WorldWideScience

Sample records for waste disposal land

  1. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  2. Land suitability maps for waste disposal siting

    International Nuclear Information System (INIS)

    Hrasna, M.

    1996-01-01

    The suitability of geoenvironment for waste disposal depends mainly on its stability and on the danger of groundwater pollution. Besides them, on the land suitability maps for the given purpose also those factors of the factors of the geoenvironment and the landscape should be taken into account, which enable another way of the land use, such as mineral resources, water resources, fertile soils, nature reserves, etc. On the base of the relevant factors influence evaluation - suitable, moderately suitable and unsuitable territorial units are delimited on the maps. The different way of various scale maps compilation is applied, taken into account their different representing feasibilities. (authors)

  3. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  4. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  5. Waste management and the land disposal restriction storage prohibition

    International Nuclear Information System (INIS)

    1992-05-01

    RCRA Sect. 3004(j) prohibits storage of wastes that have been prohibited from land disposal, unless that storage is for the purpose of accumulating sufficient quantities of hazardous wastes to facilitate proper recovery, treatment, or disposal. This requirement was incorporated as part of the Land Disposal Restriction (LDR) regulations. Under the LDR storage prohibition, facilities may only store restricted wastes in containers and tanks. As stated in the Third LDR rule, storage of prohibited waste is only allowed in non-land based storage units since land-based storage is a form of disposal. The EPA has recognized that generators and storers of radioactive mixed waste (RMW) may find it impossible to comply with storage prohibition in cases where no available treatment capacity exists. Additionally, under the current regulatory interpretation, there is no provision that would allow for storage of wastes for which treatment capacity and capability are not available, even where capacity is legitimately being developed. Under the LDR program, restricted wastes that are disposed of, or placed into storage before an LDR effective date, are not subject to the LDR requirements. However, if such wastes are removed from a storage or disposal site after the effective date, such wastes would be subject to LDR requirements. The purpose of this information brief is to clarify what waste management practices constitute removal from storage

  6. The land impact associated with the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Redmond, I.G.

    1983-01-01

    At present, the only land being utilized for the storage of radioactive wastes in Canada is at the sites of nuclear power generating stations, for high- and low-level wastes, and the land adjacent to uranium mines and mills in the case of tailings and the land in the vicinity of the uranium refinery in Port Hope. Existing storage sites for high- and low-level wastes do not occupy large amounts of land, since the amount of materials is relatively small. Uranium mine tailings, however, need hundreds of hectares of land. In addition to land directly utilized for the storage of the wastes, there may be a need for future buffer zones to separate them from adjoining land uses once a method of permanent disposal is decided. Any land utilized for the disposal of the wastes is likely to be unsuitable for other uses for anywhere from a few years to several thousand years, depending on the waste type occupying the land. Clearly, use of land for the storage and disposal of radioactive wastes may influence it beyond site boundaries and restrict its usage for other purposes for some considerable time to come

  7. Alternatives for future land disposal of radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.

    1982-01-01

    Shallow land burial incorporating improvements to facilitate stabilization and decommissioning will continue to be the primary method of disposing of low level waste in areas where conditions are suitable for this type of disposal. The existing disposal sites should be closely monitored to assure that continued acceptance of this method of disposal. Plans for the decommissioning of the existing sites should be closely reviewed to assure that the planning is adequate and that adequate resources will be available to implement the decommissioning plan. For these areas where geological conditions are not suitable for shallow land burial and in situations where a higher degree of containment is desired, alternative disposal methods should be considered. Technology exists or is readily attainable to provide engineered disposal facilities which provide a higher degree of containment and can be readily decommissioned. The cost of disposal using these methods can be competitive with shallow land burial when the cost of environmental and hydrogeologic investigations and decommissioning are included. Disposal of radioactive waste having low activity in secure sanitary landfills could significantly reduce the transportation and disposal requirements for low level waste

  8. Hanford land disposal restrictions plan for mixed wastes

    International Nuclear Information System (INIS)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs

  9. Hanford land disposal restrictions plan for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  10. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  11. Land disposal restriction (LDR) waste management strategy at Rocky Flats

    International Nuclear Information System (INIS)

    Tyler, R.W.; Anderson, S.A.; Rising, T.L.

    1993-01-01

    The Rocky Flats Plant (RFP) is a government-owned, contractor-operated facility which is a part of the nationwide DOE nuclear weapons production complex. Rocky Flats has accumulated (and will continue to generate) a substantial quantity of mixed waste subject to regulation under the land disposal restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA). These waste streams include low level mixed waste and transuranic mixed waste which are LDR primarily due to solvent and heavy metal contamination. DOE and EPA have entered into a Federal Facility Compliance Agreement (FFCA) which requires actions to be taken to ensure the accurate identification, safe storage and minimization of LDR mixed wastes prior to their ultimate treatment and/or disposal. As required by the FFCA, DOE has prepared a Comprehensive Treatment and Management Plant (CTMP) which describes the strategy and commitments for bringing LDR wastes at RFP into compliance with applicable regulations. This strategy includes waste characterization and reclassification, utilization of existing commercial and DOE treatment capacity, as well as, the development and implementation of treatment systems (and other management systems) for the purpose of achieving LDR regulatory compliance and ultimate waste disposal. This paper will give an overview of this strategy including a description of the major waste streams being addressed, the regulatory drivers, and plans and status of ongoing treatment systems technology development and implementation efforts

  12. Treatability study of aqueous, land disposal restricted mixed wastes

    International Nuclear Information System (INIS)

    Haefner, D.R.

    1992-12-01

    Treatment studies have been completed on two aqueous waste streams at the Mixed Waste Storage Facility that are classified as land disposal restricted. Both wastes had mercury and lead as characteristic hazardous constituents. Samples from one of these wastes, composed of mercury and lead sulfide particles along with dissolved mercury and lead, was successfully treated by decanting, filtering, and ion exchanging. The effluent water had an average level of 0.003 and 0.025 mg/L of mercury and lead, respectively. These values are well below the targeted RCRA limits of 0.2 mg/L mercury and 5.0 mg/L lead. An acidic stream, containing the same hazardous metals, was also successfully treated using a treatment process of precipitation, filtering, and then ion exchange. Treatment of another waste was not completely successful, presumably because of the interference of a chelating agent

  13. Land suitability for waste disposal in metropolitan areas.

    Science.gov (United States)

    Baiocchi, Valerio; Lelo, Keti; Polettini, Alessandra; Pomi, Raffaella

    2014-08-01

    Site selection for waste disposal is a complex task that should meet the requirements of communities and stakeholders. In this article, three decision support methods (Boolean logic, index overlay and fuzzy gamma) are used to perform land suitability analysis for landfill siting. The study was carried out in one of the biggest metropolitan regions of Italy, with the objective of locating suitable areas for waste disposal. Physical and socio-economic information criteria for site selection were decided by a multidisciplinary group of experts, according to state-of-the-art guidelines, national legislation and local normative on waste management. The geographic information systems (GIS) based models used in this study are easy to apply but require adequate selection of criteria and weights and a careful evaluation of the results. The methodology is arranged in three steps, reflecting the criteria defined by national legislation on waste management: definition of factors that exclude location of landfills or waste treatment plants; classification of the remaining areas in terms of suitability for landfilling; and evaluation of suitable sites in relation to preferential siting factors (such as the presence of quarries or dismissed plants). The results showed that more than 80% of the provincial territory falls within constraint areas and the remaining territory is suitable for waste disposal for 0.72% or 1.93%, according to the model. The larger and most suitable sites are located in peripheral areas of the metropolitan system. The proposed approach represents a low-cost and expeditious alternative to support the spatial decision-making process. © The Author(s) 2014.

  14. DOE Land Disposal Restrictions Strategy Report for Radioactive Mixed Waste

    International Nuclear Information System (INIS)

    1989-09-01

    This report represents an effort by the Department of Energy (DOE) and its contractors to develop a strategy for achieving radioactive mixed waste (RMW) compliance with the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDR). Preliminary information provided by the Operations Offices has been reviewed to formulate an overall strategy that will enable DOE operations to comply with the Land Disposal Restrictions. The effort has concluded that all DOE Operations Offices are impacted by LDR due to the inability to meet existing and future LDR storage prohibition requirements or treatment standards for RMW. A total of 178 RMW streams subject to LDR are identified in this report. Quantities of RMW impacted by LDR have been estimated at approximately 710,785 cubic meters. DOE must place a high priority on resolving LDR compliance issues. Failure to resolve these issues could result in the curtailment of waste generating operations at DOE facilities. Actions will be required from both DOE (Headquarters and Operations Offices) and EPA in order to achieve DOE complex-wide compliance. Specific recommendations are included. 1 fig., 4 tabs

  15. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  16. The disposal of solid radioactive wastes to land sites in the UK

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Phillipson, D.L.

    1984-01-01

    Solid radioactive waste management by land disposal, using a strategy laid down by the government, is discussed. Waste disposal at Drigg, and the proposals for the two preferred sites at Elstow (shallow burial) and Billingham (deep burial) are outlined. Nuclear Industry Radioactive Waste Executive (NIREX); safety; public acceptance; and the role of the private sector; are also described. (U.K.)

  17. Low level radioactive waste disposal: An evaluation of reports comparing ocean and land based disposal options

    International Nuclear Information System (INIS)

    1990-05-01

    This document evaluates reports presenting comparative assessments of land and sea disposal options for low and intermediate level radioactive waste. It was performed following a request by the LDC to the IAEA. In this evaluation, IAEA Safety Series No. 65 ''Environmental Assessment Methodologies for Sea Dumping of Radioactive Wastes'', was used as the main reference in reviewing the comparative assessments made to date. IAEA Safety Series No. 65 gives guidance on the performance of comparative assessments of the different options, and provides a list and scheme of factors to be considered. 5 studies were transmitted by the Contracting Parties and considered in this review. A larger number of reports was not considered in this effort on the basis that the evaluation would be most effective if directed at those studies which specifically compared ocean disposal with land based disposal in a consistent manner. It is not the purpose of this report to state whether one document is better than another or whether one report forms a good blueprint for future assessments. This would require a different type of review and is outside the scope of this document. Indeed since the purposes of the five reports were originally so different it would not be possible to produce such a ranking and any attempts in that direction would be very misleading. 11 refs, 3 tabs

  18. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  19. Ancient tombs in China and shallow land disposal of low-intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Huang, Y.; Gu, C.

    1987-01-01

    The paper summerises the experiences of ancient tombs in China on tomb siting, configuration of tombs, backfilling materials, civil engineering techniques, sealing (or airlight) techniques, drainage system, antiseptic techniques and so on based upon site investigation. Comparison between ancient tombs in China and shallow land disposal of radioactive wastes has been made. The authors point out that the brilliant achievements of ancient tombs in China in keeping ancient corpses and funeral objects is a historical evidence for safety of shallow land disposal of radioactive wastes, and that the main experiences of ancient tombs can be used for reference to shallow land disposal of radioactive wastes

  20. The land disposal of organic materials in radioactive wastes: international practice and regulation

    International Nuclear Information System (INIS)

    Hooper, A.J.

    1988-01-01

    World-wide practice and regulation with regard to organic materials in radioactive wastes for land disposal have been examined with a view to establishing, where possible, their scientific justification and their relevance to disposal of organic-bearing wastes in the UK. (author)

  1. DOE Land Disposal Restrictions strategy report for radioactive mixed waste

    International Nuclear Information System (INIS)

    1989-09-01

    This report is based on preliminary information available at the time of the Land Disposal Restrictions (LDR) Strategy Workshop in June 1989, and the critical review of the workshop data conducted by the Office Of Defense Programs and the affected Operations Offices in July and August 1989. The purpose of the workshop and this subsequent report is to identify the magnitude and scope of LDR issues and impacts regarding the storage, treatment, and disposal of RMW, and to suggest potential strategies for addressing LDR requirements. This report was prepared under the overall direction and coordination of the Department of Energy (DOE) Headquarters Environmental Guidance Division, RCRA/CERCLA Unit (EH-231). The report is a product of the LDR Strategy Workshop held during the month of June 1989. The workshop was divided into two work groups: a Land Disposal Restriction compliance strategy group and a RMW Best Demonstrated Available Technology and National Capacity Variance group

  2. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  3. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    International Nuclear Information System (INIS)

    Feo, Giovanni De; Gisi, Sabino De

    2014-01-01

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method

  4. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  5. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  6. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Methodology of safety evaluation about land disposal of low level radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1986-01-01

    Accompanying the progress of the construction project of low level radioactive waste storage facilities in Aomori Prefecture, the full scale land disposal of low level radioactive wastes shows its symptom also in Japan. In this report, the scientific methodology to explain the safety about the land disposal of low level radioactive wastes is discussed. The land disposal of general wastes by shallow burying has already had sufficient results. In the case of low level radioactive wastes, also the land disposal by shallow burying is considered. Low level radioactive wastes can be regarded as one form of industrial wastes, as there are many common parts in the scientific and theoretical base of the safety. Attention is paid most to the contamination of ground water. Low level radioactive wastes are solid wastes, accordingly the degree of contamination should be less. The space in which ground water existes, the phenomena of ground water movement, the phenomena of ground water dispersion and Fick's law, the adsorption effect of strata, and the evaluation of source term are explained. These are the method to analyze the degree of contamination from safety evaluation viewpoint. (Kako, I.)

  8. Development activities on shallow land disposal of solid radioactive waste. Progress report, January--December 1976

    International Nuclear Information System (INIS)

    1977-06-01

    Progress on projects focused on problems of shallow land burial of radioactively contaminated solid waste is summarized. Developments on a system to evaluate the containment adequacy of existing burial sites are described. Efforts to describe the environmental factors in monitoring the LASL disposal sites are discussed. The aim of a new program on radioactive waste burial technology is outlined

  9. Status report on the Nuclear Regulatory Commission regulations for land disposal of low-level radioactive wastes and geologic repository disposal of high-level wastes

    International Nuclear Information System (INIS)

    Browning, R.E.; Bell, M.J.; Dragonette, K.S.; Johnson, T.C.; Roles, G.W.; Lohaus, P.H.; Regnier, E.P.

    1984-01-01

    On 27 December 1982, the United States Nuclear Regulatory Commission (NRC) amended its regulations to provide specific requirements for licensing the land disposal of low-level radioactive wastes. The regulations establish performance objectives for land disposal of waste; technical requirements for the siting, design, operations, and closure activities for a near-surface disposal facility; technical requirements concerning waste form and classification that waste generators must meet for the land disposal of waste; institutional requirements; financial assurance requirements; and administrative and procedural requirements for licensing a disposal facility. Waste generators must comply with the waste form and classification provisions of the new rule, on 27 December 1983, one year later. During this implementation period, licensees must develop programmes to ensure compliance with the new waste form and classification provisions. The NRC is also promulgating regulations specifying the technical criteria for disposal of high-level radioactive wastes in geological repositories. The proposed rule was published for public comment in July 1981. Public comments have been received and considered by the Commission staff. The Commission will soon approve and publish a revised final rule. While the final rule being considered by the Commission is fundamentally the same as the proposed rule, provisions have been added to permit flexibility in the application of numerical criteria, some detailed design requirements have been deleted, and other changes have been made in response to comments. The rule is consistent with the recently enacted Nuclear Waste Policy Act of 1982. (author)

  10. Disposal of radioactive waste in land burial facilities at Studsvik

    International Nuclear Information System (INIS)

    Ericsson, G.; Haegg, C.; Bergman, C.

    1987-01-01

    The report presents the formal background for the handling of the Studsvik application for permission to build a plant for deposition of radioactive waste in land burial facilities. The SSI (National Swedish Institute of Radiation Protection) basis for assessment is reported and relevant factors are presented. The radiation doses calculated by the SSI do not exceed a few microsievert per annum in spite of very pessimistic assumptions. The report constitutes assessment material for the standpoint to be taken by the board of SSI. (L.F.)

  11. Basic concept on safety regulation for land disposal of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    1985-01-01

    As to the land disposal of low level radioactive solid wastes, to which the countermeasures have become the urgent problem at present, it is considered to be a realistic method to finally store the solid wastes concentratedly outside the sites of nuclear power stations and others, and effort has been exerted by those concerned to realize it. Besides, as for extremely low level radioactive solid wastes, the measures of disposing them corresponding to the radioactivity level are necessary, and the concrete method has been examined. The Committee on Safety Regulation for Radioactive Wastes has discussed the safety regulation for those since April, 1984, and the basic concept on the safety regulation was worked up. It is expected that the safety of the land disposal of low level radioactive solid wastes can be ensured when the safety regulation is carried out in conformity with this basic concept. The present status of the countermeasures to the land disposal of low level radioactive solid wastes is shown. As the concrete method, the disposal in shallow strate has been generally adopted. At present, the plan for the final storage in Aomori Prefecture is considered, and it will be started with the first stage of four-stage control. (Kako, I.)

  12. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  13. Overview of EPA's environmental standards for the land disposal of LLW and NARM waste - 1988

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Galpin, F.L.; Holcomb, W.F.

    1988-01-01

    The Environmental Protection Agency program to develop proposed generally applicable environmental standards for land disposal of low-level radioactive waste (LLW) and certain naturally occurring and accelerator-produced radioactive wastes has been completed. The elements of the proposed standards include the following: (a) exposure limits for predisposal management and storage operations, (b) criteria for other regulatory agencies to follow in specifying wastes that are below regulatory concern; (c) postdisposal exposure limits, (d) groundwater protection requirements, and (e) qualitative implementation requirements. In addition to covering those radioactive wastes subject to the Atomic Energy Act, the Agency also intends to propose a standard to require the disposal of high concentration, naturally occurring and accelerator-produced radioactive materials wastes exceeding 2 nCi/g, excluding a few consumer items, in regulated LLW disposal facilities

  14. Calculation of Hazardous Waste Land Disposal Restrictions (LDR) Treatment Standards

    Science.gov (United States)

    examples of calculations of treatment standards including for High Concentration Selenium Wastes Using Data Submitted by Chemical Waste Management (CWM) and Antimony Using Data Submitted by Chemical Waste Management and Data Obtained From Rollins.

  15. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  16. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  17. 1999 Report on Hanford Site land disposal restriction for mixed waste

    International Nuclear Information System (INIS)

    BLACK, D.G.

    1999-01-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility

  18. 1996 Hanford site report on land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site

  19. 1999 Report on Hanford Site land disposal restriction for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, D.G.

    1999-03-25

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  20. Geomorphologic characteristic of low-intermediate level radioactive waste disposal land candidate at Lemahabang area

    International Nuclear Information System (INIS)

    Sucipta

    1998-01-01

    Geomorphological aspect is a factor should be considered on land evaluation for radioactive wastes disposal purpose. The aspect is important because geomorphological factors contribute on hydrological and erosion condition of the land. The objective of the study is to characterize the geomorphological condition of the land, i.e. land form, geomorphological processes, rock type, soil, surface water, ground water, vegetation and land use. The study was conducted by descriptive analyses from literature study and field geomorphological method, with evaluation as well as developed for terrain analyses. The study area can be divided industry for land from units, I.e. tuff undulating unit (land use: plantation), coastal deposits plain unit, silty sand fluvial plain unit (land use: wet rice field) and unconsolidated sand beach deposits plain unit (opened land without vegetation). Hydrologically, the study area can be divided indus tri three small river stream area (RSA). Detailed description of geomorfological condition is showed by table and geomorphological map. (author)

  1. Quality assurance in processing radioactive waste for land disposal

    International Nuclear Information System (INIS)

    1984-01-01

    To provide the appropriate assurances as to the quality of processed radioactive waste it is necessary to consider the complete range of activities involved in the formation and operation of a radioactive waste processing facility. To this end, an outline has been given to the individual elements which should be addressed in quality assurance proposals to the authorising Departments. In general terms, the quality checks on product material should be aimed at demonstrating that the radioactive waste product is what was agreed at the time of process approval. In addition, at the discretion of the authorising Departments, the waste processor will be required to confirm that the product meets any specific acceptance criteria such as the capability to retain the immobilised radionuclides when in contact with water. (author)

  2. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  3. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  4. Disposal of Industrial and Domestic Wastes: Land and Sea Alternatives.

    Science.gov (United States)

    1984-01-01

    evaporation from the soil surface and uptake and release of water by vegetation. Some assumptions in predicting the fate of wastes in groundwaters are...scientists many years to under- stand the relationship between DDT and eggshell thinning and the subsequent population decline of some marine birds...consequence were unable to maintain their population levels. Eggshell thinning and subsequent reproductive failures implicated the DDT from the outfall. This

  5. Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong

    International Nuclear Information System (INIS)

    Syahrir

    1996-01-01

    Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong. Models and computer codes have been selected for safety assessment of near surface waste disposal facility. This paper provides a summary and overview of the methodology and codes selected. The methodology allows analyses of dose to individuals from offsite releases under normal conditions as well as on-site doses to inadvertent intruders. A demonstration in the case of shallow land waste disposal in Nuclear Research Establishment are in Serpong has been given for normal release scenario. The assessment includes infiltration of rainfall, source-term, ground water (well) and surface water transport, food-chain and dosimetry. The results show dose history of maximally exposed individuals. The codes used are VS2DT, PAGAN and GENII. The application of 1 m silt loam as a moisture barrier cover decreases flow in the disposal unit by a factor of 27. The selected radionuclides show variety of dose histories according to their chemical and physical characteristics and behavior in the environment

  6. 1998 report on Hanford Site land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1998-01-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  7. 1998 report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  8. Potential for effects of land contamination on human health. 2. The case of waste disposal sites.

    Science.gov (United States)

    Kah, Melanie; Levy, Len; Brown, Colin

    2012-01-01

    This review of the epidemiological literature shows that evidence for negative impacts of land contaminated by waste disposal on human health is limited. However, the potential for health impacts cannot be dismissed. The link between residence close to hazardous waste disposal sites and heightened levels of stress and anxiety is relatively well established. However, studies on self-reported outcomes generally suffer from interpretational problems, as subjective symptoms may be due to increased perception and recall. Several recent multiple-site studies support a plausible linkage between residence near waste disposal sites and reproductive effects (including congenital anomalies and low birth weight). There is some conflict in the literature investigating links between land contamination and cancers; the evidence for and against a link is equally balanced and is insufficient to make causal inferences. These are difficult to establish because of lack of data on individual exposures, and other socioeconomic and lifestyle factors that may confound a relationship with area of residence. There is no consistently occurring risk for any specific tumor across multiple studies on sites expected to contain similar contaminants. Further insights on health effects of land contamination are likely to be gained from studies that consider exposure pathways and biomarkers of exposure and effect, similar to those deployed with some success in investigating impacts of cadmium on human health.

  9. Calendar Year 2002 Hanford Site mixed waste land disposal restrictions report (section 1 thru 3)

    International Nuclear Information System (INIS)

    MISKHO, A.G.

    2003-01-01

    Volume 1 presents information concerning the storage and minimization of mixed waste and the potential sources for the generation of additional mixed waste. This information, presented in accordance with ''Hanford Federal Facility Agreement and Consent Order'' (Tri-Party Agreement) (Ecology et al. 2001) Milestone M-26-01M, is Volume 1 of a two-volume report on the status of Hanford Site land disposal restricted mixed waste, other mixed waste, and other waste that the U.S. Department of Energy (DOE), Washington State Department of Ecology (Ecology), and US. Environmental Protection Agency (EPA) have agreed to include in this report. This volume contains the approval page for both volumes and includes the storage report. Information pertaining to waste characterization and treatment are addressed in Volume 2. Appendix A lists the land disposal restrictions (LDR) reporting requirements and explains where the requirements are addressed in this report. The reporting period for this document is from January 1, 2002, to December 31, 2002. Clearance form only sent to RHA

  10. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  11. 1997 Hanford site report on land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1997-01-01

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones

  12. 1997 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  13. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    Science.gov (United States)

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.

  14. Low-level waste shallow land disposal source term model: Data input guides

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Suen, C.J.

    1989-07-01

    This report provides an input guide for the computational models developed to predict the rate of radionuclide release from shallow land disposal of low-level waste. Release of contaminants depends on four processes: water flow, container degradation, waste from leaching, and contaminant transport. The computer code FEMWATER has been selected to predict the movement of water in an unsaturated porous media. The computer code BLT (Breach, Leach, and Transport), a modification of FEMWASTE, has been selected to predict the processes of container degradation (Breach), contaminant release from the waste form (Leach), and contaminant migration (Transport). In conjunction, these two codes have the capability to account for the effects of disposal geometry, unsaturated/water flow, container degradation, waste form leaching, and migration of contaminants releases within a single disposal trench. In addition to the input requirements, this report presents the fundamental equations and relationships used to model the four different processes previously discussed. Further, the appendices provide a representative sample of data required by the different models. 14 figs., 27 tabs

  15. 1995 Report on Hanford site land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report

  16. 1995 Report on Hanford site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  17. Survey of microbiological effects in low-level radioactive waste disposed of to land

    International Nuclear Information System (INIS)

    McGahan, D.J.

    1987-01-01

    An evaluation of published literature was mounted to determine the current position of research into microbiological effects in low-level radioactive waste disposal sites and to assess the need for further research. It is concluded from the survey that the microbial activity present in domestic landfills also occurs in shallow land burial low-level radioactive waste disposal sites. The microbial activity results in the release of tritium as tritiated methane to the atmosphere and tritiated components to the leachate. Carbon-14 migration is also enhanced. It also accelerates the corrosion of steel and concrete used to contain the wastes. There is little evidence for enhanced migration of radionuclides as a result of their incorporation in bacteria but there is considerable evidence for enhancement resulting from the presence of complexing agents (such as ethylenediamine-tetraacetic acid and tributyl phosphate) in the waste. Research in this field has been observed to be very active in the United States. Its objective is to predict with more certainty the important parameters for future low-level radioactive waste site designs. Quantitative prediction of microbial effects and their magnitude is not easy to deduce from the published literature, and new site designs will differ markedly from those that have been in operation over the last thirty years. (author)

  18. Household hazardous waste disposal to landfill: Using LandSim to model leachate migration

    International Nuclear Information System (INIS)

    Slack, Rebecca J.; Gronow, Jan R.; Hall, David H.; Voulvoulis, Nikolaos

    2007-01-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW. - Aquatic pollutants linked to the disposal of household hazardous waste in municipal landfills have the potential to exist in soil and groundwater for many years

  19. Planning for closures of hazardous waste land disposal units at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Welch, S.H.; Kelly, B.A.; DeLozier, M.F.P.; Manrod, W.E.

    1988-01-01

    Eight hazardous waste land disposal units at the Oak Ridge Y-12 Plant are being closed in accordance with the Resource Conservation and Recovery Act (RCRA) under an integrated multi-year program. The units, some of which date back to the early 1950s and include five surface impoundments, two landfills and a land treatment unit, have been used for the management of a variety of types of hazardous wastes. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. The units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. Closure of all eight units must be initiated by November 8, 1988. Funding for the eight closures is being provided by a new Department of Energy budget category, the environmental Restoration Budget Category (ERBC), which is intended to allow for a more rapid response to environmental problems and regulatory requirements. A major project, Closure and Post-Closure Activities (CAPCA) has been identified for ERBC funding to close the land disposal units in accordance with RCRA requirements. Establishing the project scope has required the development of a detailed set of assumptions and a confirmation program for each assumption. Other significant activities in the CAPCA project include risk assessments and the preparation of an integrated project schedule

  20. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1994-01-01

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility's compliance with criteria identified in the RAP. The criteria are based upon the open-quotes Core Requirementsclose quotes listed in DOE Order 5480.31, open-quotes Startup and Restart of Nuclear Facilitiesclose quotes

  1. 1993 report on Hanford Site land disposal restrictions for mixed wastes

    International Nuclear Information System (INIS)

    Black, D.

    1993-04-01

    Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 2 (RCRA) and Atomic Energy Act 3 . This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order 1 (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress

  2. Shallow land disposal technology

    Energy Technology Data Exchange (ETDEWEB)

    Pillette-Cousin, L. [Nuclear Environment Technology Insitute, Taejon (Korea, Republic of Korea )

    1997-12-31

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L`Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs.

  3. Shallow land disposal technology

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.

    1997-01-01

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L'Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs

  4. Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Dobbs, S.; Nine, B.J.

    1980-01-01

    Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60 Co, 85 Sr, and 134 137 Cs, was not affected at total activity concentrations of 2.6 x 10 2 and 2.7 x 10 3 pCi/ml

  5. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  6. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  7. Preliminary criteria for shallow-land storage/disposal of low-level radioactive solid waste in an arid environment

    International Nuclear Information System (INIS)

    Shord, A.L.

    1979-09-01

    Preliminary criteria for shallow land storage/disposal of low level radioactive solid waste in an arid environment were developed. Criteria which address the establishment and operation of a storage/disposal facility for low-level radioactive solid wastes are discussed. These were developed from the following sources: (1) a literature review of solid waste burial; (2) a review of the regulations, standards, and codes pertinent to the burial of radioactive wastes; (3) on site experience; and (4) evaluation of existing burial grounds and practices

  8. Modeling of release of radionuclides from an engineered disposal facility for shallow-land disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Suzuki, A.

    1989-01-01

    The computer code, ENBAR-1, for the simulation of radionuclide releases from an engineered disposal facility has been developed to evaluate the source term for subsequent migration of radionuclides in and through a natural barrier. The system considered here is that a waste package (waste form and container) is placed, together with backfill materials, into a concrete pit as a disposal unit for shallow-land disposal of low-level radioactive wastes. The code developed includes the following modules: water penetration into a concrete pit, corrosion of a drum as a container, leaching of radionuclides from a waste form, migration of radionuclides in backfill materials, release of radionuclides from the pit. The code has the advantage of its simplicity of operation and presentation while still allowing comprehensive evaluation of each element of an engineered disposal facility to be treated. The performance and source term of the facility might be readily estimated with a few key parameters to define the problem

  9. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  10. Problems in shallow land disposal of solid low-level radioactive waste in the united states

    Science.gov (United States)

    Stevens, P.R.; DeBuchananne, G.D.

    1976-01-01

    Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These

  11. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    Science.gov (United States)

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  12. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land

    International Nuclear Information System (INIS)

    Nancarrow, D J; White, M M

    2004-01-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950 000 m 3 ). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  13. Effect of LiNO3 on corrosion prevention of aluminum wastes after their land disposal

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Matsuda, Masami; Hironaga, Michihiko; Horikawa, Yoshihiko.

    1996-01-01

    After their land disposal, LiNO 3 added to cement solidified miscellaneous wastes inhibits hydrogen gas generation due to alkaline corrosion of aluminum contained in the wastes. We considered the presence of an Li-Al preservation film prevents hydrogen gas generation, and then, we assumed a scenario in which the amount of LiNO 3 included in the waste packages is lowered by underground water penetration, resulting in dissolution of the Li-Al preservation film. This dissolution allows the alkaline underground water to reach and corrode the aluminum materials. The loss of Na 2 O and K 2 O in cement by underground water penetration lowers the pH, so that the aluminum corrosion in the waste packages with LiNO 3 , expected when the Li-Al preservation film dissolves, is less than that without LiNO 3 . To test this scenario, we measured solubility of the Li-Al preservation film, Li + ion concentration, pH variation by underground water penetration, and aluminum corrosion when the Li-Al preservation film had dissolved. The measured solubility of the Li-Al preservation film was 3x10 -4 M at 283 K. At that time, pH was lowered from 12.9-13.0 to 12.2-12.3. As a result, with LiNO 3 addition the aluminum corrosion amount was reduced to 10% of that without LiNO 3 addition, because of the pH decrease. (author)

  14. Land Disposal Restrictions Treatment Standards: Compliance Strategies for Four Types of Mixed Wastes

    International Nuclear Information System (INIS)

    Fortune, W.B.; Ranek, N.L.

    2006-01-01

    This paper describes the unique challenges involved in achieving compliance with the Resource Conservation and Recovery Act (Public Law 94-580) Land Disposal Restrictions (LDR) treatment standards for four types of mixed wastes generated throughout the U.S. Department of Energy (DOE) complex: (1) radioactively contaminated lead acid batteries; (2) radioactively contaminated cadmium-, mercury-, and silver-containing batteries; (3) mercury-bearing mixed wastes; and (4) radioactive lead solids. For each of these mixed waste types, the paper identifies the strategy pursued by DOE's Office of Pollution Prevention and Resource Conservation Policy and Guidance (EH-43) in coordination with other DOE elements and the U.S. Environmental Protection Agency (EPA) to meet the compliance challenge. Specifically, a regulatory interpretation was obtained from EPA agreeing that the LDR treatment standard for wastes in the D008 'Radioactive Lead Solids' sub-category applies to radioactively contaminated lead acid batteries. For cadmium-, mercury-, and silver-containing batteries, generically applicable treatability variances were obtained from EPA approving macro-encapsulation as the alternative LDR treatment standard for all three battery types. Joint DOE/EPA technology demonstrations were pursued for mercury-bearing mixed wastes in an effort to justify revising the LDR treatment standards, which focus on thermal recovery of mercury for reuse. Because the demonstrations failed to produce enough supporting data for a rulemaking, however, EPA has recommended site-specific treatability variances for particular mercury-bearing mixed waste streams. Finally, DOE has filed an application for a determination of equivalent treatment requesting approval of container-based macro-encapsulation technologies as an alternative LDR treatment standard for radioactive lead solids. Information is provided concerning the length of time required to implement each of these strategies, and suggestions for

  15. Economic aspects related to the shallow land disposal of nuclear waste: The Belgian case

    International Nuclear Information System (INIS)

    Kunsch, P.L.; Zaccai, H.; Miegroet, J. van

    1993-01-01

    The Belgian concept for shallow land disposal of low-level short-lived waste is approaching maturity. The paper presents its main design features, the construction and operating phases, and the economics of the project. The conclusion is that this concept is economically interesting when compared to the geological option. The financial approach adopted by Belgium is presented. Pros and cons of timely operation are discussed. Although it may look economically attractive to adopt a slow pace in implementing the concept, the paper shows that deferring decisions would be a risky attitude, in contradiction with fairness to future consumers. Such a conclusion derives from economic and financial arguments, considering that cost uncertainties, especially in the front-end, and financial management risk might be of overwhelming importance

  16. Near-surface land disposal

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1989-01-01

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  17. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    International Nuclear Information System (INIS)

    Shott, Gregory J.; Yucel, Vefa

    2009-01-01

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results

  18. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  19. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  20. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  1. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  2. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  3. Study of backfill material composition for shallow land radioactive wastes disposal

    International Nuclear Information System (INIS)

    Sukarman-Aminjoyo; Sukrosono; Supardi

    1996-01-01

    The composition of back fill material for shallow land radioactive wastes disposal has been investigated by using bentonite, magnetic and quartz sands. The aim of this research is to observe the kind of mineral suitable for back fill material. The research was done for each mineral material and for the mixture of those three minerals. Firstly 2 grams of bentonite. magnetite or quartz sand was put into a glass column of 1.2 cm in diameter. Then the Sr-90 liquid waste was flown through out the column. In this experiment the adsorption velocity, through velocity, adsorption capacity and decontamination factor were determined for the grain size of 10 up to 100 mesh. By the same method the experiment was done for the mix of those three minerals. The experiment result indicated that the grain size mineral influenced the parameter of adsorption velocity, through velocity, adsorption capacity and decontamination factor. The relatively good result was obtained for the grain size of 80 mesh. Among the three kinds of minerals, bentonite had the highest of adsorption capacity and decontamination factor, while its adsorption velocity and through velocity were the lowest. The mixture of that three minerals gave better result than that mixture of two mineral component. The usage of the mineral mixture with the grain size of 80 mesh and the weight ratio between that component of 1:1:1, resulted in the decontamination factor of 68.44, the adsorption capacity of 235 ml/g, the adsorption velocity of 31x10 -3 ml/sec. and the through velocity of 1.82x10 -3 ml/sec

  4. Trees as indicators of subterranean migration of tritium at a commercial shallow land radioactive waste disposal site

    International Nuclear Information System (INIS)

    Rickard, W.H.; Kirby, L.J.

    1984-09-01

    Leaf water and tree sap collected from deciduous trees in a natural forest growing outside the fenced exclusion area of the Maxey Flats Waste Disposal Facility in eastern Kentucky, USA were radiochemically analyzed to detect movement of tritium via subterranean flows of water at depths of three meters. These data indicate that trees can be used to detect the subterranean migration of tritium from shallow land burial sites. 4 references, 5 figures, 1 table

  5. Background studies: climatic and geomorphological aspects of the evolution of shallow land burial sites for radioactive waste disposal

    International Nuclear Information System (INIS)

    1988-04-01

    This report presents the results of a programme of background research into some climatic and geomorphological aspects of the evolution of shallow land disposal environments for radioactive wastes in Britain. The work has supported development of the TIME2 simulation code. Modelling approaches are presented and discussed, along with supporting data, for climatic change, ice sheet growth and decay, groundwater effects and denudation. The potential effects of periglacial processes on a repository are also briefly discussed. (author)

  6. 76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Science.gov (United States)

    2011-06-13

    ... to meet numeric concentration limits before they can be land disposed. However, the lack of readily available analytical standards makes it difficult to measure whether the numeric LDR concentration limits...-0332, by one of the following methods: http://www.regulations.gov : Follow the on-line instructions for...

  7. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  8. Design improvements on shallow-land burial trenches for disposing of low-level radioactive waste

    International Nuclear Information System (INIS)

    Takamura, E.S.; Salsman, J.M.

    1984-01-01

    The lack of success of closed low-level radioactive waste disposal sites has prompted the federal government to increase regulation of these facilities. In order to meet these increased requirements, several waste trench improvements are necessary. These improvements to the trench include sandy-clay caps, compacted sandy-clay bottoms, in-place geophysical instruments and vadose zone sampling equipment, and concrete sidewalls. These design improvements presented in this paper should increase the containment of the radionuclides by decreasing the waste contact with infiltrating groundwater. The design improves on the monitoring and sampling methods for detecting radionuclides transported through the leachate or gas effluent streams. 13 references, 4 figures

  9. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    Science.gov (United States)

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  10. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  11. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  12. Economic impacts of 10 CFR part 61 on the land disposal of low-level radioactive waste (LLRW)

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    The new regulations for land disposal of radioactive waste, 10 CFR Part 61, as promulgated by the United States Nuclear Regulatory Commission (NRC) are effective as of December 27, 1983. These new rules have required modifications to the previous practices in commercial burial of LLRW which increased the costs associated with disposal. This paper addresses the requirements of the new regulations, and describes the efforts of one burial site operator to minimize the economic impact of the regulations. Each of the requirements addressed has economic impacts relative to increased paperwork and documentation, increased inspection time, increased labor and equipment costs, increased site construction requirements and decreased disposal efficiency. Discussed in the paper are the relative cost impacts, and the actions and the degree of success of US Ecology, Inc., to minimize cost increases through license negotiations, computerized record keeping and reporting, computerized class verification, and site management and operating procedures

  13. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  14. Grout Treatment Facility Land Disposal Restriction Management Plan

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1991-01-01

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig

  15. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  16. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  17. Hazardous-materials waste disposal: Land, January 1988-July 1991 (Citations from the NTIS Data Base). Rept. for Jan 88-Jul 91

    International Nuclear Information System (INIS)

    1991-06-01

    The bibliography contains citations concerning the disposal of hazardous industrial and municipal wastes, chemical agents, and a variety of other dangerous substances into and from the land. Topics include restoration operations, contamination abatement studies, appropriate regulation and legislation, and remedial response strategies. Considerable attention is given to waste disposal sites at military installations and to incineration operations. Citations pertaining specifically to radioactive waste disposal, state by state toxic release inventories, Best Demonstrated Available Technology as defined by Environmental Protection Agency, Health Assessments for individual companies sponsored by the Toxic Substances and Disease Registry, Atlanta, GA., and the Superfund Record of Decisions are excluded. (The bibliography contains 153 citations with a subject index.)

  18. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  19. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  20. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  1. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  2. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  3. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  4. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  5. CY2000 Hanford Site Mixed Waste Land Disposal Restrictions Report Vol. 1 Storage Report and Vol 2: Characterization and Treatment Report [SEC 1 thru SEC 4

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    2001-01-01

    This volume presents information about the storage and minimization of mixed waste and potential sources for the generation of additional mixed waste. This information is presented in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1996) Milestone M-26-01K. It is Volume 1 of a two-volume report on the status of Hanford Site land-disposal-restricted mixed waste, other mixed waste, and other waste that the parties have agreed to include in this report. This volume also contains the approval page for both volumes and assumptions, accomplishments, and some other information that also pertains to waste characterization and treatment, which are addressed in Volume 2. Appendix A lists the land disposal restriction (LDR) reporting requirements and explains where they are addressed in this report. The reporting period for this document is from January 1, 2000, to December 31, 2000

  6. Final Environmental Impact Statement on 10 CFR Part 61 licensing requirements for land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1982-11-01

    The three-volume final environmental impact statement (FEIS) is prepared to guide and support publication of a final regulation, 10 CFR Part 61, for the land disposal of low-level radioactive waste. The FEIS is prepared in response to public comments received on the draft environmental impact statement (DEIS) on the proposed Part 61 regulation. The DEIS was published in September 1981 as NUREG-0782. Public comments received on the proposed Part 61 regulation separate from the DEIS are also considered in the FEIS. The FEIS is not a rewritten version of the DEIS, which contains an exhaustive and detailed analysis of alternatives, but rather references the DEIS and presents the final decision bases and conclusions (costs and impacts) which are reflected in the Part 61 requirements. Four cases are specifically considered in the FEIS representing the following: past disposal practice, existing disposal practice, Part 61 requirements, and an upper bound example. The Summary and Main Report are contained in Volume 1. Volume 2 consists of Appendices A - Staff Analysis of Public Comments on the DEIS for 10 CFR Part 61, and Appendices B - Staff Analysis of Public Comments on Proposed 10 CFR Part 61 Rulemaking. Volume 3 contains Appendices C-F, entitled as follows: Appendix C - Revisions to Impact Analysis Methodology, Appendix D - Computer Codes Used for FEIS Calculations, Appendix E - Errata for the DEIS for 10 CFR Part 61 and last, Appendix F - Final Rule and Supplementary Information

  7. Use of Long-Term Lysimeter Data in Support of Shallow Land Waste Disposal Cover Design

    International Nuclear Information System (INIS)

    Desotell, L.T.; Hudson, D.B.; Yucel, V.; Carilli, J.T.

    2006-01-01

    Water balance studies using two precision weighing lysimeters have been conducted at the Nevada Test Site in support of low-level radioactive waste disposal since 1994. The lysimeters are located in northern Frenchman Flat approximately 400 meters (m) from the southwest corner of the Area 5 Radioactive Waste Management Site. Frenchman Flat is in the northern Mojave Desert and has an average annual precipitation of 125 millimeters (mm). Each lysimeter consists of a 2 m by 4 m by 2 m deep steel tank filled with native alluvium, supported on a sensitive scale. The scale is instrumented with an electronic load-cell and data-logger for continuous measurement of total soil water storage with a precision of approximately ±800 grams or ±0.1 mm of soil water storage. Data-loggers are linked to cell phone modems for remote data acquisition. One lysimeter is vegetated with native creosote bush, four wing salt bush, and annual grass at the approximate density of the surrounding landscape while the other is maintained as bare soil. Since no drainage has been observed from the bottom of the lysimeters and run-on/run-off is precluded, the change in soil-water storage is equal to precipitation minus evaporation/evapotranspiration. After equilibration, the bare lysimeter contains approximately 20.2 centimeters (cm) of water (10.1 % volumetric water content) and the vegetated lysimeter contains approximately 11.6 cm of water (5.8 % volumetric water content). The finite difference code UNSAT-H was used to simulate the continuous water balance of the lysimeters. Calibrated one-dimensional model simulations were generally in agreement with field data. 30-year model simulations were conducted to evaluate long-term potential transport of radionuclides via the soil water migration pathway. A 30-year climate record was generated by repeating the existing data record. Simulations indicate a 2 m thick closure cover, in conjunction with native vegetation, will essentially eliminate drainage

  8. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  9. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  10. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Critchley, R.J.; Swindells, R.J.

    1984-01-01

    A method and apparatus for charging radioactive waste into a disposable steel drum having a plug type lid. The drum is sealed to a waste dispenser and the dispenser closure and lid are withdrawn into the dispenser in back-to-back manner. Before reclosing the dispenser the drum is urged closer to it so that on restoring the dispenser closure to the closed position the lid is pressed into the drum opening

  11. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  12. Reference values on safety regulation of land disposal of low level radioactive solid waste (the second interim report) and its incorporation into legal regulations

    International Nuclear Information System (INIS)

    Aoki, Terumi

    1994-01-01

    Safety regulation of land disposal of low level radioactive solid waste in Japan is based on 'the basic philosophy on the safety regulation of land disposal of low level radioactive solid waste' determined by the Nuclear safety Committee (October 1985). The basic philosophy on the upper limit of radioactivity of disposed wastes was published as the reference values in the interim report (February 1987) and in the second interim report (June 1992). In the second interim report, the upper limits of radioactivity are established for three types of solid radioactive wastes: 1) metals, incombustible or flame resistant wastes generated nuclear reactor facilities and solidified in vessels, 2) large metallic structures generated from decommissioning of reactor facilities and difficult to solidify in vessels, and 3) radioactive concrete waste generated from decommissioning of reactor facilities. The upper limits of radioactivity are presented for C-14, Co-60, Ni-63, Sr-90, Cs-137, alfa-emmitters, Ca-41 (for concrete) and Eu-152 (for concrete). Related laws and regulations in Japan on safe disposal of low level wastes are explained. (T.H.)

  13. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  14. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  15. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    Science.gov (United States)

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  16. Acquisition of public lands for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Dawson, J.H.

    1983-09-01

    It is clear that the Federal Land Policy Management Act (FLPMA) gives broadly extended statutory authority to the Bureau of Land Management (BLM) to effect public land transactions. For the purposes of this study, the focus will be on an examination of the boundaries of BLM's powers to effect the exchange and sale of public lands. In the course of examining these powers, consideration will be given also to certain limitations inherent in the statutes which may delay implementation of BLM powers and the consequent effective transfer of public lands. The principal reason for possible delay is the FLPMA requirement for land use planning. Other delay sources could be the requirement for fair market value and the increased prospect of third party judicial challenge. Finally, some consideration will be given to alternative approaches such as the Federal Asset Management Program, the Recreation and Public Purposes Act and State selection of lands

  17. Disposal facilities on land for low and intermediate-level radioactive wastes: draft principles for the protection of the human environment

    International Nuclear Information System (INIS)

    1983-10-01

    This document gives the views of the authorising [United Kingdom] Departments under the Radioactive Substances Act 1960 about the principles which those Departments should follow in assessing proposals for land disposal facilities for low and intermediate-level radioactive wastes. It is based on relevant research findings and reports by international bodies; but has been prepared at this stage as a draft on which outside comments are sought, and is subject to revision in the light of those comments. That process of review will lead to the preparation and publication of a definitive statement of principles, which will be an important background document for public inquiries into proposals to develop sites for land disposal facilities. Headings are: authorisation of disposal; other legislation governing new disposal facilities; basic radiological requirements; general principles; information requirements. (author)

  18. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  19. Radioactive waste disposal in W.A

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1983-01-01

    Radioactive waste in Western Australia arises primarily from medical diagnosis and treatment and from scientific research mainly with a medical orientation. Waste is classified before disposal depending on its level and type of radioactivity and then disposed of either to municipal land fill sites, to the sewerage system or by incineration. The amounts of radioactive materials which may be disposed of to the sewers and air are set by the Radiation Safety Act (1975) Regulations, and the land fill operations are controlled to ensure isolation of the material. Other waste such as unwanted sources used in industrial applications are stored for future disposal. Discussions are being held between officers of the State and Australian Governments aimed at providing suitable disposal methods for sources of this kind

  20. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  1. Disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-11-15

    A discussion on the disposal of radioactive wastes was held in Vienna on 20 September 1960. The three scientists who participated in the discussion were Mr. Harry Brynielsson (Sweden), Head of the Swedish Atomic Energy Company; Mr. H. J. Dunster (United Kingdom), Health Physics Adviser to the United Kingdom Atomic Energy Authority; and Mr. Leslie Silverman (United States), Professor of Harvard University, and Chairman of the US AEC Advisory Committee on Reactor Safeguards, as well as consultant on air cleaning

  2. Whither nuclear waste disposal?

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, T A [JK Research Associates, Silver Spring, MD (United States)

    1990-07-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site.

  3. Development of guidance for preparing treatability variance petitions from the RCRA Land Disposal Restrictions for DOE [Department of Energy] mixed-waste streams

    International Nuclear Information System (INIS)

    Harms, T.; Scheuer, N.; Martin, R.; Van Epp, T.; Triplett, M.

    1990-01-01

    In response to the Department of Energy's (DOE) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) treatment requirements, a treatability variance guidance document is being prepared for use by DOE facilities and operations offices. The guidance document, although applicable to non-mixed hazardous waste streams, provides specific guidance regarding radioactive mixed-waste streams. Preparation of the guidance manual has involved developing an overview of the Land Disposal Restrictions, as well as an overview of the petition preparation process. The DOE internal review requirements are specifically addressed in the manual. Specific data requirements and engineering analyses are also described. A discussion of EPA's criteria for granting a treatability variance is also provided. A checklist for completeness of the petition is provided. Model language for use in DOE treatability variance petitions will be provided in a petition for a DOE waste stream as an appendix to the document

  4. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  5. 76 FR 34147 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Science.gov (United States)

    2011-06-13

    ... numeric concentration limits or methods of treatment that substantially diminish the hazardous waste's... methods), reinstated the LDR treatment standards expressed as numerical concentration limits for 32... treatment methods and numeric concentration limits provides maximum flexibility in the choice of treatment...

  6. Disposal of radioactive waste in the Atlantic

    International Nuclear Information System (INIS)

    1982-06-01

    An operation to dispose of low-level radioactive waste in the North Atlantic deeps is undertaken each year. This leaflet seeks to answer questions which are sometimes asked about the operation. It deals with origin, composition, quantity, reason for sea- rather than land-disposal, packaging, transport (rail, road), route of transport, safety precautions, radiation protection, personnel, contamination, site of dump, international regulations, neutral observers, safety standards of containers and control of level of radioactivity of wastes. (U.K.)

  7. Background studies: human-induced effects on the evolution of shallow land burial sites for radioactive waste disposal

    International Nuclear Information System (INIS)

    1987-11-01

    This report presents the results of a programme of background research on the human-induced effects on the long term evolution of shallow disposal sites for low level radioactive wastes. The work is intended to support development and use of the TIME2 simulation code. Within the context of climatic change up to the next glacial maximum three areas are addressed: planning and legislative control over site usage, biosphere state changes and intrusion. An appendix presents a discussion of some planning aspects of radioactive waste disposal. (author)

  8. Lessons Learned Report for the radioactive mixed waste land disposal facility (Trench 31, Project W-025)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1995-01-01

    This report presents the lessons learned from a project that involved modification to the existing burial grounds at the Hanford Reservation. This project has been focused on the development and operation of a Resource Conservation and Recovery Act compliant landfill which will accept low-level radioactive wastes that have been placed in proper containers

  9. The thermal analysis of low heat generating radioactive wastes in land disposal facilities

    International Nuclear Information System (INIS)

    Lympany, S.D.

    1984-08-01

    A procedure is developed which allows a simple thermal analysis of a radioactive waste repository. The procedure is used to establish if the thermally induced groundwater flow is important when considering the transport of radionuclides from the repository, and thereby indicates if this flow should be taken into account in a detailed thermal assessment. (author)

  10. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  11. Waste disposal experts meet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    Problems connected with the disposal into the sea of radioactive wastes from peaceful uses of atomic energy are being examined by a panel of experts, convened by the International Atomic Energy Agency. These experts from eight different countries held a first meeting at IAEA headquarters in Vienna from 4-9 December 1958, under the chairmanship of Dr. Harry Brynielsson, Director General of the Swedish Atomic Energy Company. The countries represented are: Canada, Czechoslovakia, France, Japan, Netherlands, United Kingdom and United States. The group will meet again in 1959. (author)

  12. Land suitability for final waste disposal with emphasis on septic systems installation in southern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Jeani Moreira de Oliveira

    2016-02-01

    Full Text Available ABSTRACT Environmental pollution is a problem that has been noted due to changes in the environment, affecting natural resources. Regarding the soil, it may offer great potential for waste disposal. Thus, this study aims to propose criteria for evaluating local suitability for waste disposal, according to soil and terrain attributes for southern Minas Gerais State, and to apply those criteria to define the most appropriate locations for installation of septic systems in a pilot watershed. Literature and the authors' experience were used to propose the more important criteria regarding the suitability of sites for waste disposal. The set of attributes taken into account was grouped into four suitability classes: Adequate, Regular, Restricted and Inadequate. The defined criteria and considered limiting were: soil depth, texture, textural gradient, structure, natural drainage, water infiltration, type of surface horizon, water table depth, depth of perched water table, distance from water bodies, relief, stoniness, rockiness and risk of flooding. From these, soil depth, natural drainage, water table depth, relief and distance from water bodies were adopted for the installation of septic systems. From the total area of the watershed, 5.29% fit in the Adequate suitability class. The Regular, Restricted, and Inadequate sites accounted for, respectively, 19.72%, 41.99% and 33% of the wathershed. Factors such as soil and terrain attributes provide a basis for defining more appropriate places for waste disposal. Future work should involve the refinement of these propositions, since there are rare studies in this research line in Brazil.

  13. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  14. Geoenvironment and waste disposal

    International Nuclear Information System (INIS)

    1983-07-01

    Within the activities planned by UNESCO in its Water and Earth Science programme, an interdisciplinary meeting on geology and environment was scheduled by this organization to be held by the beginning of 1983. At this meeting it was intended to consider geological processes in the light of their interaction and influence on the environment with special emphasis on the impact of various means of waste disposal on geological environment and on man-induced changes in the geological environment by mining, human settlements, etc. Considering the increasing interest shown by the IAEA in the field, through environmental studies, site studies, and impact studies for nuclear facilities and particularly nuclear waste disposal, UNESCO expressed the wish to organize the meeting jointly so as to take into account the experience gained by the Agency, and in order to avoid any duplication in the activities of the two organizations. This request was agreed to by the IAEA Secretariat and as a result, the meeting was organized by both organizations and held at IAEA Headquarters in Vienna from 21-23 March 1983. The report of this meeting is herewith presented

  15. Environmental assessment model for shallow land disposal of low-level radioactive wastes: interim report

    International Nuclear Information System (INIS)

    Little, C.A.; Fields, D.E.; Emerson, C.J.; Hiromoto, G.

    1981-09-01

    PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code developed under US Environmental Protection Agency (EPA) funding to evaluate possible health effects from shallow land burial trenches. The model is intended to be generic and to assess radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000-y period following the end of burial operations. Human exposure scenarios considered by the model include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer

  16. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  17. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  18. Processing and waste disposal needs for fusion breeder blankets system

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1988-01-01

    We evaluated the waste disposal and recycling requirements for two types of fusion breeder blanket (solid and liquid). The goal was to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under U.S. Nuclear Regulatory Commission regulations. Described in this paper are the radionuclides expected in fusion blanket materials, plans for reprocessing and disposal of blanket components, and estimates for the operating costs involved in waste disposal. (orig.)

  19. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  20. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  1. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  2. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  3. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  4. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  5. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  6. Toxic waste liquor disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Toxic waste liquors, especially radio active liquors, are disposed in a sub-zone by feeding down a bore hole a first liquid, then a buffer liquid (e.g. water), then the toxic liquors. Pressure variations are applied to the sub-zone to mix the first liquid and liquors to form gels or solids which inhibit further mixing and form a barrier between the sub-zone and the natural waters in the environment of the sub-zone. In another example the location of the sub-zone is selected so that the environement reacts with the liquors to produce a barrier around the zone. Blind bore holes are used to monitor the sub-zone profile. Materials may be added to the liquor to enhance barrier formation. (author)

  7. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  8. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  9. A survey of possible microbiological effects within shallow land disposal sites designed to accept intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Rushbrook, P.E.

    1985-01-01

    A literature survey was conducted to assess the current knowledge on microbial activity that may occur within a shallow intermediate-level waste disposal trench. Relatively little published information exists that is directly based on intermediate radioactive wasteforms, but relevant work was identified from other scientific fields. The likely environmental conditions within a disposal trench and their influence on microbial activity are considered. Also discussed are specific microbiological effects on waste packagings, backfill materials and concrete structures. Overall, it is unlikely that there will be extensive activity within the trenches and little evidence exists to suggest microbiologically-enhanced radionuclide migration,. The quantitative effect of microbial action is not possible to ascertain from the literature, but the general impression is that it will be low. Physical or chemical degradation processes are likely to predominate over those of a microbiological nature. Areas where further research would be valuable are also recommended. (author)

  10. Determining how much mixed waste will require disposal

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1990-01-01

    Estimating needed mixed-waste disposal capacity to 1995 and beyond is an essential element in the safe management of low-level radioactive waste disposal capacity. Information on the types and quantities of mixed waste generated is needed by industry to allow development of treatment facilities and by states and others responsible for disposal and storage of this type of low-level radioactive waste. The design of a mixed waste disposal facility hinges on a detailed assessment of the types and quantities of mixed waste that will ultimately require land disposal. Although traditional liquid scintillation counting fluids using toluene and xylene are clearly recognized as mixed waste, characterization of other types of mixed waste has, however, been difficult. Liquid scintillation counting fluids comprise most of the mixed waste generated and this type of mixed waste is generally incinerated under the supplemental fuel provisions of the Resource Conservation and Recovery Act (RCRA) Because there are no Currently operating mixed waste land disposal facilities, it is impossible to make projections of waste requiring land disposal based on a continuation of current waste disposal practices. Evidence indicates the volume of mixed waste requiring land disposal is not large, since generators are apparently storing these wastes. Surveys conducted to date confirm that relatively small volumes of commercially generated mixed waste volume have relied heavily oil generators' knowledge of their wastes. Evidence exists that many generators are confused by the differences between the Atomic Energy Act and the Resource Conservation and Recovery Act (RCRA) on the issue of when a material becomes a waste. In spite of uncertainties, estimates of waste volumes requiring disposal can be made. This paper proposes an eight-step process for such estimates

  11. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  12. Researching radioactive waste disposal

    International Nuclear Information System (INIS)

    Feates, F.; Keen, N.

    1976-01-01

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared. (U.K.)

  13. Waste disposal into the sea

    International Nuclear Information System (INIS)

    Ehlers, P.; Kunig, P.

    1987-01-01

    The waste disposal at sea is regulated for the most part by national administrative law, which mainly is based on international law rules supplemented by EC-law. The dumping of low-level radioactive waste into the sea is more and more called into question. The disposal of high-level radioactive waste into the subsoil of the sea does not correspond to the London Convention. (WG) [de

  14. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  15. Radioactive waste disposal: an international law perspective

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1989-01-01

    The question of radioactive waste disposal is the most intractable technical and political problem facing nuclear industry. Environmentalists world-wide demand a nuclear waste policy that must be ecologically acceptable internationally. Radioactive wastes and oil pollution were the first two types of marine pollution to receive international attention and various marine pollution controls were established. Ocean disposal was co-ordinated by the Nuclear Energy Agency and the Organization of Economic Co-operation and Development in 1967. The first treaty was the 1958 Convention on the High Seas (High Seas Convention). In response to its call for national co-operation the International Atomic Energy Agency (IAEA) established its Brynielson panel. The IAEA first issued guidelines on sea dumping in 1961. The London Dumping Convention, written in 1972, is the only global agreement concerned solely with the disposal of wastes in the marine environment by dumping. None of the global agreements make specific reference to sea-bed disposal of high-level radioactive wastes. Negotiations began at the Third UN Conference on the Law of the Sea (UNCLOS III) for the codification of a comprehensive treaty concerned with the protection, conservation, sustainable use and development of the marine environment. Burial in deep geological formations is a method of HLW disposal which decreases the chances of accidental intrusion by mankind and has little likelihood of malicious intrusion. National waste management programmes of different countries differ but there is agreement on the acceptable technical solutions to issues of waste management. The final disposition of HLW - storage or disposal - has not been decisively determined, but there is growing consensus that geological land-based disposal is the most viable alternative. Expanded international technical co-operation could well reduce the time needed to develop effective waste disposal mechanisms

  16. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  17. Making waves with undersea (radioactive waste) disposal

    International Nuclear Information System (INIS)

    Milne, Roger.

    1987-01-01

    Following the Government's decision to halt the search for land-based disposal sites for low-level radioactive wastes, the search for alternative means of disposal of low- and intermediate-level wastes continues. Off-shore sites now seems to be the most likely. Two approaches are mentioned. The first is that proposed by Consolidated Environmental Technologies Ltd., to sink a shaft 15 metre in diameter under the seabed in an area of tectonic stability, possibly off Lincolnshire. The shaft could be 3000 metres deep. Waste packages and large decommissioning items would be lowered in from a giant barge. This would be expensive but environmentally more acceptable than the other approach. That is to tunnel out from the land and store the waste offshore, below the seabed. (U.K.)

  18. Land Use Management for Solid Waste Programs

    Science.gov (United States)

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  19. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  20. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  1. Disposal of mixed radioactive and chemical waste

    International Nuclear Information System (INIS)

    Moghissi, A.A.

    1986-01-01

    The treatment of waste by dilution was practiced as long as nature provided sufficient unpolluted air, water, and land. The necessity for treatment, including containment and disposal of wastes is, however, relatively new. Initially, waste products from manufacturing processes were looked upon as a potential resource. The industries of Western Europe, short of raw materials, tried to recover as many chemical compounds as possible from industrial waste. However, the availability of abundant and cheap petroleum during the fifties changes this practice, at least for a short period

  2. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  3. Disposal and reclamation of southwestern coal and uranium wastes

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1979-01-01

    The types of solid wastes and effluents produced by the southwestern coal and uranium mining and milling industries are considered, and the current methods for the disposal and reclamation of these materials discussed. The major means of disposing of the solid wastes from both industries is by land fill or in some instances ponding. Sludges or aqueous wastes are normally discharged into settling and evaporative ponds. Basic reclamation measures for nearly all coal and uranium waste disposal sites include solids stabilization, compacting, grading, soil preparation, and revegetation. Impermeable liners and caps are beginning to be applied to disposal sites for some of the more harmful coal and uranium waste materials

  4. A database for compliance with land disposal restrictions

    International Nuclear Information System (INIS)

    McCoy, M.W.

    1990-09-01

    The new restrictions on land disposal introduce additional challenges to hazardous waste managers. Laboratory waste streams consisting of small volumes of diverse waste types will be particularly difficult to manage due to the large number of possible treatment standards that could be applied. To help remedy this management problem, a user-friendly database has been developed to provide the regulatory information required for each of the hazardous wastes present in the wastes stream of a large research laboratory. 3 figs., 1 tab

  5. Processing and waste disposal representative for fusion breeder blanket systems

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1987-01-01

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made

  6. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  7. Waste disposal developments within BNFL

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1989-01-01

    British Nuclear Fuels plc has broad involvement in topics of radioactive waste generation, treatment, storage and disposal. The Company's site at Drigg has been used since 1959 for the disposal of low level waste and its facilities are now being upgraded and extended for that purpose. Since September 1987, BNFL on behalf of UK Nirex Limited has been managing an investigation of the Sellafield area to assess its suitability for deep underground emplacement of low and intermediate level radioactive wastes. An approach will be described to establish a partnership with the local community to work towards a concept of monitored, underground emplacement appropriate for each waste category. (author)

  8. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  9. Comparative study on the use of self-shielded packages or returnable shielding for the land disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Fitzpatrick, J.; Verrall, S.M.

    1985-01-01

    A comparative study has been carried out on the two philosophies for providing the radiological protection necessary for the transport and handling of packaged intermediate level wastes from their sites of origin to disposal. The two philosophies are self shielding and returnable shielding. The approach taken was to assess the cost and radiological impact differentials of two respective representative waste management procedures. The comparison indicated the merits of each procedure. As a consequence, a hybrid procedure was identified which combines the advantages of each philosophy. This hybrid procedure was used for further comparison. The results of the study indicate that the use of self shielded packages throughout will incur considerable extra expense and give only a small saving in radiological impact. (author)

  10. Waste disposal into the ground

    Energy Technology Data Exchange (ETDEWEB)

    Mawson, C A

    1955-07-01

    The establishment of an atomic energy project is soon followed by the production of a variety of radioactive wastes which must be disposed of safely, quickly and cheaply. Experience has shown that much more thought has been devoted to the design of plant and laboratories than to the apparently dull problem of what to do with the wastes, but the nature of the wastes which will arise from nuclear power production calls for a change in this situation. We shall not be concerned here with power pile wastes, but disposal problems which have occurred in operation of experimental reactors have been serious enough to show that waste disposal should be considered during the early planning stages. (author)

  11. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  12. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  13. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  14. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    International Nuclear Information System (INIS)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944

  15. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944.

  16. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  17. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  18. Radiological assessments of land disposal options: recent model developments

    International Nuclear Information System (INIS)

    Fearn, H.S.; Pinner, A.V.; Hemming, C.R.

    1984-10-01

    This report describes progress in the development of methodologies and models for assessing the radiological impact of the disposal of low and intermediate level wastes by (i) shallow land burial in simple trenches (land 1), (ii) shallow land burial in engineered facilities (land 2), and (iii) emplacement in mined repositories or existing cavities (land 3/4). In particular the report describes wasteform leaching models, for unconditioned and cemented waste, the role of engineered barriers of a shallow land burial facility in reducing the magnitude of doses arising from groundwater contact and a detailed consideration of the interactions between radioactive carbon and various media. (author)

  19. Data base for radioactive waste management: review of low-level radioactive waste disposal history

    International Nuclear Information System (INIS)

    Clancy, J.J.; Gray, D.F.; Oztunali, O.I.

    1981-11-01

    This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 1 is a summary and analysis of the history of low level waste disposal at both commercial and government disposal facilities

  20. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  1. Radiological protection criteria risk assessments for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1982-01-01

    Radiological protection criteria for waste disposal options are currently being developed at the National Radiological Protection Board (NRPB), and, in parallel, methodologies to be used in assessing the radiological impact of these options are being evolved. The criteria and methodologies under development are intended to apply to all solid radioactive wastes, including the high-level waste arising from reprocessing of spent nuclear fuel (because this waste will be solidified prior to disposal) and gaseous or liquid wastes which have been converted to solid form. It is envisaged that the same criteria will be applied to all solid waste disposal options, including shallow land burial, emplacement on the ocean bed (sea dumping), geological disposal on land and sub-seabed disposal

  2. TMI abnormal wastes disposal options

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.

    1984-03-01

    A substantial quantity of high beta-gamma/high-TRU contaminated wastes are expected from cleanup activities of Unit 2 of the Three Mile Island Nuclear Power Station. Those wastes are not disposable because of present regulatory constraints. Therefore, they must be stored temporarily. This paper discusses three options for storage of those wastes at the Idaho National Engineering Laboratory: (1) storage in temporary storage casks; (2) underground storage in vaults; and (3) storage in silos at a hot shop. Each option is analyzed and evaluated. Also included is a discussion of future disposal strategies, which might be pursued when a suitable federal or commercial repository is built

  3. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  4. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  5. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  6. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  7. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The article cites and summarizes the papers on the topics: economic and ecological importance of waste management, reprocessing of nuclear fuel and recycling of uranium and plutonium, waste management and final storage, transports and organizational aspects of waste management, presented at this symposium. (HR/AK) [de

  8. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  9. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-01-01

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides

  10. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-02-03

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides.

  11. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Schmude, J.

    1976-01-01

    Speech on the 18th March 1976 in the Bundestag by the parliamentary Secretary of State, Dr. Juergen Schmude, to substantiate the Federal government's draft to a Fourth Act amending the Atomic Energy Act. The draft deals mainly with the final storage of radioactive wastes and interrelated questions concerning waste treatment and waste collection, and with several ordinance empowerments in order to improve licensing and supervisory procedures. (orig./LN) [de

  12. Development of elementary models of comprehensive safety assessment model for shallow land disposal of low-level radioactive wastes (3)

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Wakabayashi, Noriaki

    1988-01-01

    The evaluation model for the prediction of leaching of radionuclides from a concrete wall which lines the inside of a steel drum (concrete lined drum) has been developed to evaluate the source term of a shallow land burial of low-level radioactive wastes. The leaching system to be evaluated here consists of a waste as an infinite source, in which radionuclides uniformly disperse on the macroscopic scale regardless of the time, an infinite liquid phase with a uniform composition, and a concrete wall which contacts with both the liquid phase and the waste. The mass-transport equation derived from the mass balance in the system considered here was solved under the initial and boundary conditions assumed, and the rate equation was derived to describe the leaching of radionuclides from the concrete wall. Numerical analyses have been carried out by using the analysis code (WPLATE) which was developed based on the rate equation, and the effect of the wall on the reduction in the amounts of radionuclides leached has been clarified in relation to the thickness of the wall. (author)

  13. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  14. Waste disposal options report. Volume 1

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste

  15. Solid waste disposal into salt mines

    International Nuclear Information System (INIS)

    Repke, W.

    1981-01-01

    The subject is discussed as follows: general introduction to disposal of radioactive waste; handling of solid nuclear waste; technology of final disposal, with specific reference to salt domes; conditioning of radioactive waste; safety barriers for radioactive waste; practice of final disposal in other countries. (U.K.)

  16. Radioactive wastes storage and disposal. Chapter 8

    International Nuclear Information System (INIS)

    2002-01-01

    The Chapter 8 is essentially dedicated to radioactive waste management - storage and disposal. The management safety is being provided due to packages and facilities of waste disposal and storage. It is noted that at selection of sites for waste disposal it is necessary account rock properties and ways of the wastes delivery pathways

  17. Radioactive waste disposal and constitution

    International Nuclear Information System (INIS)

    Stober, R.

    1983-01-01

    The radioactive waste disposal has many dimensions with regard to the constitutional law. The central problem is the corret delimitation between adequate governmental precautions against risks and or the permitted risk which the state can impose on the citizen, and the illegal danger which nobody has to accept. The solution requires to consider all aspects which are relevant to the constitutional law. Therefore, the following analysis deals not only with the constitutional risks and the risks of the nuclear energy, but also with the liberal, overall-economic, social, legal, and democratic aspects of radioactive waste disposal. (HSCH) [de

  18. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  19. Nuclear Waste Disposal Program 2016

    International Nuclear Information System (INIS)

    2016-12-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the many important steps in the management of radioactive waste that have already been implemented in Switzerland. The handling and packaging of waste, its characterisation and inventorying, as well as its interim storage and transport are examined. The many important steps in Swiss management of radioactive waste already implemented and wide experience gained in carrying out the associated activities are discussed. The legal framework and organisational measures that will allow the selection of repository sites are looked at. The various aspects examined include the origin, type and volume of radioactive wastes, along with concepts and designs for deep geological repositories and the types of waste to be stored therein. Also, an implementation plan for the deep geological repositories, the required capacities and the financing of waste management activities are discussed as is NAGRA’s information concept. Several diagrams and tables illustrate the program

  20. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  1. Equity and nuclear waste disposal

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1994-01-01

    Following the recommendations of the US National Academy of Sciences and the mandates of the 1987 Nuclear Waste Policy Amendments Act, the US Department of Energy has proposed Yucca Mountain, Nevada as the site of the world's first permanent repository for high-level nuclear waste. The main justification for permanent disposal (as opposed to above-ground storage) is that it guarantees safety by means of waste isolation. This essay argues, however, that considerations of equity (safer for whom?) undercut the safety rationale. The article surveys some prima facie arguments for equity in the distribution of radwaste risks and then evaluates four objections that are based, respectively, on practicality, compensation for risks, scepticism about duties to future generations, and the uranium criterion. The conclusion is that, at least under existing regulations and policies, permanent waste disposal is highly questionable, in part, because it fails to distribute risk equitably or to compensate, in full, for this inequity

  2. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  3. Disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Albrecht, E.; Kuehn, K.

    1977-01-01

    Final storage of nuclear wastes in the salt mine at Asse is described. Until the end of 1976, all in all 73,000 containers with slightly radioactive wastes were deposited there within the framework of a test programme - the Asse pit is a pilot plant. Final storage of medium active waste was started in 1972. So far, about 1,150 barrels with medium active waste were deposited. Storage techniques applied, radiation exposure of the personnel and experience gained so far are reported on in this context. Final storage at Asse of highly active wastes developing decay heat is still in a preparatory stage, as here radiation as well as heat problems have to be mastered. Technical mining activities for the recoverable storage of highly-active, heat-developing wastes in the form of ceramic glasses are still in a planning phase, whereas advance work, e.g. cutting storage chambers out of seams 775 m thick have already begun. (HPH) [de

  4. Final Environmental Impact Statement on 10 CFR Part 61 licensing requirements for land disposal of radioactive waste. Summary and main report

    International Nuclear Information System (INIS)

    1982-11-01

    The three-volume final environmental impact statement (FEIS) is prepared to guide and support publication of a final regulation, 10 CFR Part 61, for the land disposal of low-level radioactive waste. The FEIS is prepared in response to public comments received on the draft environmental impact statement (DEIS) on the proposed Part 61 regulation. The DEIS was published in September 1981 as NUREG-0782. Public comments received on the proposed Part 61 regulation separate from the DEIS are also considered in the FEIS. The FEIS is not a rewritten version of the DEIS, which contains an exhaustive and detailed analysis of alternatives, but rather references the DEIS and presents the final decision bases and conclusions (costs and impacts) which are reflected in the Part 61 requirements. Four cases are specifically considered in the FEIS representing the following: past disposal practice, existing disposal practice, Part 61 requirements, and an upper bound example. The Summary and Main Report are contained in Volume 1. Volume 2 consists of Appendices A - Staff Analysis of Public Comments on the DEIS for 10 CFR Part 61, and Appendices B - Staff Analysis of Public Comments on Proposed 10 CFR Part 61 Rulemaking. Volume 3 contains Appendices C-F, entitled as follows: Appendix C - Revisions to Impact Analysis Methodology, Appendix D - Computer Codes Used for FEIS Calculations, Appendix E - Errata for the DEIS for 10 CFR Part 61 and last, Appendix F - Final Rule and Supplementary Information

  5. Greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics

  6. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  7. Differing approaches to waste disposal

    International Nuclear Information System (INIS)

    Greenhalgh, G.

    1983-01-01

    The social, political, and economic problems of radioactive waste management, which are discussed at a scientific afternoon meeting held during the IAEA general conference on 12 October, with speakers from Argentina, West Germany, France, India, Japan, Sweden, Britain and the United States, are described. An OECD Nuclear Energy Agency report on the demonstration of long-term safety of deep underground disposal of high level radioactive waste is discussed. (U.K.)

  8. Disposal of Savannah River Plant waste salt

    International Nuclear Information System (INIS)

    Dukes, M.D.

    1982-01-01

    Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble wastes (primarily NaNO 3 , NaNO 2 , and NaOH) stored in the waste tanks will be decontaminated by ion exchange and solidified in concrete. The resulting salt-concrete mixture, saltcrete, will be placed in a landfill on the plantsite such that all applicable federal and state disposal criteria are met. Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrate salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill will meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system

  9. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  10. Effluent treatment and waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    In recent years there has been a great increase in the attention given to environmental matters by the public, media and Government. This has been reflected in the increased stature of environmental pressure groups and the introduction of new regulatory bodies and procedures. However, the satisfactory treatment and disposal of waste depends ultimately upon the development and employment of efficient low cost processes, and the enforcement of effective legislation. This Conference organised by the Yorkshire Branch of IChemE in association with the Institution's Environmental Protection Subject Group, will address the areas of waste monitoring, developments in pollution control processes and process economics and will look forward to future trends in waste disposal. It will also consider the impact of recent legislation upon the process industries. (author)

  11. Geochemistry of radioactive waste disposal

    International Nuclear Information System (INIS)

    Bird, G.W.

    1979-01-01

    Safe, permanent disposal of radioactive wastes requires isolation of a number of elements including Se, Tc, I, Sr, Cs, Pd, u, Np, Pu and Cm from the environment for a long period of time. The aquatic chemistry of these elements ranges from simple anionic (I - ,IO 3 - ) and cationic (Cs + ,Sr ++ ) forms to multivalent hydrolyzed complexes which can be anionic or cationic (Pu(OH) 2 + ,Pu(OH) 3 + , PuO 2 (CO 3 )(OH) - ,PuO 2 Cl - ,etc.) depending on the chemical environment. The parameters which can affect repository safety are rate of access and composition of grounwater, stability of the waste container, stability of the waste form, rock-water-waste interactons, and dilution and dispersion as the waste moves away from the repository site. Our overall research program on radioactive waste disposal includes corrosion studies of containment systems hydrothermal stability of various waste forms, and geochemical behaviour of various nuclides including solubilities, redox equilibria, hydrolysis, colloid fomation and transport ion exchange equilibria and adsorption on mineral surfaces and irreversible precipitation reactions. This paper discusses the geochemistry of I, Se, Tc, Cs, Sr and the actinide elements and potential mechanisms by which the mobility could be retarded if necessary

  12. DSEM, Radioactive Waste Disposal Site Economic Model

    International Nuclear Information System (INIS)

    Smith, P.R.

    2005-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associates Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operation life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem: Maxima of - 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  13. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  14. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  15. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  16. Radioactive waste disposal process geological structure for the waste disposal

    International Nuclear Information System (INIS)

    Courtois, G.; Jaouen, C.

    1983-01-01

    The process described here consists to carry out the two phases of storage operation (intermediate and definitive) of radioactive wastes (especially the vitrified ones) in a geological dispositif (horizontal shafts) at an adequate deepness but suitable for a natural convection ventilation with fresh air from the land surface and moved only with the calorific heat released by the burried radioactive wastes when the radioactive decay has reached the adequate level, the shafts are totally and definitely occluded [fr

  17. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  18. BURYIT/ANALYZ: a computer package for assessment of radiological risk of low-level radioactive waste land disposal

    International Nuclear Information System (INIS)

    Fisher, J.E.; Cox, N.D.; Atwood, C.L.

    1984-11-01

    This report is a user's manual for a partially completed code for risk assessment of a low-level waste shallow-land burial site, to be used in the licensing of burial sites. This code is intended as a tool to be used for considering nuclide transport mechanisms, including atmospheric, groundwater, erosion, and infiltration to an underlying aquifer. It also calculates doses to individuals and the population through direct exposure, inhalation, and ingestion. The methodology of the risk assessment is based primarily on the response surface method of uncertainty analysis. The parameters of a model for predicting dose commitment due to a release are treated as statistical variables in order to compute statistical distributions for various dose commitment contributions. The likelihood of a release is also accounted for by statistically evaluating the arithmetic product of the dose commitment distributions with the probability of release occurrence. An example is given using the atmospheric transport pathway as modeled by a code called BURYIT. The framework for using other release pathways is described in this manual. Information on parameter uncertainties, reference site characteristics, and probabilities of release events is included

  19. Peristaltic pumps for waste disposal

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1992-09-01

    Laboratory robots are capable of generating large volumes of hazardous liquid wastes when they are used to perform chemical analyses of metal finishing solutions. A robot at Allied-Signal Inc., Kansas City Division, generates 30 gallons of acid waste each month. This waste contains mineral acids, heavy metals, metal fluorides, and other materials. The waste must be contained in special drums that are closed to the atmosphere. The initial disposal method was to have the robot pour the waste into a collecting funnel, which contained a liquid-sensing valve to admit the waste into the drum. Spills were inevitable, splashing occurred, and the special valve often didn't work well. The device also occupied a large amount of premium bench space. Peristaltic pumps are made to handle hazardous liquids quickly and efficiently. A variable-speed pump, equipped with a quick-loading pump head, was mounted below the robot bench near the waste barrel. The pump inlet tube was mounted above the bench within easy reach of the robot, while the outlet tube was connected directly to the barrel. During operation, the robot brings the waste liquid up to the pump inlet tube and activates the pump. When the waste has been removed, the pump stops. The procedure is quick, simple, inexpensive, safe, and reliable

  20. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  1. High activity waste disposal

    International Nuclear Information System (INIS)

    Gaul, W.C.

    1990-01-01

    Chem-Nuclear Environmental Services (CNES) has developed a container that is capable of containing high activity waste and can be shipped as a regular DOT Type A shipment. By making the container special form the amount of activity that can be transported in a Type A shipment is greatly enhanced. Special form material presents an extra degree of protection to the environment by requiring the package to be destroyed to get access to the radioactive material and must undergo specific testing requirements, whereas normal form material can allow access to the radioactive material. With the special form container up to 10 caries of radium can be transported in a single package. This paper will describe the considerations that were taken to develop these products

  2. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  3. Shallow disposal of radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A review and evaluation of computer codes capable of simulating the various processes that are instrumental in determining the dose rate to individuals resulting from the shallow disposal of radioactive waste was conducted. Possible pathways of contamination, as well as the mechanisms controlling radionuclide movement along these pathways have been identified. Potential transport pathways include the unsaturated and saturated ground water systems, surface water bodies, atmospheric transport and movement (and accumulation) in the food chain. Contributions to dose may occur as a result of ingestion of contaminated water and food, inhalation of contaminated air and immersion in contaminated air/water. Specific recommendations were developed regarding the selection and modification of a model to meet the needs associated with the prediction of dose rates to individuals as a consequence of shallow radioactive waste disposal. Specific technical requirements with regards to risk, sensitivity and uncertainty analyses have been addressed

  4. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  5. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  6. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  7. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  8. Liners and Leak Detection Systems for Hazardous Waste Land Disposal Units - Federal Register Notice, January 29, 1992

    Science.gov (United States)

    The EPA is amending its current regulations under the Resource Conservation and Recovery Act (RCRA) concerning liner and leachate collection and removal systems for hazardous waste surface impoundments, landfills, and waste piles.

  9. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2011-05-24

    ... Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste Treated by U.S. Ecology... treatment of a hazardous waste generated by the Owens-Brockway Glass Container Company in Vernon, California... action. List of Subjects in 40 CFR Part 268 Environmental protection, Hazardous waste, and Variances...

  10. Contamination of ground water as a consequence of land disposal of dye waste mixed sewage effluents: a case study of Panipat district of Haryana, India.

    Science.gov (United States)

    Dubey, S K; Yadav, Rashmi; Chaturvedi, R K; Yadav, R K; Sharma, V K; Minhas, P S

    2010-09-01

    Spatial samples of surface and ground water collected from land disposal site of dye waste mixed sewage effluents at Binjhole, in Haryana, India were analyzed to evaluate its effect on quality of pond, hand pumps and ground waters for human health and irrigation purposes. It was found that average COD and TDS of dye houses discharge (310 and 3,920 mg/L) and treated sewage (428 and 1,470 mg/L) on mixing acquired the values of 245 and 1,780 mg/L and only Pb (0.24 microg/L) was above the permissible limit for irrigation purpose. Disposal of this mixed water to village pond changes the COD and TDS to 428 and 1,470 mg/L, respectively. COD and TDS of hand pump water samples were 264 and 1,190 mg/L, where as in tube well water these values were 151 and 900 mg/L. Though the ground water contamination seemed to decrease with the increasing distance from the pond but COD, TDS and BOD values continued to be quite high in water samples drawn from the hand pumps up to a distance of 500 m from pond. However, the major cause of the concern in these waters was Pb (0.11-0.45 ppm). Crops grown with this water shows accumulation of heavy metals like Pb,Cd, Fe, Mn, Ni, Cu, and Zn but in few crops they (Zn, Pb and Cd) exceed the safe limits. Regular consumption of these crop products may lead heavy metal toxicity. It was concluded from this study that the deep seepage of effluents led to deterioration of ground water quality for drinking purposes and the well waters rendered unfit for irrigation purposes within a span of 2 years. This warrants appropriate disposal measures for sewage and dye industry effluents in order to prevent deterioration of ground water and health of human and animals.

  11. Shallow land disposal, the french system

    International Nuclear Information System (INIS)

    Barthoux, A.; Marque, Y.

    1986-01-01

    Since 1969, low and medium activity waste are disposed of in France at the Centre Manche. The management system set up covers the whole of the operations, from the sorting of the wastes and their conditioning to the final disposal. Safety standards and technical issues were found satisfactory by the National Safety Authority and they are the basis of the program for the realization of two new disposal sites which should take over from the Centre Manche loaded towards 1990. ANDRA, a National Agency, is responsible for the long term management of radioactive waste, in France [fr

  12. Acceptance test procedure: RMW Land Disposal Facility Project W-025

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting

  13. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  14. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  15. 10 CFR Appendix G to Part 20 - Requirements for Transfers of Low-Level Radioactive Waste Intended for Disposal at Licensed Land...

    Science.gov (United States)

    2010-01-01

    ... Disposal Facilities and Manifests I. Manifest A waste generator, collector, or processor who transports, or... who is the “waste generator” or “generator,” as defined in this part; or (c) Radioactively... Services, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415-7232, or by...

  16. Nuclear waste management: storage and disposal aspects

    International Nuclear Information System (INIS)

    Patterson, B.D.; Dave, S.A.; O'Connell, W.J.

    1980-01-01

    Long-term disposal of nuclear wastes must resolve difficulties arising chiefly from the potential for contamination of the environment and the risk of misuse. Alternatives available for storage and disposal of wastes are examined in this overview paper. Guidelines and criteria which may govern in the development of methods of disposal are discussed

  17. Ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1991-01-01

    The activities developed by the Federal Institution of Physical Engineering PTB and by the Federal Office for Radiation Protection (BfS) concentrated, among others, on work to implement ultimate storage facilities for radioactive wastes. The book illuminates this development from site designation to the preliminary evaluation of the Gorleben salt dome, to the preparation of planning documents proving that the Konrad ore mine is suitable for a repository. The paper shows the legal provisions involved; research and development tasks; collection of radioactive wastes ready for ultimate disposal; safety analysis in the commissioning and post-operational stages, and product control. The historical development of waste management in the Federal Republic of Germany and international cooperation in this area are outlined. (DG) [de

  18. Mine waste disposal and managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young Wook; Min, Jeong Sik; Kwon, Kwang Soo; Kim, Ok Hwan; Kim, In Kee; Song, Won Kyong; Lee, Hyun Joo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Acid Rock Drainage (ARD) is the product formed by the atmospheric oxidation of the relatively common pyrite and pyrrhotite. Waste rock dumps and tailings containing sulfide mineral have been reported at toxic materials producing ARD. Mining in sulphide bearing rock is one of activity which may lead to generation and release of ARD. ARD has had some major detrimental affects on mining areas. The purpose of this study was carried out to develop disposal method for preventing contamination of water and soil environment by waste rocks dump and tailings, which could discharge the acid drainage with high level of metals. Scope of this study was as following: environmental impacts by mine wastes, geochemical characteristics such as metal speciation, acid potential and paste pH of mine wastes, interpretation of occurrence of ARD underneath tailings impoundment, analysis of slope stability of tailings dam etc. The following procedures were used as part of ARD evaluation and prediction to determine the nature and quantities of soluble constituents that may be washed from mine wastes under natural precipitation: analysis of water and mine wastes, Acid-Base accounting, sequential extraction technique and measurement of lime requirement etc. In addition, computer modelling was applied for interpretation of slope stability od tailings dam. (author). 44 refs., 33 tabs., 86 figs.

  19. Container for processing and disposing radioactive wastes and industrial wastes

    International Nuclear Information System (INIS)

    Araki, Kunio; Kasahara, Yuko; Kasai, Noboru; Sudo, Giichi; Ishizaki, Kanjiro.

    1978-01-01

    Purpose: To improve the performance of containers for radioactive wastes for ocean disposal and on-land disposal such as impact strength, chemical resistance, fire resistance, corrosion resistance, water impermeability and the like. Constitution: Steel fiber-reinforced concrete previously molded in a shape of a container is impregnated with polymerizable impregnating agent selected from the group consisting of a polymerizable monomer, liquid mixture of a polymerizable monomer and an oligomer, a polymer solution, a copolymer solution and the liquid mixture thereof. Then, the polymerizable impregnating agent is polymerized to solidify in the concrete by way of heat-polymerization or radiation-induced polymerization to form a waste container. The container thus obtained can be improved with the impact resistance and wear resistance and further improved with salt water resistance, acid resistance, corrosion resistance and solidity by the impregnation of the polymer, as well as can effectively be prevented from leaching out of radioactive substances. (Furukawa, Y.)

  20. Radioactive waste disposal and political aspects

    International Nuclear Information System (INIS)

    Blanc, M.

    1992-01-01

    The difficulties presented by the current atomic energy law for the nuclear waste disposal in Switzerland are shown. It is emphasised how important scientific information is in the political solutions for nuclear disposal

  1. 77 FR 50622 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2012-08-22

    ... employed by copper smelters and copper refining operations (Id.). The Agency further stated in 1994, that... stabilization mixture of ferrous sulfate, quick lime and sodium sulfide flakes with a 1:0.45 waste to reagent...

  2. Modularized system for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.; DiSibio, R.

    1985-01-01

    A modularized system for the disposal of low-level radioactive waste is presented that attempts to overcome the past problems with shallow land burial and gain public acceptance. All waste received at the disposal site is packaged into reinforced concrete modules which are filled with grout, covered and sealed. The hexagonal shape modules are placed in a closely packed array in a disposal unit. The structural stability provided by the modules allow a protective cover constructed of natural materials to be installed, and the disposal units are decommissioned as they are filled. The modules are designed to be recoverable in the event remedial action is necessary. The cost of disposal with a facility of this type is comparable to current prices of shallow land burial facilities. The system is intended to address the needs of generators, regulators, communities, elected officials, licensees and future generations

  3. Nuclear waste disposal: technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1980-01-01

    The subject is discussed under the headings: introduction; the nature and origin of wastes (fuel cycles; character of wastes; mining and milling operations; middle stages; irradiated fuel; reprocessing (waste generation); reactor wastes); disposal techniques and disposal of reprocessing wastes; siting of repositories; potential environmental impacts (impacts after emplacement in a rock repository; catastrophic effects; dispersion processes (by migrating ground water); thermal effects; future security; environmental survey, monitoring and modelling); conclusion. (U.K.)

  4. Disposable products in the hospital waste stream.

    OpenAIRE

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were so...

  5. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  6. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  7. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  8. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  9. Rokkasho low-level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1994-01-01

    Japan Nuclear Fuel Limited commenced the operation of the shallow land disposal of low-level radioactive waste from reactor operation, in 1992 at Rokkasho site in Aomori Prefecture. JNFL is private company whose main activities within the responsibility of JNFL are: 1) Disposal of low-level radioactive waste, 2) Uranium enrichment, 3) Reprocessing of spent nuclear fuels, 4) Temporary storage of returned wastes from COGEMA and BNFL by reprocessing contracts, prior to disposal. JNFL selected the site for the disposal of LLW at Rokkasho in Aomori Prefecture, then bought land of 3.4 million m 2 . Among waste spectrum, LLWs from nuclear power plants, from uranium enrichment and from reprocessing are to be managed by JNFL, including dismantling of these facilities, and JNFL has plan to dispose about 600 thousand m 3 of wastes ultimately. On the middle of November 1990 JNFL got the permission of the application for 40 thousand m 3 (equivalent to 200,000 drums each with a 200-liter capacity) of reactor operating wastes which is solidified with cement, bitumen or plastics as a first stage. And after the construction work for about 2 years, the operations started at Dec. 8th, 1992. The Disposal center has already accepted about 24,000 LLW drums as of the end of February, 1994. (author)

  10. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  11. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  12. Recent activity on disposal of uranium waste

    International Nuclear Information System (INIS)

    Fujiwara, Noboru

    1999-01-01

    The concept on the disposal of uranium waste has not been discussed in the Atomic Energy Commission of Japan, but the research and development of it are carried out in the company and agency which are related to uranium waste. In this paper, the present condition and problems on disposal of uranium waste were shown in aspect of the nuclear fuel manufacturing companies' activity. As main contents, the past circumstances on the disposal of uranium waste, the past activity of nuclear fuel manufacturing companies, outline and properties of uranium waste were shown, and ideas of nuclear fuel manufacturing companies on the disposal of uranium waste were reported with disposal idea in the long-term program for development and utilization of nuclear energy. (author)

  13. Program criteria for subseabed disposal of radioactive waste: research strategies and review processes

    International Nuclear Information System (INIS)

    1981-09-01

    The Subseabed Disposal Program follows the policies and criteria of the National Waste Terminal Storage program for the development of land-based repositories, except where the technical differences between land and ocean geologic disposal make different approaches or criteria necessary. This is the first of a series of documents describing the procedures and criteria for the Subseabed Disposal Program

  14. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  15. Review of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Poch, L.A.; Wolsko, T.D.

    1979-10-01

    Regardless of future nuclear policy, a nuclear waste disposal problem does exist and must be dealt with. Even a moratorium on new nuclear plants leaves us with the wastes already in existence and wastes yet to be generated by reactors in operation. Thus, technologies to effectively dispose of our current waste problem must be researched and identified and, then, disposal facilities built. The magnitude of the waste disposal problem is a function of future nuclear policy. There are some waste disposal technologies that are suitable for both forms of HLW (spent fuel and reprocessing wastes), whereas others can be used with only reprocessed wastes. Therefore, the sooner a decision on the future of nuclear power is made the more accurately the magnitude of the waste problem will be known, thereby identifying those technologies that deserve more attention and funding. It is shown that there are risks associated with every disposal technology. One technology may afford a higher isolation potential at the expense of increased transportation risks in comparison to a second technology. Establishing the types of risks we are willing to live with must be resolved before any waste disposal technology can be instituted for widespread commercial use

  16. An interim report of the Subcommittee on Radioactive Waste Countermeasures: measures for radioactive waste treatment and disposal

    International Nuclear Information System (INIS)

    1984-01-01

    The Subcommittee on Radioactive Waste Countermeasures has studied on the measures for land disposal of low-level radioactive wastes and ultra-low-level radioactive wastes and the measures for treatment and disposal of high-level radioactive wastes and transuranium wastes. The results of studies so far are presented as an interim report. In disposal of low-level radioactive wastes, the land disposal is being required increasingly. The measures according to the levels of radioactivity are necessary. For the ultra-low-level radioactive wastes, their occurrence in large quantities is expected along with reactor decommissioning. In disposal of the high-level radioactive wastes, the present status is a transition toward the practical stages. Transuranium wastes should increase in their arising in the future. (Mori, K.)

  17. Waste Disposal: Long-term Performance Studies for Radioactive Waste Disposal and Hydrogeological Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Marivoet, J

    2000-07-01

    The main objectives of SCK-CEN's R and D programme on long-term performance studies are: (1) to develop a methodology and associated tools for assessing the long-term safety of geological disposal of all types of radioactive waste in clay formations and of the shallow-land burial of low-level waste; (2) to assess the performance and to identify the most influential elements of integrated repository systems for the disposal of radioactive waste; (3) to collect geological, piezometric and hydraulic data required for studying the hydrogeological system in north-eastern Belgium; (4) to develop a regional aquifer model for north-easter Belgium and to apply it in the performance assessments for the Mol site; (5) to test, verify and improve computer codes used in the performance assessment calculations of waste disposal concepts and contaminated sites (the computer codes simulate water flow and transport of radionuclides in engineered barriers, aquifers and contaminated sites). The scientific programme and achievements in 1999 are described.

  18. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k eff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  19. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  20. The politics of nuclear-waste disposal

    International Nuclear Information System (INIS)

    Tarricone, P.

    1994-01-01

    After 72 days of public hearings and testimony from more than 100 witnesses, the first commission of its kind in the US found that politics--not science and engineering--led to the selection of Martinsville, Ill. as the host site for a nuclear-waste-disposal facility. This article examines how the plan to dispose of nuclear waste in Martinsville ultimately unraveled

  1. Safety assessment for radiactive waste disposal

    International Nuclear Information System (INIS)

    Lewi, J.; Izabel, C.

    1989-11-01

    Whatever their type may be, radioactive waste disposals obey to the following principle: to isolate radioactive substances as long as their potential nocivity is significant. The isolation is obtained by confining barriers. The present paper recalls the role and the limits of the different barriers, for each type of disposal. It presents and comments site selection criteria and waste packages requirements [fr

  2. Probabilistic safety assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1987-07-01

    Probabilistic safety assessment codes are now widely used in radioactive waste disposal assessments. This report gives an overview of the current state of the field. The relationship between the codes and the regulations covering radioactive waste disposal is discussed and the characteristics of current codes is described. The problems of verification and validation are considered. (author)

  3. Evaluation of waste disposal by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1976-02-01

    The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation

  4. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  5. Nuclear waste disposal educational forum

    International Nuclear Information System (INIS)

    1982-01-01

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base

  6. Chemistry of nuclear waste disposal

    International Nuclear Information System (INIS)

    Zimmer, E.

    1981-01-01

    In extractive purification of the low-enriched uranium fuel element (UO 2 -particle fuel element with SiC coating) no problems arise in the PUREX-process which have not already been solved when reprocessing LWR-type reactor and breeder fuel elements. Concerning the HTR-type reactor fuel elements containing thorium, there are two process cycles behind the head end; the pure U-235 is reprocessed in the same manner as the low-enriched uranium fuel, and the thorium, which is the bigger fraction, is reprocessed together with U-233 in the same manner as the mixed oxides. Only the CO 2 -off gas system, which contains krypton and carbon 14, leads to difficulties in nuclear waste disposal. (DG) [de

  7. Packages for radiactive waste disposal

    International Nuclear Information System (INIS)

    Oliveira, R. de.

    1983-01-01

    The development of multi-stage type package for sea disposal of compactable nuclear wastes, is presented. The basic requirements for the project followed the NEA and IAEA recommendations and observations of the solutions adopted by others countries. The packages of preliminary design was analysed, by computer, under several conditions arising out of its nature, as well as their conditions descent, dumping and durability in the deep of sea. The designed pressure equalization mechanic and the effect compacting on the package, by prototypes and specific tests, were studied. These prototypes were also submitted to the transport tests of the 'Regulament for the Safe Transport of Radioactive Materials'. Based on results of the testes and the re-evaluation of the preliminary design, final indications and specifications for excuting the package design, are presented. (M.C.K.) [pt

  8. Waste-Mixes Study for space disposal

    International Nuclear Information System (INIS)

    McCallum, R.F.; Blair, H.T.; McKee, R.W.; Silviera, D.J.; Swanson, J.L.

    1983-01-01

    The Wastes Mixes Study is a component of Cy-1981 and 1982 research activities to determine if space disposal could be a feasible complement to geologic disposal for certain high-level (HLW) and transuranic wastes (TRU). The objectives of the study are: to determine if removal of radionuclides from HLW and TRU significantly reduces the long-term radiological risks of geologic disposal; to determine if chemical partitioning of the waste for space disposal is technically feasible; to identify acceptable waste forms for space disposal; and to compare improvements in geologic disposal system performance to impacts of additional treatment, storage, and transportation necessary for space disposal. To compare radiological effects, five system alternatives are defined: Reference case - All HLW and TRU to a repository. Alternative A - Iodine to space, the balance to a repository. Alternative B - Technetium to space, the balance to a repository. Alternative C - 95% of cesium and strontium to a repository; the balance of HLW aged first, then to space; plutonium separated from TRU for recycle; the balance of the TRU to a repository. Alternative D - HLW aged first, then to space, plutonium separated from TRU for recycle; the balance of the TRU to a repository. The conclusions of this study are: the incentive for space disposal is that it offers a perception of reduced risks rather than significant reduction. Suitable waste forms for space disposal are cermet for HLW, metallic technetium, and lead iodide. Space disposal of HLW appears to offer insignificant safety enhancements when compared to geologic disposal; the disposal of iodine and technetium wastes in space does not offer risk advantages. Increases in short-term doses for the alternatives are minimal; however, incremental costs of treating, storing and transporting wastes for space disposal are substantial

  9. Landfill disposal of very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2009-01-01

    The radioactivities of very low level wastes are very low. VLLW can be disposed by simple and economic burial process. This paper describes the significance of segregation of very low level waste (VLLW), the VLLW-definition and its limit value, and presents an introduction of VLLW-disposing approaches operated world wide. The disposal of VLLW in China is also briefly discussed and suggested here. (author)

  10. General criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    Maxey, M.N.; Musgrave, B.C.; Watkins, G.B.

    1979-01-01

    Techniques are being developed for conversion of radioactive wastes to solids and their placement into repositories. Criteria for such disposal are needed to assure protection of the biosphere. The ALARA (as low as reasonably achievable) principle should be applicable at all times during the disposal period. Radioactive wastes can be categorized into three classes, depending on the activity. Three approaches were developed for judging the adequacy of disposal concepts: acceptable risk, ore body comparison, and three-stage ore body comparison

  11. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  12. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  13. DISPOSABLE CANISTER WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2001-07-30

    The purpose of this calculation is to provide the bases for defining the preclosure limits on radioactive material releases from radioactive waste forms to be received in disposable canisters at the Monitored Geologic Repository (MGR) at Yucca Mountain. Specifically, this calculation will provide the basis for criteria to be included in a forthcoming revision of the Waste Acceptance System Requirements Document (WASRD) that limits releases in terms of non-isotope-specific canister release dose-equivalent source terms. These criteria will be developed for the Department of Energy spent nuclear fuel (DSNF) standard canister, the Multicanister Overpack (MCO), the naval spent fuel canister, the High-Level Waste (HLW) canister, the plutonium can-in-canister, and the large Multipurpose Canister (MPC). The shippers of such canisters will be required to demonstrate that they meet these criteria before the canisters are accepted at the MGR. The Quality Assurance program is applicable to this calculation. The work reported in this document is part of the analysis of DSNF and is performed using procedure AP-3.124, Calculations. The work done for this analysis was evaluated according to procedure QAP-2-0, Control of Activities, which has been superseded by AP-2.21Q, Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities. This evaluation determined that such activities are subject to the requirements of DOE/RW/0333P, Quality Assurance Requirements and Description (DOE 2000). This work is also prepared in accordance with the development plan titled Design Basis Event Analyses on DOE SNF and Plutonium Can-In-Canister Waste Forms (CRWMS M&O 1999a) and Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages (CRWMS M&O 2000d). This calculation contains no electronic data applicable to any electronic data management system.

  14. Transuranic advanced disposal systems: preliminary 239Pu waste-disposal criteria for Hanford

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for 239 Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for 239 Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables

  15. 75 FR 30392 - Approval of a Petition for Exemption from Hazardous Waste Disposal Injection Restrictions to...

    Science.gov (United States)

    2010-06-01

    ... petition for renewal of an existing exemption from the land disposal restrictions of hazardous waste on... Waste Disposal Injection Restrictions to Cabot Corporation Tuscola, Tuscola, IL AGENCY: Environmental... under the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act...

  16. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  17. Hydrologic information needs for evaluating waste disposal options

    Energy Technology Data Exchange (ETDEWEB)

    Huff, D.D.

    1983-01-01

    Before waste disposal options can be assessed, an objective or set of criteria for evaluation must be established. For hydrologists, the objective is to ensure that ground water and surface water do not become contaminated beyond acceptable limits as a result of waste disposal operations. The focus here is on the information required to quantify hydrologic transport of potential contaminants from the disposal site. It is important to recognize that the composition of the waste, its physical and chemical form, and the intended disposal methods (e.g., surface spreading, incineration, shallow land burial, or interment in a deep geologic repository) must either be specified a priori or set forth as specific options for evaluation, because these factors influence the nature of the hydrologic data needs. The hydrologic information needs of major importance are given together with specific measurable variables to be determined.

  18. From fundamentals to waste disposal

    International Nuclear Information System (INIS)

    Barbalat, O.

    1991-01-01

    Today the particle accelerator is widely used in nearly every field of physics and is also essential to study structures in chemistry and biology or to perform sensitive trace element analysis. Its application range is being extended considerably by the capability to generate synchrotron radiation. Progress in nuclear and particle physics that originated from studies with accelerators is now playing a determining role in astrophysics and cosmology. Important industrial applications include ion implantation in the semiconductor industry and the modification of surface properties of materials. Microlithography using synchrotron radiation is used to produce high-density integrated electronic circuits. Radiation is being used in a variety of processes to preserve food, sterilise toxic waste or polymerise plastics. Activation methods using neutrons from compact accelerators can be applied in geophysics and are also being developed to detect explosives. It is probably in medicine that accelerators have found their widest field of application: isotope production for diagnostic/treatment purposes or for radiation therapy. Accelerators may also play a key role in power engineering. Studies of inertial confinement fusion by heavy ions are actively under way in several countries. Accelerators are essential for providing the additional heating needed for plasma ignition in a tokamak. Research is also being carried out on the use of accelerators to incinerate long-life nuclear waste which could perhaps lead to an acceptable long-term disposal solution. (author)

  19. Transport and nuclear waste disposal

    International Nuclear Information System (INIS)

    Wild, E.

    1999-01-01

    The author assesses both past and future of nuclear waste disposal in Germany. The failure of the disposal concept is, he believes, mainly the fault of the Federal Government. On the basis of the Nuclear Energy Act, the government is obliged to ensure that ultimate-storage sites are established and operated. Up to the present, however, the government has failed - apart from the episode in Asse and Morsleben and espite existing feasible proposals in Konrad and Gorleben - to achieve this objective. This negative development is particularly evident from the projects which have had to be prematurely abandoned. The costs of such 'investment follies' meanwhile amount to several billion DM. At least 92% of the capacity in the intermediate-storage sites are at present unused. Following the closure of the ultimate-storage site in Morsleben, action must be taken to change over to long-term intermediate-storage of operational waste. The government has extensive intermediate-storage capacity at the intermediate-storage site Nord in Greifswald. There, the wate originally planned for storage in Morsleben could be intermediately stored at ERAM-rates. Nuclear waste transportation, too, could long ago have been resumed, in the author's view. For the purpose of improving the transport organisation, a new company was founded which represents exclusively the interests of the reprocessing firms at the nuclear power stations. The author's conclusion: The EVU have done their homework properly and implemented all necessary measures in order to be able to resume transport of fuel elements as soon as possible. The generating station operators favour a solution based upon agreement with the Federal Government. The EVU have already declared their willingness - in the event of unanimous agreement - to set up intermediate-storage sites near the power stations. The ponds in the generating stations, however, are unsuitable for use as intermediate-storage areas. If intermediate-storage areas for

  20. Radioactive waste storage and disposal: the challenge

    International Nuclear Information System (INIS)

    Prince, A.T.

    1978-03-01

    Solutions to waste management problems are available. After radium is removed, tailings from uranium ores can be disposed of safely in well-designed retention areas. Work is being done on the processing of non-fuel reactor wastes through incineration, reverse osmosis, and evaporation. Spent fuels have been stored safely for years in pools; dry storage in concrete cannisters is being investigated. Ultimate disposal of high-level wastes will be in deep, stable geologic formations. (LL)

  1. Marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1980-01-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the adsorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strenghs and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area. (orig.) [de

  2. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  3. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  4. The Disposal of Hazardous Wastes.

    Science.gov (United States)

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  5. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  6. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  7. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  8. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  9. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  10. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  11. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  12. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  13. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  14. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  15. Program for responsible and safe disposal of spent fuel elements and radioactive wastes (National disposal program)

    International Nuclear Information System (INIS)

    2015-01-01

    The contribution covers the following topics: fundamentals of the disposal policy; amount of radioactive wastes and prognosis; disposal of radioactive wastes - spent fuel elements and wastes from waste processing, radioactive wastes with low heat production; legal framework of the nuclear waste disposal in Germany; public participation, cost and financing.

  16. Radioactive waste disposal - policy and perspectives

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1979-01-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies. (UK)

  17. Radioactive waste disposal - policy and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L E.J. [UKAEA, Harwell. Atomic Energy Research Establishment

    1979-04-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies.

  18. Estimating waste disposal quantities from raw waste samples

    International Nuclear Information System (INIS)

    Negin, C.A.; Urland, C.S.; Hitz, C.G.; GPU Nuclear Corp., Middletown, PA)

    1985-01-01

    Estimating the disposal quantity of waste resulting from stabilization of radioactive sludge is complex because of the many factors relating to sample analysis results, radioactive decay, allowable disposal concentrations, and options for disposal containers. To facilitate this estimation, a microcomputer spread sheet template was created. The spread sheet has saved considerable engineering hours. 1 fig., 3 tabs

  19. Stability of disposal rooms during waste retrieval

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ''fair to good'' using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs

  20. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  1. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  2. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  3. 45 CFR 671.12 - Waste disposal.

    Science.gov (United States)

    2010-10-01

    ..., laboratory culture of micro-organisms and plant pathogens, and introduced avian products must be removed from... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  4. Geotechnical engineering of ocean waste disposal

    National Research Council Canada - National Science Library

    Demars, K. R; Chaney, Ronald C; Demars, Kenneth R

    1990-01-01

    Contents: 15 peer-reviewed papers on geotechnical test methods and procedures used for site evaluation, design, construction, and monitoring of both contaminated areas and waste disposal facilities in the marine environment...

  5. Electromagnetic problems in nuclear waste disposal

    International Nuclear Information System (INIS)

    Eloranta, E.H.

    1998-01-01

    The paper reviews the electromagnetic characterization of fractured rock during various phases of radioactive waste disposal investigations and construction, and also discusses the methods of the electromagnetic safeguards monitoring

  6. Co-disposal of mixed waste materials

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal

  7. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  8. Environmental restoration waste materials co-disposal

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities

  9. Radioactive waste products - suitability for final disposal

    International Nuclear Information System (INIS)

    Merz, E.; Odoj, R.; Warnecke, E.

    1985-06-01

    48 papers were read at the conference. Separate records are available for all of them. The main problem in radioactive waste disposal was the long-term sealing to prevent pollution of the biosphere. Problems of conditioning, acceptance, and safety measures were discussed. Final disposal models and repositories were presented. (PW) [de

  10. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  11. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-01-01

    The national high-level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high-level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high-level waste disposal will probably add about 5 to 10% to the costs of nuclear electric power. The third conclusion is less optimistic. Political problems remain formidable in highly conservative regulations, in qualifying a final disposal site, and in securing acceptable transport routes

  12. Bibliography on ocean waste disposal. second edition. Final report 1976

    International Nuclear Information System (INIS)

    Stanley, H.G.; Kaplanek, D.W.

    1976-09-01

    This research bibliography is restricted to documents relevant to the field of ocean waste disposal. It is primarily limited to recent publications in the categories of: ocean waste disposal; criteria; coastal zone management; monitoring; pollution control; dredge spoil; dredge spoin disposal; industrial waste disposal; radioactive waste; oil spills; bioassay; fisheries resources; ocean incineration; water chemistry; and, Water pollution

  13. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  14. Development of technical information database for high level waste disposal

    International Nuclear Information System (INIS)

    Kudo, Koji; Takada, Susumu; Kawanishi, Motoi

    2005-01-01

    A concept design of the high level waste disposal information database and the disposal technologies information database are explained. The high level waste disposal information database contains information on technologies, waste, management and rules, R and D, each step of disposal site selection, characteristics of sites, demonstration of disposal technology, design of disposal site, application for disposal permit, construction of disposal site, operation and closing. Construction of the disposal technologies information system and the geological disposal technologies information system is described. The screen image of the geological disposal technologies information system is shown. User is able to search the full text retrieval and attribute retrieval in the image. (S.Y. )

  15. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  16. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  17. Shallow land burial of radioactive wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Rose, R.R.

    1985-01-01

    The authors discuss low-level, solid radioactive wastes buried in the ground since the startup of nuclear operations by the Manhattan Engineer District in the early 1940's. These operations were originally intended to be temporary so the primary consideration in locating land burial sites was their accessibility from the source of waste production. Early land-burial facilities were located on large reservations owned by the U.S. Atomic Energy Commission (AEC) and operated by their prime contractors. Shallow land burial consists of excavating a trench or vault, emplacing the waste, minimizing void space within the disposal unit, and covering the waste with earth to control access to the waste. Problems encountered in the land-burial of radioactive wastes are classified into areas which relate to the environmental characteristics of the sites, waste characteristics, operational practices and control, and predictive capability. The most serious environmentally related problems involve water management. Water provides primary vehicle for both erosional processes, which affect the structural integrity of the waste trenches, and for the migration of radionuclides. Although there is consensus that the current level of off-site movement of radionuclides from operating burial grounds does not constitute an immediate health hazard, there is less certainty with respect to the ability of the facilities to provide long-term containment and isolation

  18. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  19. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  20. Legislative and political aspects of waste disposal

    International Nuclear Information System (INIS)

    Freiwald, J.

    1982-01-01

    In the Senate bill on waste disposal the definition for high-level waste was based on the source of the waste. High-level waste was defined as the liquids and solids resulting from reprocessing. The other terms defined in that bill that are crucial for any legislation dealing with high-level waste are storage and disposal. In the Senate bill, the definition of storage specifically mentioned transuranic (TRU) waste, but it did not include TRU waste in the definition of disposal. In the four House versions of the nuclear waste bill, the definition of high-level waste are addressed more carefully. This paper discusses the following four House committee's versions particularly pointing out how TRU waste is defined and handled: (1) Science Committee bill; (2) Interior Committee bill; (3) Commerce Committee bill; and (4) Armed Service Committee bill. The final language concerning TRU waste will depend on the next series of conference between these Committees. After resolving any differences, conferences will be held between the House and Senate. Here a concensus bill will be developed and it will go to the Rules Committee and then to the floor

  1. Seabed disposal of high-level nuclear wastes: an alternative viewpoint

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1985-01-01

    Various comments on a published article on subseabed disposal of nuclear wastes are presented. These include the scale of the proposed operation, the technical problems of canister retrievability, the feasibility of the free-fall penetrometer disposal method, canister lifetime, the possible contravention of the 1972 London Dumping Convention and land-based geological repositories as an alternative method of disposal. (author)

  2. Alternative concepts for Low-Level Radioactive Waste Disposal: Conceptual design report

    International Nuclear Information System (INIS)

    1987-06-01

    This conceptual design report is provided by the Department of Energy's Nuclear Energy Low-Level Waste Management Program to assist states and compact regions in developing new low-level radioactive waste (LLW) disposal facilities in accordance with the Low-Level Radioactive Waste Policy Amendment Act of 1985. The report provides conceptual designs and evaluations of six widely considered concepts for LLW disposal. These are shallow land disposal (SLD), intermediate depth disposal (IDD), below-ground vaults (BGV), above-ground vaults (AGV), modular concrete canister disposal (MCCD), earth-mounded concrete bunker (EMCB). 40 refs., 45 figs., 77 tabs

  3. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  4. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  5. Solid waste disposal in the Netherlands

    NARCIS (Netherlands)

    Brasser, L.J.

    1990-01-01

    In The Netherlands, a small and densely populated country, the disposal of solid waste requires strict precautions. Because the landscape is flat and the watertable just under groundlevel, landfilling and dumping must be avoided as much as possible. Incineration of municipal and industrial waste are

  6. Treatment and disposal of toxic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Train, D

    1983-03-01

    An unparallelled expansion of material benefits to life and commerce in the '50s and '60s caused wastes to increase in variety and complexity. Amongst these some materials were particularly hazardous, being flammable, corrosive, reactive or toxic. This article presents simple guidelines for use in complex waste disposal situations.

  7. Geomechanics of clays for radioactive waste disposal

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  8. Disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Costello, J M [Australian Atomic Energy Commission Research Establishment, Lucas Heights

    1982-03-01

    The aims and options for the management and disposal of highly radioactive wastes contained in spent fuel from the generation of nuclear power are outlined. The status of developments in reprocessing, waste solidification and geologic burial in major countries is reviewed. Some generic assessments of the potential radiological impacts from geologic repositories are discussed, and a perspective is suggested on risks from radiation.

  9. Safety in depth for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, T [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-11-27

    A nuclear waste disposal strategy is described in which the radionuclides are immobilised in widely-dispersed drill holes in an extremely stable and leach resistant titanate ceramic form (SYNROC) at depths of 1500 to 4000 metres. The advantages of this method over that of burying such wastes in large centralised mined repositories at 500 to 700 metres in suitable geological strata are examined.

  10. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  11. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  12. Nuclear power and radioactive waste: a sub-seabed disposal option

    International Nuclear Information System (INIS)

    Deese, D.A.

    1978-01-01

    The radioactive waste disposal programs of most countries are still focused on investigation of land-based geologic formations as possible containment media for radioactive wastes. Important discoveries in geological oceanography and amazing advances in ocean engineering over the past decade have, however, led several countries to investigate another promising possibility for geologic disposal of radioactive waste--isolation within the deep seabed or sub-seabed disposal. Beyond the various technical advantages and disadvantages involved, use of the international seabed for radioactive waste disposal raises a multitude of social, economic, political, legal, institutional, and ethical issues. These issues are analyzed in this volume

  13. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  14. Disposal of toxic waste to Kualiti Alam

    International Nuclear Information System (INIS)

    Wilfred Paulus; Nik Marzukee; Syed Abd Malik

    2005-01-01

    The mandate to manage radioactive waste in this country was given to the Radioactive Waste Management Centre, MINT as the only agency allowed to handle the waste. However, wastes which are produced at MINT also include the non-radioactive toxic waste. The service to dispose off this non-radioactive toxic waste has been given to Kualiti Alam, the only company licensed to carry out such activity. Up to now, MINT's Radioactive Waste Management Centre has delivered 3 consignments of such waste to the company. This paper will detail out several aspects of managing the waste from the aspects of contract, delivering procedure, legislation, cost and austerity steps which should be taken by MINT's staff. (Author)

  15. Waste package performance criteria for deepsea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Colombo, P.; Fuhrmann, M.

    1988-07-01

    Sea disposal of low-level radioactive waste began in the United States in 1946, and was placed under the licensing authority of the Atomic Energy Commission (AEC). The practice stopped completely in 1970. Most of the waste disposed of at sea was packaged in second- hand or reconditioned 55-gallon drums filled with cement so that the average package density was sufficiently greater than that of sea water to ensure sinking. It was assumed that all the contents would eventually be released since the packages were not designed or required to remain intact for sustained periods of time after descent to the ocean bottom. Recently, there has been renewed interest in ocean disposal, both in this country and abroad, as a waste management alternative to land burial. The Marine Protection, Research and Sanctuaries Act of 1972 (PL 92-532) gives EPA the regulatory responsibility for ocean dumping of all materials, including radioactive waste. This act prohibits the ocean disposal of high-level radioactive waste and requires EPA to control the ocean disposal of all other radioactive waste through the issuance of permits. In implementing its permit authorities, EPA issued on initial set of regulations and criteria in 1973 to control the disposal of material into the ocean waters. It was in these regulations that EPA initially introduced the general requirement of isolation and containment of radioactive waste as the basic operating philosophy. 37 refs

  16. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Kaluzny, Y.

    1994-01-01

    The public has demonstrated interest and even concern for radioactive waste. A fully demonstrated industrial solution already exists for 90% of the waste generated by the nuclear industry. Several solutions are currently under development for long-term management of long-lived waste. They could be implemented on an industrial scale within twenty years. The low volumes of this type of waste mean there is plenty of time to adopt a solution. (author). 5 photos

  17. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    1992-07-01

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  18. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  19. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  20. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  1. De minimis concepts in radioactive waste disposal. Considerations in defining de minimis quantities of solid radioactive waste for uncontrolled disposal by incineration and landfill

    International Nuclear Information System (INIS)

    1983-02-01

    This document deals with recommendations addressed to those national authorities wishing to dispose of low level radioactive waste into the terrestrial environment, on how de minimis levels or quantities can be derived. The only radioactive materials covered here are declared solid radioactive wastes of very low activity which are controlled up to the point where deliberate control is lost, or wastes below a level that requires regulatory control. As regards the disposal sites, these wastes are not intended to be disposed of in fully controlled disposal facilities, such as repositories located in shallow land, rock cavities, etc. On the other hand, it is considered that these materials should not be disposed of in any place, but should be handled like other municipal wastes. Among the different techniques available, only two are considered in this document, namely a sanitary landfill facility, and an urban incineration plant

  2. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  3. Mine Waste Disposal and Managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young-Wook; Min, Jeong-Sik; Kwon, Kwang-Soo [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research project deals with: Analysis and characterization of mine waste piles or tailings impoundment abandoned in mining areas; Survey of mining environmental pollution from mine waste impounds; Modelling of pollutants in groundwater around tailings impoundment; Demonstration of acid rock drainage from coal mine waste rock piles and experiment of seeding on waste rock surface; Development of a liner using tailings. Most of mine wastes are deposited on natural ground without artificial liners and capping for preventing contamination of groundwater around mine waste piles or containments. In case of some mine waste piles or containments, pollutants have been released to the environment, and several constituents in drainage exceed the limit of discharge from landfill site. Metals found in drainage exist in exchangeable fraction in waste rock and tailings. This means that if when it rains to mine waste containments, mine wastes can be pollutant to the environment by release of acidity and metals. As a result of simulation for hydraulic potentials and groundwater flow paths within the tailings, the simulated travel paths correlated well with the observed contaminant distribution. The plum disperse, both longitudinal and transverse dimensions, with time. Therefore liner system is a very important component in tailings containment system. As experimental results of liner development using tailings, tailings mixed with some portion of resin or cement may be used for liner because tailings with some additives have a very low hydraulic conductivity. (author). 39 refs.

  4. The handling and disposal of fusion wastes

    International Nuclear Information System (INIS)

    Broden, K.; Hultgren, Aa.; Olsson, G.

    1985-02-01

    The radioactive wastes from fusion reactor operation will include spent components, wastes from repair operations, and decontamination waste. Various disposal routes may be considered depending on i.a. the contents of tritium and of long-lived nuclides, and on national regulations. The management philosophy and disposal technology developed in Sweden for light water reactor wastes has been studied at STUDSVIK during 1983--84 and found to be applicable also to fusion wastes, provided a detritiation stage is included. These studies will continue during 1985 and include experimental work on selected fusion activation nuclides. The work presented is associated to the CEC fusion research programme. Valuable discussions and contacts with people working in this programme at Saclay, Ispra and Garching are deeply appreciated. (author)

  5. Nuclear waste disposal: two social criteria

    International Nuclear Information System (INIS)

    Rochlin, G.I.

    1977-01-01

    Two criteria--technical irreversibility and site multiplicity--have been suggested for use in establishing standards for the disposal of nuclear wastes. They have been constructed specifically to address the reduction of future risk in the face of inherent uncertainty concerning the social and political developments that might occur over the required periods of waste isolation, to provide for safe disposal without the requirement of a guaranteed future ability to recognize, detect, or repair errors and failures. Decisions as to how to apply or weigh these criteria in conjunction with other waste management goals must be made by societies and their governments. The purpose of this paper was not to preempt this process, but to construct a framework that facilitates consideration of the ethical and normative components of the problem of nuclear waste disposal. The minimum ethical obligation of a waste disposal plan is to examine most thoroughly the potential consequences of present actions, to acknowledge them openly, and to minimize the potential for irremediable harm. An ethically sound waste management policy must reflect not only our knowledge and skills, but our limitations as well

  6. The trends of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nomi, Mitsuhiko

    1977-01-01

    The disposal of radioactive wastes instead of their treatment has come to be important problem. The future development of nuclear fuel can not be expected unless the final disposal of nuclear fuel cycle is determined. Research and development have been made on the basis of the development project on the treatment of radioactive wastes published by Japan Atomic Energy Commission in 1976. The high level wastes produced by the reprocessing installations for used nuclear fuel are accompanied by strong radioactivity and heat generation. The most promising method for their disposal is to keep them in holes dug at the sea bottom after they are solidified. Middle or low level wastes are divided into two groups; one contains transuranium elements and the other does not. These wastes are preserved on the ground or in shallow strata, while the safe abandonment into the ground or the sea has been discussed about the latter. The co-operations among nations are necessary not only for peaceful utilization of atomic energy but also for radioactive waste disposal. (Kobatake, H.)

  7. Current researches on safety assessment of radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Tasaka, Hiroshi; Kiyose, Ryohei

    1980-01-01

    Recently, the problem of safe disposal of radioactive waste generated from nuclear fuel cycle becomes more important in Japan. On the other hand, many researches on shallow land burial of low-level wastes and geologic isolation of high-level wastes have been carried out in the United States of America. In this report, the researches on the safety assessment of radioactive waste disposal in the United States of America were briefly introduced with emphasis on the studies on behavior and migration of radionuclide from disposed waste in geosphere. (author)

  8. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  9. Ocean disposal of radioactive waste: Status report

    International Nuclear Information System (INIS)

    Calmet, D.P.

    1989-01-01

    For hundreds of years, the seas have been used as a place to dispose of wastes resulting from human activities and although no high level radioactive waste (HLW) has been disposed of into the sea, variable amounts of packaged low level radioactive waste (LLW) have been dumped at more than 50 sites in the northern part of the Atlantic and Pacific oceans. So far, samples of sea water, sediments and deep sea organisms collected on the various sites have not shown any excess in the levels of radionuclides above those due to nuclear weapons fallout except on certain occasions where caesium and plutonium were detected at higher levels in samples taken close to packages at the dumping site. Since 1957, the date of its first meeting to design methodologies to assess the safety of ''radioactive waste disposal into the sea'', the IAEA has provided guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. Since the Convention for the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (referred to as the London Dumping Convention) came into force in 1975, the dumping of waste has been regulated on a global scale. The London Dumping Convention entrusted IAEA with specific responsibilities for the definition of high level radioactive wastes unsuitable for dumping at sea, and for making recommendations to national authorities for issuing special permits for ocean dumping of low level radioactive wastes. This paper presents a status report of immersion operations of low-level radioactive waste and the current studies the IAEA is undertaking on behalf of the LDC

  10. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  11. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  12. Roles of bentonite in radioactive waste disposal

    International Nuclear Information System (INIS)

    Suzuki, Keizo

    1995-01-01

    Bentonite is used in radioactive waste disposal from the following points; (1) properties (2) now utilization fields (3) how to use in radioactive waste disposal (4) how much consumption and deposits as source at the present time. Bentonite is produced as alteration products from pyroclastic rocks such as volcanic ash and ryolite, and is clay composed mainly smectite (montmorillonite in general). Therefore, special properties of bentonite such as swelling potential, rheological property, bonding ability, cation exchange capacity and absorption come mainly from properties of montmorillonite. Bentonite has numerous uses such as iron ore pelleizing, civil engineering, green sand molding, cat litter, agricultural chemicals and drilling mud. Consumption of bentonite is about 600-700 x 10 3 tons in Japan and about 10 x 10 6 tons in the world. Roles of bentonite to be expected in radioactive waste disposal are hydraulic conductivity, swelling potential, absorption, mechanical strength, ion diffusion capacity and long-term durability. These properties come from montmorillonite. (author)

  13. Public values associated with nuclear waste disposal

    International Nuclear Information System (INIS)

    Maynard, W.S.; Nealey, S.M.; Hebert, J.A.; Lindell, M.K.

    1976-06-01

    This report presents the major findings from a study designed to assess public attitudes and values associated with nuclear waste disposal. The first objective was to obtain from selected individuals and organizations value and attitude information which would be useful to decision-makers charged with deciding the ultimate disposal of radioactive waste materials. A second research objective was to obtain information that could be structured and quantified for integration with technical data in a computer-assisted decision model. The third general objective of this research was to test several attitude-value measurement procedures for their relevance and applicability to nuclear waste disposal. The results presented in this report are based on questionnaire responses from 465 study participants

  14. Waste disposal technologies: designs and evaluations

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    Many states and compacts are presently in the throes of considering what technology to select for their low level waste disposal site. Both the technical and economic aspects of disposal technology are important considerations in these decisions. It is also important that they be considered in the context of the entire system. In the case of a nuclear power plant, that system encompasses the various individual waste streams that contain radioactivity, the processing equipment which reduces the volume and/or alters the form in which the radioisotopes are contained, the packaging of the processed wastes in shipment, and finally its disposal. One further part of this is the monitoring that takes place in all stages of this operation. This paper discusses the results of some research that has been sponsored by EPRI with the principal contractor being Rogers and Associates Engineering Corporation. Included is a description of the distinguishing features found in disposal technologies developed in a generic framework, designs for a selected set of these disposal technologies and the costs which have been derived from these designs. In addition, a description of the early efforts towards defining the performance of these various disposal technologies is described. 5 figures, 1 table

  15. Alternative disposal options for transuranic waste

    International Nuclear Information System (INIS)

    Loomis, G.G.

    1994-01-01

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lens around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area

  16. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Waste Acceptance Criteria. The disposal operations previously mentioned take place at the NTS in two disposal facilities. The isolation protection and overall performance of the two LLW disposal facilities at the NTS transcend those of any federal radioactive waste disposal site in the United States. The first of the two disposal sites is the Area 5 Radioactive Waste Management Site (RWMS) which is situated on alluvial fan deposits in the Frenchman Flat basin, approximately 770 feet (235 meters) above the water table. The Area 5 RWMS utilizes a combination of engineered shallow land disposal cells and deep augured shafts for the disposal of a variety of waste streams. Fifteen miles (24 kilometers) north of the Area 5 RWMS is the Area 3 RWMS located approximately 1,600 feet (488 meters) above the water table in Yucca Flat. Disposal activities at the Area 3 RWMS center around the placement of bulk LLW in subsidence craters formed from underground testing of nuclear weapons. Native alluvium soil is used to cover waste placed in the disposal cells at both facilities. In addition, information on the technical attributes, facility performance, updates on waste disposal volumes and capabilities, and current and future disposal site requirements will also be described. (authors)

  17. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  18. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2002-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  19. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  20. Cover and liner system designs for mixed-waste disposal

    International Nuclear Information System (INIS)

    MacGregor, A.

    1994-01-01

    Land disposal of mixed waste is subject to a variety of regulations and requirements. Landfills will continue to be a part of waste management plans at virtually all facilities. New landfills are planned to serve the ongoing needs of the national laboratories and US Department of Energy (DOE) facilities, and environmental restoration wastes will ultimately need to be disposed in these landfills. This paper reviews the basic objectives of mixed-waste disposal and summarizes key constraints facing planners and designers of these facilities. Possible objectives of cover systems include infiltration reduction; maximization of evapotranspiration; use of capillary barriers or low-permeability layers (or combinations of all these); lateral drainage transmission; plant, animal, and/or human intrusion control; vapor/gas control; and wind and water erosion control. Liner system objectives will be presented, and will be compared to the US Environmental Protection Agency-US Nuclear Regulatory Commission guidance for mixed-waste landfills. The measures to accomplish each objective will be reviewed. Then, the design of several existing or planned mixed-waste facilities (DOE and commercial) will be reviewed to illustrate the application of the various functional objectives. Key issues will include design life and performance period as compared/contrasted to postclosure care periods, the use (or avoidance) of geosynthetics or clays, intermediate or interim cover systems, and soil erosion protection in contrast to vegetative enhancement. Possible monitoring approaches to cover systems and landfill installations will be summarized as well

  1. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  2. Disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  3. Alternative techniques for low-level waste shallow land burial

    International Nuclear Information System (INIS)

    Levin, G.B.; Mezga, L.J.

    1983-01-01

    Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance

  4. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  5. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  6. Radioactive waste disposal and public acceptance aspects

    International Nuclear Information System (INIS)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M.

    2011-01-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  7. The surface disposal concept for VLL waste

    International Nuclear Information System (INIS)

    2011-01-01

    Disposal facilities for very-low-level (VLL) waste have been designed to accommodate both residues originating from the decommissioning of nuclear facilities and used components. Those residues have very low specific-activity levels that lie below a few hundreds of becquerels per gram (Bq/g). As for the average activity found in any disposal facility, it never exceeds more than a few tens of becquerels per gram. In that case, waste disposal involves no special processing or conditioning, except for handling requirements or volume-gain purposes. The main barrier against radionuclide dispersion is provided by the geological formation being used for waste disposal. Basic disposal concept The design and construction provisions allow for the optimal operation of the disposal facility without any risk of altering the required safety level. They also ensure a satisfactory containment level for several centuries at the end of the operating lifetime. Hence, the natural materials in their original context constitute a particular advantage for the safety demonstration over the long term. With due account of the nature of VLL waste, their containment envelope (drums, big bags, etc.) has no role in confining radioactivity, but rather in facilitating handling and disposal operations, while protecting operators. Approximately 30% of all waste received at the CSTFA undergo a specific treatment before disposal. Low-density residues (plastics, thermal-insulation materials, etc.) are first compacted by a baling press, then strapped and wrapped in clear plastic-sheet. Another bundle press is used to reduce the volume of scrap metal. Some waste, such as the polluted waters generated on site or the sludges sent by producers, are processed in the solidification and stabilisation unit. Disposal cells are excavated progressively, as needed, directly in the clay formation down to a depth of 8 m and are operated in sequence. Cell design has evolved to maximize the disposal volume, and now

  8. The surface disposal concept for VLL waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Disposal facilities for very-low-level (VLL) waste have been designed to accommodate both residues originating from the decommissioning of nuclear facilities and used components. Those residues have very low specific-activity levels that lie below a few hundreds of becquerels per gram (Bq/g). As for the average activity found in any disposal facility, it never exceeds more than a few tens of becquerels per gram. In that case, waste disposal involves no special processing or conditioning, except for handling requirements or volume-gain purposes. The main barrier against radionuclide dispersion is provided by the geological formation being used for waste disposal. Basic disposal concept The design and construction provisions allow for the optimal operation of the disposal facility without any risk of altering the required safety level. They also ensure a satisfactory containment level for several centuries at the end of the operating lifetime. Hence, the natural materials in their original context constitute a particular advantage for the safety demonstration over the long term. With due account of the nature of VLL waste, their containment envelope (drums, big bags, etc.) has no role in confining radioactivity, but rather in facilitating handling and disposal operations, while protecting operators. Approximately 30% of all waste received at the CSTFA undergo a specific treatment before disposal. Low-density residues (plastics, thermal-insulation materials, etc.) are first compacted by a baling press, then strapped and wrapped in clear plastic-sheet. Another bundle press is used to reduce the volume of scrap metal. Some waste, such as the polluted waters generated on site or the sludges sent by producers, are processed in the solidification and stabilisation unit. Disposal cells are excavated progressively, as needed, directly in the clay formation down to a depth of 8 m and are operated in sequence. Cell design has evolved to maximize the disposal volume, and now

  9. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  10. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  11. Household medical waste disposal policy in Israel.

    Science.gov (United States)

    Barnett-Itzhaki, Zohar; Berman, Tamar; Grotto, Itamar; Schwartzberg, Eyal

    2016-01-01

    Large amounts of expired and unused medications accumulate in households. This potentially exposes the public to hazards due to uncontrolled use of medications. Most of the expired or unused medications that accumulate in households (household medical waste) is thrown to the garbage or flushed down to the sewage, potentially contaminating waste-water, water resources and even drinking water. There is evidence that pharmaceutical active ingredients reach the environment, including food, however the risk to public health from low level exposure to pharmaceuticals in the environment is currently unknown. In Israel, there is no legislation regarding household medical waste collection and disposal. Furthermore, only less than 14 % of Israelis return unused medications to Health Maintenance Organization (HMO) pharmacies. In this study, we investigated world-wide approaches and programs for household medical waste collection and disposal. In many countries around the world there are programs for household medical waste collection. In many countries there is legislation to address the issue of household medical waste, and this waste is collected in hospitals, clinics, law enforcement agencies and pharmacies. Furthermore, in many countries, medication producers and pharmacies pay for the collection and destruction of household medical waste, following the "polluter pays" principle. Several approaches and methods should be considered in Israel: (a) legislation and regulation to enable a variety of institutes to collect household medical waste (b) implementing the "polluter pays" principle and enforcing medical products manufactures to pay for the collection and destruction of household medical waste. (c) Raising awareness of patients, pharmacists, and other medical health providers regarding the health and environmental risks in accumulation of drugs and throwing them to the garbage, sink or toilet. (d) Adding specific instructions regarding disposal of the drug, in the

  12. Seminar on waste treatment and disposal

    International Nuclear Information System (INIS)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-01-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place

  13. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  14. The politics of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1992-01-01

    Plans for radioactive waste disposal have been among the most controversial of all environmental policies, provoking vociferous public opposition in a number of countries. This book looks at the problem from an international perspective, and shows how proposed solutions have to be politically and environmentally, as well as technologically acceptable. In the book the technical and political agenda behind low and intermediate level radioactive waste disposal in the UK, Western Europe, Scandinavia and North America is examined. The technical issues and the industrial proposals and analyses and factors which have been crucial in affecting relative levels of public acceptability are set out. Why Britain has lagged behind countries such as Sweden and France in establishing Low Level Waste (LLW) and Intermediate Level Waste (ILW) sites, the strength of the 'not in my backyard' syndrome in Britain, and comparisons of Britain's decision-making process with the innovative and open pattern followed in the US and Canada are examined. An important insight into the problems facing Nirex, Britain's radioactive waste disposal company, which is seeking to establish an underground waste site at Sellafield in Cumbria is given. (author)

  15. Criteria for high-level waste disposal

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1981-01-01

    Disposal of radioactive wastes is storage without the intention of retrieval. But in such storage, it may be useful and in some cases necessary to have the possibility of retrieval at least for a certain period of time. In order to propose some criteria for HLW disposal, one has to examine how this basic concept is to be applied. HLW is waste separated as a raffinate in the first cycle of solvent extraction in reprocessing. Such waste contains the bulk of fission products which have long half lives, therefore the safety of a disposal site, at least after a certain period of time, must be intrinsic, i.e. not based on human intervention. There is a consensus that such a disposal is feasible in a suitable geological formation in which the integrity of the container will be reinforced by several additional barriers. Criteria for disposal can be proposed for all aspects of the question. The author discusses the aims of the safety analysis, particularly the length of time for this analysis, and the acceptable dose commitments resulting from the release of radionuclides, the number and role of each barrier, and a holistic analysis of safety external factors. (Auth.)

  16. Implementation and responsibility for waste disposal : AEC sets up frameworks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Atomic Energy Commission approved the report ''measures for treatment and disposal of radioactive waste'' made by its advisory committee; which clarifies where the legal responsibility lies in relation to the waste treatment and disposal. In principle, the waste producers, i.e. the electric power companies should be responsible for the treatment and disposal of low-level radioactive waste and the Government for regulation of the safety of waste management. Then, in connection with a LLW ultimate storage facility planned in Aomori Prefecture, the waste disposal company may be responsible for safety of the LLW management. The disposal of high-level radioactive waste is the responsibility of the Government, the waste producer being responsible for the cost. Contents are the following: organization and responsibility for treatment and disposal of radioactive waste; concept of disposal of TRU waste. (Mori, K.)

  17. Influences of microbiology on nuclear waste disposal

    International Nuclear Information System (INIS)

    Dunk, M.

    1991-05-01

    This study was carried out to determine the effects of microbial activity on the disposal of nuclear waste. The areas chosen for study include nutrient availability (both organic and inorganic), the effect of increased pH and potential gas generation from the waste. Microbes from various soil habitats could grow on a variety of cellulose-based substrates including simulant waste. Increased pH did not appear to greatly effect the growth of these microbes. Gas generation by microbes growing on a simulant waste was determined over an extended period under a variety of nutritional conditions. The simulant waste was a good substrate for microbes and adding inorganic nutrients did not significantly affect the final yield of gas; extrapolated to about 14.6 3 gas per tonne of waste. The experiments have highlighted a number of areas for further research and they are currently being addressed. (author)

  18. Low-Level Burial Grounds dangerous waste permit application: Request for exemption from lined trench requirements and from land disposal restrictions for residual liquid at 218-E-12B Burial Ground Trench 94

    International Nuclear Information System (INIS)

    1992-10-01

    This document has been prepared and is being submitted to the respective agencies to satisfy three objectives of the US Department of Energy (DOE) Richland Field Office (DOE-RL) concerning Trench 94 of the 218-E-12B Burial Ground. The 218-E-12B Burial Ground is located in the 200 East Area of the Hanford Facility. Figure 1-1 shows the general location of the Hanford Site. The 218-E-12B Burial Ground is one of eight burial grounds included in the Low-Level Burial Grounds (LLBG), a treatment, storage and/or disposal (TSD) unit. Decommissioned, defueled naval submarine reactor compartments (SRCs) contain radioactivity caused by exposure of structural components to neutrons during normal operation of the submarines. After all the alternatives were evaluated in the US Department of the Navy 1984 environmental impact statement (EIS) (USN 1984), land burial of the SRCs was selected as the preferred disposal option. The SRCs currently are sent to Trench 94 of the 218-E-12B Burial Ground. In addition to radioactivity, the SRCs disposed in. The DOE-RL's three objectives in preparing and submitting this document are as follows. Request from Ecology an exemption from dangerous waste landfill liner and leachate collection and removal system (hereinafter referred to as liner/leachate system) requirements for Trench 94 of the 218-E-12B Burial Ground. Petition Ecology to exempt residual liquid in the SRCs from land disposal restrictions. Obtain EPA Region 10 review and comment on the request to Ecology for exemption from liner/leachate system requirements

  19. Microbiology and radioactive waste disposal

    International Nuclear Information System (INIS)

    Colasanti, R.; Coutts, D.; Pugh, S.Y.R.; Rosevear, A.

    1990-03-01

    The present Nirex Safety Assessment Research Programme on microbiology is based on experimental as well as theoretical work. It has concentrated on the study of how mixed, natural populations of microbes might survive and grow on the organic component of Low Level Radioactive Wastes (LLW) and PCM (Plutonium Contaminated Waste) in a cementitious waste repository. The present studies indicate that both carbon dioxide and methane will be produced by microbial action within the repository. Carbon dioxide will dissolve and react with the concrete to a limited extent so methane will be the principal component of the produced gas. The concentration of hydrogen, derived from corrosion, will be depressed by microbial action and that this will further elevate methane levels. Actual rates of production will be lower than that in a domestic landfill due to the more extreme pH. Microbial action will clearly affect the aqueous phase chemistry where organic material is present in the waste. The cellulosic fraction is the main determinant of cell growth and the appearance of soluble organics. The structure of the mathematical model which has been developed, predicts the general features which are intuitively expected in a developing microbial population. It illustrates that intermediate compounds will build up in the waste until growth of the next organism needed for sequential degradation is initiated. The soluble compounds in the pore water and the mixture of microbes present in the waste will vary with time and sustain biological activity over a prolonged period. Present estimates suggest that most microbial action in the repository will be complete after 400 years. There is scope for the model to deal with environmental factors such as temperature and pH and to introduce other energy sources such as hydrogen. (author)

  20. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  1. Laboratory Waste Disposal Manual. Revised Edition.

    Science.gov (United States)

    Stephenson, F. G., Ed.

    This manual is designed to provide laboratory personnel with information about chemical hazards and ways of disposing of chemical wastes with minimum contamination of the environment. The manual contains a reference chart section which has alphabetical listings of some 1200 chemical substances with information on the health, fire and reactivity…

  2. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1980-01-01

    A system is disclosed for disposing of radioactive mixed liquid and particulate waste material from nuclear reactors by solidifying the liquid components into a free standing hardened mass with a syrup of partially polymerized particles of urea formaldehyde in water and a liquid curing agent

  3. Inventory of radioactive waste disposals at sea

    International Nuclear Information System (INIS)

    1999-08-01

    The IAEA was requested by the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972) to develop and maintain an inventory of radioactive material entering the marine environment from all sources. The rationale for having such an inventory is related to its use as an information base with which the impact of radionuclides from different sources entering the marine environment can be assessed and compared. To respond to the request of the London Convention, the IAEA has undertaken the development of the inventory to include: disposal at sea of radioactive wastes, and accidents and losses at sea involving radioactive materials. This report addresses disposal at sea of radioactive waste, a practice which continued from 1946 to 1993. It is a revision of IAEA-TECDOC-588, Inventory of Radioactive Material Entering the Marine Environment: Sea Disposal of Radioactive Waste, published in 1991. In addition to the data already published in IAEA-TECDOC-588, the present publication includes detailed official information on sea disposal operations carried out by the former Soviet Union and the Russian Federation provided in 1993 as well as additional information provided by Sweden in 1992 and the United Kingdom in 1997 and 1998

  4. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  5. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Palmer, R.

    1985-01-01

    The paper presents arguments against the marine disposal of radioactive wastes. Results of American studies of deep-water dump-sites, and strontium levels in fish, are cited as providing evidence of the detrimental effects of marine dumping. The London Dumping Convention and the British dumping programme, are briefly discussed. (U.K.)

  6. Low level tank waste disposal study

    International Nuclear Information System (INIS)

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  7. Waste Disposal: The PRACLAY Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D

    2000-07-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation.

  8. Waste Disposal: The PRACLAY Programme

    International Nuclear Information System (INIS)

    De Bruyn, D.

    2000-01-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation

  9. Radioactive waste disposal: a survey

    International Nuclear Information System (INIS)

    Bentsen, B.A.

    1974-01-01

    The world's industrial nations are embarking on a major build-up of nuclear electric power generating capacity. Enormous quantities of radioactive waste will be produced in fuel reprocessing operations which must be safeguarded from entering the biosphere for thousands of years. It is an unprecedented problem which has no universally agreed upon solution. (U.S.)

  10. Actinide burning and waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T H [University of California, Berkeley, CA (United States)

    1990-07-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  11. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  12. Nuclear waste disposal: Gambling on Yucca Mountain

    International Nuclear Information System (INIS)

    Ginsburg, S.

    1995-01-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography

  13. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    International Nuclear Information System (INIS)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-01-01

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  14. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  15. Geology of high-level nuclear waste disposal: an introduction

    International Nuclear Information System (INIS)

    Roxbugh, I.S.

    1987-01-01

    Hazardous waste is produced by the nuclear fuel cycle from mining and milling of uranium ore, refinement and enrichment, reactor use, and during reprocessing of spent fuel. Waste can be classified according to origin, physical state, and levels of radioactivity and radiotoxicity. The method of the long-term waste disposal is based on the degree of the hazard and the length of time (1000 years to millions of years) for the waste to become safe. The International Atomic Energy Agency (IAEA) has classified radioactive waste into five categories (I-V) based on the amount of radioactivity and heat output of the waste. The text is concerned mainly with the two most hazardous categories (I and II). Disposal at various geological sites using proven mining, engineering, and deep drilling techniques has been proposed and studied. An ideal geological repository would have (1) minimum ground water movement, (2) geochemical and mineralogical properties to retard or immobilize the effects of the nuclear waste from reaching the biosphere, (3) thermochemical properties to allow for heat loading without damage, and (4) structural strength for the operational period. Types of geological environments (both undersea and on land) include evaporites, crystalline rocks, and argillaceous deposits. European and North American case histories are described, and there is a glossary and an extensive list of references in this concise review

  16. Waste isolation pilot plant disposal room model

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  17. Maintenance of records for radioactive waste disposal

    International Nuclear Information System (INIS)

    1999-07-01

    The safety of the radioactive waste disposal concepts does not rely on long term institutional arrangements. However, future generations may need information related to repositories and the wastes confined in them. The potentially needed information therefore has to be identified and collected. A suitable system for the preservation of that information needs to be created as a part of the disposal concept beginning with the planning phase. The IAEA has prepared this technical report to respond to the needs of Member States having repositories or involved in or considering the development of repositories. In many countries policies and systems for record keeping and maintenance of information related to disposal are the subjects of current interest. This report describes the requirements for presenting information about repositories for radioactive waste including long lived and transuranic waste and spent fuel if it is declared as a waste. The report discussed topics of identification, transfer and long term retention of high level information pertaining to the repository in a records management system (RMS) for retrieval if it becomes necessary in the future

  18. Waste isolation pilot plant disposal room model

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the open-quotes Disposal Room Model,close quotes describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized

  19. Disposal of waste by hydraulic fracturing

    International Nuclear Information System (INIS)

    Tamura, T.; Weeren, H.

    1984-01-01

    Liquid radioactive waste solutions at the Oak Ridge National Laboratory (ORNL) have been disposed of for nearly 20 years by preparing a slurry, injecting it into bedding plane fractures formed in low-permeability shale, and allowing the slurry to set into a solid. Three major considerations are required for this method: a rock formation that forms horizontal or bedding plane fractures and is highly impermeable, a plant facility that can develop sufficient hydraulic pressure to fracture the rock and to inject the slurry, and a slurry that can be pumped into the fracture and that will set, preferably, into a low-leaching solid. The requirements and desirable conditions of the formation, the process and facility as used for radioactive waste disposal, and the mix formulation and slurry properties that were required for injection and solidification are described. The intent of this paper is to stimulate interest in this technique for possible application to nonnuclear wastes

  20. Ecological Risk Assessment of Jarosite Waste Disposal

    Directory of Open Access Journals (Sweden)

    Mihone Kerolli-Mustafa

    2015-07-01

    Full Text Available Jarosite waste, originating from zinc extraction industry, is considered hazardous due to the presence and the mobility of toxic metals that it contains. Its worldwide disposal in many tailing damps has become a major ecological concern. Three different methods, namely modified Synthetic Precipitation Leaching Procedure (SPLP, three-stage BCR sequential extraction procedure and Potential Ecological Risk Index (PERI Method were used to access the ecological risk of jarosite waste disposal in Mitrovica Industrial Park, Kosovo. The combination of these methods can effectively identify the comprehensive and single pollution levels of heavy metals such as Zn, Pb, Cd, Cu, Ni and As present in jarosite waste. Moreover, the great positive relevance between leaching behavior of heavy metals and F1 fraction was supported by principal component analysis (PCA. PERI results indicate that Cd showed a very high risk class to the environment. The ecological risk of heavy metals declines in the following order: Cd>Zn>Cu>Pb>Ni>As.

  1. An eco friendly solution to the food waste disposal

    Science.gov (United States)

    Babu, G. Reddy; Kumar, G. Madhav

    2017-07-01

    In recent years, waste disposal at workmen camp is one of the major problems being faced by many nations across the world. In the workmen colony at Chittapur, a series of kitchens were built for cooking purpose and a number of small canteens are also functioning. Considerable quantity of food waste is collected daily from these eateries and disposed at a faraway place. Food waste is highly degradable in nature, if not disposed properly it causes problems related to environmental pollution. Hence, it is very important to identify an environment friendly process rather than opt for land filling or any disposal method. We worked together to find a suitable eco-friendly solution for the food waste disposal at Chittapur site and suggested that biogas production through anaerobic digestion is a solution for the disposal and utilization of food waste for better purpose. This resulted in setting up a 500 kg per day food waste treatment biogas plant at Chittapur. This establishment is the first time in the construction industry at workmen camp in India. Anaerobic Digestion has been recognized as one of the best options that is available for treating food waste, as it generates two valuable end products, biogas and compost. Biogas is a mixture of CH4 and CO2 about (55:45). Biogas generated can be used for thermal applications such as cooking or for generating electricity. The digested slurry is a well stabilized organic manure and can be used as soil fertilizer. Plant design is to handle 500 kg of food waste /day. 27 kg LPG is obtained from 500kg of kitchen waste. The Value of 27 kg of LPG is Rs.2700/day. Daily 1000 litres of digested effluent was obtained. It is good organic manure with plant micro nutrients and macro nutrients. This can be used for growing plants and in agriculture. The value of manure per day is Rs.250/-. The annual revenue is Rs.10.62 lakhs and the annual expenditure is 1.8 lakhs. The net benefit is 8.82 lakhs. Payback period is 2.1 years. This process

  2. Managing previously disposed waste to today's standards

    International Nuclear Information System (INIS)

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determine extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs

  3. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2001-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued.

  4. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2001-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued

  5. Options for the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Laughton, A.S.; Webb, G.A.M.

    1977-01-01

    The management of radioactive waste within the fuel cycle, especially the high-level wastes from reprocessing of nuclear fuel, is currently a matter of particular concern. In the short term (meaning a timescale of tens of years) management by engineered storage is considered to provide a satisfactory solution. Beyond this, however, the two main alternative options which are considered in the paper are: (a) disposal by burial into geologic formations on land; and (b) disposal by emplacement into or onto the seabed. Status of our present knowledge on the land and seabed disposal options is reviewed together with an assessment of the extent to which their reliability and safety can be judged on presently available information. Further information is needed on the environmental behaviour of radioactivity in the form of solidified waste in both situations in order to provide a more complete, scientific assessment. Work done so far has clarified the areas where further research is most needed - for instance modelling of the environmental transfer processes associated with the seabed option. This is discussed together with an indication of the research programmes which are now being pursued

  6. Household Solid Waste Disposal in Public Housing Estates in Awka ...

    African Journals Online (AJOL)

    This paper presents the results of a study on household solid waste disposal in the public housing estates in Awka, Anambra State. The study identified solid waste disposal methods from the households in AHOCOL, Udoka, Iyiagu and Real Housing Estates with an intention to make proposals for better solid waste disposal.

  7. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  8. Method of environmental management for the treatment and the right disposal of hazardous waste. case: contaminated land fuller with dielectric oil

    International Nuclear Information System (INIS)

    Agudelo, Edison Alexander; Cardona Gallo, Santiago Alonso; Rojano, Benjamin; Ruiz, Orlando Simon

    2012-01-01

    The environmental management of a dangerous waste understands different stages: generation, minimization, transport, appraisement, treatment and elimination. In this work two technologies are explored for the treatment and the elimination of a dangerous residual (RESPEL, Earth Fuller polluted with dielectric oil): a physical-chemistry and another biological one. For the physic-chemical Technology, was used as solvent and hexane reached a removal of the dielectric oil of around 87% on contaminated earth Fuller, with an ratio Fuller earth: solvent 1:8 w/v, a speed agitation of 100 rpm and a contact time of 30 min. Quality dielectric oil recovered is not suitable for use in electrical equipment, due to its low dielectric strength, low density and poor color. The land reclaimed Fuller had a bulk density of 0.641 g/ml, a density of 2,231 g/ml and a porosity of 72,075%, which indicates that this land is very close in their physical characteristics to Fuller earth clean. Biotechnology for the contaminated soil was treated in a biological reactor or Bioslurry evaluating the stirring speed and time of degradation necessary to achieve adequate levels of decontaminate to provide the waste in a landfill without conventional risk to human health ecosystems and humans, removals were achieved in this system the order of 49.68%, but did not reach the cleanup levels required by the Resolution 1170 of 1997 of DAMA, the result is important as it was believed that high concentrations of hydrocarbons of this type (more than 10 %) are inhibitory to biological activity. Chromatographic monitoring was made 10 hydrocarbon species present in the dielectric oil that are keys in this product.

  9. The mythology of waste disposal

    International Nuclear Information System (INIS)

    Beckhofer.

    1981-10-01

    This paper, while making a parallel between the mythology of the dangers of alcohol when the United States adopted a constitutional amendment prohibiting intoxicating liquor and public attitudes towards the dangers of nuclear waste burial, outlines the reason for these attitudes. Poor information of the public, from the start, on such dangers, the trauma of the atomic bomb and certain court decisions on nuclear activities which were in fact repealed by the Supreme Court. The paper also stresses the difficulty of dealing with this problem on a rational basis despite proven technical knowledge and successful experiments. (NEA) [fr

  10. Subseabed disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Hollister, C.D.; Anderson, D.R.; Heath, G.R.

    1981-01-01

    Fine-grained clay formations within stable (predictable) deep-sea regions away from lithospheric plate boundaries and productive surface waters have properties that might serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral uniformity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed. The most attractive abyssal clay formation (oxidized red clay) covers nearly 30 percent of the sea floor and hence 20 percent of the earth's surface

  11. Subseabed disposal of nuclear wastes.

    Science.gov (United States)

    Hollister, C D; Anderson, D R; Health, G R

    1981-09-18

    Fine-grained clay formations within stable (predictable) deep-sea regions away from lithospheric plate boundaries and productive surface waters have properties that might serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral unifomity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed. The most attractive abyssal clay formation (oxidized red ciay)covers nearly 30 percent of the sea floor and hence 20 percent of the earth's surface.

  12. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1975-07-01

    Reference to 2140 publications related to radioactive waste, announced in Nuclear Science Abstracts (NSA) Volumes 28 (July Dec. 1973), 29 (Jan.--June 1974), and 30 (July--Dec. 1974), are presented. The references are arranged by the original NSA abstract number, which approximately places them in chronological order. Sequence numbers appear beside each reference and the NSA volume and abstract numbers appear at the end of the citations. Three indexes are provided: Personal Author, Subject, and Report Number. This document supplements the preceding six in the TID3311 series. (U.S.)

  13. Nuclear Waste Disposal in Space: BEP's Best Hope?

    International Nuclear Information System (INIS)

    Coopersmith, Jonathan

    2006-01-01

    The best technology is worthless if it cannot find a market Beam energy propulsion (BEP) is a very promising technology, but faces major competition from less capable but fully developed conventional rockets. Rockets can easily handle projected markets for payloads into space. Without a new, huge demand for launch capability, BEP is unlikely to gain the resources it needs for development and application. Launching tens of thousands of tons of nuclear waste into space for safe and permanent disposal will provide that necessary demand while solving a major problem on earth. Several options exist to dispose of nuclear waste, including solar orbit, lunar orbit, soft lunar landing, launching outside the solar system, and launching into the sun

  14. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; McGarvey, R.S.; Lemmon, R.A.

    1982-01-01

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  15. Radioactive waste disposal into the ground

    International Nuclear Information System (INIS)

    1965-01-01

    Disposal into ground has sometimes proved to be an expedient and simple method. Where ground disposal has become an established practice, the sites have so far been limited to those remote from population centres; but in other respects, such as in climate and soil conditions, their characteristics vary widely. Experience gained at these sites has illustrated the variety of problems in radioactive waste migration and the resulting pollution and environmental radiation levels that may reasonably be anticipated at other sites, whether remote from population centres or otherwise.

  16. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  17. Geohydrological considerations in land disposal of LLW

    International Nuclear Information System (INIS)

    Yeh, G.T.; Tamura, T.

    1981-01-01

    The geohydrological and geochemical factors that affect the transport, transfer, and transformation of the waste in the aquifer system as a result of shallow land burial practices are discussed. They include surface topography and its character, the extent of the aquifer, nearby surface water bodies, groundwater basin divide, watershed boundaries, rainfall rate, infiltration from surface water bodies, potential evapotranspiration, hydraulic conductivity, water capacity, porosity, compressibility of the matrix, dispersivity, hydrolysis, photolysis, oxidation, volatilization, biolysis, precipitation, mineral comosition, and flow dynamics. Depending on the availability of data and the detail of information desired, three levels of analyses may be undertaken. Two examples are used to illustrate these three levels of analyses using hypothetical parameters. The examples are constructed to represent the leaching from wet water body and shallow burials, respectively. The former typifies a class of problems of groundwater contamination from coal-catching basins and uranium mill tailings. The latter represents classical examples of shallow land burials such as coal solid wastes, chemical dumping and sanitary landfill

  18. Municipal solid waste disposal in Portugal

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Didelet, Filipe; Semiao, Viriato

    2006-01-01

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  19. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  20. Safety assessments for centralized waste treatment and disposal facility in Puspokszilagy Hungary

    International Nuclear Information System (INIS)

    Berci, K.; Hauszmann, Z.; Ormai, P.

    2002-01-01

    The centralized waste treatment and disposal facility Puspokszilagy is a shallow land, near surface engineered type disposal unit. The site, together with its geographic, geological and hydrogeological characteristics, is described. Data are given on the radioactive inventory. The operational safety assessment and the post-closure safety assessment is outlined. (author)

  1. Conditioning CANDU reactor wastes for disposal

    International Nuclear Information System (INIS)

    Beamer, N.V.; Bourns, W.T.; Buckley, L.P.; Speranzini, R.A.

    1981-12-01

    A Waste Treatment Centre (WTC) is being constructed at the Chalk River Nuclear Laboratories to develop and demonstrate processes for converting reactor wastes to a form suitable for disposal. The WTC contains a starved air incinerator for reducing the volume of combustible solid wastes, a reverse osmosis section for reducing the volume of liquid wastes and an immobilization section for incorporating the conditioned wastes in bitumen. The incinerator is commissioned on inactive waste: approximately 16.5 Mg of waste packaged in polyethylene bags has been incinerated in 17 burns. Average weight and volume reductions of 8.4:1 and 32:1, respectively, have been achieved. Construction of the reverse osmosis section of WTC is complete and inactive commissioning will begin in 1982 January. The reverse osmosis section was designed to process 30,000 m 3 /a of dilute radioactive waste. The incinerator ash and concentrated aqueous waste will be immobiblized in bitumen using a horizontal mixer and wiped-film evaporator. Results obtained during inactive commissioning of the incinerator are described along with recent results of laboratory programs directed at demonstrating the reverse osmosis and bituminization processes

  2. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1976-08-01

    References to 1841 publications related to radioactive waste, announced in Nuclear Science Abstracts (NSA) Volumes 31 (Jan.--June 1975), 32 (July--Dec. 1975), and 33 (Jan.--June 1976), are cumulated in this bibliography. The references are arranged by the original NSA abstract number, which approximately places them in chronological order. Sequence numbers appear beside each reference and the NSA volume and abstract number appears at the end of each bibliographic citation. A listing of the subject descriptors used to describe each reference for machine storage and retrieval is shown. Four indexes are provided: Corporate Author, Personal Author, Subject, and Report Number. These indexes refer to the sequence numbers for the references

  3. Safety assessment for radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Thanaletchumy Karuppiah; Mohd Abdul Wahab Yusof; Nik Marzuki Nik Ibrahim; Nurul Wahida Ahmad Khairuddin

    2008-08-01

    Safety assessments are used to evaluate the performance of a radioactive waste disposal facility and its impact on human health and the environment. This paper presents the overall information and methodology to carry out the safety assessment for a long term performance of a disposal system. A case study was also conducted to gain hands-on experience in the development and justification of scenarios, the formulation and implementation of models and the analysis of results. AMBER code using compartmental modeling approach was used to represent the migration and fate of contaminants in this training. This safety assessment is purely illustrative and it serves as a starting point for each development stage of a disposal facility. This assessment ultimately becomes more detail and specific as the facility evolves. (Author)

  4. Oceanography related to deep sea waste disposal

    International Nuclear Information System (INIS)

    1978-09-01

    In connection with studies on the feasibility of the safe disposal of radioactive waste, from a large scale nuclear power programme, either on the bed of the deep ocean or within the deep ocean bed, preparation of the present document was commissioned by the (United Kingdom) Department of the Environment. It attempts (a) to summarize the present state of knowledge of the deep ocean environment relevant to the disposal options and assess the processes which could aid or hinder dispersal of material released from its container; (b) to identify areas of research in which more work is needed before the safety of disposal on, or beneath, the ocean bed can be assessed; and (c) to indicate which areas of research can or should be undertaken by British scientists. The programmes of international cooperation in this field are discussed. The report is divided into four chapters dealing respectively with geology and geophysics, geochemistry, physical oceanography and marine biology. (U.K.)

  5. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-11-01

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  6. Waste disposal in Europe - Looking ahead

    International Nuclear Information System (INIS)

    Verkerk, B.

    1985-01-01

    In this introductory paper a short outline is given of the Commission's programme on management and disposal of radioactive waste, followed by a discussion of the programme structure. This leads to the very important aspect of evaluation of results obtained and the communication of the achievements to the outer world. The important role of the media in this respect is stressed. Looking ahead, an important part of the Third Five years programme, the development of demonstration facilities, is projected against the problem of acceptability. Thinking about the consequences of entering the demonstration stage with respect to future research it turns out to be a broad field of work opens up, when the achievements reached in the radioactive waste area, could be transferred to problems of other toxic wastes and fusion wastes

  7. Environmental Restoration Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Dronen, V.R.

    1998-06-01

    The Hanford Site is operated by the U. S. Department of Energy (DOE) with a primary mission of environmental cleanup and restoration. The Environmental Restoration Disposal Facility (ERDF) is an integral part of the DOE environmental restoration effort at the Hanford Site. The purpose of this document is to establish the ERDF waste acceptance criteria for disposal of materials resulting from Hanford Site cleanup activities. Definition of and compliance with the requirements of this document will enable implementation of appropriate measures to protect human health and the environment, ensure the integrity of the ERDF liner system, facilitate efficient use of the available space in the ERDF, and comply with applicable environmental regulations and DOE orders. To serve this purpose, the document defines responsibilities, identifies the waste acceptance process, and provides the primary acceptance criteria and regulatory citations to guide ERDF users. The information contained in this document is not intended to repeat or summarize the contents of all applicable regulations

  8. Nuclear waste disposal: Technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1984-01-01

    The authors have arrived at what appears to be a comforting conclusion--that the ultimate disposal of nuclear wastes should be technically feasible and very safe. They find that the environment and health impacts will be negligible in the short-term, being due to the steps that precede the emplacement of the wastes in the repository. Disposal itself, once achieved, offers no short-term threat--unless an unforseen catastrophe of very low probability occurs. The risks appear negligible by comparison with those associated with earlier stages of the fuel cycle. Ultimately -- millinnia hence -- a slow leaching of radionuclides to the surface might begin. But it would be so slow that great dilution of each nuclide will occur. This phase is likely to be researched somewhere in the period 100,000 to 1,000,000 years hence

  9. Risk assessment for radioactive waste disposal

    International Nuclear Information System (INIS)

    Lyon, R.B.; Rosinger, E.L.J.

    1979-01-01

    The objectives of risk assessment studies for radioactive waste disposal are: to specify the features that prevent the escape of radionuclides from a deep disposal vault, to estimate how effective these features are likely to be, and to determine the potential consequences of the expected situation and conceivable but unlikely situations. The major features to be analysed include the insoluble nature of the waste form itself, the resistance of its container to corrosion or mechanical damage, the effectiveness of the massive rock barrier and the hold-up and dilution of radionuclides in the surface environment. Computer modelling is used in a technique called ''pathway analysis'' to bring together the experimental data, field data and understanding of the relevant phenomena into an assessment of the resultant effect on man and the environment. (author)

  10. Disposal of Rocky Flats residues as waste

    International Nuclear Information System (INIS)

    Dustin, D.F.; Sendelweck, V.S.

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes

  11. Special waste disposal in Austria - cost benefit analysis

    International Nuclear Information System (INIS)

    Kuntscher, H.

    1983-01-01

    The present situation of special waste disposal in Austria is summarized for radioactive and nonradioactive wastes. A cost benefit analysis for regulary collection, transport and disposal of industrial wastes, especially chemical wastes is given and the cost burden for the industry is calculated. (A.N.)

  12. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Glasser, F.P.

    2013-01-01

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  13. Cements in Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, F. P. [University of Aberdeen, Scotland (United Kingdom)

    2013-09-15

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  14. Waste disposal and permeable barriers

    International Nuclear Information System (INIS)

    Richard, S.; Lelievre, D.; Boisson, M.; Usseglio, J.M.; Fargier, E.; Dewiere, L.

    1996-01-01

    A study was made of the hydraulic impact of various concepts with drainage backfill, in order to ascertain the effectiveness of a partial hydraulic Faraday cage. Numerical simulations were developed for modeling the geometrical details of the concepts; a simplified representation of the rock mass was adopted : it was treated as a homogeneous porous medium displaying two major vertical discontinuities, dictating an overall horizontal flow; the validity conditions of this hypothesis for determining the hydraulic effect of drains were discussed; the hydraulic conditions considered are those of the steady state, and in particular, the heating due to waste packages was regarded as negligible (these conditions correspond to long term storage). A theoretical method, based on existing analogies between hydraulic and electrical properties, was also developed and used for a detailed study in the near field of the storage facility. It is shown that boreholes surrounding the storage shaft can limit water circulation in a hundred meter zone forming a partial hydraulic Faraday cage. (author)

  15. Radioactive wastes processing and disposing container

    International Nuclear Information System (INIS)

    Wada, Jiro; Kato, Hiroaki.

    1987-01-01

    Purpose: To obtain a processing and disposing container at low level radioactive wastes, excellent in corrosion and water resistance, as well as impact shock resistance for the retrieval storage over a long period of time. Constitution: The container is constituted with sands and pebbles as aggregates and glass fiber-added unsaturated polyester resins as binders. The container may entirely be formed with such material or only the entire inner surface may be formed with the material as liners. A container having excellent resistance to water, chemicals, freezing or melting, whether impact shock, etc. can be obtained, thereby enabling retrieval storage for radioactive wastes at the optimum low level. (Takahashi, M.)

  16. Storage and Disposal of Solid Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pomarola, J. [Head of Technical Section, Monitoring and Protection Division, Atomic Energy Commission, Saclay (France)

    1960-07-01

    This paper deals with solutions for the problem of final disposal of solid radioactive waste. I. It is first essential to organize a proper system of temporary storage. II. Final Storage In order to organize final storage, it is necessary to fix, according to the activity and form of the waste, the site and the modes of transport to be used within and outside the nuclear centre. The choice of solutions follows from the foregoing essentials. The paper then considers, in turn, final storage, on the ground, in the sub-soil and in the sea. Economic considerations are an important factor in determining the choice of solution. (author)

  17. Nuclear shipping and waste disposal cost estimates

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1977-11-01

    Cost estimates for the shipping of spent fuel from the reactor, shipping of waste from the reprocessing plant, and disposal of reprocessing plant wastes have been made for five reactor types. The reactors considered are the light-water reactor (LWR), the mixed-oxide-fueled light-water reactor (MOX), the Canadian deuterium-uranium reactor (CANDU), the fast breeder reactor (FBR), and the high-temperature gas-cooled reactor (HTGR). In addition to the cost estimates, this report provides details on the bases and assumptions used to develop the cost estimates

  18. Geochemical behavior of disposed radioactive waste

    International Nuclear Information System (INIS)

    Barney, G.S.; Navratil, J.D.; Schulz, W.W.

    1984-01-01

    The papers in this book are organized to cover the chemical aspects that are important to understanding the behavior of disposed radioactive wastes. These aspects include radionuclide sorption and desorption, solubility of radionuclide compounds, chemical species of radionuclides in natural waters, hydrothermal geochemical reactions, measurements of radionuclide migration, solid state chemistry of wastes, and waste-form leaching behavior. The information in each of the papers is necessary to predict the transport of radionuclides from wastes via natural waters and thus to predict the safety of the disposed waste. Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two papers discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described

  19. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  20. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  1. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  2. Social impacts of radioactive waste disposal

    International Nuclear Information System (INIS)

    1985-11-01

    In this report an approach is developed for the assessment of socio-economic impacts from radioactive waste disposal. The approach provides recommendations on procedures to be used in identification and prediction of impacts. Two decision-aiding methods are also included. The first provides for the identification of key issues and the illustration of the trade-offs involved in the decision. Multi-attribute scoring and weighting techniques are then proposed for the illustration of impacts using quantitative measures. (author)

  3. Low-level waste disposal technology

    International Nuclear Information System (INIS)

    Levin, G.B.

    1983-01-01

    A design has been proposed for a low-level radioactive waste disposal site that should provide the desired isolation under all foreseeable conditions. Although slightly more costly than current practices; this design provides additional reliability. This reliability is desirable to contribute to the closure of the fuel cycle and to demonstrate the responsible management of the uranium cycle by reestablishing confidence in the system

  4. Commercial radioactive waste disposal: marriage or divorce

    International Nuclear Information System (INIS)

    Corbett, J.S.

    1977-01-01

    It is shown that the state (South Carolina) is doing a good job in regulating the South Carolina disposal facility of Chemo-Nuclear Inc., and that there is no need for the NRC to reassert Federal control. The efforts in developing a low-level site in New Mexico are described. The NRC Task Force report on Federal/state regulation of commercial low-level radioactive waste burial grounds is discussed

  5. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  6. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate

  7. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  8. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  9. Method of ground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1991-01-01

    Rock bases are drilled to form a disposal hole, an overhanging hole and a burying hole each as a shaft. An appropriate number of canisters prepared by vitrification of high level radioactive wastes are charged in the disposal hole with a gap to the inner wall of the hole. Shock absorbers each made of bentonite are filled between each of the canisters and between the canister and the inner wall of the disposal hole, and the canisters are entirely covered with the layer of the shock absorbers. Further, plucking materials having water sealing property such as cement mortar are filled thereover. With such a constitution, in a case if water should intrude into the overhung portion, since the disposal hole is covered with the large flange portion in addition to the water sealing performance of the plucking, the shock absorbers and the canisters undergo no undesirable effects. Further, in a case if water should intrude to the disposal hole, the shock absorber layers are swollen by water absorption, to suppress the intrusion of water. (T.M.)

  10. Greater-confinement disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs

  11. Estimation of doses to individuals from radionuclides disposed of in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Fields, D.E.; Boegly, W.J. Jr.; Huff, D.D.

    1986-01-01

    A simple methodology has been applied to estimate maximum possible doses to individuals from exposure to radionuclides released from Solid Waste Storage Area No. 6. This is the only operating shallow-land disposal site for radioactive waste at the Oak Ridge National Laboratory. The methodology is based upon simple, conservative assumptions. A data base of radionuclides disposed of in trenches and auger holes was prepared, and several radionuclide transport and ingestion scenarios were considered. The results of these simulations demonstrate the potential for adverse health effects associated with this waste disposal area, and support the need for further calculations using more complete and realistic assumptions

  12. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  13. Waste disposal in underground mines -- A technology partnership to protect the environment

    International Nuclear Information System (INIS)

    1995-01-01

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment

  14. The disposal of low-level radioactive waste into the sea

    International Nuclear Information System (INIS)

    Saruhashi, Katsuko

    1979-01-01

    Disposal of low-level radioactive wastes is made both on land and in sea. Though the land disposal has been already carried out in the U.S.A. and the U.S.S.R., it is impossible in the narrow land of Japan. In the United States, the wastes solidified with cement in drums were previously abandoned in deep seas of the Pacific and the Atlantic. This is no longer done presently; instead, the land disposal is employed due to its lower costs. In European countries, the sea disposal is performed under OECDNEA, trial disposal in 1961 and full-scale disposal since 1967, in the Atlantic. Meanwhile, in Japan, test sea disposal will be carried out in the near future in deep sea of the northern Pacific, the important sea area for fisheries. The international trends of the deep sea disposal of low-level wastes and the correspondent trends of the same in Japan, in the past years are described. (J.P.N.)

  15. Application of quality assurance to radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs.

  16. Application of quality assurance to radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs

  17. Radwaste characteristics and Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Sung, Suk Hyun; Jeong, Yi Yeong; Kim, Ki Hong

    2008-01-01

    The purpose of Radioactive Waste Acceptance Criteria (WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  18. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  19. Application and research of special waste plasma disposal technology

    International Nuclear Information System (INIS)

    Lan Wei

    2007-12-01

    The basic concept of plasma and the principle of waste hot plasma disposal technology are simply introduced. Several sides of application and research of solid waste plasma disposal technology are sumed up. Compared to the common technology, the advantages of waste hot plasma disposal technology manifest further. It becomes one of the most prospective and the most attended high tech disposal technology in particular kind of waste disposal field. The article also simply introduces some experiment results in Southwest Institute of Physics and some work on the side of importation, absorption, digestion, development of foreign plasma torch technology and researching new power sources for plasma torch. (authors)

  20. Radiation protection aspects of waste disposal

    International Nuclear Information System (INIS)

    Beninson, D.

    1992-01-01

    Waste disposal, particularly of high level waste and some alpha-waste, involves very long times of isolation from the biosphere. The basic radiation protection requirements of 'optimisation of protection' and 'limitation of individual risk' must be complemented with policy decisions regarding the level of ambition of protection for future individuals and populations. Decisions are also necessary for the risk assessments applicable to different time periods. These assessments include considerable uncertainty and determinations of compliance with regulatory requirements must contemplate a policy for taking account of such uncertainties. The paper deals with 'normal' scenarios and with disruptive events as mechanisms for the return of nuclides to the biosphere, in the framework of the Recommendations of the ICRP. (author)

  1. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  2. How Hungary is Facing Waste Disposal Problem

    International Nuclear Information System (INIS)

    Ormai, P.; Frigyesi, F.; Gresits, I.; Solymosi, J.; Vincze, A.

    1999-01-01

    Management of radioactive waste of nuclear power plant origin comprises two main tasks: management of the high-level (spent fuel) and the low-and intermediate-level waste (LILW). With a plan to start operation of a repository for low-and intermediate-level waste (LILW) at the beginning of the next century, a site investigation programme was started in 1993. The site selection procedure. Between 1993-1995 some 300 geological objects were identified as potentially suitable for either near surface or tunnel-type disposal. The first stage of the site exploration has been performed and the decision on the continuation of the programme is due to by the end of 1998

  3. Evaluation of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.; Wehmann, G.; Thamer, B.J.; Card, D.H.

    1979-07-01

    A comparative analysis of the most viable alternatives for disposal of solid low-level radioactive wastes is presented to aid in evaluating national waste management options. Four basic alternative methods are analyzed and compared to the present practice of shallow land burial. These include deeper burial, disposal in mined cavities, disposal in engineered structures, and disposal in the oceans. Some variations in the basic methods are also presented. Technical, socio-political, and economic factors are assigened relative importances (weights) and evaluated for the various alternatives. Based on disposal of a constant volume of waste with given nuclear characteristics, the most desirable alternatives to shallow land burial in descending order of desirability appear to be: improving present practices, deeper burial, use of acceptable abandoned mines, new mines, ocean dumping, and structural disposal concepts. It must be emphasized that the evaluations reported here are generic, and use of other weights or different values for specific sites could change the conclusions and ordering of alternatives determined in this study. Impacts and costs associated with transportation over long distances predominate over differences among alternatives, indicating the desireability of establishing regional waste disposal locations. The impacts presented are for generic comparisons among alternatives, and are not intended to be predictive of the performance of any actual waste disposal facility

  4. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  5. Obtaining variances from the treatment standards of the RCRA Land Disposal Restrictions

    International Nuclear Information System (INIS)

    1990-05-01

    The Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs) [40 CFR 268] impose specific requirements for treatment of RCRA hazardous wastes prior to disposal. Before the LDRs, many hazardous wastes could be land disposed at an appropriately designed and permitted facility without undergoing treatment. Thus, the LDRs constitute a major change in the regulations governing hazardous waste. EPA does not regulate the radioactive component of radioactive mixed waste (RMW). However, the hazardous waste component of an RMW is subject to RCRA LDR regulations. DOE facilities that manage hazardous wastes (including radioactive mixed wastes) may have to alter their waste-management practices to comply with the regulations. The purpose of this document is to aid DOE facilities and operations offices in determining (1) whether a variance from the treatment standard should be sought and (2) which type (treatability or equivalency) of petition is appropriate. The document also guides the user in preparing the petition. It shall be noted that the primary responsibility for the development of the treatability petition lies with the generator of the waste. 2 figs., 1 tab

  6. Public acceptability of risk of radioactive waste disposal

    International Nuclear Information System (INIS)

    Millerd, W.H.

    1977-01-01

    A ''public interest'' viewpoint is presented on the disposal of radioactive wastes. Criteria for the development of disposal methods are needed. The current program to develop disposal sites and methods has become an experiment. The advantages and disadvantages of radwaste disposal as an ongoing experiment are discussed briefly

  7. Feasibility of deep ocean disposal of heat generating waste. V.1

    International Nuclear Information System (INIS)

    Hemming, C.R.

    1988-06-01

    This report summarises the research performed in the UK during the period 1977 to 1987 as part of the international programme investigating the feasibility of ocean disposal of heat generating radioactive waste. This study has involved: (i) the definition of the disposal operations needed to meet the minimum requirements for safely emplacing waste on or under the floor of the deep ocean; (ii) the identification and characterisation of areas of the deep ocean that might be suitable for containing heat generating waste; (iii) a study of the processes by which radionuclides might migrate through the multiple barriers that isolate the waste from man's environment; and (iv) a calculation of the radiological impact of the conceptual deep ocean repository. It is concluded that, from a technical and scientific viewpoint, disposal of heat generating waste in the deep ocean could provide a safe, economic and feasible alternative to deep disposal on land. (author)

  8. The role of performance assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Stenhouse, M.J.

    1998-01-01

    Performance assessment has many applications in the field of radioactive waste management, none more important than demonstrating the suitability of a particular repository system for waste disposal. The role of performance assessment in radioactive waste disposal is discussed with reference to assessments performed in civilian waste management programmes. The process is, however, relevant, and may be applied directly to the disposal of defence-related wastes. When used in an open and transparent manner, performance assessment is a powerful methodology not only for convincing the authorities of the safety of a disposal concept, but also for gaining the wider acceptance of the general public for repository siting. 26 refs

  9. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  10. Proceedings. NETEC workshop on shallow land disposal technology, 1997. 10. 20 - 10. 21, Taejon, Korea

    International Nuclear Information System (INIS)

    1997-01-01

    This proceedings cover the design and operational experience of shallow land disposal facility, and safety assessment and licensing issues of shallow land disposal facility. Ten articles are submitted

  11. Proceedings. NETEC workshop on shallow land disposal technology, 1997. 10. 20 - 10. 21, Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings cover the design and operational experience of shallow land disposal facility, and safety assessment and licensing issues of shallow land disposal facility. Ten articles are submitted.

  12. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  13. Institute for Nuclear Waste Disposal. Annual Report 2011

    International Nuclear Information System (INIS)

    Geckeis, H.; Stumpf, T.

    2012-01-01

    The R and D at the Institute for Nuclear Waste Disposal, INE, (Institut fuer Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  14. 50 CFR 27.94 - Disposal of waste.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a... manager, or the draining or dumping of oil, acids, pesticide wastes, poisons, or any other types of...

  15. Radioactive waste disposal in deep geologic deposits. Associated research problems

    International Nuclear Information System (INIS)

    Rousset, G.

    1992-01-01

    This paper describes the research associated problems for radioactive waste disposal in deep geologic deposits such granites, clays or salt deposits. After a brief description of the underground disposal, the author studies the rheology of sedimentary media and proposes rheological models applied to radioactive wastes repositories. Waste-rock interactions, particularly thermal effects and temperature distribution versus time. 17 refs., 14 figs

  16. Geology of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Roxburgh, I.S.

    1988-01-01

    The concept of geological disposal is set out by describing the major rock types in terms of their ability to isolate high-level nuclear waste. The advantages and problems posed by particular rock formations are explored and the design and construction of geological repositories is considered, along with the methods used to estimate their safety. It gives special consideration to the use of sea-covered rock and sediment as well as the on-land situation. Throughout the book the various principles and problems inherent in geological disposal are explained and illustrated by reference to a multitude of European and North American case studies, backed up by a large number of tables, figures and an extensive bibliography

  17. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  18. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  19. Waste classification - history, standards, and requirements for disposal

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    This document contains an outline of a presentation on the historical development in US of different classes (categories) or radioactive waste, on laws and regulations in US regarding classification of radioactive wastes; and requirements for disposal of different waste classes; and on the application of laws and regulations for hazardous chemical wastes to classification and disposal of naturally occurring and accelerator-produced radioactive materials; and mixed radioactive and hazardous chemical wastes

  20. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  1. Disposal of radioactive waste. Some ethical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian

    2014-07-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  2. Geologic factors in nuclear waste disposal

    International Nuclear Information System (INIS)

    Towse, D.

    1978-07-01

    The study of geosciences and their relation to nuclear waste disposal and management entails analyzing the hydrology, chemistry, and geometry of the nuclear waste migration process. Hydrologic effects are determined by analyzing the porosity and permeability (natural and induced) of rock as well as pressures and gradients, dispersion, and aquifer length of the system. Chemistry parameters include radionuclide retardation factors and waste dissolution rate. Geometric parameters (i.e., parameters with dimension) evaluated include repository layer thickness, fracture zone area, tunnel length, and aquifer length. The above parameters act as natural barriers or controls to nuclear waste migration, and are evaluated in three potential geologic media: salt, shale, and crystalline rock deposits. Parametric values are assigned that correspond to many existing situations. These values, in addition to other important inputs, are lumped as a hydrology input into a computer simulation program used to model and calculate nuclear waste migration from the repository to the biosphere, and potential individual and population dose and radiation effects. These results are preliminary and show trends only; they do not represent an actual risk analysis

  3. Disposal of radioactive waste. Some ethical aspects

    International Nuclear Information System (INIS)

    Streffer, Christian

    2014-01-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  4. Development of the safety assessment technology for the radioactive waste disposal

    International Nuclear Information System (INIS)

    Kim, Chang Lak; Choi, Kwang Sub; Cho, Chan Hee; Lee, Myung Chan; Kim, Jhin Wung

    1992-03-01

    The major goal of this project is to develop a source-term model for the safety assessment of a low- and intermediate-level radioactive waste repository as follows: 1) estimation of the arising of low- and intermediate-level radioactive wastes, 2) development of inventory data base, 3) development of a source-term code for shallow-land disposal, and 4) improvement of the REPS source-term code for rock cavern type disposal developed already in 1990 and conservative safety assessment for an imaginary repository. In addition, the source of C-14 in the inventory is assessed by two methods: decontamination factor and scaling factor. The source-term code for shallow-land disposal include the following submodels: surface water penetration into the repository, concrete degradation, corrosion of container drums, leaching of radionuclides from waste forms, and migration of radionuclides from engineered disposal facility is estimated by this code. (Author)

  5. Curriculum and instruction in nuclear waste disposal

    International Nuclear Information System (INIS)

    Robinson, M.; Lugaski, T.; Pankratius, B.

    1991-01-01

    Curriculum and instruction in nuclear waste disposal is part of the larger problem of curriculum and instruction in science. At a time when science and technological literacy is crucial to the nation's economic future fewer students are electing to take needed courses in science that might promote such literacy. The problem is directly related to what science teachers teach and how they teach it. Science content that is more relevant and interesting to students must be a part of the curriculum. Science instruction must allow students to be actively involved in investigating or playing the game of science

  6. Radioactive waste disposal - ethical and environmental considerations - A Canadian perspective

    International Nuclear Information System (INIS)

    Roots, F.

    1994-01-01

    This work deals with ethical and environmental considerations of radioactive waste disposal in Canada. It begins with the canadian attitudes toward nature and environment. Then are given the canadian institutions which reflect an environmental ethic, the development of a canadian radioactive waste management policy, the establishment of formal assessment and review process for a nuclear fuel waste disposal facility, some studies of the ethical and risk dimensions of nuclear waste decisions, the canadian societal response to issues of radioactive wastes, the analysis of risks associated with fuel waste disposal, the influence of other energy related environmental assessments and some common ground and possible accommodation between the different views. (O.L.). 50 refs

  7. Operation for Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Kamizono, Hideki

    2008-01-01

    The Rokkasho Low Level Radioactive Waste (LLW) Disposal Center is located in Oishitai, Rokkasho-mura, Kamikitagun, of Aomori Prefecture. This district is situated in the southern part of Shimohita Peninsula in the northeastern corner of the prefecture, which lies at the northern tip of Honshu, Japan's main island. The Rokkasho LLW Disposal Center deals with only LLW generated by operating of nuclear power plants. The No.1 and No.2 disposal facility are now in operation. The disposal facilities in operation have a total dispose capacity of 80,000m 3 (equivalent to 400,000 drums). Our final business scope is to dispose of radioactive waste corresponding to 600,000 m 3 (equivalent to 3000,000 drums). For No.1 disposal facility, we have been disposing of homogeneous waste, including condensed liquid waste, spent resin, solidified with cement and asphalt, etc. For No.2 disposal facility, we can bury a solid waste solidified with mortar, such as activated metals and plastics, etc. Using an improved construction technology for an artificial barrier, the concrete pits in No.2 disposal facility could be constructed more economical and spacious than that of No.1. Both No.1 and No.2 facility will be able to bury about 200,000 waste packages (drums) each corresponding to 40,000 m 3 . As of March 17, 2008, Approximately 200,00 waste drums summing up No.1 and No.2 disposal facility have been received from Nuclear power plants and buried. (author)

  8. Performance assessment for underground radioactive waste disposal systems

    International Nuclear Information System (INIS)

    1985-01-01

    A waste disposal system comprises a number of subsystems and components. The performance of most systems can be demonstrated only indirectly because of the long period that would be required to test them. This report gives special attention to performance assessment of subsystems within the total waste disposal system, and is an extension of an IAEA report on Safety Assessment for the Underground Disposal of Radioactive Wastes

  9. Radioactive waste disposal in UK: progress to date

    International Nuclear Information System (INIS)

    Folger, Michael

    1995-01-01

    In this paper, originally presented at a conference organised by the Financial Times, three main topics are covered. First, the current disposal strategies for different classes of waste, taking account of the Government's Consultative Document published recently. Second, an update on site characterisation at Sellafield and on the deep repository programme which will follow if Nirex's work confirms the site can support the demanding safety case disposal of intermediate level waste. Third, comments on costs of various options for waste disposal. (author)

  10. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  11. Commercial low-level radioactive waste disposal in the US

    International Nuclear Information System (INIS)

    Smith, P.

    1995-01-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going

  12. Plasma separation process: Disposal of PSP radioactive wastes

    International Nuclear Information System (INIS)

    1989-07-01

    Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs

  13. The disposal of radioactive solvent waste

    International Nuclear Information System (INIS)

    Dean, B.; Baker, W.T.

    1976-01-01

    As the use of radioisotope techniques increases, laboratories are faced with the problem of disposing of considerable quantities of organic solvent and aqueous liquid wastes. Incineration or collection by a waste contractor both raise problems. Since most of the radiochemicals are preferentially water soluble, an apparatus for washing the radiochemicals out into water and discharging into the normal drainage system in a high diluted form is described. Despite the disadvantages (low efficiency, high water usuage, loss of solvent in presence of surface active agents, precipitation of phosphors from dioxan based liquids) it is felt that the method has some merit if a suitably improved apparatus can be designed at reasonable cost. (U.K.)

  14. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1979-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container. 30 claims

  15. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1977-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container

  16. Constraints to waste utilization and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  17. Disposal of low and intermediate level solid radioactive waste

    International Nuclear Information System (INIS)

    Kanwar Raj

    1998-01-01

    Radioactive waste disposal facility is a very important link in the nuclear fuel cycle chain. Being at the end of the back-end of the fuel cycle, it forms an interface between nuclear industry and the environment. Therefore, the effectiveness of the disposal facility for safe isolation of radioactive waste is vital. This is achieved by following a systematic approach to the disposal system as a whole. Conditioned waste, engineered barriers, back-fill and surrounding geosphere are main components of the disposal system. All of them play complementary role in isolating the radioactivity contained in the waste for extended period of time

  18. Principles and guidelines for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1988-06-01

    Four basic principles relevant to radioactive waste disposal identified. These principles cover the justification of the activity giving rise to the waste, the consideration of risk to present and future generations, the minimization of the need for intervention in the future, and the financial obligations of the licensee. The use of risk limits as opposed to dose limits associated with disposal is discussed, as are the concepts of critical group, de minimis, and ALARA, in the context of a waste disposal facility. Guidance is given on the selection of the preferred waste disposal concept from among several alternatives, and for judging proposed design improvements to the chosen concept

  19. A program for evolution from storage to disposal of radioactive wastes at CRNL

    International Nuclear Information System (INIS)

    Dixon, D.F.

    1985-10-01

    This report reviews past and current radioactive waste management practices at the Chalk River Nuclear Laboratories (CRNL) and outlines the proposed future program. For nearly 40 years, radioactive wastes have been generated at CRNL and have also been received there on a continuing basis from hospitals, industries, universities and miscellaneous other sources across Canada. The solid wastes now at CRNL have been either stored or buried and their total consolidated volume is approaching 50 000 m 3 . Much of that waste will require disposal as will the future wastes of similar character. The waste management program plan describes the proposed development of safe disposal facilities which could be built on site to accommodate most, if not all, of the radioactive wastes for which CRNL has responsibility. Three reference disposal concepts, each potentially capable of accepting a portion of the wastes, are described. One of these, the intrusion-resistant shallow land burial (SLB) concept, could be suitable for disposal of most of the CRNL wastes. It is proposed that a prototype SLB facility be designed, constructed and operated on the CRNL property and filled by 1992 to provide a focus for disposal research and development programs and to accumulate experience in all aspects of waste management. 53 refs

  20. Household waste disposal in Mekelle city, Northern Ethiopia

    International Nuclear Information System (INIS)

    Tadesse, Tewodros; Ruijs, Arjan; Hagos, Fitsum

    2008-01-01

    In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal