center for Nuclear Waste Regulations Analyses, San Antonio, TX (United States); Kovach, L.A. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW.

  14. Standardization of DOE Disposal Facilities Waste Acceptance Process

    Energy Technology Data Exchange (ETDEWEB)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  15. A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

    2007-03-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low

  16. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  17. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  18. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  19. Developments in management and technology of waste reduction and disposal.

    Science.gov (United States)

    Rushbrook, Philip

    2006-09-01

    Scandals and public dangers from the mismanagement and poor disposal of hazardous wastes during the 1960s and 1970s awakened the modern-day environmental movement. Influential publications such as "Silent Spring" and high-profile disposal failures, for example, Love Canal and Lekkerkerk, focused attention on the use of chemicals in everyday life and the potential dangers from inappropriate disposal. This attention has not abated and developments, invariably increasing expectations and tightening requirements, continue to be implemented. Waste, as a surrogate for environmental improvement, is a topic where elected representatives and administrations continually want to do more. This article will chart the recent changes in hazardous waste management emanating from the European Union legislation, now being implemented in Member States across the continent. These developments widen the range of discarded materials regarded as "hazardous," prohibit the use of specific chemicals, prohibit the use of waste management options, shift the emphasis from risk-based treatment and disposal to inclusive lists, and incorporate waste producers into more stringent regulatory regimes. The impact of the changes is also intended to provide renewed impetus for waste reduction. Under an environmental control system where only certainty is tolerated, the opportunities for innovation within the industry and the waste treatment and disposal sector will be explored. A challenging analysis will be offered on the impact of this regulation-led approach to the nature and sustainability of hazardous waste treatment and disposal in the future.

  20. Patterns and correlates of solid waste disposal practices in Dar es ...

    African Journals Online (AJOL)

    USER

    This study examines the patterns and correlations of solid waste disposal practices ... suggest that distance, home ownership, household expenditure proxy for income, ... Key words: Solid waste, garbage, waste disposal, waste management, ...

  1. High level radioactive waste (HLW) disposal a global challenge

    CERN Document Server

    PUSCH, R; NAKANO, M

    2011-01-01

    High Level Radioactive Waste (HLW) Disposal, A Global Challenge presents the most recent information on proposed methods of disposal for the most dangerous radioactive waste and for assessing their function from short- and long-term perspectives. It discusses new aspects of the disposal of such waste, especially HLW.The book is unique in the literature in making it clear that, due to tectonics and long-term changes in rock structure, rock can serve only as a ""mechanical support to the chemical apparatus"" and that effective containment of hazardous elements can only be managed by properly des

  2. Immobilized low-level waste disposal options configuration study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  3. A factorial analysis experimentation of inappropriate waste disposal

    Directory of Open Access Journals (Sweden)

    S. A. Oke, K. O. Awofeso

    2006-04-01

    Full Text Available This paper presents a statistical approach to estimating the effects of psychological factors on humans due to inappropriate waste disposal in the environment. Factorial experimental analysis is combined with the concepts of transition matrix and steady state conditions. An adequate understanding into the statistical quantification of the waste disposal concept would aid policy makers in effective decision making and the proper control of environment. The feasibility of developing statistical parameters for assessing the waste disposal concept is confirmed. The work shows the novelty of the approach.

  4. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  5. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%.

  6. Initial studies to assess microbial impacts on nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Economides, B. [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

    1996-02-20

    The impacts of the native and introduced bacteria on the performance of geologic nuclear waste disposal facilities should be evaluated because these bacteria could promote corrosion of repository components and alteration of chemical and hydrological properties of the surrounding engineered and rock barriers. As a first step towards investigating these potentialities, native and introduced bacteria obtained from post-construction Yucca Mountain (YM) rock were isolated under varying conditions, including elevated temperature, low nutrient availability, and the absence of available oxygen. Individual isolates are being screened for activities associated with microbially induced corrosion of metals (MIC). Preliminary determination of growth rates of whole YM microbial communities under varying conditions was also undertaken.

  7. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    Energy Technology Data Exchange (ETDEWEB)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  8. Waste Isolation Pilot Plant Performance Assessment: Radionuclide Release Sensitivity to Diminished Brine and Gas Flows to/from Transuranic Waste Disposal Areas

    Directory of Open Access Journals (Sweden)

    Brad A. Day

    2017-03-01

    Full Text Available Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

  9. Waste isolation pilot plant performance assessment: Radionuclide release sensitivity to diminished brine and gas flows to/from transuranic waste disposal areas

    Energy Technology Data Exchange (ETDEWEB)

    Day, Brad A.; Camphouse, R. C.; Zeitler, Todd R. [Sandia National Laboratories, Carlsbad (United States)

    2017-03-15

    Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

  10. Natural analogues in the performance assessment of a nuclear waste disposal: the Cortijo de Archidona deposit and the salinity effect

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Pelayo, M.; Rivas, P.; Perez del Villar, L. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Dpt. of Energy Environmental Impact, Madrid (Spain); Arcos, D. [Enviros, Barcelona (Spain); Tsige, M. [Universidad Complutense de Madrid, Facultad de Ciencias Geologicas, Madrid (Spain); Fernandez-Soler, J.M. [Granada Univ., Dpt. de Mineralogia y Petrologia (Spain)

    2005-07-01

    In this work, the Cortijo de Archidona bentonite deposit, which was selected as a source for buffer material for the potential Spanish repository has been studied as a natural analogue of the behaviour of bentonite engineered barrier affected by a natural saline-water front. It seems that different post-formational processes have affected this bentonite deposit as a consequence of the different types of groundwaters infiltrated during its recent geological history. The objective of this study is to determine the physico-chemical behaviour of the bentonite as a result of the alteration processes induced by changes in the chemistry of the pore water in the deposit. Examinations were mainly focused on the bentonite mineralogy and micro-fabric, the pore water composition and the physico-chemical properties. Special emphasis has been given to the role of the water-bentonite interaction processes involving accessory non-clay minerals, which affect the bentonite cementation and its buffer capacity of pH and redox potential of the near-field pore waters. These are critical parameters for the performance assessment of the engineered barrier. (authors)

  11. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  12. Disposal of solid wastes with simultaneous energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.

    1980-01-01

    The need for resource recovery from solid wastes is discussed. The incentives for a comprehensive system, a gasification based disposal system, and biological recovery methods are reviewed. Biogas process development and the Lanfilgas process are described. (MHR)

  13. Disposal of Kitchen Waste from High Rise Apartment

    Science.gov (United States)

    Ori, Kirki; Bharti, Ajay; Kumar, Sunil

    2017-07-01

    The high rise building has numbers of floor and rooms having variety of users or tenants for residential purposes. The huge quantities of heterogenous mixtures of domestic food waste are generated from every floor of the high rise residential buildings. Disposal of wet and biodegradable domestic kitchen waste from high rise buildings are more expensive in regards of collection and vertical transportation. This work is intended to address the technique to dispose of the wet organic food waste from the high rise buildings or multistory building at generation point with the advantage of gravity and vermicomposting technique. This innovative effort for collection and disposal of wet organic solid waste from high rise apartment is more economical and hygienic in comparison with present system of disposal.

  14. TECHNICAL NOTE LIQUID WASTE DISPOSAL IN URBAN LOW ...

    African Journals Online (AJOL)

    of in a properly designed and integrated network of pipes, which collect and ... been overcrowding, poverty, health problems and an ever increasing strain on basic ... ·adequate water supply, then 111 adequate waste disposal syltcm is needed ...

  15. Environmental Management of Human Waste Disposal for Recreational Boating Activities

    Science.gov (United States)

    Shafer; Yoon

    1998-01-01

    / A methodology to estimate the number of pump-out facilities and dump stations required to service human waste disposal for recreational power boating activities in Pennsylvania during the 1994 boating season is described. Study results suggest that a total of 39 additional pump-out stations and 13 dump stations may be required on seven major waterbodies: The Three Rivers Area, Lake Erie/Presque Isle Bay, Raystown Lake, the Susquehanna River, the Delaware River, Lake Wallenpaupack, and the Kinzua Reservoir. Suggestions for improving the methodology are provided. KEY WORDS: Human waste; Recreation; Power boating; Waste facilities; Waste disposal; Pennsylvania

  16. Hazardous Material Storage Facilities and Sites - WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN: Waste Site Locations for Disposal, Storage and Handling of Solid Waste and Hazardous Waste in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN is a point shapefile that contains waste site locations for the disposal, storage, and handling of solid and hazardous waste...

  17. Solid Waste Disposal: A Choice Experiment Experience in Malaysia

    OpenAIRE

    Pek, Chuen Khee; Othman, Jamal

    2009-01-01

    Increasing generation of solid waste requires better quality disposal options in Malaysia. Control tipping is the most commonly used complemented by sanitary landfill and incineration. This study estimates the non-market values of improved waste disposal services and also ranking them using choice experiment. River water quality is the most concerned followed by psychological fear, air pollution and land use. Socio-economic background and distance factor influence the types of compensating su...

  18. Humic substances in performance assessment of nuclear waste disposal: Actinide and iodine migration in the far-field. Third technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Buckau, G.

    2005-04-01

    The present report describes progress within the third and final year of the EC-project 'Humic Substances in Performance Assessment of Nuclear Waste Disposal: Actinide and Iodine Migration in the Far-Field'. The work conducted within the present project builds on a number of previous activities/project supported by the Commission. It finds its continuation within different EC FP 6 instruments and also provides for additional continued cooperation through network structures resulting from the broad cooperation within the project. Without being a formal requirement of the Commission or co-funding bodies, this report documents results in great technical detail and makes the results available to a broad scientific community. The report contains an executive summary written by the coordinator. More detailed results are given as individual contributions in the form of 12 annexes. Not all results are discussed or referred to in the executive summary report and thus readers with a deeper interest also need to consult the annexes. The overall objectives were to generate knowledge about the impact of humic substances on the migration of actinides and iodine in the far-field of a nuclear waste repository. In the beginning, focus was rather on the potential enhancement due to humic colloid mediated radionuclide transport. Thereby, sources, inventory, stability and mobility of dissolved humic substances in their colloidal form formed a key topic. Other key topics were the interaction with actinides and iodine, transport studies under near-natural conditions in the laboratory, rationalization of knowledge in models and application to three migration cases for visualization of the overall outcome. Changes relative to the original objectives were given by moving emphasis of natural chemical analogue studies from the question of kinetic exchange constants for different inventories in natural and laboratory systems to the study of anthropogenic actinide contaminants in the

  19. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site...

  20. Annual Status Report (FY2015) Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R. [INTERA, Inc., Austin, TX (United States); Mehta, S. [CH2M Hill Plateau Remediation Company, Richland, WA (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-02-01

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Burial Grounds (LLBGs) since September 26, 1988. These estimates area calculated using the original does methodology developed in the performance assessment (PA) analysis (WHC-EP-0645).

  1. Future intrusion of oxygenated glacial meltwaters into the Fennoscandian shield: a possibility to consider in performance assessments for nuclear-waste disposal sites?: Chapter 6

    Science.gov (United States)

    Glynn, Pierre

    2008-01-01

    Provost et al. (1998) and Glynn and Voss (1999; also published in Glynn et al., 1999) considered the possibility that during future glaciations, oxygenated glacial meltwaters from two- to three-kilometer thick ice sheets could potentially intrude to the 500 m depth of planned nuclear-waste repositories. This possibility has been of concern because of potential negative effects on the stability of the repository engineered environment, and because of the potential mobilization of radionuclides should the oxygenated waters come into contact with the radioactive waste. The above reports argued that given the current state of knowledge, it was hard to discount the possibility that oxygenated waters could penetrate to repository level depth. The reports also suggested that oxidizing conditions might be present in the fractured rock environment for significant amounts of time, on the order of thousands to tens of thousands of years. In some earlier reports, Swedish and Finnish governmental agencies in charge of nuclear-waste disposal had considered the possibility that oxygenated meltwaters might intrude to the repository depth (SKI: 1992; Martinerie et al, 1992; Ahonen and Vieno, 1994). Subsequent to the publication of Provost et al. (1998), Glynn et al. (1999) and Glynn and Voss (1999), the Swedish Nuclear Fuel and Waste Handling Company (SKB) commissioned efforts to examine more thoroughly the possibilities that oxygenated meltwaters might occur under ice-sheet conditions and intrude to the repository depth.

  2. Safety aspects of nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  3. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  4. Analysis of alternatives for immobilized low activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  5. Alternatives for the treatment and disposal of healthcare wastes in developing countries.

    Science.gov (United States)

    Diaz, L F; Savage, G M; Eggerth, L L

    2005-01-01

    Waste production in healthcare facilities in developing countries has brought about a variety of concerns due to the use of inappropriate methods of managing the wastes. Inappropriate treatment and final disposal of the wastes can lead to adverse impacts to public health, to occupational health and safety, and to the environment. Unfortunately, most economically developing countries suffer a variety of constraints to adequately managing these wastes. Generally in developing countries, few individuals in the staff of the healthcare facility are familiar with the procedures required for a proper waste management program. Furthermore, the management of wastes usually is delegated to poorly educated laborers who perform most activities without proper guidance and insufficient protection. This paper presents some of the most common treatment and disposal methods utilized in the management of infectious healthcare wastes in developing countries. The methods discussed include: autoclave; microwave; chemical disinfection; combustion (low-, medium-, and high-technology); and disposal on the ground (dump site, controlled landfill, pits, and sanitary landfill). Each alternative for treatment and disposal is explained, including a description of the types of wastes that can and cannot be treated. Background information on the technologies also is included in order to provide information to those who may not be familiar with the details of each alternative. In addition, a brief presentation of some of the emissions from each of the treatment and disposal alternatives is presented.

  6. Radioactive waste disposal via electric propulsion

    Science.gov (United States)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  7. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  8. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  9. The diffusion of differentiated waste disposal taxes in the Netherlands

    NARCIS (Netherlands)

    Heijnen, P.

    2007-01-01

    The diffusion of a novel taxing scheme among Dutch municipalities in the period 1998-2005 is studied. In this taxing scheme the waste disposal tax is made dependent on the amount of waste a household produces. Inspecting the pattern of the introduction of this tariff, it seems to be contagious: the

  10. Disposal and recovery of waste paper in South Africa

    CSIR Research Space (South Africa)

    Brooks, GR

    1977-04-01

    Full Text Available This survey of current practice relating to the disposal and recycling of waste paper was commissioned by the Committee for Solid Wastes, through the National Scientific Programmes Unit of the CSIR. It was undertaken by Louis Heyl and Associates, a...

  11. EUROSAFE forum 2013. Safe disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The proceedings of the EUROSAFE forum 2013 - safe disposal of nuclear waste include contributions to the following topics: Nuclear installation safety - assessment; nuclear installation safety - research; waste and decommissioning - dismantling; radiation protection, 3nvironment and emergency preparedness; security of nuclear installations and materials.

  12. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  13. Regulating the disposal of cigarette butts as toxic hazardous waste.

    Science.gov (United States)

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  14. Municipal Waste Disposal by High Temperature Smelting Technique

    Institute of Scientific and Technical Information of China (English)

    SHEN Zong-bin; ZHANG Chun-xia; ZHANG You-ping; LIU Kun

    2004-01-01

    Municipal waste disposal system by high temperature smelting has the following characteristics: ① The smelting temperature is as high as 1 700-1 800 ℃; ② The dioxin is hardly produced; ③ The secondary pollution can be avoided because of the absence of heavy metals in the flux; ④ The metals and flux after disposal can be reused for construction materials. If outdated, the idle or discarded medium and small blast furnaces can be reconstructed into a waste resource system with high temperature smelting technique, and it is possible to make full use of their existing functions to reduce the investment and exploit their social function of environmental protection. In addition, a new waste disposal system with high temperature smelting was designed based on the recycling municipal waste technology abroad.

  15. Process performance of the pilot-scale in situ vitrification of a simulated waste disposal site at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.G.; Koegler, S.S.; Bates, S.O.

    1988-06-01

    Process feasibility studies have been successfully performed on three developmental scales to determine the potential for applying in situ vitrification to intermediate-level (low-level) waste placed in seepage pits and trenches at Oak Ridge National Laboratory (ORNL). In the laboratory, testing was performed in crucibles containing a mixture of 50% ORNL soil and 50% limestone. In an engineering-scale test at Pacific Northwest Laboratory a /1/12/-scale simulation of an ORNL waste trench was constructed and vitrified, resulting in a waste product containing soil and limestone concentrations of 68 wt % and 32 wt %, respectively. In the pilot-scale test a /3/8/-scale simulation of the same trench was constructed and vitrified at ORNL, resulting in soil and limestone concentrations of 80% and 20%, respectively, in the waste product. Results of the three scales of testing indicate that the ORNL intermediate-level (low-level) waste sites can be successfully processed by in situ vitrification; the waste form will retain significant quantities of the cesium and strontium. Because cesium-137 and strontium-90 are the major components of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., losses to the off-gas system relative to the waste inventory) of 1.0 E + 4 are desired to minimize activity buildup in the off-gas system. 17 refs., 34 figs., 13 tabs.

  16. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  17. An Assessment of Household Solid Waste Disposal

    African Journals Online (AJOL)

    ATBU Journal of Environmental Technology 5, 1, December 2012. An Assessment of ... sites and interview with agencies responsible for municipal solid waste ... farms, wetlands, uncompleted buildings ..... construct and maintain solid waste.

  18. SAFE DISPOSAL OF MUNICIPAL WASTES IN NIGERIA ...

    African Journals Online (AJOL)

    affairs in the management of municipal solid waste in most parts of Nigeria. .... 13 Damilola Olawuyi, The Principles of Nigerian Environmental Law (Business ..... To achieve sustainable waste management practices in Nigeria, first it is.

  19. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  20. [PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].

    Science.gov (United States)

    Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K

    2015-01-01

    The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.

  1. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.

  2. Preliminary risk benefit assessment for nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  3. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  4. A quantitative analysis of municipal solid waste disposal charges in China.

    Science.gov (United States)

    Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue

    2015-03-01

    Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.

  5. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  6. Update on cavern disposal of NORM-contaminated oil field wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  7. Thermal analysis in the near field for geological disposal of high-level radioactive waste. Establishment of the disposal tunnel spacing and waste package pitch on the 2nd progress report for the geological disposal of HLW in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Wataru [Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Iwasa, Kengo [Japan Nuclear Cycle Development Inst., Tokyo Office, Tokyo (Japan)

    1999-11-01

    For the underground facility of the geological disposal of high-level radioactive waste (HLW), the space is needed to set the engineered barrier, and the set engineered barrier and rock-mass of near field are needed to satisfy some conditions or constraints for their performance. One of the conditions above mentioned is thermal condition arising from heat outputs of vitrified waste and initial temperature at the disposal depth. Hence, it is needed that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. Therefore, the design of engineered barrier and underground facility is conducted so that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. One of these design is establishment of the disposal tunnel spacing and waste package pitch. In this report, thermal analysis is conducted to establish the disposal tunnel spacing and waste package pitch to satisfy the constraint temperature in the near field. Also, other conditions or constraints for establishment of the disposal tunnel spacing and waste package pitch are investigated. Then, design of the disposal tunnel spacing and waste package pitch, considering these conditions or constraints, is conducted. For the near field configuration using the results of the design above mentioned, the temperature with time dependency is studied by analysis, and then the temperature variation due to the gaps, that will occur within the engineered barrier and between the engineered barrier and rock mass in setting engineered barrier in the disposal tunnel or pit, is studied. At last, the disposal depth variation is studied to satisfy the temperature constraint in the near field. (author)

  8. Low-level waste disposal in highly populated areas

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, E.; McCombie, C.; Issler, H. [NAGRA-Swiss National Cooperative for the Storage of Radioactive Waste, Baden (Switzerland)

    1989-11-01

    Nuclear-generated electricity supplies almost 40% of the demand in Switzerland (the rest being hydro-power). Allowing for a certain reserve and assuming an operational life-time of 40 years for each reactor, and taking into account wastes from decommissioning and from medicine, industry and research, the total amount of low-level radioactive waste to be disposed of is about 175,000 m{sup 3}. Since there are no unpopulated areas in Switzerland, and since Swiss Federal Law specifies that the safety of disposal may not depend upon supervision of the repository, no shallow-land burial has been foreseen, even for short-lived low-level waste. Instead, geological disposal in a mined cavern system with access through a horizontal tunnel was selected as the best way of meeting the requirements and ensuring the necessary public acceptance.

  9. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  10. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    Science.gov (United States)

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  11. 2008 State-of-the-art: Development of the Geological Disposal System for High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, Jong Youl; Jung, Jong Tae; Kim, Sung Ki; Lee, Min Soo; Kook, Dong Hak

    2008-11-15

    This report is for grasping the current status of the time of high level radioactive waste(HLW) disposal and being useful for our conceptual repository design. We performed the analyses for the HLW disposal design of preceding countries. This analyses include design principles, and comparisons for the all characteristics of HLW source, disposal canister, buffer specification, and disposal systems. During the past 10 years, retrievability concept are getting more important with perceiving the waste as new resources and almost countries planning the disposal are concerning more complex designs including this new concept. According to this trend, our country also should investigate the compliance of retrievability with our own disposal design concept. Most countries applies 'Cost Estimation base on conceptual design' method on disposal cost estimation in compliance with their own situation. Even though several estimation conditions, e.g. disposal scale and estimation time, are different, our rough estimation values for the unit disposal cost of PWR and CANDU spent fuels are analogous to other countries' values.

  12. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  13. Hanford land disposal restrictions plan for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  14. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  15. E-waste bans and U.S. households' preferences for disposing of their e-waste.

    Science.gov (United States)

    Milovantseva, Natalia; Saphores, Jean-Daniel

    2013-07-30

    To deal with the inadequate disposal of e-waste, many states have instituted bans on its disposal in municipal landfills. However, the effectiveness of e-waste bans does not seem to have been analyzed yet. This paper starts addressing this gap. Using data from a survey of U.S. households, we estimate multivariate logit models to explain past disposal behavior by households of broken/obsolete ("junk") cell phones and disposal intentions for "junk" TVs. Our explanatory variables include factors summarizing general awareness of environmental issues, pro-environmental behavior in the past year, attitudes toward recycling small electronics (for the cell phones model only), socio-economic and demographic characteristics, and the presence of state e-waste bans. We find that California's Cell Phone Recycling Act had a significant and positive impact on the recycling of junk cell phones; however, state disposal bans for junk TVs seem to have been mostly ineffective, probably because they were poorly publicized and enforced. Their effectiveness could be enhanced by providing more information about e-waste recycling to women, and more generally to adults under 60. Given the disappointing performance of policies implemented to-date to enhance the collection of e-waste, it may be time to explore economic instruments such as deposit-refund systems.

  16. Radioactive wastes: public attitudes toward disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, M.K.; Earle, T.C.; Hebert, J.A.; Perry, R.W.

    1978-10-01

    Seventeen geographically widespread, established groups were selected which were expected to vary in their attitudes from strongly pronuclear to strongly antinuclear. People who tend to be politically active were chosen. The highest level of consensus was found on the need for site monitoring, site control, and information transfer in a waste repository. Overall, the results indicate that pronuclear respondents believe that the hazards of nuclear waste are similar to other industrial risks, while antinuclear respondents are less optimistic about safe storage of nuclear wastes and believe that nuclear power is different.

  17. Case for retrievable high-level nuclear waste disposal

    Science.gov (United States)

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  18. Nuclear reactor high-level waste: origin and safe disposal

    Energy Technology Data Exchange (ETDEWEB)

    Chua, C.; Tsipis, K. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    High-level waste (HLW) is a natural component of the nuclear fuel cycle. Because of its radioactivity, HLW needs to be handled with great care. Different alternatives for permanently storing HLW are evaluated. Studies have shown that the disposal of HLW is safest when the waste is first vitrified before storage. Simple calculations show that vitrified HLW that is properly buried in deep, carefully chosen crystalline rock structures poses insignificant health risks. (author).

  19. Air passivation of metal hydride beds for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. E.; Hsu, R. H. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15

    One waste acceptance criteria for hydride bed waste disposal is that the bed be non-pyrophoric. Batch-wise air ingress tests were performed which determined the amount of air consumed by a metal hydride bed. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 deg.C internal temperature rise upon the first air exposure cycle and a 0.1 deg.C temperature rise upon a second air exposure. A total of 346 sec air was consumed by the bed (0.08 sec per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12. cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water. (authors)

  20. Cement-based grouts in geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Onofrei, M. [AECL Research, Pinnawa, Manitoba (Canada)

    1996-04-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from <10{sup -7} m s{sup -1} to 10{sup -9} m s{sup -1} and to penetrate fissures in the rock with apertures as small as 10 {mu}m. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment.

  1. Radioactive waste management and disposal scenario for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tabara, Takashi; Yamano, Naoki [Sumitomo Atomic Energy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao

    1997-10-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a light water reactor (LWR) have been evaluated and compared. At first, the amount and the radioactive level of the radwaste generated in five fusion reactors ware evaluated by an activation calculation code. Next, a possible radwaste disposal scenario applicable to fusion radwaste in Japan is considered and the disposal cost evaluated under certain assumptions. The exposure doses are evaluated for the skyshine of gamma-rays during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical LWR was estimated based on a literature survey and the disposal cost was evaluated using the same assumptions as for the fusion reactors. It is found that the relative cost of disposal is strongly dependent on the cost for interim storage of medium level waste of fusion reactors and the cost of high level waste for the LWR. (author)

  2. An eco friendly solution to the food waste disposal

    Science.gov (United States)

    Babu, G. Reddy; Kumar, G. Madhav

    2017-07-01

    In recent years, waste disposal at workmen camp is one of the major problems being faced by many nations across the world. In the workmen colony at Chittapur, a series of kitchens were built for cooking purpose and a number of small canteens are also functioning. Considerable quantity of food waste is collected daily from these eateries and disposed at a faraway place. Food waste is highly degradable in nature, if not disposed properly it causes problems related to environmental pollution. Hence, it is very important to identify an environment friendly process rather than opt for land filling or any disposal method. We worked together to find a suitable eco-friendly solution for the food waste disposal at Chittapur site and suggested that biogas production through anaerobic digestion is a solution for the disposal and utilization of food waste for better purpose. This resulted in setting up a 500 kg per day food waste treatment biogas plant at Chittapur. This establishment is the first time in the construction industry at workmen camp in India. Anaerobic Digestion has been recognized as one of the best options that is available for treating food waste, as it generates two valuable end products, biogas and compost. Biogas is a mixture of CH4 and CO2 about (55:45). Biogas generated can be used for thermal applications such as cooking or for generating electricity. The digested slurry is a well stabilized organic manure and can be used as soil fertilizer. Plant design is to handle 500 kg of food waste /day. 27 kg LPG is obtained from 500kg of kitchen waste. The Value of 27 kg of LPG is Rs.2700/day. Daily 1000 litres of digested effluent was obtained. It is good organic manure with plant micro nutrients and macro nutrients. This can be used for growing plants and in agriculture. The value of manure per day is Rs.250/-. The annual revenue is Rs.10.62 lakhs and the annual expenditure is 1.8 lakhs. The net benefit is 8.82 lakhs. Payback period is 2.1 years. This process

  3. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in

  4. A New Waste Disposal Technology-plasma arc Pyrolysis System

    Institute of Scientific and Technical Information of China (English)

    黄建军; 施嘉标; 梁荣庆; 刘正之

    2003-01-01

    This paper introduces a new waste disposal technology with plasma arc. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled pyrolysis-thermal destruction and recovery process. It has four advantages, they are completely safe, clean, high-energy synthesis gas, non-toxic vitrified slag and metal.

  5. Impact of a waste disposal site on children physical growth

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Ocampo

    2009-11-01

    Full Text Available Background: Several epidemiological studies have shown an increased risk of health problems among population living close to landfills. We evaluated the impact of a municipal solid waste disposal site on children’s growth between 0-3 years of age. Methods: Children were selected in sites likely to receive dispersion of air compounds from the waste disposal site and also in a control area, in Cali, Colombia, in 2005. Anthropometric measures were obtained at enrollment and in two follow-up visits at 3 months intervals to obtain standardized z scores of weight for height (WHZ and height for age (HAZ. In addition, questionnaires including information of socio-economical conditions and morbidity were applied at enrolment and during follow-up visits. Results: Children exposed had on average 0.16 less standard deviations (SD in WHZ scores when compared to control group (95% Confidence Interval [CI]: -0.34, 0.01. Among those who have lived >50% of their life in the study area, a significantly lower HAZ score was observed (-0.12 associated with exposure. Our data also suggest a larger effect of exposure to the waste disposal site in WHZ among children with symptoms of respiratory disease than among asymptomatic children (p=0.08. Conclusions: Exposure to this waste disposal site was found associated with lower children’s growth indexes.

  6. 41 CFR 50-204.29 - Waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.29...

  7. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  8. Korean Waste Management Law and Waste Disposal Forms.

    Science.gov (United States)

    1991-03-01

    Soil Treatment Tanks) 69 Article 8. (Interim Measures on Report of Recycler or Reuser of Industrial Waste) 69 Article 9. (Interim Measures on Permit...recycling and reuse (hereinafter referred to as a "recycler and reuser of industrial waste"), pursuant to Article 23.2. of the Law, shall submit a "Filing... reuser of industrial waste, pursuant to Article 45.2., shall submit a "Modification of Recycle or Reuse of Industrial Waste" (Form No. 17), to the

  9. Management of the radioactive waste of European Spallation Source within the Swedish waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Ene, Daniela [European Spallation Source AB, ESS-AB (Sweden); Forsstroem, H. [Svensk Kaernbraenslehantering AB, SKB (Sweden)

    2014-07-01

    The European Spallation Source AB (ESS) is the European common effort in designing and building a next generation large-scale user facility for studies of the structure and dynamics of materials. The proposed schematic layout of the ESS facility is based on a linear driver (linac) directing the proton beam (5 MW of 2.5 GeV) of 2.8 ms long pulses with a 20 Hz on a tungsten target where neutrons are produced via spallation reactions. Further the neutrons will be moderated to thermal and sub-thermal energies in a couple of moderators placed around the target. The moderators feed 22 beam-lines guiding the neutrons to the scattering instruments, mainly for neutron scattering research, as has been previously mentioned. The ESS will generate specific types of radioactive waste. This waste should be handled and disposed of within the Swedish radioactive waste management system, which is owned and operated by Svensk Kaernbraenslehantering AB, (SKB). The main objectives of this work are: i) To estimate types and quantities of waste that the ESS project will generate at different stages: commission, operation, decommissioning; ii) To allocate the waste to specific disposal route; iii) To assess the disposal volumes needed and to ensure that the ESS waste may safely be accommodated within the Swedish disposal system, SKB The amounts of ESS waste and classifications were derived using: i) precise Monte Carlo calculations ii) scaling the activity from the operation experience of the existing spallation source installations for waste such it is difficult to predict level of activation or for components of the facility in stage of the pre-conceptual model. Associated waste treatment/conditioning options were further analyzed in order to define the waste type and packet descriptions in agreement with Swedish regulations and policy. The potential final disposal routes for high activated components were decided via the comparison of the activity levels of the isotopes inside the

  10. 45 CFR 671.12 - Waste disposal.

    Science.gov (United States)

    2010-10-01

    ... or by the Scientific Committee on Antarctic Research shall be taken into account. (f) Sewage and... deposition over areas of special biological, scientific, historic, aesthetic or wilderness significance. (i) Each unauthorized release of waste in Antarctic shall be, to the maximum extent practicable,...

  11. A conflict model for the international hazardous waste disposal dispute

    Energy Technology Data Exchange (ETDEWEB)

    Hu Kaixian, E-mail: k2hu@engmail.uwaterloo.ca [Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Hipel, Keith W., E-mail: kwhipel@uwaterloo.ca [Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Fang, Liping, E-mail: lfang@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada)

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  12. Consideration of Criteria for a Conceptual Near Surface Radioactive Waste disposal Facility in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nderitu, Stanley Werugia; Kim, Changlak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures. This study will present an approach for establishing radiological waste acceptance criteria using a safety assessment methodology and illustrate some of its application in establishing limits on the total activity and the activity concentrations of radioactive waste to be disposed in a conceptual near surface disposal facility in Kenya. The approach will make use of accepted methods and computational schemes currently used in assessing the safety of near surface disposal facilities. The study will mainly focus on post-closure periods. The study will employ some specific inadvertent human intrusion scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. The specific performance assessments will use modified scenarios and data to establish acceptable disposal concentrations for specific disposal sites and conditions. Safety and environmental impacts assessments is required in the post-closure phase to support particular decisions in development, operation, and closure of a near surface repository.

  13. [Investigation of actual condition of management and disposal of medical radioactive waste in Korea].

    Science.gov (United States)

    Watanabe, Hiroshi; Nagaoka, Hiroaki; Yamaguchi, Ichiro; Horiuchi, Shoji; Imoto, Atsushi

    2009-07-20

    In order to realize the rational management and disposal of radioactive waste like DIS or its clearance as performed in Europe, North America, and Japan, we investigated the situation of medical radioactive waste in Korea and its enforcement. We visited three major Korean facilities in May 2008 and confirmed details of the procedure being used by administering a questionnaire after our visit. From the results, we were able to verify that the governmental agency had established regulations for the clearance of radioactive waste as self-disposal based on the clearance level of IAEA in Korea and that the medical facilities performed suitable management and disposal of radioactive waste based on the regulations and superintendence of a radiation safety officer. The type of nuclear medicine was almost the same as that in Japan, and the half-life of all radiopharmaceuticals was 60 days or less. While performing regulatory adjustment concerning the rational management and disposal of radioactive waste in Korea for reference also in this country, it is important to provide an enforcement procedure with quality assurance in the regulations.

  14. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  15. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Science.gov (United States)

    2010-07-01

    ... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and...

  16. 75 FR 39041 - Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act

    Science.gov (United States)

    2010-07-07

    ... of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act Notice is hereby given that... Environmental Protection Agency (``EPA'') for violations of Section 7003 of the Solid Waste Disposal Act (as... oilfield waste disposal facility, located in Campbell County, Wyoming. The Consent Decree resolves...

  17. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BD04 Definition of Solid Waste Disposal Facilities for Tax... published in the Federal Register on Friday, August 19, 2011, on the definition of solid waste disposal... solid waste disposal facilities and to taxpayers that use those facilities. DATES: This correction...

  18. 40 CFR 761.63 - PCB household waste storage and disposal.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of...

  19. 77 FR 23751 - Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation...

    Science.gov (United States)

    2012-04-20

    ... COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation... importation, and the sale within the United States after importation of certain food waste disposers and... sale within the United States after importation of certain food waste disposers and components...

  20. Are MUPs a Toxic Waste Disposal System?

    Directory of Open Access Journals (Sweden)

    Jae Kwak

    Full Text Available Male house mice produce large quantities of major urinary proteins (MUPs, which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds ('toxic waste hypothesis'. In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP, in the urine of wild-derived house mice (Mus musculus musculus. Addition of guanidine hydrochloride to male and female urine resulted in an increased release of DTBP. This increase was only observed in the high molecular weight fractions (HMWF; > 3 kDa separated from male or female urine, suggesting that the increased release of DTBP was likely due to the denaturation of MUPs and the subsequent release of MUP-bound DTBP. Furthermore, when DTBP was added to a HMWF isolated from male urine, an increase in 2-sec-butyl-4,5-dihydrothiazole (SBT, the major ligand of MUPs and a male-specific pheromone, was observed, indicating that DTBP was bound to MUPs and displaced SBT. These results suggest that DTBP is a MUP ligand. Moreover, we found evidence for competitive ligand binding between DTBP and SBT, suggesting that males potentially face a tradeoff between eliminating toxic wastes versus transporting pheromones. Our findings support the hypothesis that MUPs bind and eliminate toxic wastes, which may provide the most important fitness benefits of excreting large quantities of these proteins.

  1. Work in support of biosphere assessments for solid radioactive waste disposal. 1. performance assessments, requirements and methodology; criteria for radiological environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Egan, M.J.; Loose, M.; Smith, G.M.; Watkins, B.M. [QuantiSci Ltd., Henley-on-Thames (United Kingdom)

    2001-10-01

    The first part of this report is intended to assess how the recent Swedish regulatory developments and resulting criteria impose requirements on what should be included in a performance assessment (PA) for the SFR low and medium level waste repository and for a potential deep repository for high level waste. The second part of the report has been prepared by QuantiSci as an input to the development of SSI's PA review methodology. The aim of the third part is to provide research input to the development of radiological protection framework for the environment, for use in Sweden. This is achieved through a review of various approaches used in other fields.

  2. [Disposal of waste glass in sanitary departments: a sample survey in the Lazio region].

    Science.gov (United States)

    Del Sole, A; Fonda, A

    2004-01-01

    As a result of Italian law, DPR 15/7/2003 n. 254, about hospital waste, and given that little has been written about recycling waste glass in hospitals, a survey of 28 health departments in Lazio was performed. The objectives were: to estimate the mean quantity of clear vitreous waste in one year, to estimate how vitreous waste is administered, to estimate the extent of the use of plastic instead of glass, to analyse the costs and benefits of glass use and/or plastic use and to evaluate staff training about hospital waste disposal. The average production of clear vitreous waste was 0.28 kilogram per day per hospital bed occupied. (This would be the theoretical maximum quantity of glass to be recycled). Among the 28 departments studied, 82% separated waste products but only 36% disposed of glass in accordance with the law. The estimated possible savings on glass phleboclysis in 2002 year were 35,000 euro. Staff training could avoid this conspicuous waste of money. Fifteen departments also used plastic phleboclysis; of these, in 2 departments plastic waste is separated in the wards, but unfortunately this material is later disposed of in the bins for general solid urban waste. The other thirteen hospitals dispose of waste plastic as infectious material. Using glass phleboclysis instead of plastic phleboclysis would save about 680,000 euros per year. The disposal of glass waste material in practice was not found to follow the principles taught in the training courses. Theoretic data about glass production, estimated in this survey, refers only to clear glass and it is an underestimate of that of all glass used in departments. The quantity of glass actually recycled has been about 0.14 kilogram per day per hospital bed occupied and thus only 50% of the theoretical quantity (0.28 kilogram per day per hospital bed occupied). This percentage could be improved by effective training. Ideally, the disposal of waste glass would follow the legal requirements and be monitored

  3. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Wookeun; Shin, Eung Bai [Hanyang Univ., Ansan (Korea, Republic of); Lee, Kil Chul; Kim, Jae Hyung [National Institute of Environmental Research, Seoul (Korea, Republic of)] [and others

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  4. Disposal of radioactive waste from nuclear research facilities

    CERN Document Server

    Maxeiner, H; Kolbe, E

    2003-01-01

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  5. Composting of Disposal Organic Wastes: Resource Recovery for Agricultural Sustainability

    Institute of Scientific and Technical Information of China (English)

    Mohammad H. Golabi; Peggy Denney; Clancy Iyekar

    2006-01-01

    One of the major problems of agricultural soils in the tropical regions of the Pacific is the low organic matter content. Because of the hot and humid environment, the soil organic matter (SOM) is minimal due to rapid decomposition.Composted organic material is being applied on agricultural fields as an amendment to provide nutrients and enhance the organic matter content for improving the physical and chemical properties of the cultivated soils. In addition land application of composted material as a fertilizer source effectively disposes of wastes that otherwise are buried in landfills. In our soil program at the University of Guam, we are evaluating the use of organic material as an alternative to synthetic fertilizers. Its goal is to develop management strategies and use available resources for improving crop production while conserving resources and preserving environmental quality. Our case study project is designed to improve soil fertility status by using composted organic wastes and assessing how the nitrogen and other essential nutrients contribute to long-term soil fertility and crop productivity without application of synthetic fertilizers. In our pilot project, compost is produced from wood chips,grinded typhoon debris mixed with animal manure, fish feed, shredded paper and other organic wastes. Mature compost is then applied on the field at the rates of 0, 5, 10 and 20 t/ha as a soil amendment on the eroded cobbly soils of southern Guam.Corn is planted and monitored for growth performance and yield. The effect of land application of composted material on the SOM content and overall soil quality indices are being evaluated in this pilot study.

  6. Low-level radioactive waste disposal in the United States: An overview of current commercial regulations and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.

    1993-08-01

    Commercial low-level radioactive waste disposal in the United States is regulated by the US Nuclear Regulatory Commission (NRC) under 10 CFR 61 (1991). This regulation was issued in 1981 after a lengthy and thorough development process that considered the radionuclide concentrations and characteristics associated with commercial low-level radioactive waste streams; alternatives for waste classification; alternative technologies for low-level radioactive waste disposal; and data, modeling, and scenario analyses. The development process also included the publication of both draft and final environmental impact statements. The final regulation describes the general provisions; licenses; performance objectives; technical requirements for land disposal; financial assurances; participation by state governments and Indian tribes; and records, reports, tests, and inspections. This paper provides an overview of, and tutorial on, current commercial low-level radioactive waste disposal regulations in the United States.

  7. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  8. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but

  9. Comprehensive development plans for the low- and intermediate-level radioactive waste disposal facility in Korea and preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Kim, Jin Hyeong; Kwon, Mi Jin; Jeong, Mi Seon; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    The disposal facility in Gyeongju is planning to dispose of 800,000 packages of low- and intermediate- level radioactive waste. This facility will be developed as a complex disposal facility that has various types of disposal facilities and accompanying management. In this study, based on the comprehensive development plan of the disposal facility, a preliminary post-closure safety assessment is performed to predict the phase development of the total capacity for the 800,000 packages to be disposed of at the site. The results for each scenario meet the performance target of the disposal facility. The assessment revealed that there is a significant impact of the inventory of intermediate-level radionuclide waste on the safety evaluation. Due to this finding, we introduce a disposal limit value for intermediate-level radioactive waste. With stepwise development of safety case, this development plan will increase the safety of disposal facilities by reducing uncertainties within the future development of the underground silo disposal facilities.

  10. Software verification, model validation, and hydrogeologic modelling aspects in nuclear waste disposal system simulations - A paradigm shift.

    NARCIS (Netherlands)

    Sheng, G.M.

    1994-01-01

    This work (1) reviews the current concept ad~ internationally on the disposal of highlevel nuclear wastes; (2) discusses some of the major challenges facing this disposal technology; (3) presents an evaluation of the Canadian performance assessment work as a case study; and (4) introduces a new para

  11. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  12. Patterns and correlates of solid waste disposal practices in Dar es ...

    African Journals Online (AJOL)

    This study examines the patterns and correlations of solid waste disposal practices among households in urbanized and populated Dar es Salaam city in Tanzania. ... MNL estimation suggest that distance, home ownership, household expenditure ... Key words: Solid waste, garbage, waste disposal, waste management, ...

  13. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  14. COST ANALYSIS OF THE PSYCHOLOGICAL EFFECTS OF WASTE DISPOSAL

    Directory of Open Access Journals (Sweden)

    S. A. Oke, K. O. Awofeso

    2006-01-01

    Full Text Available This paper quantifies the cost involved due to the psychological effect of waste disposal. The major costs are quantified as management and personnel costs. Management costs refer to those associated with awareness, recovery and recycling, taskforce and experimental. On the other hand, personnel costs are related to tax and health. The approach utilized is the algebraic sum of these component costs, since dimensional consistency of the formulation is observed. The results obtained indicate that the framework presented could beneficially add to the tool kit of the environmental decision makers. This would make it possible to generate scenarios that would give the decision maker adequate information before decisions are made. The implication of this research is that intuitive decision-making on cost is replaced with scientific backed up decision making. The idea proposed in this work is new since it provides a unique way of measuring cost of the effects of waste disposal on the stakeholders in the system.

  15. Hanford low-level tank waste interim performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1997-09-12

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

  16. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  17. Safety evaluation for packaging (onsite) disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, B.D., Westinghouse Hanford

    1996-12-20

    This safety evaluation for packaging (SEP) evaluates and documents the ability of the Disposable Solid Waste Cask (DSWC) to meet the packaging requirements of HNF-CM-2-14, Hazardous Material Packaging and Shipping, for the onsite transfer of special form, highway route controlled quantity, Type B fissile radioactive material. This SEP evaluates five shipments of DSWCs used for the transport and storage of Fast Flux Test Facility unirradiated fuel to the Plutonium Finishing Plant Protected Area.

  18. Impact of a waste disposal site on children physical growth

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Ocampo

    2008-09-01

    Full Text Available Background: Several epidemiological studies have shown an increased risk of health problems among population living close to landfills. We evaluated the impact of a municipal solid waste disposal site on children’s growth between 0-3 years of age.Methods: Children were selected in sites likely to receive dispersion of air compounds from the waste disposal site and also in a control area, in Cali, Colombia, in 2005. Anthropometric measures were obtained at enrollment and in two follow-up visits at 3 months intervals to obtain standardized z scores of weight for height (WHZ and height for age (HAZ. In addition, questionnaires including information of socio-economical conditions and morbidity were applied at enrolment and during follow-up visits.Results: Children exposed had on average 0.16 less standard deviations (SD in WHZ scores when compared to control group (95% Confidence Interval [CI]: -0.34, 0.01. Among those who have lived >50% of their life in the study area, a significantly lower HAZ score was observed (-0.12 associated with exposure. Our data also suggest a larger effect of exposure to the waste disposal site in WHZ among children with symptoms of respiratory disease than among asymptomatic children (p=0.08.

  19. Power plant waste disposals in open-cast mines

    Energy Technology Data Exchange (ETDEWEB)

    Herstus, J.; Stastny, J. [AGE s.r.o. - Aplikovana Geotechnika a Ekologie, Thamova (Czechoslovakia)

    1995-12-01

    High population density in Czech Republic has led, as well as in other countries, to strong NIMBY syndrome influencing the waste disposal location. The largest thermal power plants are situated in neighborhood of extensive open-cast brown coal mines with huge area covered by tipped clayey spoil. Such spoil areas, technically almost useless, are potential space for power giant waste disposal position. There are several limitations, based on specific structural features of tipped clayey spoil, influencing decision to use such area as site for waste disposal. Low shear strength and extremely high compressibility belong to the geotechnical limitations. High permeability of upper ten or more meters of tipped spoil and its changes with applied stress level belongs to transitional features between geotechnical and environmental limitations. The problems of ash and FGD products stabilized interaction with such subgrade represent environmental limitation. The paper reports about the testing procedure developed for thickness and permeability estimation of upper soil layer and gives brief review of laboratory and site investigation results on potential sites from point of view of above mentioned limitations. Also gives an outline how to eliminate the influence of unfavorable conditions.

  20. Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David; Freeze, Geoffrey A.; Gardner, William Payton; Hammond, Glenn Edward; Mariner, Paul

    2014-09-01

    directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

  1. Disposal and utilization of broiler slaughter waste by composting

    Directory of Open Access Journals (Sweden)

    N Bharathy

    2012-12-01

    Full Text Available Aim: To know the feasibility of hygienic and environmentally safe method of disposal of broiler slaughter house waste with coir pith and caged layer manure. Materials and Methods: Compost bins (4 feet x 4 feet x 4 feet were established with concrete blocks with air holes to facilitate aerobic composting. The broiler slaughter waste and coconut coir pith waste were collected from the local market, free of cost. The caged layer manure available from poultry farms were utilized as manure substrate. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated (USDA-NRCS, 2000. Two control bins were maintained simultaneously, using caged layer manure with coir pith waste and water in a ratio of 0.8:3:1.2 (T and another one bin using caged layer manure alone(T . 2 3 Results: At the end of composting, moisture content, weight and the Volume of the compost were reduced significantly (P<0.01, pH, EC, TDS, total organic carbon and total nitrogen content were also significantly (P<0.01 reduced at the finishing of composting. Calcium, phosphorous and potassium content was progressively increased during composting period. The finished compost contains undetectable level of salmonella. Cowpea and sorghum seeds showed positive germination percentage when this finished compost was used. It indicated that all of the finished compost was free from phytotoxin substances. Conclusion: The results indicated that, composting of slaughter waste combined with coir pith waste may be a hygienic and environmentally safe method of disposal of broiler slaughter house waste [Vet. World 2012; 5(6.000: 359-361

  2. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    Science.gov (United States)

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  3. Space disposal of nuclear wastes. Volume 1: Socio-political aspects

    Science.gov (United States)

    Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.

    1976-01-01

    The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.

  4. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  5. Oil field waste disposal in salt caverns: An information website

    Energy Technology Data Exchange (ETDEWEB)

    Tomasko, D.; Veil, J. A.

    1999-12-10

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  6. Ceramic Borehole Seals for Nuclear Waste Disposal Applications

    Science.gov (United States)

    Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.

    2015-12-01

    Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural

  7. A model for heat flow in deep borehole disposals of high-level nuclear waste

    Science.gov (United States)

    Gibb, Fergus G. F.; Travis, Karl P.; McTaggart, Neil A.; Burley, David

    2008-05-01

    Deep borehole disposal (DBD) is emerging as a viable alternative to mined repositories for many forms of highly radioactive waste. It is geologically safer, more secure, less environmentally disruptive and potentially more cost-effective. All high-level wastes generate heat leading to elevated temperatures in and around the disposal. In some versions of DBD this heat is an essential part of the disposal while in others it affects the performances of materials and waste forms and can threaten the success of the disposal. Different versions of DBD are outlined, for all of which it is essential to predict the distribution of temperature with time. A generic physical model is established and a mathematical model set up involving the transient conductive heat flow differential equation for a cylindrical source term with realistic decay. This equation is solved using the method of Finite Differences. A Fortran computer code (GRANITE) has been developed for the model in the context of DBD and validated against theoretical and other benchmarks. The limitations of the model, code, input parameters and data used are discussed and it is concluded that the model provides a satisfactory basis for predicting temperatures in DBD. Examples of applications to some DBD scenarios are given and it is shown that the results are essential to the design strategy of the DBD versions, geometric details and choice of materials used. Without such modeling it would be impossible to progress DBD of nuclear wastes; something that is now being given serious consideration in several countries.

  8. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disposal of PCB bulk product waste..., AND USE PROHIBITIONS Storage and Disposal § 761.62 Disposal of PCB bulk product waste. PCB bulk... some of these provisions, it may not be necessary to determine the PCB concentration or...

  9. Preliminary Transportation, Aging and Disposal Canister System Performance Specification

    Energy Technology Data Exchange (ETDEWEB)

    C.A Kouts

    2006-11-22

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others.

  10. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  11. Emplacement Guidance for Criticality Safety in Low-Level-Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Elam, K.R.

    2001-06-23

    The disposal of low-level radioactive waste (LLW) containing special nuclear material (SNM) presents some unusual challenges for LLW disposal site operators and regulators. Radiological concerns associated with the radioactive decay of the SNM are combined with concerns associated with the avoidance of a nuclear criticality both during handling and after disposal of the waste. Currently, there are three operating LLW disposal facilities: Envirocare, Barnwell, and Richland. All these facilities are located in U.S. Nuclear Regulatory Commission (NRC) Agreement States and are regulated by their respective state: Utah, South Carolina, and Washington. As such, the amount of SNM that can be possessed by each of these facilities is limited to the 10 CFR Part 150 limits (i.e., 350 g of uranium-235, 200 g of uranium-233, and 200 g of Pu, with the sum-of-fractions rule applying), unless an exemption is issued. NRC has applied these SNM possession limits to above-ground possession. The purpose of this report is to provide data which could demonstrate that SNM waste at emplacement will not cause a nuclear criticality accident. Five different SNM isotopic compositions were studied: 100 wt% enriched uranium, 10 wt% enriched uranium, uranium-233, plutonium-239, and an isotopic mixture of plutonium (76 wt% plutonium-239, 12 wt% plutonium-240, and 12 wt% plutonium-241). Three different graded-approach methods are presented. The first graded-approach method is the most conservative and may be applicable to facilities that dispose of very low areal densities of SNM, or dispose of material with a low average enrichment. It relies on the calculation of average areal density or on the average enrichment of SNM. The area over which averaging may be performed is also specified, but the emplacement depth is not constrained. The second graded-approach method relies on limiting the average concentration by weight of SNM in the waste, and on limiting the depth of the emplacement. This method

  12. Disposal of radioactive waste in Swedish crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Greis Dahlberg, Christina; Wikberg, Peter [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)

    2015-07-01

    SKB, Swedish Nuclear Fuel and Waste Management Company is tasked with managing Swedish nuclear and radioactive waste. Crystalline rock is the obvious alternative for deep geological disposal in Sweden. SKB is, since 1988, operating a near surface repository for short-lived low and intermediate-level waste, SFR. The waste in SFR comprises operational and decommissioning waste from nuclear plants, industrial waste, research-related waste and medical waste. Spent nuclear fuel is currently stored in an interim facility while waiting for a license to construct a deep geological repository. The Swedish long-lived low and intermediate-level waste consists mainly of BWR control rods, reactor internals and legacy waste from early research in the Swedish nuclear programs. The current plan is to dispose of this waste in a separate deep geological repository, SFL, sometimes after 2045. Understanding of the rock properties is the basis for the design of the repository concepts. Swedish crystalline rock is mechanical stable and suitable for underground constructions. The Spent Fuel Repository is planned at approximately 500 meters depth in the rock at the Forsmark site. The host rock will keep the spent fuel isolated from human and near-surface environment. The rock will also provide the stable chemical and hydraulic conditions that make it possible to select suitable technical barriers to support the containment provided by the rock. A very long lasting canister is necessary to avoid release and transport of radionuclides through water conducting fractures in the rock. A canister designed for the Swedish rock, consists of a tight, 5 cm thick corrosion barrier of copper and a load-bearing insert of cast iron. To restrict the water flow around the canister and by that prevent fast corrosion, a bentonite buffer will surround the canister. Secondary, the bentonite buffer will retard a potential release by its strong sorption of radionuclides. The SFR repository is situated in

  13. On the thermal impact on the excavation damaged zone around deep radioactive waste disposal

    CERN Document Server

    Delage, Pierre

    2014-01-01

    Clays and claystones are considered in some countries (including Belgium, France and Switzerland) as a potential host rock for high activity long lived radioactive waste disposal at great depth. One of the aspects to deal with in performance assessment is related to the effects on the host rock of the temperature elevation due to the placement of exothermic wastes. The potential effects of the thermal impact on the excavated damaged zone in the close field are another important issue that was the goal of the TIMODAZ European research project. In this paper, some principles of waste disposal in clayey host rocks at great depth are first presented and a series of experimental investigations carried out on specific equipment specially developed to face the problem are presented. Both drained and undrained tests have been developed to investigate the drained thermal volume changes of clays and claystone and the thermal pressurization occurring around the galleries. This importance of proper initial saturation (un...

  14. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  15. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  16. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  17. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2001-01-11

    and PCB low-level RCRA waste had seemed achievable, but these options did not materialize. Recently, however, new PCB waste treatment alternatives have appeared, and some regulatory requirements for treatment and disposal of PCBs have been relaxed. This LCA evaluation has been performed to assess new and existing PCB waste opportunities that are available for the treatment and disposal of wastes at AEMP and FEMP.

  18. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  19. Classification of the Z-Pinch Waste Stream as Low-Level Waste for Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Singledecker, Steven John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data package to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.

  20. Preliminary risk assessment for nuclear waste disposal in space, volume 1

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    The feasibility, desirability and preferred approaches for disposal of selected high-level nuclear wastes in space were analyzed. Preliminary space disposal risk estimates and estimates of risk uncertainty are provided.

  1. Disposal of waste or excess high explosives. Final report. [Incineration

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ''Disposal of Waste or Excess High Explosives'' project began January 1971. Various methods of disposal were investigated with the conclusion that incineration, at major ERDA facilities, would be the most feasible and safest method with the least cost and development time required. Two independent incinerator concepts were investigated: a rotary type for continuous processing and an enclosed pit type for batch processing. Both concepts are feasible; however, it is recommended that further investigations would be required to render them acceptable. It is felt that a larger effort would be required in the case of the rotary incinerator. The project was terminated (December 1976) prior to completion as a result of a grant of authority by the Texas Air Control Board allowing the ERDA Pantex Plant to continue indefinitely outdoor burning of explosives.

  2. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Criteria for classification of solid waste disposal facilities and practices. 257.3 Section 257.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid...

  3. Annual Report 2011 : Institute for Nuclear Waste Disposal. (KIT Scientific Reports ; 7617)

    OpenAIRE

    Geckeis, H.; Stumpf, T. [Hrsg.

    2012-01-01

    The R&D at the Institute for Nuclear Waste Disposal, INE, (Institut für Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  4. Spanish methodological approach for biosphere assessment of radioactive waste disposal.

    Science.gov (United States)

    Agüero, A; Pinedo, P; Cancio, D; Simón, I; Moraleda, M; Pérez-Sánchez, D; Trueba, C

    2007-10-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS "Reference Biospheres Methodology" and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates.

  5. Tank waste remediation system retrieval and disposal mission phase 1 financial analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wells, M.W.

    1998-01-09

    The purpose of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Phase 1 Financial Analysis is to provide a quantitative and qualitative cost and schedule risk analysis of HNF-1946, Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (Swita et al. 1998). The Updated Baseline (Section 3.0) is compared to the current TWRS Project Multi-Year Work Plan (MYWP) for fiscal year (FY) 1998 and target budgets for FY 1999 through FY 2011 (Section 4.1). The analysis then evaluates the executability of HNF-1946 (Sections 4.2 through 4.5) and recommends a path forward for risk mitigation (Sections 4.6, 4.7, and 5.0). A sound systems engineering approach was applied to understand and analyze the Phase 1B Retrieval and Disposal mission. Program and Level 1 Logics were decomposed to Level 8 of the Work Breakdown Structure (WBS) where logic was detailed, scope was defined, detail durations and estimates prepared, and resource loaded schedules developed. Technical Basis Review (TBR) packages were prepared which include this information and, in addition, defined the enabling assumptions for each task, and the risks associated with performance. This process is discussed in Section 2.1. Detailed reviews at the subactivity within the Level 1 Logic TBR levels were conducted to provide the recommended solution to the Phase 1B Retrieval and Disposal Mission. Independent cost analysis and risk assessments were performed by members of the Lockheed Martin Hanford Corporation (LMHC) Business Management and Chief Financial Officer organization along with specialists in risk analysis from TRW, Inc. and Lockheed Martin Energy Systems. The process evaluated technical, schedule, and cost risk by category (program specific fixed and variable, integrated program, and programmatic) based on risk certainly from high probability well defined to very low probability that is not bounded or priceable as discussed in Section 2.2. The results have been

  6. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  7. Landfill gas generation and emission at danish waste disposal sites receiving waste with a low organic waste content

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    two models are multi-phase models, which defines waste fractions into traditional MSW and low-organic waste categories, respectively. Both the LandGEM and the IPCC model estimated significantly larger methane (CH4) generation in comparison to the Afvalzorg model. The Afvalzorg model could better show...... the influence of not only the total disposed waste amount, but also various waste categories, and was found more suitable to estimate LFG generation from landfills receiving low-organic waste. Four major waste categories currently being disposed at Danish landfills (mixed bulky, shredder, dewatered sludge...... results. The LFG generation from four Danish landfills was estimated by the Afvalzorg model using the experimentally based BMP and k values and compared to whole landfill emission rates measured by applying a tracer gas dispersion method. The results showed that the revised modelled LFG generation rates...

  8. Granite disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site

  9. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand.

    Science.gov (United States)

    Wangyao, Komsilp; Towprayoon, Sirintornthep; Chiemchaisri, Chart; Gheewala, Shabbir H; Nopharatana, Annop

    2010-05-01

    Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.

  10. Cost and efficiency of disaster waste disposal: A case study of the Great East Japan Earthquake.

    Science.gov (United States)

    Sasao, Toshiaki

    2016-12-01

    This paper analyzes the cost and efficiency of waste disposal associated with the Great East Japan Earthquake. The following two analyses were performed: (1) a popular parametric approach, which is an ordinary least squares (OLS) method to estimate the factors that affect the disposal costs; (2) a non-parametric approach, which is a two-stage data envelopment analysis (DEA) to analyze the efficiency of each municipality and clarify the best performance of the disaster waste management. Our results indicate that a higher recycling rate of disaster waste and a larger amount of tsunami sediments decrease the average disposal costs. Our results also indicate that area-wide management increases the average cost. In addition, the efficiency scores were observed to vary widely by municipality, and more temporary incinerators and secondary waste stocks improve the efficiency scores. However, it is likely that the radioactive contamination from the Fukushima Daiichi nuclear power station influenced the results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  12. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  13. Radiological safety studies on ground disposal of low-level radioactive wastes. Environmental simulation test

    Energy Technology Data Exchange (ETDEWEB)

    Wadachi, Yoshiki; Yamamoto, Tadatoshi; Takebe, Shinichi; Ohnuki, Toshihiko; Washio, Masakazu (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)

    1982-03-01

    As the method of disposing low level radioactive wastes on land, the underground disposal method disposing the wastes in the structures constructed underground near the ground surface has been investigated as a feasible method. In order to contribute to the environmental safety assessment for this underground disposal method, environmental simulation test is planned at present, in which earth is sampled in the undisturbed state, and the behavior of radioactive nuclides is examined. The testing facilities are to be constructed in Japan Atomic Energy Research Institute from fiscal 1981. First, the research made so far concerning the movement of radioactive nuclides in airing layer and aquifer which compose natural barrier is outlined. As for the environmental simulation test, the necessity and method of the test, earth sampling, the underground simulation facility and the contribution to environmental safety assessment are explained. By examining the movement of radioactive nuclides through natural barrier and making the effective mddel for the underground movement of radioactive nuclides, the environmental safety assessment for the disposal can be performed to obtain the national consensus.

  14. The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

    1994-04-01

    For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

  15. Risk methodology for geologic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R. (Sandia National Labs., Albuquerque, NM (USA)); Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs.

  16. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

    1995-05-01

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

  17. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  18. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

  19. Evaluation of alternatives for high-level and transuranic radioactive- waste disposal standards

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R.D. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, M.M. [Tech. Reps., Inc., Albuquerque, NM (United States)

    1992-12-01

    The remand of the US Environmental Protection Agency`s long-term performance standards for radioactive-waste disposal provides an opportunity to suggest modifications that would make the regulation more defensible and remove inconsistencies yet retain the basic structure of the original rule. Proposed modifications are in three specific areas: release and dose limits, probabilistic containment requirements, and transuranic-waste disposal criteria. Examination of the modifications includes discussion of the alternatives, demonstration of methods of development and implementation, comparison of the characteristics, attributes, and deficiencies of possible options within each area, and analysis of the implications for performance assessments. An additional consideration is the impact on the entire regulation when developing or modifying the individual components of the radiological standards.

  20. A primer for health care managers: data sanitization, equipment disposal, and electronic waste.

    Science.gov (United States)

    Andersen, Cathy M

    2011-01-01

    In this article, security regulations under the Health Insurance Portability and Accountability Act concerning data sanitization and the disposal of media containing stored electronic protected health information are discussed, and methods for effective sanitization and media disposal are presented. When disposing of electronic media, electronic waste-or e-waste-is produced. Electronic waste can harm human health and the environment. Responsible equipment disposal methods can minimize the impact of e-waste. Examples of how health care organizations can meet the Health Insurance Portability and Accountability Act regulations while also behaving responsibly toward the environment are provided. Examples include the environmental stewardship activities of reduce, reuse, reeducate, recover, and recycle.

  1. Performance assessment for the class L-II disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

  2. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    Science.gov (United States)

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  3. How NOT to Dispose of NORM/TENORM-bearing Wastes: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Karam, P. A.

    2002-02-26

    The Ashtabula River in northern Ohio contains a large amount of sediment containing quantities of NORM and TENORM from previous industrial activities at nearby mineral processing plants. Due to PCB contamination, these sediments were to be dredged and isolated in a landfill to be constructed by the responsible parties. Unfortunately, the State of Ohio has determined that these wastes may not be disposed of in this manner, and this determination has resulted in delaying the remediation project. Computer models performed using the RESRAD computer code indicate that isolating these wastes in this manner will reduce dose to the nearby population because the NORM/TENORM will be safely buried beneath a compacted clay cover and isolated from all sources of exposure. In fact, radiation doses (including radon emanation) from these wastes in a properly maintained landfill are significantly lower than in the present condition, and the reduction is even more marked for NORM/TENORM in tailings piles. This suggests that, in many cases, disposal of NORM/TENORM wastes in on-site landfills may be a cost-effective and dose-conscious method of disposal, if regulatory issues can be resolved.

  4. Interactions of Aquaculture and Waste Disposal in the Coastal Zone

    Institute of Scientific and Technical Information of China (English)

    ZHAI Xuemei; Hawkins S.J.

    2002-01-01

    Throughout the world, the coastal zones of many countries are used increasingly for aquaculture in addition to other activities such as waste disposal. These activities can cause environmental problems and health problems where they overlap. The interaction between aquaculture and waste disposal, and their relationship with eutrophication are the subjects of this paper.Sewage discharge without adequate dispersion can lead to nutrient elevation and hence eutrophication which has clearly negative effects on aquaculture with the potential for toxic blooms. Blooms may be either toxic or anoxia-causing through the decay process or simply clog the gills of filter-feeding animals in some cases. With the development of aquaculture, especially intensive aquaculture, many environmental problems appeared, and have resulted in eutrophication in some areas. Eutrophication may destroy the health of whole ecosystem which is important for sustainable aquaculture.Sewage discharge may also cause serious public health problems. Filter-feeding shellfish growing in sewage-polluted waters accumulate micro-organisms, including human pathogenic bacteria and viruses, and heavy metal ion, presenting a significant health risk. Some farmed animals may also accumulate heavy metals from sewage. Bivalves growing in areas affected by toxic algae blooms may accumulate toxins (such as PSP, DSP) which can be harmful to human beings.

  5. Interactions of aquaculture and waste disposal in the coastal zone

    Science.gov (United States)

    Xuemei, Zhai; Hawkins, S. J.

    2002-04-01

    Throughout the world, the coastal zones of many countries are used increasingly for aquaculture in addition to other activities such as waste disposal. These activities can cause environmental problems and health problems where they overlap. The interaction between aquaculture and waste disposal, and their relationship with eutrophication are the subjects of this paper. Sewage discharge without adequate dispersion can lead to nutrient elevation and hence eutrophication which has clearly negative effects on aquaculture with the potential for toxic blooms. Blooms may be either toxic or anoxia-causing through the decay process or simply clog the gills of filter-feeding animals in some cases. With the development of aquaculture, especially intensive aquaculture, many environmental problems appeared, and have resulted in eutrophication in some areas. Eutrophication may destroy the health of whole ecosystem which is important for sustainable aquaculture. Sewage discharge may also cause serious public health problems. Filter-feeding shellfish growing in sewage-polluted waters accumulate micro-organims, including human pathogenic bacteria and viruses, and heavy metal ion, presenting a significant health risk. Some farmed animals may also accumulate heavy metals from sewage. Bivalves growing in areas affected by toxic algae blooms may accumulate toxins (such as PSP, DSP) which can be harmful to human beings.

  6. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.; MARIETTA,MELVIN G.

    2000-05-22

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.

  7. Shale disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within

  8. Hanford low-level tank waste interim performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1996-09-16

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single- and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and its performance as early as possible in the project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

  9. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  10. Challenges of Solid Waste Disposal and Management in the City of ...

    African Journals Online (AJOL)

    Challenges of Solid Waste Disposal and Management in the City of Masvingo, Zimbabwe. ... Journal of Social Development in Africa ... Western countries and donors if the challenges associated with solid waste management in Masvingo and ...

  11. Solid Waste Disposal Management in A Residential Complex of A Defence Establishment- A Modern Approach

    Directory of Open Access Journals (Sweden)

    Jagdamba Dixit , Anil Kumar Dixit, Singh Narendra

    2014-01-01

    Conclusion: The AFMRC project “Solid Waste Disposal Management” has been found useful in controlling the problems of environmental sanitation. Similar projects may be undertaken at large scale to reduce, reuse and recycle the generated waste.

  12. Sources and factors controlling the disposal of biodegradable municipal solid waste in urban and rural areas of Cyprus.

    Science.gov (United States)

    Skourides, Iakovos; Smith, Stephen R; Loizides, Michael

    2008-04-01

    An inventory of sources of biodegradable municipal soil waste (BMSW) was constructed for urban and rural areas in the EU accession region of Cyprus. Composition analysis was performed on source-separated BMSW collected from households in the rural Ergates Community and an urban area within the Agglanjia Municipality. The data were statistically scrutinized to identify the main factors influencing the quantities of BMSW disposed by urban and rural communities in Cyprus. The results were extrapolated to predict the quantities and types of BMSW disposed by the entire communities. Significantly more BMSW was disposed in the urban area compared to the rural community due to lower diversion rates for green waste and the disposal of food waste from commercial sources. The quantity of food waste collected from households was influenced by socio-economic (household size, income, percentage of children) and behavioural (feeding of food waste to domestic animals, consuming processed 'ready' food) factors, whereas garden size, the type of vegetation, the reuse of trimmings and home composting were the main factors controlling the disposal of green waste.

  13. Use of Clearance Indexes to Assess Waste Disposal Issues for the HYLIFE-II Inertial Fusion Energy Power Plant Design

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S; Latkowski, J F; Sanz, J

    2002-01-17

    Traditionally, waste management studies for fusion energy have used the Waste Disposal Rating (WDR) to evaluate if radioactive material from irradiated structures could qualify for shallow land burial. However, given the space limitations and the negative public perception of large volumes of waste, there is a growing international motivation to develop a fusion waste management system that maximizes the amount of material that can be cleared or recycled. In this work, we present an updated assessment of the waste management options for the HYLIFE-II inertial fusion energy (IFE) power plant, using the concept of Clearance Index (CI) for radioactive waste disposal. With that purpose, we have performed a detailed neutronics analysis of the HYLIFE-II design, using the TART and ACAB computer codes for neutron transport and activation, respectively. Whereas the traditional version of ACAB only provided the user with the WDR as an index for waste considerations, here we have modified the code to calculate Clearance Indexes using the current International Atomic Energy Agency (IAEA) clearance limits for radiological waste disposal. The results from the analysis are used to perform an assessment of the waste management options for the HYLIFE-II IFE design.

  14. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  15. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  16. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  17. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    2014-07-15

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.

  18. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  19. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  20. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: MULTI-PURPOSE CANISTER WITH DISPOSAL CONTAINER (TBV)

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact multi-purpose canister waste package (MPC-WP) configuration; (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the MPC-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. This analysis is similar to that performed for the uncanistered fuel waste package (UCF-WP, B00000000-01717-2200-00079).

  1. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

    Energy Technology Data Exchange (ETDEWEB)

    Colarusso, Angela; Crowe, Bruce; Cochran, John R.

    2003-02-27

    Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the

  2. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment.

  3. Performance assessment for continuing and future operations at solid waste storage area 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  4. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  5. Survey and analysis of the domestic technology level for the concept development of high level waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byung Su; Song, Jae Hyok [Seoul National University, Seoul (Korea); Park, Kwang Hon; Hwang, Ju Ho; Park, Sung Hyun; Lee, Jae Min [Kyunghee University, Seoul (Korea); Han, Joung Sang; Kim, Ku Young [Yonsei University, Seoul (Korea); Lee, Jae Ki; Chang, Jae Kwon [Hangyang University, Seoul (Korea)

    1998-09-01

    The objectives of this study are the analysis of the status of HLW disposal technology and the investigation of the domestic technology level. The study has taken two years to complete with the participation of forty five researchers. The study was mainly carried out through means of literature surveys, collection of related data, visits to research institutes, and meetings with experts in the specific fields. During the first year of this project, the International Symposium on the Concept Development of the High Level Waste Disposal System was held in Taejon, Korea in October, 1997. Eight highly professed foreign experts whose fields of expertise projected to the area of high level waste disposal were invited to the symposium. This study is composed of four major areas; disposal system design/construction, engineered barrier characterization, geologic environment evaluation and performance assessment and total safety. A technical tree scheme of HLW disposal has been illustrated according to the investigation and an analysis for each technical area. For each detailed technology, research projects, performing organization/method and techniques that are to be secured in the order of priority are proposed, but the suggestions are merely at a superfluous level of propositional idea due to the reduction of the budget in the second year. The detailed programs on HLW disposal are greatly affected by governmental HLW disposal policy and in this study, the primary decisions to be made in each level of HLW disposal enterprise and a rough scheme are proposed. (author). 20 refs., 97 figs., 33 tabs.

  6. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  7. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    Energy Technology Data Exchange (ETDEWEB)

    RECHARD,ROBERT P.

    2000-03-01

    The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  8. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Science.gov (United States)

    2010-07-01

    ...-disposed elemental phosphorus processing wastes May 26, 2000. D004 Newly identified D004 and mineral processing wastes Aug. 24, 1998. D004 Mixed radioactive/newly identified D004 or mineral processing wastes May 26, 2000 D005 Newly identified D005 and mineral processing wastes Aug. 24, 1998. D005...

  9. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  10. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  11. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  12. Quality management system for the disposal of low and medium levels radioactive wastes - RBMN

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Antonio Mario P.; Haucz, Maria Judite A.; Fraga, Rosane Rodrigues, E-mail: ampa@cdtn.br, E-mail: hauczmj@cdtn.br, E-mail: rosaner@cdtn.br [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    This article compares the standards applied in quality and safety management systems for the Disposal of Radioactive Waste. The comparison will be a contribution to development, maintenance and improvement the safety and quality system of a disposal of low and medium radioactive waste (RBMN) coordinated by CDTN - Brazilian Development Center for Nuclear Technology). (author)

  13. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BD04 Definition of Solid Waste Disposal Facilities for Tax... the Federal Register on Friday, August 19, 2011, on the definition of solid waste disposal facilities... regulations provide guidance to State and local governments that issue tax-exempt bonds to finance solid...

  14. Safety Case for Disposal of Radioactive Waste:Some Implications from IAEA and OECD

    Institute of Scientific and Technical Information of China (English)

    LI; Jin-feng; ZHANG; Yan-qi; LI; Jing-jing; LIAO; Hai-tao; WEN; Bao-yin; JIN; Xiao; JIANG; Zi-ying; LIU; Sen-lin

    2015-01-01

    "The Safety Case and Safety Assessment for the Disposal of Radioactive Waste(SSG-23)"was published by IAEA in 2012,which provides guidance to assess and validate the safety of all kinds of disposal facilities of radioactive waste.OECD/NEA set up agroup involved with 17countries to move on the research on the safety case of radioactive

  15. Final disposal of radioactive wastes. Site selection criteria. Technical and economical factors

    Energy Technology Data Exchange (ETDEWEB)

    Granero, J.J. (Consejo de Seguridad Nuclear, Madrid (Spain))

    1984-01-01

    General considerations, geological and socioeconomical criteria for final disposal of radioactive wastes in geological formations are treated. More attention is given to the final disposal of high-level radioactive wastes and different solutions searched abroad which seems of interest for Spain.

  16. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

  17. Disposal of infective waste: demonstrated information and actions taken by nursing and medical students

    Directory of Open Access Journals (Sweden)

    Adenícia Custodia Silva Souza

    2015-03-01

    Full Text Available The inappropriate disposal of infectious waste generates occupational and environmental risks, representing the main cause of accidents with biological material. The aim of the present study was to verify the knowledge and the practice regarding the disposal of infectious waste among nursing and medical undergraduate students at a public university in the state of Goiás. Data were collected with the application of a questionnaire. The respondent students were observed in their practice and data were recorded in a checklist. Nursing students presented greater knowledge than medical students on the disposal of contaminated gloves (x²; p<0.001, as well as on the disposal of sharp cutting instruments (p=0.001. Contaminated gloves were disposed of into bags for common waste both by the nursing and the medical students. Results evidenced that the knowledge of students on the disposal of infectious waste was poor and insufficient to ensure its application to practice.

  18. Quantification of Food Waste Disposal in the United States: A Meta-Analysis.

    Science.gov (United States)

    Thyberg, Krista L; Tonjes, David J; Gurevitch, Jessica

    2015-12-15

    Food waste has major consequences for social, nutritional, economic, and environmental issues, and yet the amount of food waste disposed in the U.S. has not been accurately quantified. We introduce the transparent and repeatable methods of meta-analysis and systematic reviewing to determine how much food is discarded in the U.S., and to determine if specific factors drive increased disposal. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137-0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The proportion of food waste increased significantly with time, with the western U.S. region having consistently and significantly higher proportions of food waste than other regions. There were no significant differences in food waste between rural and urban samples, or between commercial/institutional and residential samples. The aggregate disposal rate for food waste was 0.615 pounds (0.279 kg) (95% CI 0.565-0.664) of food waste disposed per person per day, which equates to over 35.5 million tons (32.2 million tonnes) of food waste disposed annually in the U.S.

  19. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean &apos

  20. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  1. Preliminary study of radioactive waste disposal in the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    To investigate the characteristics of the vadose zone with respect to radioactive waste disposal, the mechanics of unsaturated flow in arid regions and the geohydrology of four areas with a deep water table were studied. The studies indicated that (1) arid sites with a water table deeper than 200 m can be found in at least three distinct geologic settings in the western United States, (2) the physics of unsaturated flow in soils and rock with interstitial porosity at low water contents, particularly under thermal gradients, is not yet completely understood, and (3) under certain conditions unsaturated flow can be so slow that analytic modeling of an unflawed repository is unnecessary to prove effective containment.

  2. Locational conflict and the siting of nuclear waste disposal repositories: an international appraisal

    OpenAIRE

    F M Shelley; B D Solomon; M J Pasqualetti; G T Murauskas

    1988-01-01

    The industrialized nations of the world have begun to plan for the storage and eventual disposal of their increasing volumes of nuclear wastes. In this paper the authors inventory the progress made by these nations in planning for nuclear waste disposal. A typology based on the adoption of spent-fuel reprocessing programs and of progress toward selection of permanent disposal sites is developed, and the world's nuclear nations are located within this typology. However, those countries which h...

  3. Disposal facilities on land for low and intermediate level radioactive wastes: guidance on requirements for qauthorisation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This document, published by the Environmental Agency, contains guidance on the principles and requirements against which applications for authorisation to build or operate a land-based specialised disposal facility for solid low or intermediate level wastes, will be assessed, with the aim of protecting the public from hazards which may arise from their disposal to the environment. The guide provides information on terms used, the framework governing radioactive waste disposal and the Agencies` expectations of applicants, including radiological and technical requirements. (UK).

  4. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  5. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.

    1998-04-01

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  6. Geologic disposal of radioactive waste: Ethical and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T.H. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    defensible doses that show that future people will be protected as well as present-day people are protected from licensed nuclear facilities? If so, the need for a geologic repository could be balanced against the desire for assuring such conservative and careful protection of public health. Relaxation of the safety standard itself, as attempted so prematurely by the House and Senate bills of the present and last Congress, should be made only after specialreview of that need by the scientific community and the public and approval by Congress. The desire for safeguards protection of buried spent nuclear fuel will be an additional burden on repository design and prediction of performance. Thus, the Yucca Mountain Project faces a demanding technical challenge. Similar challenges face policy makers. They must reject pressures for short-term expediency and economy lest, by enacting policies that compromise scientific validity and credibility, they further undermine public confidence and irreparably harm the programs for disposing of high-level radioactive waste.

  7. Study on assessment safety of geological disposal of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Department of Environmental Safety Research of Japan Atomic Energy Research Institute has conducted the study on safety of geological disposal of high level radioactive waste. The long-term safety of the geological disposal is proposed to be secured by the multi barrier system which consists of engineered and natural barriers. Thus, in order to clarify the performance of the engineered barrier, we have studied on the long-term behaviors of waste forms, canister, overpack, back fill materials. We have developed a new waste form, i.e. ceramic waste form. And in order to clarify the performance of the natural barrier, we have studied on the hydrology, rock properties, geochemistry of actinides, sorption and fixation of radionuclides on and to rocks and/or minerals, alteration of minerals, dispersion behavior of radionuclides. Natural analogue studies and in-situ experiments have also been conducted. According to the methodology for the assessment established, the assessment model has been developed. (J.P.N.).

  8. Municipal solid waste management in India: From waste disposal to recovery of resources?

    Science.gov (United States)

    Narayana, Tapan

    2009-03-01

    Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.

  9. Waste survey - landfill disposability of furniture industrial wastes from varnishing processes; Huonekaluteollisuuden maalaamokaappijaetteiden kaatopaikkakelpoisuus

    Energy Technology Data Exchange (ETDEWEB)

    Vaajasaari, K.; Kulovaara, M.; Joutti, A.; Schulz, E. [Pirkanmaan Ympaeristoekeskus, Tampere (Finland)

    2001-07-01

    The objective of this study was to screen the environmental hazard of eight different furniture industrial wastes in context of their landfill disposal. These wastes are resulting from the varnishing process of furniture manufacture. Four of these materials were collected from a dry varnishing processes and the other four residues from a wet varnishing processes. We wanted to classify these industrial wastes according to their leaching and ecotoxicological properties to evaluate if these kind of materials could be disposed off to a non-hazardous landfill. Leaching properties of residues were determined with European standard draft prEN 12457-2 method. The toxicity measurement of the leaching tests eluates from furniture industrial residues was carried out with a plant (the onion Allium cepa root elongation test), bacteria (the luminescent bacteria Vibrio fischeri assay) and enzyme inhibition (the reverse electron transport, RET, assay). Chemical concentrations of TOC, formaldehyde and solvents in solid wastes and their leaching test eluates were measured simultaneously. The results showed that dry residues contained high amount of formaldehyde which will leach out from the wastes a long time period if wastes are in contact with water at landfill conditions. Furthermore, the water leachable substances in dry residues resulted very high acute toxicity. Toxicity test results confirmed the conclusions drawn from the chemical data as well in wet residues. Two of the wet residues with the highest solvent concentrations were clearly toxic, while the other two wet residues had the smallest concentrations of the harmful substances and only slight acute toxicity. The biggest problems in context of landfill disposability are connected to a high liquid content of wet residues (over 70 %). (orig.)

  10. Development of Nature Protection Technologies of Hydrocarbon Wastes Disposal on the Basis of High- Temperature Pyrolysis

    Science.gov (United States)

    Shantarin, V. D.; Zemenkova, M. Yu; Zemenkov, Yu D.

    2016-10-01

    The research shows the thermal balance of low-temperature pyrolysis of birch sawdust with the possibility of further development of nature protection technology of hydrocarbon wastes disposal with secondary useful products production. The actual problem was solved by preventing environmental pollution by greenhouse gases using pyrolysis process as a method of disposal of hydrocarbon wastes with secondary useful products production. The objective of paper is to study features of the processes of thermal processing of wastes and development of environmentally sound technology of disposal C-containing wastes, contributing to the implementation of the pollution prevention concept.

  11. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  12. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  13. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  14. Impact of iron on the performance of clay barriers in waste disposal systems. Report on the status of research and development

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, Paul (National Cooperative for the Disposal of Radioactive Waste, Nagra, Wettingen (Switzerland)); Snellman, Margit (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-05-15

    The interaction of iron components with swelling clay materials in the EBS has received relatively little attention so far in safety assessment studies. It is however widely recognised that such interaction processes (e.g. corrosion, mineral alteration) need to be considered since they have the potential to impair repository long-term safety. A workshop on this topic was held in 2006 in Basel and has shed some light on the current status and the remaining uncertainties of relevance for safety purposes. Also, the workshop highlighted that there is strong interest to continue research in this field. Notably, waste management organisations from France (Finland), Japan, Sweden and Switzerland showed interest to exchange information in this research area on a regular basis and, if possible, advance common projects. Following this workshop, it was decided by Posiva, SKB and Nagra to compile the status of research and development based on a pre-formatted questionnaire sent out to a number of research organisations. This report summarises the information obtained. This serves to identify the remaining knowledge gaps and to explore areas of common interest. Some ideas for common research studies and possibilities how to organise these are presented

  15. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 4. Alternatives for waste isolation and disposal

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume IV of the five-volume report contains information on alternatives for final storage and disposal of radioactive wastes. Section titles include: basic concepts for geologic isolation; geologic storage alternatives; geologic disposal alternatives; extraterrestrial disposal; and, transmutation. (JGB)

  16. Annual Status Report (FY2016) Performance Assessment for the Environmental Restoration Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casbon, M. A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-03-15

    DOE O 435.1, Radioactive Waste Management, and DOE M 435.1-1, Radioactive Waste Management Manual, require that a determination of continued adequacy of the performance assessment (PA), composite analysis (CA), and disposal authorization statement (DAS) be made on an annual basis, and it must consider the results of data collection and analysis from research, field studies, and monitoring. Annual summaries of low-level waste (LLW) disposal operations must be prepared with respect to the conclusions and recommendations of the PA and CA, and a determination of the need to revise the PA or CA must be made. The annual summary requirement provides a structured approach for demonstrating the continued adequacy of the PA and CA in demonstrating a reasonable expectation that the performance objectives will be met. This annual summary addresses only the status of the Environmental Restoration Disposal Facility (ERDF) PA (CP-60089, Performance Assessment for the Environmental Restoration Disposal Facility, Hanford Site, Washington, formerly WCH-520 Rev. 1)1. The CA for ERDF is supported by DOE/RL-2016-62, Annual Status Report (FY 2016): Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site. The ERDF PA portion of the CA document is found in Section 3.1.4, and the ERDF operations portion is found in Section 3.3.3.2 of that document.

  17. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  18. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  19. Performance Test on Polymer Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Yup [Korea Nuclear Engineering Co., Ltd, Seongnam (Korea, Republic of)

    2012-07-01

    Boric acid wastewater and spent ion exchange resins are generated as a low- and medium- level radioactive wastes from pressurized light water reactors. In Korea, boric acid wastewater is concentrated and dried in the form of granules, and finally solidified by using paraffin wax. In this study, polymer solidification was attempted to produce the stable waste form for the boric acid concentrates and the dewatered spent ion exchange resins. The polymer mixture which consists of epoxy resin, amine compounds and antimony trioxide was used to solidify the boric acid concentrates and the dewatered spent ion exchange resins. To evaluate the stability of polymer waste forms, a series of standardized performance tests was conducted. Also, by the requirement of the regulatory institute in Korea, an additional test was performed to estimate fire resistance and gas generation of the waste forms. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test and an analysis of gas generation were performed on the waste forms by the requirement of the regulatory institute in Korea. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal.

  20. Interface control document between PUREX/UO{sub 3} Plant Transition and Solid Waste Disposal Division

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1994-06-30

    This interface control document (ICD) between PUREX/UO{sub 3} Plant Transition (PPT) and Solid Waste Disposal Division (SWD) establishes at a top level the functional responsibilities of each division where interfaces exist between the two divisions. Since the PUREX Transition and Solid Waste Disposal divisions operate autonomously, it is important that each division has a clear understanding of the other division`s expectations regarding these interfaces. This ICD primarily deals with solid wastes generated by the PPT. In addition to delineating functional responsibilities, the ICD includes a baseline description of those wastes that will require management as part of the interface between the divisions. The baseline description of wastes includes waste volumes and timing for use in planning the proper waste management capabilities: the primary purpose of this ICD is to ensure defensibility of expected waste stream volumes and Characteristics for future waste management facilities. Waste descriptions must be as complete as-possible to ensure adequate treatment, storage, and disposal capability will exist. The ICD also facilitates integration of existing or planned waste management capabilities of the PUREX. Transition and Solid Waste Disposal divisions. The ICD does not impact or affect the existing processes or procedures for shipping, packaging, or approval for shipping wastes by generators to the Solid Waste Division.

  1. Sewerage Treatment Plants - WASTE_TREATMENT_STORAGE_DISPOSAL_IDEM_IN: Treatment, Storage, and Disposal Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_TREATMENT_STORAGE_DISPOSAL_IDEM_IN is a point shapefile that contains treatment, storage, and disposal (TSD) site locations in Indiana, provided by personnel...

  2. Risk management for outsourcing biomedical waste disposal - using the failure mode and effects analysis.

    Science.gov (United States)

    Liao, Ching-Jong; Ho, Chao Chung

    2014-07-01

    Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.

  3. Mobile fission and activation products in nuclear waste disposal.

    Science.gov (United States)

    Grambow, Bernd

    2008-12-12

    When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.

  4. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the &apos

  5. Pre-feasibility study for final disposal of radioactive waste. Disposal concepts. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, L.; Skov, C.; Kueter, A.; Schepper, L.; Gottberg Roemer, H.; Refsgaard, A.; Utko, M.; Kristiansen, Torben (COWI A/S, Kgs. Lyngby (Denmark))

    2011-05-15

    This prefeasibility study is part of the overall process related to the decision on placement and design of a repository for the Danish low and medium level radioactive waste primarily from the facilities at Risoe. The prefeasibility study encompasses the preliminary design of a number of repository types based on the overall types set out in the 'Parliamentary decision' together with a preliminary safety assessment of these repository types based on their possible placement in a set of typical Danish geologies. The report consists of three parts. Part I is the descriptive part containing information on the waste to be disposed of, the potential conditioning (packaging) possibilities for the waste before placement in a repository, the suggested preliminary design of the different repository types, and the suggested visual appearance of the repository. Part II is the assessment part. It contains an introduction to the concepts used in the preliminary safety assessment, which encompasses: the assessment of potential long term impact and the assessment of possible accidental incidents. The division of the preliminary safety assessment in to these two categories has several reasons. One is that the criteria to which impact is to be compared are different for the two types of impact, another is that while the possible variation in the long term impact is primarily due to the possible variation in the parameters influencing the impact, the impact from accidental incidents is governed by the probability of the occurrence of these incidents and the potential consequence of the impact, which calls for a different assessment approach. Since the suggestions for packaging of the different waste types is a result of both types of assessments, part II also contains a description of these suggestions based on the preliminary safety assessments. Finally part II contains the costs related to the different types of repositories and the suggested packaging. Part III of the

  6. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  7. Environmental issues in the geological disposal of carbon dioxide and radioactive waste

    OpenAIRE

    West, Julia M.; Shaw, Richard P.; Pearce, Jonathan M.

    2011-01-01

    A comparative assessment of the post-closure environmental issues for the geological disposal of carbon dioxide (CO2) and radioactive waste is made in this chapter. Several criteria are used: the characteristics of radioactive waste and CO2; their potential environmental impacts; an assessment of the hazards arising from radioactive waste and CO2; and monitoring of their environmental impacts. There are several differences in the way that the long term safety of the disposal of radioactive wa...

  8. Feasibility study of Salt diapirs of Hormuzgan province for nuclear waste disposal

    OpenAIRE

    Najmehsadat Tabatabaei nia; Mohammad Reza Espahbod; Nader Kohansal Ghadimvand; Hamid Askari Bagherabadi

    2016-01-01

    Find safe manner for long-term disposal of nuclear waste not only for social security and environmental protection but also for the continued operation of nuclear reactors will be inevitable. Various methods such as burial in the ocean, space , layers of ice and deep wells has been used, that each have their own advantages and disadvantages. Disposal of sullage and hazardous wastes in salt caverns Including new technologies and modern in the wastewater and solid waste are management. And s...

  9. Disposal frequencies of selected recyclable wastes in Dar es Salaam.

    Science.gov (United States)

    Mgaya, Prosper; Nondek, Lubomir

    2004-01-01

    A statistical survey of households based upon questionnaires distributed via primary schools has been carried out in five wards of Dar es Salaam, Tanzania, to estimate disposal frequencies (number of items disposed per week) for newsprint, metal cans, glass and plastic containers and plastic shopping bags. Plastic shopping bags are disposed most frequently while glass containers are disposed least frequently. The statistical distribution of disposal frequencies, which seems to be influenced by household income, is well described by Poisson distribution. Disposal frequencies are mutually correlated at 95% level of probability despite the differences in disposal patterns of individual households.

  10. [Study on greenhouse gas emissions from urban waste disposal system: a case study in Xiamen].

    Science.gov (United States)

    Yu, Yang; Cui, Sheng-Hui; Lin, Jian-Yi; Li, Fei

    2012-09-01

    Waste disposal is one of the sources of greenhouse gas (GHG) emissions from urban human activities. According to the method recommended by IPCC Guidelines for National Greenhouse Gas Inventories 2006, a calculation model was established to assess GHG emissions of waste disposal in Xiamen. Then GHG emissions from waste disposal in Xiamen during the year of 2005-2010 were estimated, including solid waste landfill, solid waste incineration and wastewater treatment. The results showed that total GHG emissions quantified in carbon dioxide equivalents (CO2e) from waste disposal was 406.3 kt in 2005, and increased to 704.6 kt in 2010. Because of the improvement of wastewater treatment process and rapid increasing municipal solid waste (MSW), the main source of emissions was from wastewater treatment turning to solid waste landfill. GHG emissions from solid waste landfill accounted for about 90% of total emissions from solid waste disposal process in 2005, and the proportion decreased to 75% in 2010. GHG emissions (quantified in CO2e) from waste water treatment reached the highest value 325.5 kt in 2007. Chemical raw materials and chemical industry have been the highest CH4 emission industry during 2005-2010, which accounted for more than 55% of total CH4 emission from industrial wastewater treatment.

  11. The geology and hydrogeology of Bear Creek Valley Waste Disposal Areas A and B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-05-01

    A study was undertaken of the Oil Landfarm and Burial Grounds A and B, which are three disposal sites within the Bear Creek Waste Disposal Area. The area is located west of the Y-12 plant, about 3 miles southwest of Oak Ridge, Tennessee. The purpose of this interim report is to present data collected at the Burial Grounds A and B, and to provide the results of hydrogeologic analyses. The Oil Landfarm geologic and hydrogeologic data and analyses have been submitted in a January 1984 interim report. The overall objectives of the study were to characterize the types and extent of wastes present and to define the occurrence and movement of ground water beneath the sites. The intention of this work is to provide criteria on which a design for containing the waste can be developed. Specific activities performed by Bechtel included: drilling for subsurface geologic data; installing monitoring wells; measuring permeability and ground-water flow directions; and collecting soil, sediment, surface- and ground-water, and liquid-waste samples for chemical analysis. Results are presented on the geology and ground waters.

  12. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  13. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An...

  14. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  15. An updated overview of low and intermediate level waste disposal facilities around the world

    Energy Technology Data Exchange (ETDEWEB)

    Cuccia, Valeria; Uemura, George; Ferreira, Vinicius Verna M.; Tello, Cledola Cassia O. de, E-mail: vc@cdtn.br, E-mail: george@cdtn.br, E-mail: vvmf@cdtn.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Malta, Ricardo Scott V. [SEMC Engenharia e Consultoria Ltda., Belo Horizonte, MG (Brazil)

    2011-07-01

    Low and intermediate level radioactive waste should be disposed off in proper disposal facilities. Some countries already have these facilities and others are planning theirs. Information about disposal facilities around the world is useful and necessary; however, data on this matter are usually scattered in official reports per country. In order to allow an easier access to this information, this paper aims to provide an overview of disposal facilities for low and intermediate level radioactive waste around the world, as updated as possible. Also, characteristics of the facilities are provided, when possible. Considering that the main source of radioactive waste are the activities of nuclear reactors in research or power generation, the paper will also provide a summarized overview of these reactors around the world, updated until April, 2011. This data collection may be an important tool for researchers, and other professionals in this field. Also, it might provide an overview about the final disposal of radioactive waste. (author)

  16. Geoscientific Investigations for Searching Suitable Solid Waste Disposal Site Using Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    V. M. Rokade

    2013-06-01

    Full Text Available The whole world is facing challenges of geo-environmental disposal of municipal solid waste. Considering the problem, in this paper author has established a methodology for searching the geo-scientifically feasible solid waste disposal site using advent geospatial tools. GIS modeling with overlay operation is most useful to find out geoscientifically feasible areas satisfying criteria decided for site selection. Present disposal system of study area is representing the unawareness about the geo-environmental problems and health hazards. This study provides a selection of environment friendly and geo-scientifically suitable areas for the disposal of solid waste supplying reasonable, convenient and administratively transparent solutions to the waste disposal problems.

  17. Status of the WAND (Waste Assay for Nonradioactive Disposal) project as of July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arnone, G.J.; Foster, L.A.; Foxx, C.L.; Hagan, R.C.; Martin, E.R.; Myers, S.C.; Parker, J.L.

    1998-03-01

    The WAND (Waste Assay for Nonradioactive Disposal) system can scan thought-to-be-clean, low-density waste (mostly paper and plastics) to determine whether the levels of any contaminant radioactivity are low enough to justify their disposal in normal public landfills or similar facilities. Such a screening would allow probably at least half of the large volume of low-density waste now buried at high cost in LANL`s Rad Waste Landfill (Area G at Technical Area 54) to be disposed of elsewhere at a much lower cost. The WAND System consists of a well-shielded bank of six 5-in.-diam. phoswich scintillation detectors; a mechanical conveyor system that carries a 12-in.-wide layer of either shredded material or packets of paper sheets beneath the bank of detectors; the electronics needed to process the outputs of the detectors; and a small computer to control the whole system and to perform the data analysis. WAND system minimum detectable activities (MDAs) for point sources range from {approximately}20 dps for {sup 241}Am to approximately 10 times that value for {sup 239}Pu, with most other nuclides of interest being between those values, depending upon the emission probabilities of the radiations emitted (usually gamma rays and/or x-rays). The system can also detect beta particles that have energies {ge}100 keV, but it is not easy to define an MDA based on beta radiation detection because of the greater absorption of beta particles relative to photons in low Z-materials. The only radioactive nuclides not detectable by the WAND system are pure alpha emitters and very-low-energy beta emitters. At this time, operating procedures and quality assurance procedures are in place and training materials are available to operators. The system is ready to perform useful work; however, it would be both possible and desirable to upgrade the electronic components and the analysis algorithms.

  18. Treatment and final disposal of nuclear waste. Programme for encapsulation, deep geological disposal, and research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Programs for RD and D concerning disposal of radioactive waste are presented. Main topics include: Design, testing and manufacture of canisters for the spent fuels; Design of equipment for deposition of waste canisters; Material and process for backfilling rock caverns; Evaluation of accuracy and validation of methods for safety analyses; Development of methods for defining scenarios for the safety analyses. 471 refs, 67 figs, 21 tabs.

  19. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  20. TECHNO – ECONOMIC ACCEPTABILITY ANALISYS OF WASTE DISPOSAL BY INJECTION INTO APPROPRIATE FORMATION

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2013-12-01

    Full Text Available During exploration and production of oil and natural gas, various types of waste must be disposed in a permanent and safe way. There is a range of methods for processing and disposal of waste, such as disposal into landfills, solidification, namely chemical stabilization, thermal processing, appropriate formation injections uncovered by a deep well, disposal into salt domes and bioremediation. The method of waste disposal into appropriate formations is a method where strict geological and technical criteria must be satisfied when applied. A fundamental scientific hypothesis has been formulated whereby economic acceptability of the waste injection method, as a main method for waste disposal, is to be shown by an economic evaluation. The results of this research are relevant since there has been an intention in Croatia and worldwide to abandon wells permanently due to oil and gas reservoirs depletion and therefore it is essential to estimate economic impacts of the waste injection method application. In that way, profitability of using existing wells for waste disposal in oil industry has been increased, leading to the improvement of petroleum company’s business activities (the paper is published in Croatian.

  1. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  2. Prestudy of final disposal of long-lived low and intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wiborgh, M. [ed.] [Kemakta Konsult AB., Stockholm (Sweden)

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m{sup 3}. The total activity content at repository closure is estimated to be about 1 {center_dot}10{sup 17} Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times.

  3. Field guide on reduction and disposal of waste from oil refineries and marketing installations

    Energy Technology Data Exchange (ETDEWEB)

    Dando, D.A.J.; Bossand, B.; Lilie, R.H.; Ooms, A.C.; Sutherland, H.

    1990-07-01

    The field guide has been written primarily for those in the oil refining and marketing industry who have responsibility for the management of waste and its disposal. It should also provide useful information to the authorities who exercise legal control over these activities. It lists the types of wastes commonly encountered in the industry and highlights techniques for minimizing the quantities generated. Guidance is given on the methods of pre-treatment and disposal, together with information on how to select and monitor waste facilities and contractors, to ensure a high quality and safe disposal operation. Information is also provided on documentation and labelling of waste cargoes, and reference is made to legislation and sources of additional information. While use of the field guide cannot guarantee a problem-free operation, it will minimize the risks involved in disposal of waste materials from oil industry installations.

  4. Feasibility study of Salt diapirs of Hormuzgan province for nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Najmehsadat Tabatabaei nia

    2016-06-01

    Full Text Available Find safe manner for long-term disposal of nuclear waste not only for social security and environmental protection but also for the continued operation of nuclear reactors will be inevitable. Various methods such as burial in the ocean, space , layers of ice and deep wells has been used, that each have their own advantages and disadvantages. Disposal of sullage and hazardous wastes in salt caverns Including new technologies and modern in the wastewater and solid waste are management. And some countries have made significant progress in this area, and have a reasonable volume of waste disposed inside the cavern forever. Salt pluges due to the large volume of storage, very low permeability, the restoration of the salt and the lack of joints and gaps, are ideal options for storing all kinds of materials. Place salt pluges of Hormuzgan province in terms of tectonic stability and seismic were investigated. And their capacity for nuclear waste disposal were identified.

  5. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    Science.gov (United States)

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  6. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Science.gov (United States)

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act...

  7. Environmental concern and its implication to household waste separation and disposal: Evidence from Mekelle, Ethiopia

    NARCIS (Netherlands)

    Tadesse Woeldesenbet, T.

    2009-01-01

    Proper understanding of the relationship among concern for the environment, waste separation and disposal can contribute to good waste management and safer environment. This is particularly vital in cities of developing countries (such as Ethiopia) where waste separation is poor and there is

  8. 76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Science.gov (United States)

    2011-06-13

    ... Standards for Carbamate Wastes AGENCY: Environmental Protection Agency. ACTION: Proposed rule. SUMMARY: The...) treatment standards for hazardous wastes from the production of carbamates and carbamate commercial chemical... carbamate wastes must be treated to meet numeric concentration limits before they can be land disposed...

  9. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    Science.gov (United States)

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  10. Treatment of waste printed wire boards in electronic waste for safe disposal.

    Science.gov (United States)

    Niu, Xiaojun; Li, Yadong

    2007-07-16

    The printed wire boards (PWBs) in electronic waste (E-waste) have been found to contain large amounts of toxic substances. Studies have concluded that the waste PWBs are hazardous wastes because they fails the toxicity characteristic leaching procedure (TCLP) test with high level of lead (Pb) leaching out. In this study, two treatment methods - high-pressure compaction and cement solidification - were explored for rendering the PWBs into non-hazardous forms so that they may be safely disposed or used. The high-pressure compaction method could turn the PWBs into high-density compacts with significant volume reduction, but the impact resistance of the compacts was too low to keep them intact in the environment for a long run. In contrast, the cement solidification could turn the PWBs into strong monoliths with high impact resistance and relatively high compressive strength. The leaching of the toxic heavy metal Pb from the solidified samples was evaluated by both a dynamic leaching test and the TCLP test. The dynamic leaching results revealed that Pb could be effectively confined in the solidified products under very harsh environmental conditions. The TCLP test results showed that the leaching level of Pb was far below the regulatory level of 5mg/L, suggesting that the solidified PWBs are no longer hazardous. It was concluded that the cement solidification is an effective way to render the waste PWBs into environmentally benign forms so that they can be disposed of as ordinary solid wastes or beneficially used in the place of concrete in some applications.

  11. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  12. Feasibility of an earth-to-space rail launcher system. [emphasizing nuclear waste disposal application

    Science.gov (United States)

    Rice, E. E.; Miller, L. A.; Marshall, R. A.; Kerslake, W. R.

    1982-01-01

    The feasibility of earth-to-space electromagnetic (railgun) launchers (ESRL) is considered, in order to determine their technical practicality and economic viability. The potential applications of the launcher include nuclear waste disposal into space, deep space probe launches, and atmospheric research. Examples of performance requirements of the ESRL system are a maximum acceleration of 10,000 g's for nuclear waste disposal in space (NWDS) missions and 2,500 g's for earth orbital missions, a 20 km/sec launch velocity for NWDS missions, and a launch azimuth of 90 degrees E. A brief configuration description is given, and test results indicate that for the 2020-2050 time period, as much as 3.0 MT per day of bulk material could be launched, and about 0.5 MT per day of high-level nuclear waste could be launched. For earth orbital missions, a significant projectile mass was approximately 6.5 MT, and an integral distributed energy store launch system demonstrated a good potential performance. ESRL prove to be economically and environmentally feasible, but an operational ESRL of the proposed size is not considered achievable before the year 2020.

  13. Feasibility of an earth-to-space rail launcher system. [emphasizing nuclear waste disposal application

    Science.gov (United States)

    Rice, E. E.; Miller, L. A.; Marshall, R. A.; Kerslake, W. R.

    1982-01-01

    The feasibility of earth-to-space electromagnetic (railgun) launchers (ESRL) is considered, in order to determine their technical practicality and economic viability. The potential applications of the launcher include nuclear waste disposal into space, deep space probe launches, and atmospheric research. Examples of performance requirements of the ESRL system are a maximum acceleration of 10,000 g's for nuclear waste disposal in space (NWDS) missions and 2,500 g's for earth orbital missions, a 20 km/sec launch velocity for NWDS missions, and a launch azimuth of 90 degrees E. A brief configuration description is given, and test results indicate that for the 2020-2050 time period, as much as 3.0 MT per day of bulk material could be launched, and about 0.5 MT per day of high-level nuclear waste could be launched. For earth orbital missions, a significant projectile mass was approximately 6.5 MT, and an integral distributed energy store launch system demonstrated a good potential performance. ESRL prove to be economically and environmentally feasible, but an operational ESRL of the proposed size is not considered achievable before the year 2020.

  14. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1990-12-31

    This paper concludes that a 70/30 wt % salt/bentonite mixture is preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant. The Waste Isolation Pilot Plant, near Carlsbad, NM, is designed to be the first mined geologic repository for the safe disposal of transuranic (TRU) radioactive waste generated by DOE defense programs since 1970. The repository is located about 655 m below the land surface in an extensive bedded salt formation. This report examines the performance of two backfill materials with regard to various selection criteria, such as the need for low permeability after closure, chemical stability, strength, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a state of permeability {le} 10{sup {minus}18} m{sup 2} that is adequate for satisfying regulations for nuclear repositories. The results of finite-element calculations that were used to arrive at this conclusion will be described. The real advantage of the salt/bentonite. backfill depends, therefore, on bentonite`s potential for sorbing brine and radionuclides. Estimates of the impact of these properties on backfill performance are presented.

  15. Summary of the study of disposal of nuclear waste into space

    Science.gov (United States)

    Rom, F. E.

    1973-01-01

    NASA, at the request of the AEC, is conducting a preliminary study to determine the feasibility of disposing of nuclear waste material into space. The study has indicated that the Space Shuttle together with expendable and nonexpendable orbital stages such as the Space Tug or Centaur can safety dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency and accident) of such a system are being examined. From the preliminary study it appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste.

  16. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2: Technical report

    Science.gov (United States)

    1982-01-01

    The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.

  17. Leveraging Radioactive Waste Disposal at WIPP for Science

    Science.gov (United States)

    Rempe, N. T.

    2008-12-01

    Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments. Incidentally, Nature started her own low background experiment 250ma ago, preserving viable bacteria, cellulose, and DNA in WIPP salt. The Department of Energy continues to make areas of the WIPP underground available for experiments, freely offering its infrastructure and access to this unique environment. Even before WIPP started disposing of waste in 1999, the Room-Q alcove (25m x 10m x 4m) housed a succession of small experiments. They included development and calibration of neutral-current detectors by Los Alamos National Laboratory (LANL) for the Sudbury Neutrino Observatory, a proof-of-concept by Ohio State University of a flavor-sensitive neutrino detector for supernovae, and research by LANL on small solid- state dark matter detectors. Two currently active experiments support the search for neutrino-less double beta decay as a tool to better define the nature and mass of the neutrino. That these delicate experiments are conducted in close vicinity to, but not at all affected by, megacuries of radioactive waste reinforces the safety argument for the repository. Since 2003, the Majorana collaboration is developing and testing various detector designs inside a custom- built clean room in the Room-Q alcove. Already low natural background readings are reduced further by segmenting the germanium detectors, which spatially and temporally discriminates background radiation. The collaboration also demonstrated safe copper electro-forming underground, which minimizes cosmogenic background in detector assemblies. The largest currently used experimental

  18. National strategy for disposal of high level waste and spent fuel in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Borys Zlobenko; Emlen Sobotovich [IEG NASU, Ukraine (Ukraine)

    2006-07-01

    Full text of publication follows: Nuclear energy remains the most important component in the fuel energy system of Ukraine. As a result of the previous and ongoing nuclear power programmes, Ukraine accumulates substantial amounts of spent fuel and radioactive wastes. While these wastes will be stored in temporary facilities, it is envisaged that final disposal will take place in a deep geological repository. The Law of Ukraine 'On Radioactive Waste Management' provides for the ultimate disposal of high- and intermediate-level waste in deep geological formations. To solve the problem of radioactive waste disposal in geological repositories, the first-priority tasks are the following: implementation of regulatory and legal framework for managing radioactive waste to be disposed of in deep geological formations, and develop a regulation to govern the general provisions on safe disposal of radioactive waste in geological repositories. The regulation entitled 'General Provisions on Safe Disposal of Radioactive Waste in Geological Repositories' has been developed in compliance with the Comprehensive Programme of Radioactive Waste Management. The regulation establishes basic criteria, requirements and conditions for nuclear and radiation safety to be applied for radioactive waste disposal in stable geological formations (geological repositories) at all life stages of repositories with the purpose of protecting personnel, the public and the environment. The 'Programme on Management of NPP Spent Nuclear Fuel' does not identify measures on treatment of spent nuclear fuel for disposal up to 2010. Ukraine implements the so-called 'deferred decision', which means that the decision on spent fuel disposal or processing is deferred to future when it can be made with greater confidence taking into account relevant worldwide experience and progress of science and industry of the State. The concept and a programme for radioactive waste disposal

  19. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  20. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  1. Very low level waste disposal in France. A key tool for the management for decommissioning wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Duetzer, Michel [Andra - Agence Nationale pour la Gestion des Dechets Radioactives, Chatenay-Malabry (France). Direction Industrielle

    2015-07-01

    At the end of the 90{sup th}, France had to deal with the emerging issue of the management of wastes resulting from decommissioning operations of nuclear facilities. A specific regulation was issued and Andra, the French National Radioactive Waste Management Agency, developed a dedicated near surface disposal facility to accommodate very low level radioactive wastes. After more than 10 years of operation, this facility demonstrated it can provide efficient and flexible solutions for the management of decomissioning wastes.

  2. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  3. Cost avoidance realized through transportation and disposal of Fernald mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, A.K.; Dilday, D.R. [Fluor Daniel Environmental Restoration Management Corp., Fernald, OH (United States); Rast, D.M. [USDOE Fernald Field Office, OH (United States)

    1995-11-01

    Currently, Department of Energy (DOE) facilities are undergoing a transformation from shipping radiologically contaminated waste within the DOE structure for disposal to now include Mixed Low Level Waste (MLLW) shipments to a permitted commercial disposal facility (PCDF) final disposition. Implementing this change can be confusing and is perceived as being more difficult than it actually is. Lack of experience and disposal capacity, sometimes and/or confusing regulatory guidance, and expense of transportation and disposal of MLLW ar contributing factors to many DOE facilities opting to simply store their MLLW. Fernald Environmental Restoration Management Company (FERMCO) established itself as a leader i addressing MLLW transportation and disposal by being one of the first DOE facilities to ship mixed waste to a PCDF (Envirocare of Utah) for disposal. FERMCO`s proactive approach in establishing a MLLW Disposal Program produces long-term cost savings while generating interim mixed waste storage space to support FERMCO`s cleanup mission. FERMCO`s goal for all MLLW shipments was to develop a cost efficient system to accurately characterize, sample and analyze the waste, prepare containers and shipping paperwork, and achieve regulatory compliance while satisfying disposal facility waste acceptance criteria (WAC). This goal required the ability to evolve with the regulations, to address waste streams of varying matrices and contaminants, and to learn from each MLLW shipment campaign. These efforts have produced a successful MLLW Disposal Program at the Fernald Environmental Management Project (FEMP). FERMCO has a massed lessons learned from development of this fledgling program which may be applied complex-wide to ultimately save facilities time and money traditionally wasted by maintaining the status quo.

  4. Modeling of concrete carbonation in deep geological disposal of intermediate level waste

    Directory of Open Access Journals (Sweden)

    Poyet S.

    2013-07-01

    Full Text Available Simulations of atmospheric carbonation of Intermediate-Level Long-lived radioactive Waste (ILLW concrete packages were conducted to evaluate their possible chemical degradations. Two-phase liquid water-air flow is combined with gas component diffusion processes leading to a progressive drying of the concrete.Complete drying of the 11 cm thick waste disposal package wall occurs over a period ranging from 2 years for the low-performance concrete to 10 years for the high-performance concrete. The drying process slows down when transport characteristics of concretes are enhanced. Carbonation depths in the order of 2 to 3 cm in 100 years are predicted for this cementitious component. However, these values are slightly overestimated compared to experimental data. Also the kinetic model of mineral reactivity requires improvements with respect to the protective effect of secondary carbonates and to thermodynamic data.

  5. Alternative disposal options for alpha-mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Sherick, M.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  6. New technologies of waste disposal in Czech Republic, evoked by new laws

    Energy Technology Data Exchange (ETDEWEB)

    Peleska, L. [Czech Power Co., Prague (Czechoslovakia)

    1995-12-01

    Of the utmost importance for the conception of waste disposal in any country is the fact how rich the respective country is and how realistic its legislators are. The apparently ideal approach to solving this problem is that chosen by more affluent European countries where wastes are recycled, are charged with taxes and duties, and where wastes that necessitate to be disposed are handled similarly as the nuclear wastes. The benefits are evident. The amounts of wastes to be deposited are minimalized. The waste repositories can be sealed by using layers of clay, foil and clay, and during a period of 50 to 100 years, any communication of the repository with the ambient environments can be eliminated. The disadvantage of such waste repositories, if applied to most of wastes, are the high costs associated with their depositioning. The prices of products, which the costs of waste disposal are being reflected in, are thus increasing, and, for this reason, many of products are becoming unmarketable, even on the domestic market. These financial means are often spent for nothing because the service life of some protective elements being at present used for construction of waste repositories is limited in time (for example, the service life of isolating foil is 50 to 1 00 years). Waste disposal in the Czech Republic, particulary from power plants, is discussed.

  7. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    Energy Technology Data Exchange (ETDEWEB)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  8. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  9. Strategic environmental audit for the national waste disposal program; Strategische Umweltpruefung zum Nationalen Entsorgungsprogramm. Umweltbericht fuer die Oeffentlichkeitsbeteiligung

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel [Oeko-Institut e.V., Darmstadt (Germany); and others

    2015-03-27

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  10. Automated Monitoring System for Waste Disposal Sites and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  11. Co-disposal of electronic waste with municipal solid waste in bioreactor landfills.

    Science.gov (United States)

    Visvanathan, C; Visvanthan, C; Yin, Nang Htay; Karthikeyan, Obuli P

    2010-12-01

    Three pilot scale lysimeters were adopted to evaluate the stability pattern and leaching potential of heavy metals from MSW landfills under the E-waste co-disposed condition. One lysimeter served as control and solely filled with MSW, whereas the other two lysimeters were provided with 10% and 25% of E-waste scraps (% by weight), respectively. The reactors were monitored over a period of 280 days at ambient settings with continuous leachate recirculation. Stabilization pattern of carbon appears to be more than 50% in all the three lysimeters with irrespective of their operating conditions. Iron and zinc concentrations were high in leachate during bioreactor landfill operation and correlating with the TCLP leachability test results. In contrast, Pb concentration was around waste was found to be amplified with the long term disposal or stabilization within landfills. The results showed that the TCLP test cannot be completely reliable tool for measuring long-term leachability of toxic substances under landfill condition; rather landfill lysimeter studies are necessary to get the real scenario.

  12. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  13. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  14. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  15. Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)

    Science.gov (United States)

    Murphy, W. M.

    2009-12-01

    For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository

  16. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.; Fowler, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-12-18

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements.

  17. Potential for long-term isolation by the Waste Isolation Pilot Plant disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Bertram-Howery, S.G. (Sandia National Labs., Albuquerque, NM (USA)); Swift, P.N. (Tech. Reps., Inc., Albuquerque, NM (USA))

    1990-06-01

    The US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) must comply with EPA regulation 40 CFR Part 191, Subpart B, which sets environmental standards for radioactive waste disposal. The regulation, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (hereafter referred to as the Standard), was vacated in 1987 by a Federal Court of Appeals and is underground revision. By agreement with the Sate of New Mexico, the WIPP project is evaluating compliance with the Standard as promulgated, in 1985 until a new regulation is available. This report summarizes the early-1990 status of Sandia National Laboratories' (SNL) understanding of the Project's ability to achieve compliance. The report reviews the qualitative and quantitative requirements for compliance, and identifies unknowns complicating performance assessment. It discusses in relatively nontechnical terms the approaches to resolving those unknowns, and concludes that SNL has reasonable confidence that compliance is achievable with the Standard as first promulgated. 46 refs., 7 figs.

  18. Challenges in Uncertainty and the Science of Nuclear Waste Disposal (Invited)

    Science.gov (United States)

    Alley, W. M.; Alley, R.

    2013-12-01

    Disposal of high-level nuclear waste is a first-of-a-kind endeavor, further saddled by the ambitious goal to achieve containment over periods well beyond human experience. In the United States, as well as other countries, the time period for performance assessment to provide a safety case for deep geologic repositories has gone from 10,000 years in the 1990s to one million years today. Even when the standard was established for 10,000 years, the National Academy of Sciences Board on Radioactive Waste Management warned of the 'scientific trap' set by encouraging the public to expect certainty about repository safety well beyond what science can provide. Paradoxically, the emphasis on predicting repository behavior thousands of centuries into the future stands in stark contrast to a lack of risk assessment of indefinite aboveground storage for the next several generations. We review the uncertainties and technical basis for a geologic repository at Yucca Mountain compared to extended onsite and interim storage. In order to make progress with geologic disposal of nuclear waste, it is important to evaluate any option in the context of the relative merits and limitations of alternative geologic settings, interim storage, and the status quo of extended onsite storage.

  19. Bulk Disposal of Unserviceable Toxic Cresylic Acid Waste Using Polymerisation Technique

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Rai

    2011-09-01

    Full Text Available A bulk amount of unserviceable toxic cresylic acid waste has been disposed off in a safe and environmentally benign manner. A process to immobilize this waste into non-toxic solid cresol formaldehyde polymer has been developed. Initial study was performed for 1.0 Kg batch size for optimizing the process parameters and conditions, and on the basis of this data, process was scaled-up for bulk disposal (100 Kg / batch. The effect of ratio of reactants, type of catalyst [H2SO4, NaOH and Ca(OH2], catalyst concentration, reaction temperature and reaction time have been studied in a batch process. Maximum immobilization in the 1.0 Kg batch studies was obtained when cresylic acid and formaldehyde were taken in a molar ratio 1 : 1.5 using NaOH as a catalyst. For bulk polymerization, a ratio of 1.0 : 1.2 (cresylic acid : formaldehyde with NaOH {0.7 % (wt. / wt. of total charge} was found optimum. The final polymerized product has been buried as per standard procedure in two brick lined pits and finally, the site has been declared as free from the toxic waste.Defence Science Journal, 2011, 61(5, pp.505-511, DOI:http://dx.doi.org/10.14429/dsj.61.515

  20. Underwater characterization of control rods for waste disposal using SMOPY

    Energy Technology Data Exchange (ETDEWEB)

    Gallozzi-Ulmann, A.; Couturier, P.; Amgarou, K.; Rothan, D.; Menaa, N. [CANBERRA France,1 rue des Herons, 78182 ST Quentin Yvelines Cedex (France); Chard, P. [CANBERRA UK, Lower Dunbeath House, Forss Business Park, Thurso, Caithness KW14 7UZ (United Kingdom)

    2015-07-01

    Storage of spent fuel assemblies in cooling ponds requires careful control of the geometry and proximity of adjacent assemblies. Measurement of the fuel burnup makes it possible to optimise the storage arrangement of assemblies taking into account the effect of the burnup on the criticality safety margins ('burnup credit'). Canberra has developed a measurement system for underwater measurement of spent fuel assemblies. This system, known as 'SMOPY', performs burnup measurements based on gamma spectroscopy (collimated CZT detector) and neutron counting (fission chamber). The SMOPY system offers a robust and waterproof detection system as well as the needed capability of performing radiometric measurements in the harsh high dose - rate environments of the cooling ponds. The gamma spectroscopy functionality allows powerful characterization measurements to be performed, in addition to burnup measurement. Canberra has recently performed waste characterisation measurements at a Nuclear Power Plant. Waste activity assessment is important to control costs and risks of shipment and storage, to ensure that the activity level remains in the range allowed by the facility, and to declare activity data to authorities. This paper describes the methodology used for the SMOPY measurements and some preliminary results of a radiological characterisation of AIC control rods. After describing the features and normal operation of the SMOPY system, we describe the approach used for establishing an optimum control rod geometric scanning approach (optimum count time and speed) and the method of the gamma spectrometry measurements as well as neutron check measurements used to verify the absence of neutron sources in the waste. We discuss the results obtained including {sup 60}Co, {sup 110m}Ag and {sup 108m}Ag activity profiles (along the length of the control rods) and neutron results including Total Measurement Uncertainty evaluations. Full self-consistency checks were

  1. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    Energy Technology Data Exchange (ETDEWEB)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  2. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    DOE/Navarro

    2007-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

  3. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    Science.gov (United States)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  4. Disposal of Low-Level Waste (LLW) at the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2014-05-14

    DOE Office of Environmental Management presentation at the 2014 Annual Meeting of the National Transportation Stakeholders Forum on the disposal of low-level waste at the Nevada National Security Site.

  5. A choice experiment analysis for solid waste disposal option: a case study in Malaysia.

    Science.gov (United States)

    Pek, Chuen-Khee; Jamal, Othman

    2011-11-01

    In Malaysia, most municipal wastes currently are disposed into poorly managed 'controlled tipping' systems with little or no pollution protection measures. This study was undertaken to assist the relevant governmental bodies and service providers to identify an improved waste disposal management strategy. The study applied the choice experiment technique to estimate the nonmarket values for a number of waste disposal technologies. Implicit prices for environmental attributes such as psychological fear, land use, air pollution, and river water quality were estimated. Compensating surplus estimates incorporating distance from the residences of the respondents to the proposed disposal facility were calculated for a number of generic and technology-specific choice sets. The resulting estimates were higher for technology-specific options, and the distance factor was a significant determinant in setting an equitable solid waste management fee.

  6. 78 FR 1881 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's...

    Science.gov (United States)

    2013-01-09

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's Determination Not To Review Initial Determinations Granting Complainant's Motions To Partially Terminate...

  7. 77 FR 50716 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission...

    Science.gov (United States)

    2012-08-22

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission Determination Not to Review an Initial Determination Granting Complainant's Motions To Amend the Notice...

  8. Application of Industrial Waste CaF2 for Vegetative Covering of Phosphogypsum Disposal Site

    OpenAIRE

    Leaković, S.; Lisac, H.; Vukadin, R.

    2012-01-01

    Phosphogypsum, i.e. calcium sulphate dihydrate is generated as a by-product in the phosphoric acid production during reaction between phosphate rock and sulphuric acid. It is stored as nonhazardous waste in a disposal site. Since 1983, when the phosphoric acid plant started operation, about 8 140 000 t of phosphogypsum have been disposed there. The disposal site consists of four separate ponds (compartments) which are bounded by 6 ...

  9. COMPARISON OF THE ENVIRONMENTAL IMPACT OF DIFFERENT METHODS OF MINING WASTE DISPOSAL TECHNOLOGY USING AHP METHOD

    OpenAIRE

    Justyna Kubicz; Mateusz Hämmerling; Natalia Walczak

    2016-01-01

    Exploitation of tailing ponds sites for storing all types of waste materials creates multiple problems concerning waste disposal and the environmental impact of the waste. Tailing ponds waste may comprise e.g. flotation tailings from ore enrichment plants. Despite the fact that companies / corporations use state-of-the-art methods of extraction and processing of copper ore, and introduce modern systems of organization and production management, the area located closest to the reservoir is exp...

  10. Putting matter in place: tradeoffs between recycling and distance in planning for waste disposal

    OpenAIRE

    Offenhuber, Dietmar; Lee, David; Wolf, Malima I.; Phithakkitnukoon, Santi; Biderman, Assaf; Ratti, Carlo

    2012-01-01

    Problem, research strategy, and findings: Reliable information on trash disposal is crucial but becomes difficult as waste removal chains grow increasingly complex. Lack of firm data on the spatial behavior of waste hampers effective recycling strategy design. In particular, the environmental impact of electronic and household hazardous waste is poorly understood. Our study investigates waste processing in an environmental, economic, and geographic context, using novel methods to track munici...

  11. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, T.J.

    1998-01-06

    This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

  12. Estimation of Exposure Doses for Several Scenarios of the Landfill Disposal of NORM Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Ko, Nak Yul; Baik, Min Hoon [KAERI, Daejeon (Korea, Republic of); Yoon, Ki Hoon [Korea Institude of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-05-15

    The Act on safety control of radioactive materials around living environment was promulgated to protect citizen's health and environment in 2013. According to this Act, the integrated plan for radiation protection and the necessary safety guides for treatment, reuse, and disposal of NORM wastes have to be made. And NORM wastes have to be disposed in landfill sites by reducing the concentration of radionuclide, and they should not be reutilized. In this study, we estimated exposure doses for several scenarios for NORM (Naturally Occurring Radioactive Materials) waste disposal into a reference landfill site to check the radiological safety. Also, we estimated the amount of NORM wastes for different activity levels of important radionuclides in wastes to be disposed into a landfill site based on the exposure dose limits to support the establishment of technical bases for safety guide. We estimated the amount of NORM wastes for different activity levels of wastes containing U series, Th series, and {sup 40}K based on the exposure dose limits. The results of this study can be used as technical bases to support the establishment of a guide for the safe management of NORM waste disposal.

  13. Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA.

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung; Hansen, Francis D.

    2005-07-01

    This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of room closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper

  14. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-08-31

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  15. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the...

  16. Calculation of Hazardous Waste Land Disposal Restrictions (LDR) Treatment Standards

    Science.gov (United States)

    examples of calculations of treatment standards including for High Concentration Selenium Wastes Using Data Submitted by Chemical Waste Management (CWM) and Antimony Using Data Submitted by Chemical Waste Management and Data Obtained From Rollins.

  17. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  18. PIC-container for containment and disposal of low and intermediate level radioactive wastes

    Science.gov (United States)

    Araki, K.; Shinji, Y.; Maki, Y.; Ishizaki, K.; Minegishi, K.; Sudoh, G.

    1981-03-01

    Steel fiber reinforced polymer impregnated concrete (SFPIC) was investigated for low and intermediate level radioactive waste containers. The 60 L and 200 L containers were designed as pressure container (without equalizer) for 500 kg/square cm and 700 kg/square cm. Polymerization of impregnated methylmethacrylate monomer was performed by 60 Co-gamma ray radiation and thermal catalytic polymerization respectively. Under the loading of 500 kg/square cm and 700 kg/square cm-outside hydraulic pressure, these containers were kept in their good condition. The observed maximum strains were about .001380 and .003950 at the outside central position of container body for circumferential direction of the 60 L and 200 L container, respectively. The containers were immersed in deionized water for 400 days, nuclides were not leached from the container. The SFPIC container was suitable for containment and disposal of low and intermediate level radioactive wastes.

  19. Material flow analysis and market survey for securing the disposal of waste oils; Stoffstrom- und Marktanalyse zur Sicherung der Altoelentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Knut; Jepsen, Dirk; Zangl, Stephanie; Schilling, Stephanie [Institut fuer Oekologie und Politik GmbH (OEKOPOL), Hamburg (Germany)

    2006-05-15

    This research project had two main topics: 1. A material flow analysis of the German waste oil flow adapted to the current situation 2. An analysis of the German waste oil recovery market, possible recent market changes and the potential influences of different factors. In order to determine the German waste oil mass flows the German Ministry of Environment applies a calculation model which is based on a backwards calculation approach (Rueckrechnungsmodell, backward calculation model). The performed analysis of this model revealed that it is suitable for the calculation of the German waste oil material flows. Aiming at a further qualification some elements of the model have been updated respectively adapted to new developments. In the course of the market analysis the basic economic parameter like supply, demand, prices resp. price differences of the German waste oil management market were considered. It was analysed how the changing market conditions affect the waste oil material flows and the waste oil recovery. Furthermore it was examined whether the given circumstances are sufficient to maintain a secure and sustainable waste oil disposal. The research results showed that the German waste oil market performs well and is reacting flexible on price signals of the respective (primary) reference products. During the timeframe investigated (2000-2004) an increasing majority of the available waste oil was used for the production of secondary mineral oil products. 30% of the available waste oil has been submitted to energy recovery operations. During these years the waste oil ordinance (Altoelverordnung) and the directive to promote processing of waste oil into base oil (Foerderrichtlinie) entered into force and relevant investments in waste oil treatment facilities were executed. The reliability of the future waste oil management is therefore approved and sufficient capacity reserves are available in all waste oil related management areas. (orig.)

  20. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary.

  1. Radiation dose evaluation based on exposure scenario during the operation of radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeong Hyoun; Kim Chang Lak; Choi, Heui Joo; Park, Joo Wan [Korea Electric Power Corporation, Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    1999-07-01

    Radiation dose to worker in disposal facility was calculated by using point kernel MICROSHIELD V5.02 computer code based on exposure scenarios. An conceptual design model for disposal vaults in disposal facility was used for object of shielding calculation model. Selected radionuclides and their activities among radioactive wastes from nuclear power plants were assumed as radiation sources for the exposure calculation. Annual radiation doses to crane workers and to people working on disposal vaults were calculated according to exposure time and distance from the sources with conservative operation scenarios. The scenarios used for this study were based on assumption for representing disposal activities in a future Korean near surface disposal facility. Calculated exposure rates to worker during normal disposal work were very low comparing with annual allowable limit for radiation worker.

  2. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal(I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Hong, D. S.; Hwang, G. H.; Shin, J. J.; Yuk, D. S. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    Characteristics and states of management of low and intermediate level radioactive waste in site : state of management for each type of wastes, characteristics of low and intermediate level solid radioactive waste, stage of management of low and intermediate level solid radioactive waste. Survey of state of management and characteristics of low and intermediate level radioactive waste disposal facility in foreign countries : state of management of disposal facilities, classification criteria and target radionuclides for assessment in foreign disposal facilities. Survey of the assessment methods of the radionuclides inventory and establishing the direction of requirement : assessment methods of the radionuclides inventory, analysis of radionuclides assay system in KORI site, establishment the direction of requirement in the assessment methods.

  3. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  4. Potential areas for the near surface disposal of radioactive waste in Pahang

    Science.gov (United States)

    Harun, Nazran; Yaacob, Wan Zuhairi Wan; Simon, Norbert

    2016-11-01

    Radioactive material has been used in Malaysia since the 1960's. The low level radioactive wastes are generated every year and stored in Nuclear Malaysia. The storage capacities are expected to reach its maximum capacity by the year 2025. Disposal of the radioactive waste is considered as one of the best options for future radioactive and nuclear material generated in Malaysia, hence the necessary site selection. The selection process used the IAEA document as the main reference, supported by site selection procedure applied by various countries. ArcGIS software was used to simulate the selection of the near surface radioactive waste disposal. This paper suggested the best four potential areas for the near surface radioactive waste disposal in Pahang state, Malaysia, the Sg. Lembing, Gambang, Felda Lepar Utara and Cheneh areas. These areas are located within 100 km from the potential radioactive waste producer (Lynas).

  5. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  6. Hazardous Waste Land Disposal Facility Assessment. Volume 1

    Science.gov (United States)

    1988-09-01

    Facilities ( DALF ) at RVA" (USATHANA, 1984) provided the basis for the volume estimates for siting a disposal facility as discussed in Appendix 1.3. The... DALF also addressed on-site disposal options in addition to other technologies. This study supported the on-site disposal option by stating that a...impermeable bedrock do not exist at RMA. The DALF , drawing on the conclusions of the earlier WES 1983 report, recoumended a site in the northeast quarter of

  7. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  8. Radiological performance assessment for the E-Area Vaults Disposal Facility. Appendices A through M

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1994-04-15

    These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file. (GHH)

  9. COMPARISON OF THE ENVIRONMENTAL IMPACT OF DIFFERENT METHODS OF MINING WASTE DISPOSAL TECHNOLOGY USING AHP METHOD

    Directory of Open Access Journals (Sweden)

    Justyna Kubicz

    2016-05-01

    Full Text Available Exploitation of tailing ponds sites for storing all types of waste materials creates multiple problems concerning waste disposal and the environmental impact of the waste. Tailing ponds waste may comprise e.g. flotation tailings from ore enrichment plants. Despite the fact that companies / corporations use state-of-the-art methods of extraction and processing of copper ore, and introduce modern systems of organization and production management, the area located closest to the reservoir is exposed to its negative effects. Many types of waste material are a valuable source of secondary raw materials which are suitable for use by various industries. Examples of such materials are mining waste (flotation tailings, usually neutral to the environment, whose quantities produced in the process of exploitation of minerals is sizeable. The article compares different technological methods of mining waste disposal using AHP method and their environmental impact.

  10. The regulatory environment for drilling and oilfield waste disposal and remediation in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, L.J.; Stimpson, S. [Macleod Dixon, Calgary, AB (Canada)

    1999-04-01

    The legislative basis of regulation of all aspects of oilfield waste, including all oil and gas, oil sands, and oilfield waste management facility operations in Alberta is discussed. The appropriate waste management practices for the upstream petroleum industry and all waste stream associated with the petroleum industry are outlined. Major topics discussed include: (1) the roles and the jurisdictions of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection (AEP), (2) drilling waste and oilfield waste disposal, EUB guides 50 and 58, (3) wellsite abandonment and reclamation of wellsites, (4) spills and contaminated sites, (5) environmental offences, enforcement, penalties and defences.

  11. Protocol for the E-Area Low Level Waste Facility Disposal Limits Database

    Energy Technology Data Exchange (ETDEWEB)

    Swingle, R

    2006-01-31

    A database has been developed to contain the disposal limits for the E-Area Low Level Waste Facility (ELLWF). This database originates in the form of an EXCEL{copyright} workbook. The pertinent sheets are translated to PDF format using Adobe ACROBAT{copyright}. The PDF version of the database is accessible from the Solid Waste Division web page on SHRINE. In addition to containing the various disposal unit limits, the database also contains hyperlinks to the original references for all limits. It is anticipated that database will be revised each time there is an addition, deletion or revision of any of the ELLWF radionuclide disposal limits.

  12. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-15

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  13. Developing operating procedures for a low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  14. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  15. A disposal strategy of industrial hazardous wastes in the Three Gorges Region

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A large quantity of industrial hazardous wastes (IHWs) accumulates in the Three Gorges Region. This study found that approximately 15 000 t IHWs were piled in the region by October 2001. These IHWs came from various sources and were complex in composition, mostly toxic and difficult to be disposed. IHW is regarded as a potential threat to the ecological environment, water resources and survival of local residents. It is important and indispensable to dispose the waste properly. To meet the regulation requirements on the disposal of IHWs and to minimize environmental effects on the Three Gorges Region, a disposal strategy is proposed, according to which approximately 600 t of the IHWs can be disposed by chemical stabilization,incineration and other treatment measures, and the rest need be stockpiled in safe and reliable places situated above the 177 m impoundment line of the Three Gorges dam.

  16. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gomberg, Steve [USDOE, Washington, DC (United States)

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal) could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.

  17. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  18. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  19. The alternatives for pot-ale disposal. [Evaporation by waste heat recovery and anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, S. (UKAEA Harwell Lab. (UK). Energy Technology Div.)

    1990-01-01

    Pot-ale is a by-product of whisky distilling and when concentrated by evaporation can be sold as cattle feed. Examples of energy savings achieved by recovering waste heat from distilleries and using this waste heat to evaporate the water from the pot-ale are described. Another option for pot-ale disposal is anaerobic digestion to biogas. (UK).

  20. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    Energy Technology Data Exchange (ETDEWEB)

    Swita, W.R.

    1998-01-05

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

  1. 75 FR 65482 - Approval of a Petition for Exemption From Hazardous Waste Disposal Injection Restrictions to...

    Science.gov (United States)

    2010-10-25

    ... (code K062 under 40 CFR part 261), into one Class I hazardous waste injection well specifically... AGENCY Approval of a Petition for Exemption From Hazardous Waste Disposal Injection Restrictions to... ArcelorMittal Burns Harbor, LLC (AMBH) of Burns Harbor, Indiana, for three Class I injection wells located...

  2. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  3. Incineration: why this may be the most environmentally sound method of renal healthcare waste disposal.

    Science.gov (United States)

    James, Ray

    2010-09-01

    The environment and 'green' issues are currently being promoted in the healthcare sector through recently launched initiatives. This paper considers aspects of healthcare waste management, with particular reference to waste generated in dialysis units. With dialysis being dependent upon large amounts of disposables, it generates considerable volumes of waste. This paper focuses upon a typical haemodialysis unit, evaluating and quantifying the volumes and categories of waste generated. Each haemodialysis patient on thrice weekly dialysis generates some 323 kg per year of waste, of which 271 kg is classified as clinical. This equates to 1626 kg of (solid) clinical waste per dialysis bed, which is around three times the volume of clinical waste generated per general hospital bed. Waste disposal routes are considered and this suggests that present healthcare waste paradigms are outmoded. They do not allow for flexible approaches to solving what is a dynamic problem, and there is a need for new thinking models in terms of managing the unsustainable situation of disposal in constantly growing landfills. Healthcare waste management must be considered not only in terms of the environmental impact and potential long-term health effects, but also in terms of society's future energy requirements.

  4. Comparison of low-level waste disposal programs of DOE and selected international countries

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

  5. An evaluation of some special techniques for nuclear waste disposal in space

    Science.gov (United States)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  6. U.S. program assessing nuclear waste disposal in space - A status report

    Science.gov (United States)

    Rice, E. E.; Priest, C. C.; Friedlander, A. L.

    1980-01-01

    Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.

  7. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  8. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  9. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  10. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility