WorldWideScience

Sample records for waste disposal fluid

  1. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  2. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  3. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  4. Disposal of radioactive waste

    Science.gov (United States)

    Van Dorp, Frits; Grogan, Helen; McCombie, Charles

    The aim of radioactive and non-radioactive waste management is to protect man and the environment from unacceptable risks. Protection criteria for both should therefore be based on similar considerations. From overall protection criteria, performance criteria for subsystems in waste management can be derived, for example for waste disposal. International developments in this field are summarized. A brief overview of radioactive waste sorts and disposal concepts is given. Currently being implemented are trench disposal and engineered near-surface facilities for low-level wastes. For low-and intermediate-level waste underground facilities are under construction. For high-level waste site selection and investigation is being carried out in several countries. In all countries with nuclear programmes, the predicted performance of waste disposal systems is being assessed in scenario and consequence analyses. The influences of variability and uncertainty of parameter values are increasingly being treated by probabilistic methods. Results of selected performance assessments show that radioactive waste disposal sites can be found and suitable repositories can be designed so that defined radioprotection limits are not exceeded.

  5. Geological disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed. (AT)

  6. Zircons and fluids: An experimental investigation with applications for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K.; Student, J.; Essex, R.

    1991-01-01

    The long-term stability of nuclear waste forms or barriers is related to changes in physical properties of the material induced through radiation damage and subsequent changes in solubility. Investigations conducted by us on natural zircons (ZrSiO{sub 4}) supports a positive correlation between level of alpha damage and fluid composition to enhanced levels of corrosion. New data are presented on the nature and rate of the solution process. We also present data on our continuing efforts to synthesize and characterize both pure ZrSiO{sub 4} and doped with U, Th, Hf, Dy and P.

  7. Final disposal of radioactive waste

    OpenAIRE

    Freiesleben H.

    2013-01-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of c...

  8. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  9. Final disposal of radioactive waste

    Science.gov (United States)

    Freiesleben, H.

    2013-06-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  10. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  11. Engineering geology of waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, S.P. [ed.] [University of Wales, Cardiff (United Kingdom). School of Engineering

    1996-12-31

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK).

  12. Clays in radioactive waste disposal

    OpenAIRE

    Delage, Pierre; Cui, Yu-Jun; Tang, Anh-Minh

    2010-01-01

    Clays and argillites are considered in some countries as possible host rocks for nuclear waste disposal at great depth. The use of compacted swelling clays as engineered barriers is also considered within the framework of the multi-barrier concept. In relation to these concepts, various research programs have been conducted to assess the thermo-hydro-mechanical properties of radioactive waste disposal at great depth. After introducing the concepts of waste isolation developed in Belgium, Fran...

  13. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  14. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  15. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  16. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  17. TECHNOLOGICAL WASTE DISPOSAL BY SUBSURFACE INJECTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Janković Branimir

    2002-12-01

    Full Text Available The application of oilfield and solution mining technology to subsurface disposal of technological wastes has proven to be an environmentally, technically and economically suitable method for the disposal of the waste generated in petroleum industry as well as other industrial branches. This paper describes the subsurface injection technology, the disposal formation characteristics, the waste disposal well design, evaluates the environmental impact of above mentioned technology and proposes a solutions for disposing of technological wastes in Croatia or nerby region by implementing underground injection technology according to the world experience (the paper is published in Croatian.

  18. Mine waste disposal and managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young Wook; Min, Jeong Sik; Kwon, Kwang Soo; Kim, Ok Hwan; Kim, In Kee; Song, Won Kyong; Lee, Hyun Joo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Acid Rock Drainage (ARD) is the product formed by the atmospheric oxidation of the relatively common pyrite and pyrrhotite. Waste rock dumps and tailings containing sulfide mineral have been reported at toxic materials producing ARD. Mining in sulphide bearing rock is one of activity which may lead to generation and release of ARD. ARD has had some major detrimental affects on mining areas. The purpose of this study was carried out to develop disposal method for preventing contamination of water and soil environment by waste rocks dump and tailings, which could discharge the acid drainage with high level of metals. Scope of this study was as following: environmental impacts by mine wastes, geochemical characteristics such as metal speciation, acid potential and paste pH of mine wastes, interpretation of occurrence of ARD underneath tailings impoundment, analysis of slope stability of tailings dam etc. The following procedures were used as part of ARD evaluation and prediction to determine the nature and quantities of soluble constituents that may be washed from mine wastes under natural precipitation: analysis of water and mine wastes, Acid-Base accounting, sequential extraction technique and measurement of lime requirement etc. In addition, computer modelling was applied for interpretation of slope stability od tailings dam. (author). 44 refs., 33 tabs., 86 figs.

  19. 10 CFR 850.32 - Waste disposal.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and beryllium-contaminated equipment and other...

  20. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  1. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  2. Nuclear waste disposal educational forum

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-18

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base.

  3. DISPOSABLE CANISTER WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2001-07-30

    The purpose of this calculation is to provide the bases for defining the preclosure limits on radioactive material releases from radioactive waste forms to be received in disposable canisters at the Monitored Geologic Repository (MGR) at Yucca Mountain. Specifically, this calculation will provide the basis for criteria to be included in a forthcoming revision of the Waste Acceptance System Requirements Document (WASRD) that limits releases in terms of non-isotope-specific canister release dose-equivalent source terms. These criteria will be developed for the Department of Energy spent nuclear fuel (DSNF) standard canister, the Multicanister Overpack (MCO), the naval spent fuel canister, the High-Level Waste (HLW) canister, the plutonium can-in-canister, and the large Multipurpose Canister (MPC). The shippers of such canisters will be required to demonstrate that they meet these criteria before the canisters are accepted at the MGR. The Quality Assurance program is applicable to this calculation. The work reported in this document is part of the analysis of DSNF and is performed using procedure AP-3.124, Calculations. The work done for this analysis was evaluated according to procedure QAP-2-0, Control of Activities, which has been superseded by AP-2.21Q, Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities. This evaluation determined that such activities are subject to the requirements of DOE/RW/0333P, Quality Assurance Requirements and Description (DOE 2000). This work is also prepared in accordance with the development plan titled Design Basis Event Analyses on DOE SNF and Plutonium Can-In-Canister Waste Forms (CRWMS M&O 1999a) and Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages (CRWMS M&O 2000d). This calculation contains no electronic data applicable to any electronic data management system.

  4. Disposal of medical waste: a legal perspective.

    Science.gov (United States)

    Du Toit, Karen; Bodenstein, Johannes

    2013-09-03

    The Constitution of the Republic of South Africa provides that everyone has the right to an environment that is not harmful to their health and well-being. The illegal dumping of hazardous waste poses a danger to the environment when pollutants migrate into water sources and ultimately cause widespread infection or toxicity, endangering the health of humans who might become exposed to infection and toxins. To give effect to the Constitution, the safe disposal of hazardous waste is governed by legislation in South Africa. Reports of the illegal disposal of waste suggest a general lack of awareness and training in regard to the safe disposal of medical waste

  5. Marine disposal of radioactive wastes

    Science.gov (United States)

    Woodhead, D. S.

    1980-03-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the absorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strengths and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area.

  6. The Challenges of Waste Disposal in a Secondary City: Calabar ...

    African Journals Online (AJOL)

    The Challenges of Waste Disposal in a Secondary City: Calabar Metropolis – Cross ... Waste disposal is a major aspect in environmental preservation for healthy living. ... irregular collection and evacuation of waste materials and lack of funds. ... agencies to partner in waste disposal, create awareness on waste disposal, ...

  7. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  8. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  9. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  10. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  11. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  12. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  13. Mixed waste characterization, treatment & disposal focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  14. Mine Waste Disposal and Managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young-Wook; Min, Jeong-Sik; Kwon, Kwang-Soo [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research project deals with: Analysis and characterization of mine waste piles or tailings impoundment abandoned in mining areas; Survey of mining environmental pollution from mine waste impounds; Modelling of pollutants in groundwater around tailings impoundment; Demonstration of acid rock drainage from coal mine waste rock piles and experiment of seeding on waste rock surface; Development of a liner using tailings. Most of mine wastes are deposited on natural ground without artificial liners and capping for preventing contamination of groundwater around mine waste piles or containments. In case of some mine waste piles or containments, pollutants have been released to the environment, and several constituents in drainage exceed the limit of discharge from landfill site. Metals found in drainage exist in exchangeable fraction in waste rock and tailings. This means that if when it rains to mine waste containments, mine wastes can be pollutant to the environment by release of acidity and metals. As a result of simulation for hydraulic potentials and groundwater flow paths within the tailings, the simulated travel paths correlated well with the observed contaminant distribution. The plum disperse, both longitudinal and transverse dimensions, with time. Therefore liner system is a very important component in tailings containment system. As experimental results of liner development using tailings, tailings mixed with some portion of resin or cement may be used for liner because tailings with some additives have a very low hydraulic conductivity. (author). 39 refs.

  15. The disposal of nuclear waste in space

    Science.gov (United States)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  16. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  17. 基于无害化的海上废弃钻井液处理方法分析%Analysis of Disposal Method of Marine Waste Drilling Fluid Based on Harmless

    Institute of Scientific and Technical Information of China (English)

    曾彦波

    2016-01-01

    In offshore oil exploitation of abandoned water-based drilling fluid composition and environmental hazards as the object of study , with reference to the domestic and international relevant standards and application of technology , the application status of disposal methods , biological disposal methods , plant-microbial remediation method technology was analyzed.From the perspective of environmental protection , biological remediation and disposal methods of plant microbe bioremediation should be used as drilling fluid harmless treatment of waste water base first .In addition, the state and oil exploitation enterprises should establish a drilling fluid treatment discharge standards , regulate waste emissions , to reduce environmental pollution caused by waste drilling fluid .%分析了海洋石油开采产生的废弃水基钻井液的构成和环境危害,以无害化处置方法为研究对象,参照国内外有关标准和应用技术,分析了理化处置方法、生物处置方法、植物-微生物联合修复方法等技术的应用现状。从环境保护的角度出发,生物处置方法以及植物-微生物联合修复方法应作为废弃水基钻井液生物修复无害化处理的首先。国家和石油开采企业应尽快形成废钻井液的处理规范和标准,以减少废弃钻井液的有害排放。

  18. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  19. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  20. Radioactive Waste Streams: Waste Classification for Disposal

    Science.gov (United States)

    2006-12-13

    acidity with caustic soda or sodium nitrate to condition it for storage in the carbon-steel tanks. (The neutralization reaction formed a...waste ranges between from 47 to 147 curies/cubic-meter based on the Waste Isolation Pilot Plant inventory. The vitrified high-level waste processed by...Facility St T Assembly MTHM 1. Arkansas Nuclear One AK P 1,517 666.7 46. Shearon Harris Nuclear Power Plant NC P 3,814 964.5 I 552 241.4 47. Cooper

  1. Radioactive waste disposal in thick unsaturated zones.

    Science.gov (United States)

    Winogard, I J

    1981-06-26

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolatic is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere.

  2. Laboratory Waste Disposal Manual. Revised Edition.

    Science.gov (United States)

    Stephenson, F. G., Ed.

    This manual is designed to provide laboratory personnel with information about chemical hazards and ways of disposing of chemical wastes with minimum contamination of the environment. The manual contains a reference chart section which has alphabetical listings of some 1200 chemical substances with information on the health, fire and reactivity…

  3. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  4. Waste Disposal: The PRACLAY Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D

    2000-07-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation.

  5. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  6. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  7. Ecological Risk Assessment of Jarosite Waste Disposal

    Directory of Open Access Journals (Sweden)

    Mihone Kerolli-Mustafa

    2015-07-01

    Full Text Available Jarosite waste, originating from zinc extraction industry, is considered hazardous due to the presence and the mobility of toxic metals that it contains. Its worldwide disposal in many tailing damps has become a major ecological concern. Three different methods, namely modified Synthetic Precipitation Leaching Procedure (SPLP, three-stage BCR sequential extraction procedure and Potential Ecological Risk Index (PERI Method were used to access the ecological risk of jarosite waste disposal in Mitrovica Industrial Park, Kosovo. The combination of these methods can effectively identify the comprehensive and single pollution levels of heavy metals such as Zn, Pb, Cd, Cu, Ni and As present in jarosite waste. Moreover, the great positive relevance between leaching behavior of heavy metals and F1 fraction was supported by principal component analysis (PCA. PERI results indicate that Cd showed a very high risk class to the environment. The ecological risk of heavy metals declines in the following order: Cd>Zn>Cu>Pb>Ni>As.

  8. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2001-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued.

  9. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service 7 CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and... (RUS) proposes to amend the regulations pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water and waste disposal facilities and services to...

  10. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... CFR Part 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service... related to the Section 306C Water and Waste Disposal (WWD) Loans and Grants Program, which provides water... additional priority points to the colonias that lack access to water or waste disposal systems and...

  11. Regulating the disposal of cigarette butts as toxic hazardous waste

    OpenAIRE

    Barnes, Richard L

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste...

  12. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    Science.gov (United States)

    2009-02-06

    pr_121508_energysecnom.cfm. 13 Lawrence Berkeley National Laboratory, “Growing energy: Berkeley Lab’s Steve Chu on what termite guts have to do with global warming...does not seem an attractive alternative to the geological 60 Steven Nadis, “The Sub-Seabed Solution...could be done at Yucca Mountain.82 Such “salt creep” occurs more quickly at higher temperatures , which could result from the disposal of high-level waste

  13. Zircons and fluids: An experimental investigation with applications for radioactive waste disposal. Hydrothermal stability of zircons: Progress report, January 1991--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K.; Student, J.; Essex, R.

    1991-12-31

    The long-term stability of nuclear waste forms or barriers is related to changes in physical properties of the material induced through radiation damage and subsequent changes in solubility. Investigations conducted by us on natural zircons (ZrSiO{sub 4}) supports a positive correlation between level of alpha damage and fluid composition to enhanced levels of corrosion. New data are presented on the nature and rate of the solution process. We also present data on our continuing efforts to synthesize and characterize both pure ZrSiO{sub 4} and doped with U, Th, Hf, Dy and P.

  14. Zircons and fluids: An experimental investigation with applications for radioactive waste disposal. Hydrothermal stability of zircons: Progress report, January 1991--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K.; Student, J.; Essex, R.

    1991-12-31

    The long-term stability of nuclear waste forms or barriers is related to changes in physical properties of the material induced through radiation damage and subsequent changes in solubility. Investigations conducted by us on natural zircons (ZrSiO{sub 4}) supports a positive correlation between level of alpha damage and fluid composition to enhanced levels of corrosion. New data are presented on the nature and rate of the solution process. We also present data on our continuing efforts to synthesize and characterize both pure ZrSiO{sub 4} and doped with U, Th, Hf, Dy and P.

  15. Disposal and degradation of pesticide waste.

    Science.gov (United States)

    Felsot, Allan S; Racke, Kenneth D; Hamilton, Denis J

    2003-01-01

    Generation of pesticide waste is inevitable during every agricultural operation from storage to use and equipment cleanup. Large-scale pesticide manufacturers can afford sophisticated recovery, treatment, and cleanup techniques. Small-scale pesticide users, for example, single farms or small application businesses, struggle with both past waste problems, including contaminated soils, and disposal of unused product and equipment rinsewater. Many of these problems have arisen as a result of inability to properly handle spills during, equipment loading and rinsewater generated after application. Small-scale facilities also face continued problems of wastewater handling. Old, obsolete pesticide stocks are a vexing problem in numerous developing countries. Pesticide waste is characterized by high concentrations of a diversity of chemicals and associated adjuvants. Dissipation of chemicals at elevated concentrations is much slower than at lower concentrations, in part because of microbial toxicity and mass transfer limitations. High concentrations of pesticides may also move faster to lower soil depths, especially when pore water becomes saturated wish a compound. Thus, if pesticide waste is not properly disposed of, groundwater and surface water contamination become probable. The Waste Management Hierarchy developed as an Australian Code of Practice can serve as a guide for development of a sound waste management plan. In order of desirability, the course of actions include waste avoidance, waste reduction, waste recycling, waste treatment, and waste disposal. Proper management of pesticide stocks, including adequate storage conditions, good inventory practices, and regular turnover of products,. will contribute to waste avoidance and reduction over the long-term. Farmers can also choose to use registered materials that have the lowest recommended application rates or are applied in the least volume of water. Wastewater that is generated during equipment rinsing can be

  16. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW-ACTIVITY WASTES IN RCRA-C DISPOSAL CELLS

    Science.gov (United States)

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology....

  17. Radioactive waste disposal fees-Methodology for calculation

    Science.gov (United States)

    Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich

    2014-11-01

    This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.

  18. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Science.gov (United States)

    2010-07-01

    ...-approved solid waste disposal area. Disposal sites in the permit area shall be designed and constructed to... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section 816.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE...

  19. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Science.gov (United States)

    2010-07-01

    ...-approved solid waste disposal area. Disposal sites in the permit area shall be designed and constructed to... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section 817.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE...

  20. Moisture monitoring in waste disposal surface barriers.

    Science.gov (United States)

    Brandelik, Alex; Huebner, Christof

    2003-05-01

    Surface barriers for waste disposal sites should prevent waste water and gas emission into the environment. It is necessary to assess their proper operation by monitoring the water regime of the containment. A set of three new water content measuring devices has been developed that provide an economical solution for monitoring the moisture distribution and water dynamic. They will give an early warning service if the barrier system is at risk of being damaged. The cryo soil moisture sensor 'LUMBRICUS' is an in situ self-calibrating absolute water content measuring device. It measures moisture profiles at spot locations down to 2.5 m depth with an accuracy of better than 1.5% and a depth resolution of 0.03 m. The sensor inherently measures density changes and initial cracks of shrinking materials like clay minerals. The large area soil moisture sensor 'TAUPE' is a moisture sensitive electric cable network to be buried in the mineral barrier material of the cover. A report will be given with results and experiences on an exemplary installation at the Waste Disposal Facility Karlsruhe-West. 800 m2 of the barrier construction have been continuously monitored since December 1997. Volumetric water content differences of 1.5% have been detected and localised within 4 m. This device is already installed in two other waste disposal sites. A modified 'TAUPE' was constructed for the control of tunnels and river dams as well. Thin sheet moisture sensor 'FORMI' is specifically designed for moisture measurements in liners like bentonite, textile and plastic. Due to its flexibility it follows the curvature of the liner. The sensor measures independently from neighbouring materials and can be matched to a wide range of different thickness of the material. The sensors are patented in several countries.

  1. Periglacial phenomena affecting nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Niini, H.

    1997-12-01

    Full Text Available Slow future changes in astronomic phenomena seem to make it likely that Finland nll suffer several cold periods during the next 100,000 years. The paper analyses the characteristics of the periglacial factors that are most likely to influence the long-term safety of high-level radioactive waste disposed of in bedrock. These factors and their influences have been divided into two categories, natural and human. It is concluded that the basically natural phenomena are theoretically better understood than the complicated phenomena caused by man. It is therefore important in future research into periglacial phenomena, as well as of the disposal problem, to emphasize not only the proper applications of the results of natural sciences, but especially the effects and control of mankind's own present and future activities.

  2. 50 CFR 27.94 - Disposal of waste.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a... manager, or the draining or dumping of oil, acids, pesticide wastes, poisons, or any other types of...

  3. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    Energy Technology Data Exchange (ETDEWEB)

    Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freeze, Geoffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

  4. Disposal of radioactive waste. Some ethical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian

    2014-07-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  5. Sulfuric Acid Regeneration Waste Disposal Technology.

    Science.gov (United States)

    1986-11-01

    tons calcium sulfate (gypsum) per ton of titanium oxide (TiO2 ) produced. Because of the shear magnitude of the calcium sulfate disposal problem, one... pickling liquors that used as high as a 40:1 seed recycle ratio (we did not talk directly with Bethlehem Steel on their process). The Dorr Oliver...I I I 4-14 / Arthur D. Little, Inc. SECTION 5 BIBLIOGRAPHY 1. Aarons, R. and Taylor, R.A. (1967), The DuPont Waste Pickle Liquor Process, 22 Ind

  6. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  7. Challenges in Disposing of Anthrax Waste

    Energy Technology Data Exchange (ETDEWEB)

    Lesperance, Ann M.; Stein, Steven L.; Upton, Jaki F.; Toomey, Christopher

    2011-09-01

    Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration’s (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material will require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussion was the identification of three primary topical areas that must be addressed: 1) Planning; 2) Unresolved research questions, and resolving regulatory issues.

  8. Constraints to waste utilization and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  9. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  10. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  11. Evaluating pharmaceutical waste disposal in pediatric units.

    Science.gov (United States)

    Almeida, Maria Angélica Randoli de; Wilson, Ana Maria Miranda Martins; Peterlini, Maria Angélica Sorgini

    2016-01-01

    To verify the disposal of pharmaceutical waste performed in pediatric units. A descriptive and observational study conducted in a university hospital. The convenience sample consisted of pharmaceuticals discarded during the study period. Handling and disposal during preparation and administration were observed. Data collection took place at pre-established times and was performed using a pre-validated instrument. 356 drugs disposals were identified (35.1% in the clinic, 31.8% in the intensive care unit, 23.8% in the surgical unit and 9.3% in the infectious diseases unit). The most discarded pharmacological classes were: 22.7% antimicrobials, 14.8% electrolytes, 14.6% analgesics/pain killers, 9.5% diuretics and 6.7% antiulcer agents. The most used means for disposal were: sharps' disposable box with a yellow bag (30.8%), sink drain (28.9%), sharps' box with orange bag (14.3%), and infectious waste/bin with a white bag (10.1%). No disposal was identified after drug administration. A discussion of measures that can contribute to reducing (healthcare) waste volume with the intention of engaging reflective team performance and proper disposal is necessary. Verificar o descarte dos resíduos de medicamentos realizado em unidades pediátricas. Estudo descritivo e observacional, realizado em um hospital universitário. A amostra de conveniência foi constituída pelos medicamentos descartados durante o período de estudo. Observaram-se a manipulação e o descarte durante o preparo e a administração. A coleta dos dados ocorreu em horários preestabelecidos e realizada por meio de instrumento pré-validado. Identificaram-se 356 descartes de medicamentos (35,1% na clínica, 31,8% na unidade de cuidados intensivos, 23,8% na cirúrgica e 9,3% na infectologia). As classes farmacológicas mais descartadas foram: 22,7% antimicrobianos, 14,8% eletrólitos, 14,6% analgésicos, 9,5% diuréticos e 6,7% antiulcerosos. Vias mais utilizadas: caixa descartável para perfurocortante com

  12. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-02-27

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

  13. 废弃钻井液无害化处理技术的研究%Research of waste drilling fluid disposal technology

    Institute of Scientific and Technical Information of China (English)

    何长明; 李俊华; 王佳

    2016-01-01

    The major ingredient of mud was polyacrylamide , sodium carboxymethyl cellulose , sulfonated asphalt ,no fluorescence lubricants and so on .It has the high viscosity ,high concentration of organic matter and pollutant characteristics .It may quickly solve the stability of the mud system by chemical treatment technology.The results show that polyacrylamide degrading HK 618, demulsifier HK201 and catalyst HK458 could make waste drilling fluid rapid degradation hydration for 2 h.It achieve the complete sepa-ration of solid phase ,water and oil .Adopting the new technology can solve the stability problem of drilling fluid viscous material .It has the vital significance for the future ecological restoration .%延长油田应用的泥浆主要成分为聚丙烯酰胺、羧甲基纤维素钠等,具有粘度高、有机物浓度高、污染物种类多等特点,加入研制的聚丙烯酰胺降解剂HK618、破乳剂HK201和催化剂HK458,可以使其2 h内快速降解水化成小分子,实现固相、水、油的完全分离。采用新技术能够解决传统化学处理中钻井液废弃物粘稠物质的稳定性问题,对未来生态恢复也具有重要的意义。

  14. Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

    2012-07-01

    Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

  15. Storage and disposal of radioactive waste as glass in canisters

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal.

  16. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  17. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Excreta and liquid waste disposal. 654.406 Section 654.406 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406 Excreta and liquid waste disposal....

  18. Department of Energy low-level radioactive waste disposal concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  19. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    Science.gov (United States)

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  20. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.B.; Barnard, J.W.; Bird, G.A. [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  1. Low-Level Waste Disposal Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  2. Systems engineering programs for geologic nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

    1980-06-01

    The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

  3. Crushing leads to waste disposal savings for FUSRAP

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J. [Department of Energy, Oak Ridge, TN (United States)

    1997-02-01

    In this article the author discusses the application of a rock crusher as a means of implementing cost savings in the remediation of FUSRAP sites. Transportation and offsite disposal costs are at present the biggest cost items in the remediation of FUSRAP sites. If these debris disposal problems can be handled in different manners, then remediation savings are available. Crushing can result in the ability to handle some wastes as soil disposal problems, which have different disposal regulations, thereby permitting cost savings.

  4. Status report on the disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Culler, F.L. Jr.; McLain, S. (comps.)

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontamination are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.

  5. Plant Test of Industrial Waste Disposal in a Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    刘阳生; 韩杰; 等

    2003-01-01

    Destruction of industrial waste in cement rotary kilins(CRKs) is an alternative technology for the treatment of certain types of industrial waste(IW).In this paper,three typical types of industrial wastes were co-incinerated in the CRK at Beijing Cement Plant to determine the effects of waste disposal(especially solid waste disposal )on the quality of clinker and the concentration of pollutants in air emission.Experimental results show that(1) waste disposal does not affect the quality of clinker and fly ash,and fly ash after the IW disposal can still be used in the cement production,(2) heavy metals from IW are immobilized and stabilized in the clinker and cement,and (3) concentration of pollutants in air emission is far below than the permitted values in the China National Standard-Air Pollutants Emission Standard(GB 16297-1996).

  6. Options and cost for disposal of NORM waste.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-10-22

    Oil field waste containing naturally occurring radioactive material (NORM) is presently disposed of both on the lease site and at off-site commercial disposal facilities. The majority of NORM waste is disposed of through underground injection, most of which presently takes place at a commercial injection facility located in eastern Texas. Several companies offer the service of coming to an operator's site, grinding the NORM waste into a fine particle size, slurrying the waste, and injecting it into the operator's own disposal well. One company is developing a process whereby the radionuclides are dissolved out of the NORM wastes, leaving a nonhazardous oil field waste and a contaminated liquid stream that is injected into the operator's own injection well. Smaller quantities of NORM are disposed of through burial in landfills, encapsulation inside the casing of wells that are being plugged and abandoned, or land spreading. It is difficult to quantify the total cost for disposing of NORM waste. The cost components that must be considered, in addition to the cost of the operation, include analytical costs, transportation costs, container decontamination costs, permitting costs, and long-term liability costs. Current NORM waste disposal costs range from $15/bbl to $420/bbl.

  7. Possibilities of composting disposable diapers with municipal solid wastes

    OpenAIRE

    Colón Jordà, Joan; Ruggieri, Luz; Sánchez Ferrer, Antoni; González Puig, Aina; PUIG VENTOSA, Ignasi

    2011-01-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process per...

  8. DISPOSAL OF LOW AND INTERMEDIATE LEVEL WASTE IN HUNGARY

    Directory of Open Access Journals (Sweden)

    Bálint Nős

    2012-07-01

    Full Text Available There are two operating facilities for management of low and intermediate level radioactive waste in Hungary. Experience with radioactive waste has a relatively long history and from its legacy some problems are to be solved, like the question of the historical waste in the Radioactive Waste Treatment and Disposal Facility (RWTDF. Beside the legacy problems the current waste arising from the Nuclear Power Plant (NPP has to be dealt with a safe and economically optimized way.

  9. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  10. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/ processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  11. Standardization of DOE Disposal Facilities Waste Acceptance Process

    Energy Technology Data Exchange (ETDEWEB)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  12. Developments in management and technology of waste reduction and disposal.

    Science.gov (United States)

    Rushbrook, Philip

    2006-09-01

    Scandals and public dangers from the mismanagement and poor disposal of hazardous wastes during the 1960s and 1970s awakened the modern-day environmental movement. Influential publications such as "Silent Spring" and high-profile disposal failures, for example, Love Canal and Lekkerkerk, focused attention on the use of chemicals in everyday life and the potential dangers from inappropriate disposal. This attention has not abated and developments, invariably increasing expectations and tightening requirements, continue to be implemented. Waste, as a surrogate for environmental improvement, is a topic where elected representatives and administrations continually want to do more. This article will chart the recent changes in hazardous waste management emanating from the European Union legislation, now being implemented in Member States across the continent. These developments widen the range of discarded materials regarded as "hazardous," prohibit the use of specific chemicals, prohibit the use of waste management options, shift the emphasis from risk-based treatment and disposal to inclusive lists, and incorporate waste producers into more stringent regulatory regimes. The impact of the changes is also intended to provide renewed impetus for waste reduction. Under an environmental control system where only certainty is tolerated, the opportunities for innovation within the industry and the waste treatment and disposal sector will be explored. A challenging analysis will be offered on the impact of this regulation-led approach to the nature and sustainability of hazardous waste treatment and disposal in the future.

  13. Patterns and correlates of solid waste disposal practices in Dar es ...

    African Journals Online (AJOL)

    USER

    This study examines the patterns and correlations of solid waste disposal practices ... suggest that distance, home ownership, household expenditure proxy for income, ... Key words: Solid waste, garbage, waste disposal, waste management, ...

  14. High level radioactive waste (HLW) disposal a global challenge

    CERN Document Server

    PUSCH, R; NAKANO, M

    2011-01-01

    High Level Radioactive Waste (HLW) Disposal, A Global Challenge presents the most recent information on proposed methods of disposal for the most dangerous radioactive waste and for assessing their function from short- and long-term perspectives. It discusses new aspects of the disposal of such waste, especially HLW.The book is unique in the literature in making it clear that, due to tectonics and long-term changes in rock structure, rock can serve only as a ""mechanical support to the chemical apparatus"" and that effective containment of hazardous elements can only be managed by properly des

  15. Immobilized low-level waste disposal options configuration study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  16. A factorial analysis experimentation of inappropriate waste disposal

    Directory of Open Access Journals (Sweden)

    S. A. Oke, K. O. Awofeso

    2006-04-01

    Full Text Available This paper presents a statistical approach to estimating the effects of psychological factors on humans due to inappropriate waste disposal in the environment. Factorial experimental analysis is combined with the concepts of transition matrix and steady state conditions. An adequate understanding into the statistical quantification of the waste disposal concept would aid policy makers in effective decision making and the proper control of environment. The feasibility of developing statistical parameters for assessing the waste disposal concept is confirmed. The work shows the novelty of the approach.

  17. Transuranic advanced disposal systems: preliminary /sup 239/Pu waste-disposal criteria for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Aaberg, R.L.; Napier, B.A.; Soldat, J.K.

    1982-09-01

    This report contains the draft results of a study sponsored by the US Department of Energy (DOE) to determine preliminary /sup 239/Pu waste disposal criteria for the Hanford Site. The purpose of this study is to provide a preliminary evaluation of the feasibility of various defense TRU advanced disposal options at the Hanford Site. Advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. They will be used to complement the waste geologic disposal in achieving permanent disposal of selected TRU wastes. An example systems analysis is discussed with assumed performance objectives and Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000-year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/yr to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 5 figures, 7 tables.

  18. Monthly progress abstracts of general research, liquid waste disposal research and biological research for September 1949

    Energy Technology Data Exchange (ETDEWEB)

    None

    1949-11-28

    Brief descriptions of progress are given in the areas of chemistry, physics, instrumentation (calorimetry), process development (electrolysis and waste disposal), electronics (alpha counters, trigger circuits, flow counter, and sliding pulse generator), health division (distribution of polonium in tissues, fluids, and excreta), instrumentation, and process engineering.

  19. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    Energy Technology Data Exchange (ETDEWEB)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  20. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  1. Disposal of solid wastes with simultaneous energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.

    1980-01-01

    The need for resource recovery from solid wastes is discussed. The incentives for a comprehensive system, a gasification based disposal system, and biological recovery methods are reviewed. Biogas process development and the Lanfilgas process are described. (MHR)

  2. Disposal of Kitchen Waste from High Rise Apartment

    Science.gov (United States)

    Ori, Kirki; Bharti, Ajay; Kumar, Sunil

    2017-07-01

    The high rise building has numbers of floor and rooms having variety of users or tenants for residential purposes. The huge quantities of heterogenous mixtures of domestic food waste are generated from every floor of the high rise residential buildings. Disposal of wet and biodegradable domestic kitchen waste from high rise buildings are more expensive in regards of collection and vertical transportation. This work is intended to address the technique to dispose of the wet organic food waste from the high rise buildings or multistory building at generation point with the advantage of gravity and vermicomposting technique. This innovative effort for collection and disposal of wet organic solid waste from high rise apartment is more economical and hygienic in comparison with present system of disposal.

  3. TECHNICAL NOTE LIQUID WASTE DISPOSAL IN URBAN LOW ...

    African Journals Online (AJOL)

    of in a properly designed and integrated network of pipes, which collect and ... been overcrowding, poverty, health problems and an ever increasing strain on basic ... ·adequate water supply, then 111 adequate waste disposal syltcm is needed ...

  4. Environmental Management of Human Waste Disposal for Recreational Boating Activities

    Science.gov (United States)

    Shafer; Yoon

    1998-01-01

    / A methodology to estimate the number of pump-out facilities and dump stations required to service human waste disposal for recreational power boating activities in Pennsylvania during the 1994 boating season is described. Study results suggest that a total of 39 additional pump-out stations and 13 dump stations may be required on seven major waterbodies: The Three Rivers Area, Lake Erie/Presque Isle Bay, Raystown Lake, the Susquehanna River, the Delaware River, Lake Wallenpaupack, and the Kinzua Reservoir. Suggestions for improving the methodology are provided. KEY WORDS: Human waste; Recreation; Power boating; Waste facilities; Waste disposal; Pennsylvania

  5. Advanced disposal systems for transuranic waste: Preliminary disposal criteria for Plutonium-239 at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E.; Napier, B.A.; Soldat, J.K.

    1983-01-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford site. The advanced waste disposal options include those developed to provide ''greater confinement'' than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the allowable residual contamination level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site specific analysis of the potential for radiation exposure to individuals. A 10,000-year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/yr to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth.

  6. Transuranic advanced disposal systems: preliminary /sup 239/Pu waste-disposal criteria for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables.

  7. Hazardous Material Storage Facilities and Sites - WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN: Waste Site Locations for Disposal, Storage and Handling of Solid Waste and Hazardous Waste in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN is a point shapefile that contains waste site locations for the disposal, storage, and handling of solid and hazardous waste...

  8. Solid Waste Disposal: A Choice Experiment Experience in Malaysia

    OpenAIRE

    Pek, Chuen Khee; Othman, Jamal

    2009-01-01

    Increasing generation of solid waste requires better quality disposal options in Malaysia. Control tipping is the most commonly used complemented by sanitary landfill and incineration. This study estimates the non-market values of improved waste disposal services and also ranking them using choice experiment. River water quality is the most concerned followed by psychological fear, air pollution and land use. Socio-economic background and distance factor influence the types of compensating su...

  9. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site...

  10. Safety aspects of nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  11. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  12. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  13. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  14. Analysis of alternatives for immobilized low activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  15. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  16. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  17. The diffusion of differentiated waste disposal taxes in the Netherlands

    NARCIS (Netherlands)

    Heijnen, P.

    2007-01-01

    The diffusion of a novel taxing scheme among Dutch municipalities in the period 1998-2005 is studied. In this taxing scheme the waste disposal tax is made dependent on the amount of waste a household produces. Inspecting the pattern of the introduction of this tariff, it seems to be contagious: the

  18. Mobile fission and activation products in nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Umeki, H.; Evans, N.; Czervinski, K.; Bruggeman, Ch.; Poineau, F.; Breynaert, A.; Reiler, P.; Pablo, J. de; Pipon, Y.; Molnar, M.; Nishimura, T.; Kienzler, B.; Van Iseghem, P.; Crovisier, J.L.; Wieland, E.; Mace, N.; Pablo, J. de; Spahiu, K.; Cui, D.; Lida, Y.; Charlet, L.; Liu, X.; Sato, H.; Goutelard, F.; Savoye, S.; Glaus, M.; Poinssot, C.; Seby, F.; Sato, H.; Tournassat, Ch.; Montavon, G.; Rotenberg, B.; Spahiu, K.; Smith, G.; Marivoet, J.; Landais, P.; Bruno, J.; Johnson, H.; Umeki, L.; Geckeis, H.; Giffaut, E.; Grambow, B.; Dierckx, A

    2007-07-01

    This document gathers 33 oral presentations that were made at this workshop dedicated to the mobility of some radionuclides in nuclear waste disposal. The workshop was organized into 6 sessions: 1) performance assessment, 2) speciation/interaction in aqueous media, 3) radioactive wastes, 4) redox processes at interfaces, 5) diffusion processes, and 6) retention processes.

  19. Disposal and recovery of waste paper in South Africa

    CSIR Research Space (South Africa)

    Brooks, GR

    1977-04-01

    Full Text Available This survey of current practice relating to the disposal and recycling of waste paper was commissioned by the Committee for Solid Wastes, through the National Scientific Programmes Unit of the CSIR. It was undertaken by Louis Heyl and Associates, a...

  20. EUROSAFE forum 2013. Safe disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The proceedings of the EUROSAFE forum 2013 - safe disposal of nuclear waste include contributions to the following topics: Nuclear installation safety - assessment; nuclear installation safety - research; waste and decommissioning - dismantling; radiation protection, 3nvironment and emergency preparedness; security of nuclear installations and materials.

  1. Regulating the disposal of cigarette butts as toxic hazardous waste.

    Science.gov (United States)

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  2. Municipal Waste Disposal by High Temperature Smelting Technique

    Institute of Scientific and Technical Information of China (English)

    SHEN Zong-bin; ZHANG Chun-xia; ZHANG You-ping; LIU Kun

    2004-01-01

    Municipal waste disposal system by high temperature smelting has the following characteristics: ① The smelting temperature is as high as 1 700-1 800 ℃; ② The dioxin is hardly produced; ③ The secondary pollution can be avoided because of the absence of heavy metals in the flux; ④ The metals and flux after disposal can be reused for construction materials. If outdated, the idle or discarded medium and small blast furnaces can be reconstructed into a waste resource system with high temperature smelting technique, and it is possible to make full use of their existing functions to reduce the investment and exploit their social function of environmental protection. In addition, a new waste disposal system with high temperature smelting was designed based on the recycling municipal waste technology abroad.

  3. An Assessment of Household Solid Waste Disposal

    African Journals Online (AJOL)

    ATBU Journal of Environmental Technology 5, 1, December 2012. An Assessment of ... sites and interview with agencies responsible for municipal solid waste ... farms, wetlands, uncompleted buildings ..... construct and maintain solid waste.

  4. SAFE DISPOSAL OF MUNICIPAL WASTES IN NIGERIA ...

    African Journals Online (AJOL)

    affairs in the management of municipal solid waste in most parts of Nigeria. .... 13 Damilola Olawuyi, The Principles of Nigerian Environmental Law (Business ..... To achieve sustainable waste management practices in Nigeria, first it is.

  5. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  6. Microbial processes in radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Karsten [Goeteborg Univ. (Sweden). Dept. of Cell and Molecular Biology, Microbiology

    2000-04-15

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  7. [PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].

    Science.gov (United States)

    Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K

    2015-01-01

    The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.

  8. Preliminary risk benefit assessment for nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  9. The role of advection and diffusion in waste disposal by sea urchin embryos

    Science.gov (United States)

    Clark, Aaron; Licata, Nicholas

    2014-03-01

    We determine the first passage probability for the absorption of waste molecules released from the microvilli of sea urchin embryos. We calculate a perturbative solution of the advection-diffusion equation for a linear shear profile similar to the fluid environment which the embryos inhabit. Rapid rotation of the embryo results in a concentration boundary layer of comparable thickness to the length of the microvilli. A comparison of the results to the regime of diffusion limited transport indicates that fluid flow is advantageous for efficient waste disposal.

  10. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  11. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  12. Update on cavern disposal of NORM-contaminated oil field wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  13. Low-level waste disposal in highly populated areas

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, E.; McCombie, C.; Issler, H. [NAGRA-Swiss National Cooperative for the Storage of Radioactive Waste, Baden (Switzerland)

    1989-11-01

    Nuclear-generated electricity supplies almost 40% of the demand in Switzerland (the rest being hydro-power). Allowing for a certain reserve and assuming an operational life-time of 40 years for each reactor, and taking into account wastes from decommissioning and from medicine, industry and research, the total amount of low-level radioactive waste to be disposed of is about 175,000 m{sup 3}. Since there are no unpopulated areas in Switzerland, and since Swiss Federal Law specifies that the safety of disposal may not depend upon supervision of the repository, no shallow-land burial has been foreseen, even for short-lived low-level waste. Instead, geological disposal in a mined cavern system with access through a horizontal tunnel was selected as the best way of meeting the requirements and ensuring the necessary public acceptance.

  14. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    Science.gov (United States)

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  15. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    Science.gov (United States)

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some

  16. Hanford land disposal restrictions plan for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  17. Radioactive wastes: public attitudes toward disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, M.K.; Earle, T.C.; Hebert, J.A.; Perry, R.W.

    1978-10-01

    Seventeen geographically widespread, established groups were selected which were expected to vary in their attitudes from strongly pronuclear to strongly antinuclear. People who tend to be politically active were chosen. The highest level of consensus was found on the need for site monitoring, site control, and information transfer in a waste repository. Overall, the results indicate that pronuclear respondents believe that the hazards of nuclear waste are similar to other industrial risks, while antinuclear respondents are less optimistic about safe storage of nuclear wastes and believe that nuclear power is different.

  18. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  19. Case for retrievable high-level nuclear waste disposal

    Science.gov (United States)

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  20. Nuclear reactor high-level waste: origin and safe disposal

    Energy Technology Data Exchange (ETDEWEB)

    Chua, C.; Tsipis, K. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    High-level waste (HLW) is a natural component of the nuclear fuel cycle. Because of its radioactivity, HLW needs to be handled with great care. Different alternatives for permanently storing HLW are evaluated. Studies have shown that the disposal of HLW is safest when the waste is first vitrified before storage. Simple calculations show that vitrified HLW that is properly buried in deep, carefully chosen crystalline rock structures poses insignificant health risks. (author).

  1. Ceramic Borehole Seals for Nuclear Waste Disposal Applications

    Science.gov (United States)

    Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.

    2015-12-01

    Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural

  2. Radioactive waste management and disposal scenario for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tabara, Takashi; Yamano, Naoki [Sumitomo Atomic Energy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao

    1997-10-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a light water reactor (LWR) have been evaluated and compared. At first, the amount and the radioactive level of the radwaste generated in five fusion reactors ware evaluated by an activation calculation code. Next, a possible radwaste disposal scenario applicable to fusion radwaste in Japan is considered and the disposal cost evaluated under certain assumptions. The exposure doses are evaluated for the skyshine of gamma-rays during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical LWR was estimated based on a literature survey and the disposal cost was evaluated using the same assumptions as for the fusion reactors. It is found that the relative cost of disposal is strongly dependent on the cost for interim storage of medium level waste of fusion reactors and the cost of high level waste for the LWR. (author)

  3. An eco friendly solution to the food waste disposal

    Science.gov (United States)

    Babu, G. Reddy; Kumar, G. Madhav

    2017-07-01

    In recent years, waste disposal at workmen camp is one of the major problems being faced by many nations across the world. In the workmen colony at Chittapur, a series of kitchens were built for cooking purpose and a number of small canteens are also functioning. Considerable quantity of food waste is collected daily from these eateries and disposed at a faraway place. Food waste is highly degradable in nature, if not disposed properly it causes problems related to environmental pollution. Hence, it is very important to identify an environment friendly process rather than opt for land filling or any disposal method. We worked together to find a suitable eco-friendly solution for the food waste disposal at Chittapur site and suggested that biogas production through anaerobic digestion is a solution for the disposal and utilization of food waste for better purpose. This resulted in setting up a 500 kg per day food waste treatment biogas plant at Chittapur. This establishment is the first time in the construction industry at workmen camp in India. Anaerobic Digestion has been recognized as one of the best options that is available for treating food waste, as it generates two valuable end products, biogas and compost. Biogas is a mixture of CH4 and CO2 about (55:45). Biogas generated can be used for thermal applications such as cooking or for generating electricity. The digested slurry is a well stabilized organic manure and can be used as soil fertilizer. Plant design is to handle 500 kg of food waste /day. 27 kg LPG is obtained from 500kg of kitchen waste. The Value of 27 kg of LPG is Rs.2700/day. Daily 1000 litres of digested effluent was obtained. It is good organic manure with plant micro nutrients and macro nutrients. This can be used for growing plants and in agriculture. The value of manure per day is Rs.250/-. The annual revenue is Rs.10.62 lakhs and the annual expenditure is 1.8 lakhs. The net benefit is 8.82 lakhs. Payback period is 2.1 years. This process

  4. A New Waste Disposal Technology-plasma arc Pyrolysis System

    Institute of Scientific and Technical Information of China (English)

    黄建军; 施嘉标; 梁荣庆; 刘正之

    2003-01-01

    This paper introduces a new waste disposal technology with plasma arc. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled pyrolysis-thermal destruction and recovery process. It has four advantages, they are completely safe, clean, high-energy synthesis gas, non-toxic vitrified slag and metal.

  5. Impact of a waste disposal site on children physical growth

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Ocampo

    2009-11-01

    Full Text Available Background: Several epidemiological studies have shown an increased risk of health problems among population living close to landfills. We evaluated the impact of a municipal solid waste disposal site on children’s growth between 0-3 years of age. Methods: Children were selected in sites likely to receive dispersion of air compounds from the waste disposal site and also in a control area, in Cali, Colombia, in 2005. Anthropometric measures were obtained at enrollment and in two follow-up visits at 3 months intervals to obtain standardized z scores of weight for height (WHZ and height for age (HAZ. In addition, questionnaires including information of socio-economical conditions and morbidity were applied at enrolment and during follow-up visits. Results: Children exposed had on average 0.16 less standard deviations (SD in WHZ scores when compared to control group (95% Confidence Interval [CI]: -0.34, 0.01. Among those who have lived >50% of their life in the study area, a significantly lower HAZ score was observed (-0.12 associated with exposure. Our data also suggest a larger effect of exposure to the waste disposal site in WHZ among children with symptoms of respiratory disease than among asymptomatic children (p=0.08. Conclusions: Exposure to this waste disposal site was found associated with lower children’s growth indexes.

  6. 41 CFR 50-204.29 - Waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.29...

  7. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  8. Korean Waste Management Law and Waste Disposal Forms.

    Science.gov (United States)

    1991-03-01

    Soil Treatment Tanks) 69 Article 8. (Interim Measures on Report of Recycler or Reuser of Industrial Waste) 69 Article 9. (Interim Measures on Permit...recycling and reuse (hereinafter referred to as a "recycler and reuser of industrial waste"), pursuant to Article 23.2. of the Law, shall submit a "Filing... reuser of industrial waste, pursuant to Article 45.2., shall submit a "Modification of Recycle or Reuse of Industrial Waste" (Form No. 17), to the

  9. Management of the radioactive waste of European Spallation Source within the Swedish waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Ene, Daniela [European Spallation Source AB, ESS-AB (Sweden); Forsstroem, H. [Svensk Kaernbraenslehantering AB, SKB (Sweden)

    2014-07-01

    The European Spallation Source AB (ESS) is the European common effort in designing and building a next generation large-scale user facility for studies of the structure and dynamics of materials. The proposed schematic layout of the ESS facility is based on a linear driver (linac) directing the proton beam (5 MW of 2.5 GeV) of 2.8 ms long pulses with a 20 Hz on a tungsten target where neutrons are produced via spallation reactions. Further the neutrons will be moderated to thermal and sub-thermal energies in a couple of moderators placed around the target. The moderators feed 22 beam-lines guiding the neutrons to the scattering instruments, mainly for neutron scattering research, as has been previously mentioned. The ESS will generate specific types of radioactive waste. This waste should be handled and disposed of within the Swedish radioactive waste management system, which is owned and operated by Svensk Kaernbraenslehantering AB, (SKB). The main objectives of this work are: i) To estimate types and quantities of waste that the ESS project will generate at different stages: commission, operation, decommissioning; ii) To allocate the waste to specific disposal route; iii) To assess the disposal volumes needed and to ensure that the ESS waste may safely be accommodated within the Swedish disposal system, SKB The amounts of ESS waste and classifications were derived using: i) precise Monte Carlo calculations ii) scaling the activity from the operation experience of the existing spallation source installations for waste such it is difficult to predict level of activation or for components of the facility in stage of the pre-conceptual model. Associated waste treatment/conditioning options were further analyzed in order to define the waste type and packet descriptions in agreement with Swedish regulations and policy. The potential final disposal routes for high activated components were decided via the comparison of the activity levels of the isotopes inside the

  10. 45 CFR 671.12 - Waste disposal.

    Science.gov (United States)

    2010-10-01

    ... or by the Scientific Committee on Antarctic Research shall be taken into account. (f) Sewage and... deposition over areas of special biological, scientific, historic, aesthetic or wilderness significance. (i) Each unauthorized release of waste in Antarctic shall be, to the maximum extent practicable,...

  11. A conflict model for the international hazardous waste disposal dispute

    Energy Technology Data Exchange (ETDEWEB)

    Hu Kaixian, E-mail: k2hu@engmail.uwaterloo.ca [Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Hipel, Keith W., E-mail: kwhipel@uwaterloo.ca [Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Fang, Liping, E-mail: lfang@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada)

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  12. Safety in the final disposal of radioactive waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K.; Carugati, S.; Brodersen, K. [and others

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG) 33 refs.

  13. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  14. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  15. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Science.gov (United States)

    2010-07-01

    ... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and...

  16. 75 FR 39041 - Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act

    Science.gov (United States)

    2010-07-07

    ... of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act Notice is hereby given that... Environmental Protection Agency (``EPA'') for violations of Section 7003 of the Solid Waste Disposal Act (as... oilfield waste disposal facility, located in Campbell County, Wyoming. The Consent Decree resolves...

  17. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BD04 Definition of Solid Waste Disposal Facilities for Tax... published in the Federal Register on Friday, August 19, 2011, on the definition of solid waste disposal... solid waste disposal facilities and to taxpayers that use those facilities. DATES: This correction...

  18. 40 CFR 761.63 - PCB household waste storage and disposal.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of...

  19. 77 FR 23751 - Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation...

    Science.gov (United States)

    2012-04-20

    ... COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation... importation, and the sale within the United States after importation of certain food waste disposers and... sale within the United States after importation of certain food waste disposers and components...

  20. Respiratory Health in Waste Collection and Disposal Workers.

    Science.gov (United States)

    Vimercati, Luigi; Baldassarre, Antonio; Gatti, Maria Franca; De Maria, Luigi; Caputi, Antonio; Dirodi, Angelica A; Cuccaro, Francesco; Bellino, Raffaello Maria

    2016-06-24

    Waste management, namely, collection, transport, sorting and processing, and disposal, is an issue of social concern owing to its environmental impact and effects on public health. In fact, waste management activities are carried out according to procedures that can have various negative effects on the environment and, potentially, on human health. The aim of our study was to assess the potential effects on respiratory health of this exposure in workers in the waste management and disposal field, as compared with a group of workers with no occupational exposure to outdoor pollutants. The sample consisted of a total of 124 subjects, 63 waste collectors, and 61 office clerks. Informed consent was obtained from all subjects before inclusion in the study. The entire study population underwent pulmonary function assessments with spirometry and completed two validated questionnaires for the diagnosis of rhinitis and chronic bronchitis. Statistical analyses were performed using STATA 13. Spirometry showed a statistically significant reduction in the mean Tiffenau Index values in the exposed workers, as compared with the controls, after adjusting for the confounding factors of age, BMI, and smoking habit. Similarly, the mean FEV1 values were lower in the exposed workers than in the controls, this difference being again statistically significant. The FVC differences measured in the two groups were not found to be statistically significant. We ran a cross-sectional study to investigate the respiratory health of a group of workers in the solid waste collection and disposal field as compared with a group of office workers. In agreement with most of the data in the literature, our findings support the existence of a prevalence of respiratory deficits in waste disposal workers. Our data suggest the importance of adopting preventive measures, such as wearing specific individual protection devices, to protect this particular category of workers from adverse effects on respiratory

  1. Are MUPs a Toxic Waste Disposal System?

    Directory of Open Access Journals (Sweden)

    Jae Kwak

    Full Text Available Male house mice produce large quantities of major urinary proteins (MUPs, which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds ('toxic waste hypothesis'. In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP, in the urine of wild-derived house mice (Mus musculus musculus. Addition of guanidine hydrochloride to male and female urine resulted in an increased release of DTBP. This increase was only observed in the high molecular weight fractions (HMWF; > 3 kDa separated from male or female urine, suggesting that the increased release of DTBP was likely due to the denaturation of MUPs and the subsequent release of MUP-bound DTBP. Furthermore, when DTBP was added to a HMWF isolated from male urine, an increase in 2-sec-butyl-4,5-dihydrothiazole (SBT, the major ligand of MUPs and a male-specific pheromone, was observed, indicating that DTBP was bound to MUPs and displaced SBT. These results suggest that DTBP is a MUP ligand. Moreover, we found evidence for competitive ligand binding between DTBP and SBT, suggesting that males potentially face a tradeoff between eliminating toxic wastes versus transporting pheromones. Our findings support the hypothesis that MUPs bind and eliminate toxic wastes, which may provide the most important fitness benefits of excreting large quantities of these proteins.

  2. Knowledge and practices about hospital waste disposal and universal safety precautions in class IV employee.

    Science.gov (United States)

    Megha, Khobragade; Daksha, Pandit

    2013-01-01

    Norms and guidelines are formed for safe disposal of hospital waste but question is whether these guidelines are being followed and if so, to what extent. Hence, this study was conducted with objective to study the knowledge and practices about hospital waste disposal and universal safety precautions in class IV employee and to study its relationship with education, occupation and training. A cross-sectional study was carried out in a teaching hospital in Mumbai using semi-structured questionnaire in which Class IV employee were included. Questionnaire was filled by face to face interview. Data were analyzed using SPSS. 48.7% Class IV employee were not trained. More than 40% were following correct practices about disinfection of infectious waste. None of the respondents were using protective footwear while handling hospital waste. Only 25.5% were vaccinated for hepatitis B. 16% had done HIV testing due to contact with blood, body fluid, needle stick injury. Knowledge and practices about hospital waste disposal and universal precaution were statistically significant in trained respondents. Training of employees should be given top priority; those already in service should be given on the job training at the earliest.

  3. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Wookeun; Shin, Eung Bai [Hanyang Univ., Ansan (Korea, Republic of); Lee, Kil Chul; Kim, Jae Hyung [National Institute of Environmental Research, Seoul (Korea, Republic of)] [and others

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  4. Disposal of radioactive waste from nuclear research facilities

    CERN Document Server

    Maxeiner, H; Kolbe, E

    2003-01-01

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  5. Leveraging Radioactive Waste Disposal at WIPP for Science

    Science.gov (United States)

    Rempe, N. T.

    2008-12-01

    Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments. Incidentally, Nature started her own low background experiment 250ma ago, preserving viable bacteria, cellulose, and DNA in WIPP salt. The Department of Energy continues to make areas of the WIPP underground available for experiments, freely offering its infrastructure and access to this unique environment. Even before WIPP started disposing of waste in 1999, the Room-Q alcove (25m x 10m x 4m) housed a succession of small experiments. They included development and calibration of neutral-current detectors by Los Alamos National Laboratory (LANL) for the Sudbury Neutrino Observatory, a proof-of-concept by Ohio State University of a flavor-sensitive neutrino detector for supernovae, and research by LANL on small solid- state dark matter detectors. Two currently active experiments support the search for neutrino-less double beta decay as a tool to better define the nature and mass of the neutrino. That these delicate experiments are conducted in close vicinity to, but not at all affected by, megacuries of radioactive waste reinforces the safety argument for the repository. Since 2003, the Majorana collaboration is developing and testing various detector designs inside a custom- built clean room in the Room-Q alcove. Already low natural background readings are reduced further by segmenting the germanium detectors, which spatially and temporally discriminates background radiation. The collaboration also demonstrated safe copper electro-forming underground, which minimizes cosmogenic background in detector assemblies. The largest currently used experimental

  6. Radioactive waste disposal via electric propulsion

    Science.gov (United States)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  7. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  8. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  9. Land suitability for waste disposal in metropolitan areas.

    Science.gov (United States)

    Baiocchi, Valerio; Lelo, Keti; Polettini, Alessandra; Pomi, Raffaella

    2014-08-01

    Site selection for waste disposal is a complex task that should meet the requirements of communities and stakeholders. In this article, three decision support methods (Boolean logic, index overlay and fuzzy gamma) are used to perform land suitability analysis for landfill siting. The study was carried out in one of the biggest metropolitan regions of Italy, with the objective of locating suitable areas for waste disposal. Physical and socio-economic information criteria for site selection were decided by a multidisciplinary group of experts, according to state-of-the-art guidelines, national legislation and local normative on waste management. The geographic information systems (GIS) based models used in this study are easy to apply but require adequate selection of criteria and weights and a careful evaluation of the results. The methodology is arranged in three steps, reflecting the criteria defined by national legislation on waste management: definition of factors that exclude location of landfills or waste treatment plants; classification of the remaining areas in terms of suitability for landfilling; and evaluation of suitable sites in relation to preferential siting factors (such as the presence of quarries or dismissed plants). The results showed that more than 80% of the provincial territory falls within constraint areas and the remaining territory is suitable for waste disposal for 0.72% or 1.93%, according to the model. The larger and most suitable sites are located in peripheral areas of the metropolitan system. The proposed approach represents a low-cost and expeditious alternative to support the spatial decision-making process.

  10. Operating room waste: disposable supply utilization in neurosurgical procedures.

    Science.gov (United States)

    Zygourakis, Corinna C; Yoon, Seungwon; Valencia, Victoria; Boscardin, Christy; Moriates, Christopher; Gonzales, Ralph; Lawton, Michael T

    2017-02-01

    OBJECTIVE Disposable supplies constitute a large portion of operating room (OR) costs and are often left over at the end of a surgical case. Despite financial and environmental implications of such waste, there has been little evaluation of OR supply utilization. The goal of this study was to quantify the utilization of disposable supplies and the costs associated with opened but unused items (i.e., "waste") in neurosurgical procedures. METHODS Every disposable supply that was unused at the end of surgery was quantified through direct observation of 58 neurosurgical cases at the University of California, San Francisco, in August 2015. Item costs (in US dollars) were determined from the authors' supply catalog, and statistical analyses were performed. RESULTS Across 58 procedures (36 cranial, 22 spinal), the average cost of unused supplies was $653 (range $89-$3640, median $448, interquartile range $230-$810), or 13.1% of total surgical supply cost. Univariate analyses revealed that case type (cranial versus spinal), case category (vascular, tumor, functional, instrumented, and noninstrumented spine), and surgeon were important predictors of the percentage of unused surgical supply cost. Case length and years of surgical training did not affect the percentage of unused supply cost. Accounting for the different case distribution in the 58 selected cases, the authors estimate approximately $968 of OR waste per case, $242,968 per month, and $2.9 million per year, for their neurosurgical department. CONCLUSIONS This study shows a large variation and significant magnitude of OR waste in neurosurgical procedures. At the authors' institution, they recommend price transparency, education about OR waste to surgeons and nurses, preference card reviews, and clarification of supplies that should be opened versus available as needed to reduce waste.

  11. Patterns and correlates of solid waste disposal practices in Dar es ...

    African Journals Online (AJOL)

    This study examines the patterns and correlations of solid waste disposal practices among households in urbanized and populated Dar es Salaam city in Tanzania. ... MNL estimation suggest that distance, home ownership, household expenditure ... Key words: Solid waste, garbage, waste disposal, waste management, ...

  12. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T. [SCK/CEN, Mol (Belgium); Kanyar, B. [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P.; Simon, I. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U.; Hallberg, B. [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S.; Chen, Q.; Kowe, R. [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  13. COST ANALYSIS OF THE PSYCHOLOGICAL EFFECTS OF WASTE DISPOSAL

    Directory of Open Access Journals (Sweden)

    S. A. Oke, K. O. Awofeso

    2006-01-01

    Full Text Available This paper quantifies the cost involved due to the psychological effect of waste disposal. The major costs are quantified as management and personnel costs. Management costs refer to those associated with awareness, recovery and recycling, taskforce and experimental. On the other hand, personnel costs are related to tax and health. The approach utilized is the algebraic sum of these component costs, since dimensional consistency of the formulation is observed. The results obtained indicate that the framework presented could beneficially add to the tool kit of the environmental decision makers. This would make it possible to generate scenarios that would give the decision maker adequate information before decisions are made. The implication of this research is that intuitive decision-making on cost is replaced with scientific backed up decision making. The idea proposed in this work is new since it provides a unique way of measuring cost of the effects of waste disposal on the stakeholders in the system.

  14. Safety evaluation for packaging (onsite) disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, B.D., Westinghouse Hanford

    1996-12-20

    This safety evaluation for packaging (SEP) evaluates and documents the ability of the Disposable Solid Waste Cask (DSWC) to meet the packaging requirements of HNF-CM-2-14, Hazardous Material Packaging and Shipping, for the onsite transfer of special form, highway route controlled quantity, Type B fissile radioactive material. This SEP evaluates five shipments of DSWCs used for the transport and storage of Fast Flux Test Facility unirradiated fuel to the Plutonium Finishing Plant Protected Area.

  15. Possibilities of composting disposable diapers with municipal solid wastes.

    Science.gov (United States)

    Colón, Joan; Ruggieri, Luz; Sánchez, Antoni; González, Aina; Puig, Ignasi

    2011-03-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process performance and the characteristics of the compost obtained when compared with that of composting OFMSW without diapers. The experiments demonstrated that the composting process presented similar trends in terms of evolution of routine parameters (temperature, oxygen content, moisture and organic matter content) and biological activity (measured as respiration index). In relation to the quality of both composts, it can be concluded that both materials were identical in terms of stability, maturity and phytotoxicity and showed no presence of pathogenic micro-organisms. However, compost coming from OFMSW with a 3% of disposable diapers presented a slightly higher level of zinc, which can prevent the use of large amounts of diapers mixed with OFMSW.

  16. Impact of a waste disposal site on children physical growth

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Ocampo

    2008-09-01

    Full Text Available Background: Several epidemiological studies have shown an increased risk of health problems among population living close to landfills. We evaluated the impact of a municipal solid waste disposal site on children’s growth between 0-3 years of age.Methods: Children were selected in sites likely to receive dispersion of air compounds from the waste disposal site and also in a control area, in Cali, Colombia, in 2005. Anthropometric measures were obtained at enrollment and in two follow-up visits at 3 months intervals to obtain standardized z scores of weight for height (WHZ and height for age (HAZ. In addition, questionnaires including information of socio-economical conditions and morbidity were applied at enrolment and during follow-up visits.Results: Children exposed had on average 0.16 less standard deviations (SD in WHZ scores when compared to control group (95% Confidence Interval [CI]: -0.34, 0.01. Among those who have lived >50% of their life in the study area, a significantly lower HAZ score was observed (-0.12 associated with exposure. Our data also suggest a larger effect of exposure to the waste disposal site in WHZ among children with symptoms of respiratory disease than among asymptomatic children (p=0.08.

  17. Power plant waste disposals in open-cast mines

    Energy Technology Data Exchange (ETDEWEB)

    Herstus, J.; Stastny, J. [AGE s.r.o. - Aplikovana Geotechnika a Ekologie, Thamova (Czechoslovakia)

    1995-12-01

    High population density in Czech Republic has led, as well as in other countries, to strong NIMBY syndrome influencing the waste disposal location. The largest thermal power plants are situated in neighborhood of extensive open-cast brown coal mines with huge area covered by tipped clayey spoil. Such spoil areas, technically almost useless, are potential space for power giant waste disposal position. There are several limitations, based on specific structural features of tipped clayey spoil, influencing decision to use such area as site for waste disposal. Low shear strength and extremely high compressibility belong to the geotechnical limitations. High permeability of upper ten or more meters of tipped spoil and its changes with applied stress level belongs to transitional features between geotechnical and environmental limitations. The problems of ash and FGD products stabilized interaction with such subgrade represent environmental limitation. The paper reports about the testing procedure developed for thickness and permeability estimation of upper soil layer and gives brief review of laboratory and site investigation results on potential sites from point of view of above mentioned limitations. Also gives an outline how to eliminate the influence of unfavorable conditions.

  18. Disposal and utilization of broiler slaughter waste by composting

    Directory of Open Access Journals (Sweden)

    N Bharathy

    2012-12-01

    Full Text Available Aim: To know the feasibility of hygienic and environmentally safe method of disposal of broiler slaughter house waste with coir pith and caged layer manure. Materials and Methods: Compost bins (4 feet x 4 feet x 4 feet were established with concrete blocks with air holes to facilitate aerobic composting. The broiler slaughter waste and coconut coir pith waste were collected from the local market, free of cost. The caged layer manure available from poultry farms were utilized as manure substrate. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated (USDA-NRCS, 2000. Two control bins were maintained simultaneously, using caged layer manure with coir pith waste and water in a ratio of 0.8:3:1.2 (T and another one bin using caged layer manure alone(T . 2 3 Results: At the end of composting, moisture content, weight and the Volume of the compost were reduced significantly (P<0.01, pH, EC, TDS, total organic carbon and total nitrogen content were also significantly (P<0.01 reduced at the finishing of composting. Calcium, phosphorous and potassium content was progressively increased during composting period. The finished compost contains undetectable level of salmonella. Cowpea and sorghum seeds showed positive germination percentage when this finished compost was used. It indicated that all of the finished compost was free from phytotoxin substances. Conclusion: The results indicated that, composting of slaughter waste combined with coir pith waste may be a hygienic and environmentally safe method of disposal of broiler slaughter house waste [Vet. World 2012; 5(6.000: 359-361

  19. Space disposal of nuclear wastes. Volume 1: Socio-political aspects

    Science.gov (United States)

    Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.

    1976-01-01

    The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.

  20. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  1. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  2. Oil field waste disposal in salt caverns: An information website

    Energy Technology Data Exchange (ETDEWEB)

    Tomasko, D.; Veil, J. A.

    1999-12-10

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  3. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  4. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disposal of PCB bulk product waste..., AND USE PROHIBITIONS Storage and Disposal § 761.62 Disposal of PCB bulk product waste. PCB bulk... some of these provisions, it may not be necessary to determine the PCB concentration or...

  5. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  6. Disposal of radioactive waste in Swedish crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Greis Dahlberg, Christina; Wikberg, Peter [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)

    2015-07-01

    SKB, Swedish Nuclear Fuel and Waste Management Company is tasked with managing Swedish nuclear and radioactive waste. Crystalline rock is the obvious alternative for deep geological disposal in Sweden. SKB is, since 1988, operating a near surface repository for short-lived low and intermediate-level waste, SFR. The waste in SFR comprises operational and decommissioning waste from nuclear plants, industrial waste, research-related waste and medical waste. Spent nuclear fuel is currently stored in an interim facility while waiting for a license to construct a deep geological repository. The Swedish long-lived low and intermediate-level waste consists mainly of BWR control rods, reactor internals and legacy waste from early research in the Swedish nuclear programs. The current plan is to dispose of this waste in a separate deep geological repository, SFL, sometimes after 2045. Understanding of the rock properties is the basis for the design of the repository concepts. Swedish crystalline rock is mechanical stable and suitable for underground constructions. The Spent Fuel Repository is planned at approximately 500 meters depth in the rock at the Forsmark site. The host rock will keep the spent fuel isolated from human and near-surface environment. The rock will also provide the stable chemical and hydraulic conditions that make it possible to select suitable technical barriers to support the containment provided by the rock. A very long lasting canister is necessary to avoid release and transport of radionuclides through water conducting fractures in the rock. A canister designed for the Swedish rock, consists of a tight, 5 cm thick corrosion barrier of copper and a load-bearing insert of cast iron. To restrict the water flow around the canister and by that prevent fast corrosion, a bentonite buffer will surround the canister. Secondary, the bentonite buffer will retard a potential release by its strong sorption of radionuclides. The SFR repository is situated in

  7. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  8. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  9. Classification of the Z-Pinch Waste Stream as Low-Level Waste for Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Singledecker, Steven John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data package to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.

  10. Preliminary risk assessment for nuclear waste disposal in space, volume 1

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    The feasibility, desirability and preferred approaches for disposal of selected high-level nuclear wastes in space were analyzed. Preliminary space disposal risk estimates and estimates of risk uncertainty are provided.

  11. Disposal of waste or excess high explosives. Final report. [Incineration

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ''Disposal of Waste or Excess High Explosives'' project began January 1971. Various methods of disposal were investigated with the conclusion that incineration, at major ERDA facilities, would be the most feasible and safest method with the least cost and development time required. Two independent incinerator concepts were investigated: a rotary type for continuous processing and an enclosed pit type for batch processing. Both concepts are feasible; however, it is recommended that further investigations would be required to render them acceptable. It is felt that a larger effort would be required in the case of the rotary incinerator. The project was terminated (December 1976) prior to completion as a result of a grant of authority by the Texas Air Control Board allowing the ERDA Pantex Plant to continue indefinitely outdoor burning of explosives.

  12. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Criteria for classification of solid waste disposal facilities and practices. 257.3 Section 257.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid...

  13. Annual Report 2011 : Institute for Nuclear Waste Disposal. (KIT Scientific Reports ; 7617)

    OpenAIRE

    Geckeis, H.; Stumpf, T. [Hrsg.

    2012-01-01

    The R&D at the Institute for Nuclear Waste Disposal, INE, (Institut für Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  14. Spanish methodological approach for biosphere assessment of radioactive waste disposal.

    Science.gov (United States)

    Agüero, A; Pinedo, P; Cancio, D; Simón, I; Moraleda, M; Pérez-Sánchez, D; Trueba, C

    2007-10-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS "Reference Biospheres Methodology" and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates.

  15. Landfill gas generation and emission at danish waste disposal sites receiving waste with a low organic waste content

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    two models are multi-phase models, which defines waste fractions into traditional MSW and low-organic waste categories, respectively. Both the LandGEM and the IPCC model estimated significantly larger methane (CH4) generation in comparison to the Afvalzorg model. The Afvalzorg model could better show...... the influence of not only the total disposed waste amount, but also various waste categories, and was found more suitable to estimate LFG generation from landfills receiving low-organic waste. Four major waste categories currently being disposed at Danish landfills (mixed bulky, shredder, dewatered sludge...... results. The LFG generation from four Danish landfills was estimated by the Afvalzorg model using the experimentally based BMP and k values and compared to whole landfill emission rates measured by applying a tracer gas dispersion method. The results showed that the revised modelled LFG generation rates...

  16. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  17. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-07-07

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as seal systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences

  18. Models for estimation of service life of concrete barriers in low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.C.; Plansky, L.E.; Smith, R.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-09-01

    Concrete barriers will be used as intimate parts of systems for isolation of low level radioactive wastes subsequent to disposal. This work reviews mathematical models for estimating the degradation rate of concrete in typical service environments. The models considered cover sulfate attack, reinforcement corrosion, calcium hydroxide leaching, carbonation, freeze/thaw, and cracking. Additionally, fluid flow, mass transport, and geochemical properties of concrete are briefly reviewed. Example calculations included illustrate the types of predictions expected of the models. 79 refs., 24 figs., 6 tabs.

  19. Initial studies to assess microbial impacts on nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Economides, B. [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

    1996-02-20

    The impacts of the native and introduced bacteria on the performance of geologic nuclear waste disposal facilities should be evaluated because these bacteria could promote corrosion of repository components and alteration of chemical and hydrological properties of the surrounding engineered and rock barriers. As a first step towards investigating these potentialities, native and introduced bacteria obtained from post-construction Yucca Mountain (YM) rock were isolated under varying conditions, including elevated temperature, low nutrient availability, and the absence of available oxygen. Individual isolates are being screened for activities associated with microbially induced corrosion of metals (MIC). Preliminary determination of growth rates of whole YM microbial communities under varying conditions was also undertaken.

  20. Risk methodology for geologic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R. (Sandia National Labs., Albuquerque, NM (USA)); Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs.

  1. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  2. A primer for health care managers: data sanitization, equipment disposal, and electronic waste.

    Science.gov (United States)

    Andersen, Cathy M

    2011-01-01

    In this article, security regulations under the Health Insurance Portability and Accountability Act concerning data sanitization and the disposal of media containing stored electronic protected health information are discussed, and methods for effective sanitization and media disposal are presented. When disposing of electronic media, electronic waste-or e-waste-is produced. Electronic waste can harm human health and the environment. Responsible equipment disposal methods can minimize the impact of e-waste. Examples of how health care organizations can meet the Health Insurance Portability and Accountability Act regulations while also behaving responsibly toward the environment are provided. Examples include the environmental stewardship activities of reduce, reuse, reeducate, recover, and recycle.

  3. Interactions of Aquaculture and Waste Disposal in the Coastal Zone

    Institute of Scientific and Technical Information of China (English)

    ZHAI Xuemei; Hawkins S.J.

    2002-01-01

    Throughout the world, the coastal zones of many countries are used increasingly for aquaculture in addition to other activities such as waste disposal. These activities can cause environmental problems and health problems where they overlap. The interaction between aquaculture and waste disposal, and their relationship with eutrophication are the subjects of this paper.Sewage discharge without adequate dispersion can lead to nutrient elevation and hence eutrophication which has clearly negative effects on aquaculture with the potential for toxic blooms. Blooms may be either toxic or anoxia-causing through the decay process or simply clog the gills of filter-feeding animals in some cases. With the development of aquaculture, especially intensive aquaculture, many environmental problems appeared, and have resulted in eutrophication in some areas. Eutrophication may destroy the health of whole ecosystem which is important for sustainable aquaculture.Sewage discharge may also cause serious public health problems. Filter-feeding shellfish growing in sewage-polluted waters accumulate micro-organisms, including human pathogenic bacteria and viruses, and heavy metal ion, presenting a significant health risk. Some farmed animals may also accumulate heavy metals from sewage. Bivalves growing in areas affected by toxic algae blooms may accumulate toxins (such as PSP, DSP) which can be harmful to human beings.

  4. Interactions of aquaculture and waste disposal in the coastal zone

    Science.gov (United States)

    Xuemei, Zhai; Hawkins, S. J.

    2002-04-01

    Throughout the world, the coastal zones of many countries are used increasingly for aquaculture in addition to other activities such as waste disposal. These activities can cause environmental problems and health problems where they overlap. The interaction between aquaculture and waste disposal, and their relationship with eutrophication are the subjects of this paper. Sewage discharge without adequate dispersion can lead to nutrient elevation and hence eutrophication which has clearly negative effects on aquaculture with the potential for toxic blooms. Blooms may be either toxic or anoxia-causing through the decay process or simply clog the gills of filter-feeding animals in some cases. With the development of aquaculture, especially intensive aquaculture, many environmental problems appeared, and have resulted in eutrophication in some areas. Eutrophication may destroy the health of whole ecosystem which is important for sustainable aquaculture. Sewage discharge may also cause serious public health problems. Filter-feeding shellfish growing in sewage-polluted waters accumulate micro-organims, including human pathogenic bacteria and viruses, and heavy metal ion, presenting a significant health risk. Some farmed animals may also accumulate heavy metals from sewage. Bivalves growing in areas affected by toxic algae blooms may accumulate toxins (such as PSP, DSP) which can be harmful to human beings.

  5. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  6. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  7. Challenges of Solid Waste Disposal and Management in the City of ...

    African Journals Online (AJOL)

    Challenges of Solid Waste Disposal and Management in the City of Masvingo, Zimbabwe. ... Journal of Social Development in Africa ... Western countries and donors if the challenges associated with solid waste management in Masvingo and ...

  8. Solid Waste Disposal Management in A Residential Complex of A Defence Establishment- A Modern Approach

    Directory of Open Access Journals (Sweden)

    Jagdamba Dixit , Anil Kumar Dixit, Singh Narendra

    2014-01-01

    Conclusion: The AFMRC project “Solid Waste Disposal Management” has been found useful in controlling the problems of environmental sanitation. Similar projects may be undertaken at large scale to reduce, reuse and recycle the generated waste.

  9. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  10. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  11. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    2014-07-15

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.

  12. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  13. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  14. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  15. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment.

  16. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  17. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  18. A comparative study on the medical waste disposal in some hospitals in Alexandria.

    Science.gov (United States)

    Hosny, Gihan; El-Zarka, Eman M A

    2005-01-01

    Though healthcare services aim to reduce the health problems and prevent the potential risks to the health of the community. These services create wastes which are considered as hazardous materials due to the higher potential of infection and injury possessed by these wastes than any other type of waste. Healthcare waste management is an integral part of healthcare services, and can create harm through inadequate waste management; thus reducing the overall benefits provided by healthcare centers. In the current study, a survey for medical waste disposal was performed in order to examine the current status of medical waste disposal in some hospitals in Alexandria and to properly assess management of this type of hazardous waste. A questionnaire was designed for hospitals to assess the quantity of medical waste, collection, sorting, storage, transportation and way of final disposal. From the total waste generated by healthcare activities, almost 80% are waste similar to domestic waste. The remaining approximate of 20% is considered as hazardous waste. As Alexandria has about 3911 healthcare facilities providing medical services for people, a huge amount of medical waste are generated daily with about 208 tons generated per month. The results revealed that the most common problems associated with healthcare wastes are the absence of waste management, lack of awareness about their health hazards, insufficient financial and human resources for proper management, and poor control of waste disposal. The current situation of medical waste disposal in Alexandria is depending on incinerators. Some of these incinerators are not working anymore. Incinerations as a system is not accepted at the time being in most developed countries due to the risks associated with it and suitable substitution management system for medical waste disposal is now taking its place.

  19. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Science.gov (United States)

    2010-07-01

    ...-disposed elemental phosphorus processing wastes May 26, 2000. D004 Newly identified D004 and mineral processing wastes Aug. 24, 1998. D004 Mixed radioactive/newly identified D004 or mineral processing wastes May 26, 2000 D005 Newly identified D005 and mineral processing wastes Aug. 24, 1998. D005...

  20. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  1. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  2. Quality management system for the disposal of low and medium levels radioactive wastes - RBMN

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Antonio Mario P.; Haucz, Maria Judite A.; Fraga, Rosane Rodrigues, E-mail: ampa@cdtn.br, E-mail: hauczmj@cdtn.br, E-mail: rosaner@cdtn.br [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    This article compares the standards applied in quality and safety management systems for the Disposal of Radioactive Waste. The comparison will be a contribution to development, maintenance and improvement the safety and quality system of a disposal of low and medium radioactive waste (RBMN) coordinated by CDTN - Brazilian Development Center for Nuclear Technology). (author)

  3. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BD04 Definition of Solid Waste Disposal Facilities for Tax... the Federal Register on Friday, August 19, 2011, on the definition of solid waste disposal facilities... regulations provide guidance to State and local governments that issue tax-exempt bonds to finance solid...

  4. Safety Case for Disposal of Radioactive Waste:Some Implications from IAEA and OECD

    Institute of Scientific and Technical Information of China (English)

    LI; Jin-feng; ZHANG; Yan-qi; LI; Jing-jing; LIAO; Hai-tao; WEN; Bao-yin; JIN; Xiao; JIANG; Zi-ying; LIU; Sen-lin

    2015-01-01

    "The Safety Case and Safety Assessment for the Disposal of Radioactive Waste(SSG-23)"was published by IAEA in 2012,which provides guidance to assess and validate the safety of all kinds of disposal facilities of radioactive waste.OECD/NEA set up agroup involved with 17countries to move on the research on the safety case of radioactive

  5. Final disposal of radioactive wastes. Site selection criteria. Technical and economical factors

    Energy Technology Data Exchange (ETDEWEB)

    Granero, J.J. (Consejo de Seguridad Nuclear, Madrid (Spain))

    1984-01-01

    General considerations, geological and socioeconomical criteria for final disposal of radioactive wastes in geological formations are treated. More attention is given to the final disposal of high-level radioactive wastes and different solutions searched abroad which seems of interest for Spain.

  6. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

  7. Disposal of infective waste: demonstrated information and actions taken by nursing and medical students

    Directory of Open Access Journals (Sweden)

    Adenícia Custodia Silva Souza

    2015-03-01

    Full Text Available The inappropriate disposal of infectious waste generates occupational and environmental risks, representing the main cause of accidents with biological material. The aim of the present study was to verify the knowledge and the practice regarding the disposal of infectious waste among nursing and medical undergraduate students at a public university in the state of Goiás. Data were collected with the application of a questionnaire. The respondent students were observed in their practice and data were recorded in a checklist. Nursing students presented greater knowledge than medical students on the disposal of contaminated gloves (x²; p<0.001, as well as on the disposal of sharp cutting instruments (p=0.001. Contaminated gloves were disposed of into bags for common waste both by the nursing and the medical students. Results evidenced that the knowledge of students on the disposal of infectious waste was poor and insufficient to ensure its application to practice.

  8. Disposal and improvement of contaminated by waste extraction of copper mining in chile

    Science.gov (United States)

    Naranjo Lamilla, Pedro; Blanco Fernández, David; Díaz González, Marcos; Robles Castillo, Marcelo; Decinti Weiss, Alejandra; Tapia Alvarez, Carolina; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    This project originated from the need of a mining company, which mines and processes copper ore. High purity copper is produced with an annual production of 1,113,928 tons of concentrate to a law of 32%. This mining company has generated several illegal landfills and has been forced by the government to make a management center Industrial Solid Waste (ISW). The forecast volume of waste generated is 20,000 tons / year. Chemical analysis established that the studied soil has a high copper content, caused by nature or from the spread of contaminants from mining activities. Moreover, in some sectors, soil contamination by mercury, hydrocarbons and oils and fats were detected, likely associated with the accumulation of waste. The waters are also impacted by mining industrial tasks, specifically copper ores, molybdenum, manganese, sulfates and have an acidic pH. The ISW management center dispels the pollution of soil and water and concentrating all activities in a technically suitable place. In this center the necessary guidelines for the treatment and disposal of soil contamination caused by uncontrolled landfills are given, also generating a leachate collection system and a network of fluid monitoring physicochemical water quality and soil environment. Keywords: Industrial solid waste, soil contamination, Mining waste

  9. Quantification of Food Waste Disposal in the United States: A Meta-Analysis.

    Science.gov (United States)

    Thyberg, Krista L; Tonjes, David J; Gurevitch, Jessica

    2015-12-15

    Food waste has major consequences for social, nutritional, economic, and environmental issues, and yet the amount of food waste disposed in the U.S. has not been accurately quantified. We introduce the transparent and repeatable methods of meta-analysis and systematic reviewing to determine how much food is discarded in the U.S., and to determine if specific factors drive increased disposal. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137-0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The proportion of food waste increased significantly with time, with the western U.S. region having consistently and significantly higher proportions of food waste than other regions. There were no significant differences in food waste between rural and urban samples, or between commercial/institutional and residential samples. The aggregate disposal rate for food waste was 0.615 pounds (0.279 kg) (95% CI 0.565-0.664) of food waste disposed per person per day, which equates to over 35.5 million tons (32.2 million tonnes) of food waste disposed annually in the U.S.

  10. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean &apos

  11. Preliminary study of radioactive waste disposal in the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    To investigate the characteristics of the vadose zone with respect to radioactive waste disposal, the mechanics of unsaturated flow in arid regions and the geohydrology of four areas with a deep water table were studied. The studies indicated that (1) arid sites with a water table deeper than 200 m can be found in at least three distinct geologic settings in the western United States, (2) the physics of unsaturated flow in soils and rock with interstitial porosity at low water contents, particularly under thermal gradients, is not yet completely understood, and (3) under certain conditions unsaturated flow can be so slow that analytic modeling of an unflawed repository is unnecessary to prove effective containment.

  12. Locational conflict and the siting of nuclear waste disposal repositories: an international appraisal

    OpenAIRE

    F M Shelley; B D Solomon; M J Pasqualetti; G T Murauskas

    1988-01-01

    The industrialized nations of the world have begun to plan for the storage and eventual disposal of their increasing volumes of nuclear wastes. In this paper the authors inventory the progress made by these nations in planning for nuclear waste disposal. A typology based on the adoption of spent-fuel reprocessing programs and of progress toward selection of permanent disposal sites is developed, and the world's nuclear nations are located within this typology. However, those countries which h...

  13. Disposal facilities on land for low and intermediate level radioactive wastes: guidance on requirements for qauthorisation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This document, published by the Environmental Agency, contains guidance on the principles and requirements against which applications for authorisation to build or operate a land-based specialised disposal facility for solid low or intermediate level wastes, will be assessed, with the aim of protecting the public from hazards which may arise from their disposal to the environment. The guide provides information on terms used, the framework governing radioactive waste disposal and the Agencies` expectations of applicants, including radiological and technical requirements. (UK).

  14. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  15. Municipal solid waste management in India: From waste disposal to recovery of resources?

    Science.gov (United States)

    Narayana, Tapan

    2009-03-01

    Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.

  16. Waste survey - landfill disposability of furniture industrial wastes from varnishing processes; Huonekaluteollisuuden maalaamokaappijaetteiden kaatopaikkakelpoisuus

    Energy Technology Data Exchange (ETDEWEB)

    Vaajasaari, K.; Kulovaara, M.; Joutti, A.; Schulz, E. [Pirkanmaan Ympaeristoekeskus, Tampere (Finland)

    2001-07-01

    The objective of this study was to screen the environmental hazard of eight different furniture industrial wastes in context of their landfill disposal. These wastes are resulting from the varnishing process of furniture manufacture. Four of these materials were collected from a dry varnishing processes and the other four residues from a wet varnishing processes. We wanted to classify these industrial wastes according to their leaching and ecotoxicological properties to evaluate if these kind of materials could be disposed off to a non-hazardous landfill. Leaching properties of residues were determined with European standard draft prEN 12457-2 method. The toxicity measurement of the leaching tests eluates from furniture industrial residues was carried out with a plant (the onion Allium cepa root elongation test), bacteria (the luminescent bacteria Vibrio fischeri assay) and enzyme inhibition (the reverse electron transport, RET, assay). Chemical concentrations of TOC, formaldehyde and solvents in solid wastes and their leaching test eluates were measured simultaneously. The results showed that dry residues contained high amount of formaldehyde which will leach out from the wastes a long time period if wastes are in contact with water at landfill conditions. Furthermore, the water leachable substances in dry residues resulted very high acute toxicity. Toxicity test results confirmed the conclusions drawn from the chemical data as well in wet residues. Two of the wet residues with the highest solvent concentrations were clearly toxic, while the other two wet residues had the smallest concentrations of the harmful substances and only slight acute toxicity. The biggest problems in context of landfill disposability are connected to a high liquid content of wet residues (over 70 %). (orig.)

  17. Development of Nature Protection Technologies of Hydrocarbon Wastes Disposal on the Basis of High- Temperature Pyrolysis

    Science.gov (United States)

    Shantarin, V. D.; Zemenkova, M. Yu; Zemenkov, Yu D.

    2016-10-01

    The research shows the thermal balance of low-temperature pyrolysis of birch sawdust with the possibility of further development of nature protection technology of hydrocarbon wastes disposal with secondary useful products production. The actual problem was solved by preventing environmental pollution by greenhouse gases using pyrolysis process as a method of disposal of hydrocarbon wastes with secondary useful products production. The objective of paper is to study features of the processes of thermal processing of wastes and development of environmentally sound technology of disposal C-containing wastes, contributing to the implementation of the pollution prevention concept.

  18. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  19. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 4. Alternatives for waste isolation and disposal

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume IV of the five-volume report contains information on alternatives for final storage and disposal of radioactive wastes. Section titles include: basic concepts for geologic isolation; geologic storage alternatives; geologic disposal alternatives; extraterrestrial disposal; and, transmutation. (JGB)

  20. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous

  1. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  2. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  3. Interface control document between PUREX/UO{sub 3} Plant Transition and Solid Waste Disposal Division

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1994-06-30

    This interface control document (ICD) between PUREX/UO{sub 3} Plant Transition (PPT) and Solid Waste Disposal Division (SWD) establishes at a top level the functional responsibilities of each division where interfaces exist between the two divisions. Since the PUREX Transition and Solid Waste Disposal divisions operate autonomously, it is important that each division has a clear understanding of the other division`s expectations regarding these interfaces. This ICD primarily deals with solid wastes generated by the PPT. In addition to delineating functional responsibilities, the ICD includes a baseline description of those wastes that will require management as part of the interface between the divisions. The baseline description of wastes includes waste volumes and timing for use in planning the proper waste management capabilities: the primary purpose of this ICD is to ensure defensibility of expected waste stream volumes and Characteristics for future waste management facilities. Waste descriptions must be as complete as-possible to ensure adequate treatment, storage, and disposal capability will exist. The ICD also facilitates integration of existing or planned waste management capabilities of the PUREX. Transition and Solid Waste Disposal divisions. The ICD does not impact or affect the existing processes or procedures for shipping, packaging, or approval for shipping wastes by generators to the Solid Waste Division.

  4. Sewerage Treatment Plants - WASTE_TREATMENT_STORAGE_DISPOSAL_IDEM_IN: Treatment, Storage, and Disposal Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_TREATMENT_STORAGE_DISPOSAL_IDEM_IN is a point shapefile that contains treatment, storage, and disposal (TSD) site locations in Indiana, provided by personnel...

  5. Risk management for outsourcing biomedical waste disposal - using the failure mode and effects analysis.

    Science.gov (United States)

    Liao, Ching-Jong; Ho, Chao Chung

    2014-07-01

    Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.

  6. Air passivation of metal hydride beds for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. E.; Hsu, R. H. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15

    One waste acceptance criteria for hydride bed waste disposal is that the bed be non-pyrophoric. Batch-wise air ingress tests were performed which determined the amount of air consumed by a metal hydride bed. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 deg.C internal temperature rise upon the first air exposure cycle and a 0.1 deg.C temperature rise upon a second air exposure. A total of 346 sec air was consumed by the bed (0.08 sec per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12. cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water. (authors)

  7. Mobile fission and activation products in nuclear waste disposal.

    Science.gov (United States)

    Grambow, Bernd

    2008-12-12

    When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.

  8. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the &apos

  9. Pre-feasibility study for final disposal of radioactive waste. Disposal concepts. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, L.; Skov, C.; Kueter, A.; Schepper, L.; Gottberg Roemer, H.; Refsgaard, A.; Utko, M.; Kristiansen, Torben (COWI A/S, Kgs. Lyngby (Denmark))

    2011-05-15

    This prefeasibility study is part of the overall process related to the decision on placement and design of a repository for the Danish low and medium level radioactive waste primarily from the facilities at Risoe. The prefeasibility study encompasses the preliminary design of a number of repository types based on the overall types set out in the 'Parliamentary decision' together with a preliminary safety assessment of these repository types based on their possible placement in a set of typical Danish geologies. The report consists of three parts. Part I is the descriptive part containing information on the waste to be disposed of, the potential conditioning (packaging) possibilities for the waste before placement in a repository, the suggested preliminary design of the different repository types, and the suggested visual appearance of the repository. Part II is the assessment part. It contains an introduction to the concepts used in the preliminary safety assessment, which encompasses: the assessment of potential long term impact and the assessment of possible accidental incidents. The division of the preliminary safety assessment in to these two categories has several reasons. One is that the criteria to which impact is to be compared are different for the two types of impact, another is that while the possible variation in the long term impact is primarily due to the possible variation in the parameters influencing the impact, the impact from accidental incidents is governed by the probability of the occurrence of these incidents and the potential consequence of the impact, which calls for a different assessment approach. Since the suggestions for packaging of the different waste types is a result of both types of assessments, part II also contains a description of these suggestions based on the preliminary safety assessments. Finally part II contains the costs related to the different types of repositories and the suggested packaging. Part III of the

  10. Environmental issues in the geological disposal of carbon dioxide and radioactive waste

    OpenAIRE

    West, Julia M.; Shaw, Richard P.; Pearce, Jonathan M.

    2011-01-01

    A comparative assessment of the post-closure environmental issues for the geological disposal of carbon dioxide (CO2) and radioactive waste is made in this chapter. Several criteria are used: the characteristics of radioactive waste and CO2; their potential environmental impacts; an assessment of the hazards arising from radioactive waste and CO2; and monitoring of their environmental impacts. There are several differences in the way that the long term safety of the disposal of radioactive wa...

  11. Feasibility study of Salt diapirs of Hormuzgan province for nuclear waste disposal

    OpenAIRE

    Najmehsadat Tabatabaei nia; Mohammad Reza Espahbod; Nader Kohansal Ghadimvand; Hamid Askari Bagherabadi

    2016-01-01

    Find safe manner for long-term disposal of nuclear waste not only for social security and environmental protection but also for the continued operation of nuclear reactors will be inevitable. Various methods such as burial in the ocean, space , layers of ice and deep wells has been used, that each have their own advantages and disadvantages. Disposal of sullage and hazardous wastes in salt caverns Including new technologies and modern in the wastewater and solid waste are management. And s...

  12. Disposal frequencies of selected recyclable wastes in Dar es Salaam.

    Science.gov (United States)

    Mgaya, Prosper; Nondek, Lubomir

    2004-01-01

    A statistical survey of households based upon questionnaires distributed via primary schools has been carried out in five wards of Dar es Salaam, Tanzania, to estimate disposal frequencies (number of items disposed per week) for newsprint, metal cans, glass and plastic containers and plastic shopping bags. Plastic shopping bags are disposed most frequently while glass containers are disposed least frequently. The statistical distribution of disposal frequencies, which seems to be influenced by household income, is well described by Poisson distribution. Disposal frequencies are mutually correlated at 95% level of probability despite the differences in disposal patterns of individual households.

  13. Composting of Disposal Organic Wastes: Resource Recovery for Agricultural Sustainability

    Institute of Scientific and Technical Information of China (English)

    Mohammad H. Golabi; Peggy Denney; Clancy Iyekar

    2006-01-01

    One of the major problems of agricultural soils in the tropical regions of the Pacific is the low organic matter content. Because of the hot and humid environment, the soil organic matter (SOM) is minimal due to rapid decomposition.Composted organic material is being applied on agricultural fields as an amendment to provide nutrients and enhance the organic matter content for improving the physical and chemical properties of the cultivated soils. In addition land application of composted material as a fertilizer source effectively disposes of wastes that otherwise are buried in landfills. In our soil program at the University of Guam, we are evaluating the use of organic material as an alternative to synthetic fertilizers. Its goal is to develop management strategies and use available resources for improving crop production while conserving resources and preserving environmental quality. Our case study project is designed to improve soil fertility status by using composted organic wastes and assessing how the nitrogen and other essential nutrients contribute to long-term soil fertility and crop productivity without application of synthetic fertilizers. In our pilot project, compost is produced from wood chips,grinded typhoon debris mixed with animal manure, fish feed, shredded paper and other organic wastes. Mature compost is then applied on the field at the rates of 0, 5, 10 and 20 t/ha as a soil amendment on the eroded cobbly soils of southern Guam.Corn is planted and monitored for growth performance and yield. The effect of land application of composted material on the SOM content and overall soil quality indices are being evaluated in this pilot study.

  14. [Study on greenhouse gas emissions from urban waste disposal system: a case study in Xiamen].

    Science.gov (United States)

    Yu, Yang; Cui, Sheng-Hui; Lin, Jian-Yi; Li, Fei

    2012-09-01

    Waste disposal is one of the sources of greenhouse gas (GHG) emissions from urban human activities. According to the method recommended by IPCC Guidelines for National Greenhouse Gas Inventories 2006, a calculation model was established to assess GHG emissions of waste disposal in Xiamen. Then GHG emissions from waste disposal in Xiamen during the year of 2005-2010 were estimated, including solid waste landfill, solid waste incineration and wastewater treatment. The results showed that total GHG emissions quantified in carbon dioxide equivalents (CO2e) from waste disposal was 406.3 kt in 2005, and increased to 704.6 kt in 2010. Because of the improvement of wastewater treatment process and rapid increasing municipal solid waste (MSW), the main source of emissions was from wastewater treatment turning to solid waste landfill. GHG emissions from solid waste landfill accounted for about 90% of total emissions from solid waste disposal process in 2005, and the proportion decreased to 75% in 2010. GHG emissions (quantified in CO2e) from waste water treatment reached the highest value 325.5 kt in 2007. Chemical raw materials and chemical industry have been the highest CH4 emission industry during 2005-2010, which accounted for more than 55% of total CH4 emission from industrial wastewater treatment.

  15. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  16. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An...

  17. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  18. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  19. IJER@2014 Page 57 Disposal Criteria of Bhanpur Solid Waste Landfill Site: Investigation and Suggestions

    Directory of Open Access Journals (Sweden)

    Tapas Dasgpta

    2014-03-01

    Full Text Available The solid waste management and design assist waste management officials in developing and encouraging environmentally sound methods for the disposal of "nonhazardous" solid waste. Promulgated under the authority of municipal act, the Municipal Solid Waste Landfill (MSWLF regulation act establish a framework for planning and implementing municipal solid waste landfill programs at the state and local levels. This framework sets minimum standards for protecting human health and the environment, while allowing states to develop more flexible MSWLF criteria. Intension to mitigate or expeditiously remediate potential adverse environmental impacts resulting from municipal landfills. However, other regulations existed prior to the revised MSWLF standards discussed in this module. The promulgation Criteria for Classification of Solid Waste Disposal Facilities and Practices. The established regulatory standards to satisfy the minimum national performance criteria for sanitary landfills governs only those solid waste disposal facilities and practices that do not meet the definition of a MSWLF. Such facilities include waste piles, industrial nonhazardous waste landfills, surface impoundments, and land application units. Environmental Protect Authority (EPA modified address the fact that these non-municipal non-hazardous wastes landfills may receive Conditionally Exempt Small Quantity Generator (CESQG hazardous waste, further clarify that construction and demolition landfills may receive residential lead-based paint waste as Solid Waste Disposal Facilities without for MSWLFs as long as all conditions are met.

  20. An updated overview of low and intermediate level waste disposal facilities around the world

    Energy Technology Data Exchange (ETDEWEB)

    Cuccia, Valeria; Uemura, George; Ferreira, Vinicius Verna M.; Tello, Cledola Cassia O. de, E-mail: vc@cdtn.br, E-mail: george@cdtn.br, E-mail: vvmf@cdtn.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Malta, Ricardo Scott V. [SEMC Engenharia e Consultoria Ltda., Belo Horizonte, MG (Brazil)

    2011-07-01

    Low and intermediate level radioactive waste should be disposed off in proper disposal facilities. Some countries already have these facilities and others are planning theirs. Information about disposal facilities around the world is useful and necessary; however, data on this matter are usually scattered in official reports per country. In order to allow an easier access to this information, this paper aims to provide an overview of disposal facilities for low and intermediate level radioactive waste around the world, as updated as possible. Also, characteristics of the facilities are provided, when possible. Considering that the main source of radioactive waste are the activities of nuclear reactors in research or power generation, the paper will also provide a summarized overview of these reactors around the world, updated until April, 2011. This data collection may be an important tool for researchers, and other professionals in this field. Also, it might provide an overview about the final disposal of radioactive waste. (author)

  1. Geoscientific Investigations for Searching Suitable Solid Waste Disposal Site Using Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    V. M. Rokade

    2013-06-01

    Full Text Available The whole world is facing challenges of geo-environmental disposal of municipal solid waste. Considering the problem, in this paper author has established a methodology for searching the geo-scientifically feasible solid waste disposal site using advent geospatial tools. GIS modeling with overlay operation is most useful to find out geoscientifically feasible areas satisfying criteria decided for site selection. Present disposal system of study area is representing the unawareness about the geo-environmental problems and health hazards. This study provides a selection of environment friendly and geo-scientifically suitable areas for the disposal of solid waste supplying reasonable, convenient and administratively transparent solutions to the waste disposal problems.

  2. Treatment and final disposal of nuclear waste. Programme for encapsulation, deep geological disposal, and research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Programs for RD and D concerning disposal of radioactive waste are presented. Main topics include: Design, testing and manufacture of canisters for the spent fuels; Design of equipment for deposition of waste canisters; Material and process for backfilling rock caverns; Evaluation of accuracy and validation of methods for safety analyses; Development of methods for defining scenarios for the safety analyses. 471 refs, 67 figs, 21 tabs.

  3. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  4. TECHNO – ECONOMIC ACCEPTABILITY ANALISYS OF WASTE DISPOSAL BY INJECTION INTO APPROPRIATE FORMATION

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2013-12-01

    Full Text Available During exploration and production of oil and natural gas, various types of waste must be disposed in a permanent and safe way. There is a range of methods for processing and disposal of waste, such as disposal into landfills, solidification, namely chemical stabilization, thermal processing, appropriate formation injections uncovered by a deep well, disposal into salt domes and bioremediation. The method of waste disposal into appropriate formations is a method where strict geological and technical criteria must be satisfied when applied. A fundamental scientific hypothesis has been formulated whereby economic acceptability of the waste injection method, as a main method for waste disposal, is to be shown by an economic evaluation. The results of this research are relevant since there has been an intention in Croatia and worldwide to abandon wells permanently due to oil and gas reservoirs depletion and therefore it is essential to estimate economic impacts of the waste injection method application. In that way, profitability of using existing wells for waste disposal in oil industry has been increased, leading to the improvement of petroleum company’s business activities (the paper is published in Croatian.

  5. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%.

  6. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  7. Field guide on reduction and disposal of waste from oil refineries and marketing installations

    Energy Technology Data Exchange (ETDEWEB)

    Dando, D.A.J.; Bossand, B.; Lilie, R.H.; Ooms, A.C.; Sutherland, H.

    1990-07-01

    The field guide has been written primarily for those in the oil refining and marketing industry who have responsibility for the management of waste and its disposal. It should also provide useful information to the authorities who exercise legal control over these activities. It lists the types of wastes commonly encountered in the industry and highlights techniques for minimizing the quantities generated. Guidance is given on the methods of pre-treatment and disposal, together with information on how to select and monitor waste facilities and contractors, to ensure a high quality and safe disposal operation. Information is also provided on documentation and labelling of waste cargoes, and reference is made to legislation and sources of additional information. While use of the field guide cannot guarantee a problem-free operation, it will minimize the risks involved in disposal of waste materials from oil industry installations.

  8. Feasibility study of Salt diapirs of Hormuzgan province for nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Najmehsadat Tabatabaei nia

    2016-06-01

    Full Text Available Find safe manner for long-term disposal of nuclear waste not only for social security and environmental protection but also for the continued operation of nuclear reactors will be inevitable. Various methods such as burial in the ocean, space , layers of ice and deep wells has been used, that each have their own advantages and disadvantages. Disposal of sullage and hazardous wastes in salt caverns Including new technologies and modern in the wastewater and solid waste are management. And some countries have made significant progress in this area, and have a reasonable volume of waste disposed inside the cavern forever. Salt pluges due to the large volume of storage, very low permeability, the restoration of the salt and the lack of joints and gaps, are ideal options for storing all kinds of materials. Place salt pluges of Hormuzgan province in terms of tectonic stability and seismic were investigated. And their capacity for nuclear waste disposal were identified.

  9. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    Science.gov (United States)

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  10. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Science.gov (United States)

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste Policy Amendments Act...

  11. Environmental concern and its implication to household waste separation and disposal: Evidence from Mekelle, Ethiopia

    NARCIS (Netherlands)

    Tadesse Woeldesenbet, T.

    2009-01-01

    Proper understanding of the relationship among concern for the environment, waste separation and disposal can contribute to good waste management and safer environment. This is particularly vital in cities of developing countries (such as Ethiopia) where waste separation is poor and there is

  12. 76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Science.gov (United States)

    2011-06-13

    ... Standards for Carbamate Wastes AGENCY: Environmental Protection Agency. ACTION: Proposed rule. SUMMARY: The...) treatment standards for hazardous wastes from the production of carbamates and carbamate commercial chemical... carbamate wastes must be treated to meet numeric concentration limits before they can be land disposed...

  13. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    Science.gov (United States)

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  14. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  15. Treatment of waste printed wire boards in electronic waste for safe disposal.

    Science.gov (United States)

    Niu, Xiaojun; Li, Yadong

    2007-07-16

    The printed wire boards (PWBs) in electronic waste (E-waste) have been found to contain large amounts of toxic substances. Studies have concluded that the waste PWBs are hazardous wastes because they fails the toxicity characteristic leaching procedure (TCLP) test with high level of lead (Pb) leaching out. In this study, two treatment methods - high-pressure compaction and cement solidification - were explored for rendering the PWBs into non-hazardous forms so that they may be safely disposed or used. The high-pressure compaction method could turn the PWBs into high-density compacts with significant volume reduction, but the impact resistance of the compacts was too low to keep them intact in the environment for a long run. In contrast, the cement solidification could turn the PWBs into strong monoliths with high impact resistance and relatively high compressive strength. The leaching of the toxic heavy metal Pb from the solidified samples was evaluated by both a dynamic leaching test and the TCLP test. The dynamic leaching results revealed that Pb could be effectively confined in the solidified products under very harsh environmental conditions. The TCLP test results showed that the leaching level of Pb was far below the regulatory level of 5mg/L, suggesting that the solidified PWBs are no longer hazardous. It was concluded that the cement solidification is an effective way to render the waste PWBs into environmentally benign forms so that they can be disposed of as ordinary solid wastes or beneficially used in the place of concrete in some applications.

  16. Summary of the study of disposal of nuclear waste into space

    Science.gov (United States)

    Rom, F. E.

    1973-01-01

    NASA, at the request of the AEC, is conducting a preliminary study to determine the feasibility of disposing of nuclear waste material into space. The study has indicated that the Space Shuttle together with expendable and nonexpendable orbital stages such as the Space Tug or Centaur can safety dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency and accident) of such a system are being examined. From the preliminary study it appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste.

  17. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, W.M. [Center for Nuclear Waste Regulations Analyses, San Antonio, TX (United States); Kovach, L.A. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW.

  18. Performance objectives of the tank waste remediation system low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-25

    Before low-level waste may be disposed of, a performance assessment must be written and then approved by the U.S. Department of Energy. The performance assessment is to determine whether {open_quotes}reasonable assurance{close_quotes} exists that the performance objectives of the disposal facility will be met. The DOE requirements for waste disposal require: the protection of public health and safety; and the protection of the environment. Although quantitative limits are sometimes stated (for example, the all exposure pathways exposure limit is 25 mrem/year), usually the requirements are stated in a general nature. Quantitative limits were established by: investigating all potentially applicable regulations as well as interpretations of the Peer Review Panel which DOE has established to review performance assessments, interacting with program management to establish their needs, and interacting with the public (i.e., the Hanford Advisory Board members; as well as affected Indian tribes) to understand the values of residents in the Pacific Northwest.

  19. National strategy for disposal of high level waste and spent fuel in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Borys Zlobenko; Emlen Sobotovich [IEG NASU, Ukraine (Ukraine)

    2006-07-01

    Full text of publication follows: Nuclear energy remains the most important component in the fuel energy system of Ukraine. As a result of the previous and ongoing nuclear power programmes, Ukraine accumulates substantial amounts of spent fuel and radioactive wastes. While these wastes will be stored in temporary facilities, it is envisaged that final disposal will take place in a deep geological repository. The Law of Ukraine 'On Radioactive Waste Management' provides for the ultimate disposal of high- and intermediate-level waste in deep geological formations. To solve the problem of radioactive waste disposal in geological repositories, the first-priority tasks are the following: implementation of regulatory and legal framework for managing radioactive waste to be disposed of in deep geological formations, and develop a regulation to govern the general provisions on safe disposal of radioactive waste in geological repositories. The regulation entitled 'General Provisions on Safe Disposal of Radioactive Waste in Geological Repositories' has been developed in compliance with the Comprehensive Programme of Radioactive Waste Management. The regulation establishes basic criteria, requirements and conditions for nuclear and radiation safety to be applied for radioactive waste disposal in stable geological formations (geological repositories) at all life stages of repositories with the purpose of protecting personnel, the public and the environment. The 'Programme on Management of NPP Spent Nuclear Fuel' does not identify measures on treatment of spent nuclear fuel for disposal up to 2010. Ukraine implements the so-called 'deferred decision', which means that the decision on spent fuel disposal or processing is deferred to future when it can be made with greater confidence taking into account relevant worldwide experience and progress of science and industry of the State. The concept and a programme for radioactive waste disposal

  20. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  1. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  2. Very low level waste disposal in France. A key tool for the management for decommissioning wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Duetzer, Michel [Andra - Agence Nationale pour la Gestion des Dechets Radioactives, Chatenay-Malabry (France). Direction Industrielle

    2015-07-01

    At the end of the 90{sup th}, France had to deal with the emerging issue of the management of wastes resulting from decommissioning operations of nuclear facilities. A specific regulation was issued and Andra, the French National Radioactive Waste Management Agency, developed a dedicated near surface disposal facility to accommodate very low level radioactive wastes. After more than 10 years of operation, this facility demonstrated it can provide efficient and flexible solutions for the management of decomissioning wastes.

  3. Cost avoidance realized through transportation and disposal of Fernald mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, A.K.; Dilday, D.R. [Fluor Daniel Environmental Restoration Management Corp., Fernald, OH (United States); Rast, D.M. [USDOE Fernald Field Office, OH (United States)

    1995-11-01

    Currently, Department of Energy (DOE) facilities are undergoing a transformation from shipping radiologically contaminated waste within the DOE structure for disposal to now include Mixed Low Level Waste (MLLW) shipments to a permitted commercial disposal facility (PCDF) final disposition. Implementing this change can be confusing and is perceived as being more difficult than it actually is. Lack of experience and disposal capacity, sometimes and/or confusing regulatory guidance, and expense of transportation and disposal of MLLW ar contributing factors to many DOE facilities opting to simply store their MLLW. Fernald Environmental Restoration Management Company (FERMCO) established itself as a leader i addressing MLLW transportation and disposal by being one of the first DOE facilities to ship mixed waste to a PCDF (Envirocare of Utah) for disposal. FERMCO`s proactive approach in establishing a MLLW Disposal Program produces long-term cost savings while generating interim mixed waste storage space to support FERMCO`s cleanup mission. FERMCO`s goal for all MLLW shipments was to develop a cost efficient system to accurately characterize, sample and analyze the waste, prepare containers and shipping paperwork, and achieve regulatory compliance while satisfying disposal facility waste acceptance criteria (WAC). This goal required the ability to evolve with the regulations, to address waste streams of varying matrices and contaminants, and to learn from each MLLW shipment campaign. These efforts have produced a successful MLLW Disposal Program at the Fernald Environmental Management Project (FEMP). FERMCO has a massed lessons learned from development of this fledgling program which may be applied complex-wide to ultimately save facilities time and money traditionally wasted by maintaining the status quo.

  4. Alternative disposal options for alpha-mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Sherick, M.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  5. New technologies of waste disposal in Czech Republic, evoked by new laws

    Energy Technology Data Exchange (ETDEWEB)

    Peleska, L. [Czech Power Co., Prague (Czechoslovakia)

    1995-12-01

    Of the utmost importance for the conception of waste disposal in any country is the fact how rich the respective country is and how realistic its legislators are. The apparently ideal approach to solving this problem is that chosen by more affluent European countries where wastes are recycled, are charged with taxes and duties, and where wastes that necessitate to be disposed are handled similarly as the nuclear wastes. The benefits are evident. The amounts of wastes to be deposited are minimalized. The waste repositories can be sealed by using layers of clay, foil and clay, and during a period of 50 to 100 years, any communication of the repository with the ambient environments can be eliminated. The disadvantage of such waste repositories, if applied to most of wastes, are the high costs associated with their depositioning. The prices of products, which the costs of waste disposal are being reflected in, are thus increasing, and, for this reason, many of products are becoming unmarketable, even on the domestic market. These financial means are often spent for nothing because the service life of some protective elements being at present used for construction of waste repositories is limited in time (for example, the service life of isolating foil is 50 to 1 00 years). Waste disposal in the Czech Republic, particulary from power plants, is discussed.

  6. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  7. Strategic environmental audit for the national waste disposal program; Strategische Umweltpruefung zum Nationalen Entsorgungsprogramm. Umweltbericht fuer die Oeffentlichkeitsbeteiligung

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel [Oeko-Institut e.V., Darmstadt (Germany); and others

    2015-03-27

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  8. Cement-based grouts in geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Onofrei, M. [AECL Research, Pinnawa, Manitoba (Canada)

    1996-04-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from <10{sup -7} m s{sup -1} to 10{sup -9} m s{sup -1} and to penetrate fissures in the rock with apertures as small as 10 {mu}m. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment.

  9. Automated Monitoring System for Waste Disposal Sites and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  10. GEO-ECOLOGICAL PROBLEMS OF DRILLING WASTE DISPOSAL IN THE YAMAL PENINSULA

    Directory of Open Access Journals (Sweden)

    Oreshkin Dmitrij Vladimirovich

    2012-10-01

    Full Text Available Crude oil and gas fields are located in remote areas known for their severe geological and climatic conditions that are aggravated by the presence of the paleocrystic frozen rock. Borehole drilling causes generation of the substantial amount of drilling waste. The sludge weighs millions of tons. Any rock is to remain frozen at any drilling site in the Yamal peninsula. Semifluid drilling waste occupies extensive areas around drilling sites; they prevent development of the surface infrastructure, they interfere with the work of drilling technicians and contribute to hazardous working conditions, they are a challenge to the local ecology. The above factors produce a negative impact on the environment and prevent sustainable development of the region. For example, disposal of drilling waste at condensed gas fields operated in the Yamal peninsula represents a substantial problem. Drilling waste contains drilling fluid used in the process of borehole drilling. It was discovered in the course of the preliminary research that drilling fluids were composite suspensions that contained bentonite, heavy spar, caustic soda, dilutants, and polymers. It was found out that the sludge was composed of silica, calcite, dolomite, aragonite, magnesite, some feldspars, heavy spar, gypsum and anhydrite, micas, hydromicas, clay minerals. Projections provided in the paper say that pre-neutralized sludge may be used in the manufacturing of building materials, such as bricks, claydite, small-size building units, etc. The authors argue that further research of the sludge elements and microstructure, as well as its chemical, mineral, granulometric and X-ray phase analyses need to be performed.

  11. Co-disposal of electronic waste with municipal solid waste in bioreactor landfills.

    Science.gov (United States)

    Visvanathan, C; Visvanthan, C; Yin, Nang Htay; Karthikeyan, Obuli P

    2010-12-01

    Three pilot scale lysimeters were adopted to evaluate the stability pattern and leaching potential of heavy metals from MSW landfills under the E-waste co-disposed condition. One lysimeter served as control and solely filled with MSW, whereas the other two lysimeters were provided with 10% and 25% of E-waste scraps (% by weight), respectively. The reactors were monitored over a period of 280 days at ambient settings with continuous leachate recirculation. Stabilization pattern of carbon appears to be more than 50% in all the three lysimeters with irrespective of their operating conditions. Iron and zinc concentrations were high in leachate during bioreactor landfill operation and correlating with the TCLP leachability test results. In contrast, Pb concentration was around waste was found to be amplified with the long term disposal or stabilization within landfills. The results showed that the TCLP test cannot be completely reliable tool for measuring long-term leachability of toxic substances under landfill condition; rather landfill lysimeter studies are necessary to get the real scenario.

  12. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  13. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  14. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  15. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    Energy Technology Data Exchange (ETDEWEB)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  16. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    DOE/Navarro

    2007-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

  17. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  18. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    Science.gov (United States)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  19. Disposal of Low-Level Waste (LLW) at the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2014-05-14

    DOE Office of Environmental Management presentation at the 2014 Annual Meeting of the National Transportation Stakeholders Forum on the disposal of low-level waste at the Nevada National Security Site.

  20. A choice experiment analysis for solid waste disposal option: a case study in Malaysia.

    Science.gov (United States)

    Pek, Chuen-Khee; Jamal, Othman

    2011-11-01

    In Malaysia, most municipal wastes currently are disposed into poorly managed 'controlled tipping' systems with little or no pollution protection measures. This study was undertaken to assist the relevant governmental bodies and service providers to identify an improved waste disposal management strategy. The study applied the choice experiment technique to estimate the nonmarket values for a number of waste disposal technologies. Implicit prices for environmental attributes such as psychological fear, land use, air pollution, and river water quality were estimated. Compensating surplus estimates incorporating distance from the residences of the respondents to the proposed disposal facility were calculated for a number of generic and technology-specific choice sets. The resulting estimates were higher for technology-specific options, and the distance factor was a significant determinant in setting an equitable solid waste management fee.

  1. 78 FR 1881 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's...

    Science.gov (United States)

    2013-01-09

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's Determination Not To Review Initial Determinations Granting Complainant's Motions To Partially Terminate...

  2. 77 FR 50716 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission...

    Science.gov (United States)

    2012-08-22

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission Determination Not to Review an Initial Determination Granting Complainant's Motions To Amend the Notice...

  3. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  4. Application of Industrial Waste CaF2 for Vegetative Covering of Phosphogypsum Disposal Site

    OpenAIRE

    Leaković, S.; Lisac, H.; Vukadin, R.

    2012-01-01

    Phosphogypsum, i.e. calcium sulphate dihydrate is generated as a by-product in the phosphoric acid production during reaction between phosphate rock and sulphuric acid. It is stored as nonhazardous waste in a disposal site. Since 1983, when the phosphoric acid plant started operation, about 8 140 000 t of phosphogypsum have been disposed there. The disposal site consists of four separate ponds (compartments) which are bounded by 6 ...

  5. Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.S.Y.; Bernard, E.A.

    1991-12-01

    Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

  6. COMPARISON OF THE ENVIRONMENTAL IMPACT OF DIFFERENT METHODS OF MINING WASTE DISPOSAL TECHNOLOGY USING AHP METHOD

    OpenAIRE

    Justyna Kubicz; Mateusz Hämmerling; Natalia Walczak

    2016-01-01

    Exploitation of tailing ponds sites for storing all types of waste materials creates multiple problems concerning waste disposal and the environmental impact of the waste. Tailing ponds waste may comprise e.g. flotation tailings from ore enrichment plants. Despite the fact that companies / corporations use state-of-the-art methods of extraction and processing of copper ore, and introduce modern systems of organization and production management, the area located closest to the reservoir is exp...

  7. Putting matter in place: tradeoffs between recycling and distance in planning for waste disposal

    OpenAIRE

    Offenhuber, Dietmar; Lee, David; Wolf, Malima I.; Phithakkitnukoon, Santi; Biderman, Assaf; Ratti, Carlo

    2012-01-01

    Problem, research strategy, and findings: Reliable information on trash disposal is crucial but becomes difficult as waste removal chains grow increasingly complex. Lack of firm data on the spatial behavior of waste hampers effective recycling strategy design. In particular, the environmental impact of electronic and household hazardous waste is poorly understood. Our study investigates waste processing in an environmental, economic, and geographic context, using novel methods to track munici...

  8. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, T.J.

    1998-01-06

    This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

  9. Estimation of Exposure Doses for Several Scenarios of the Landfill Disposal of NORM Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Ko, Nak Yul; Baik, Min Hoon [KAERI, Daejeon (Korea, Republic of); Yoon, Ki Hoon [Korea Institude of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-05-15

    The Act on safety control of radioactive materials around living environment was promulgated to protect citizen's health and environment in 2013. According to this Act, the integrated plan for radiation protection and the necessary safety guides for treatment, reuse, and disposal of NORM wastes have to be made. And NORM wastes have to be disposed in landfill sites by reducing the concentration of radionuclide, and they should not be reutilized. In this study, we estimated exposure doses for several scenarios for NORM (Naturally Occurring Radioactive Materials) waste disposal into a reference landfill site to check the radiological safety. Also, we estimated the amount of NORM wastes for different activity levels of important radionuclides in wastes to be disposed into a landfill site based on the exposure dose limits to support the establishment of technical bases for safety guide. We estimated the amount of NORM wastes for different activity levels of wastes containing U series, Th series, and {sup 40}K based on the exposure dose limits. The results of this study can be used as technical bases to support the establishment of a guide for the safe management of NORM waste disposal.

  10. Alternatives for the treatment and disposal of healthcare wastes in developing countries.

    Science.gov (United States)

    Diaz, L F; Savage, G M; Eggerth, L L

    2005-01-01

    Waste production in healthcare facilities in developing countries has brought about a variety of concerns due to the use of inappropriate methods of managing the wastes. Inappropriate treatment and final disposal of the wastes can lead to adverse impacts to public health, to occupational health and safety, and to the environment. Unfortunately, most economically developing countries suffer a variety of constraints to adequately managing these wastes. Generally in developing countries, few individuals in the staff of the healthcare facility are familiar with the procedures required for a proper waste management program. Furthermore, the management of wastes usually is delegated to poorly educated laborers who perform most activities without proper guidance and insufficient protection. This paper presents some of the most common treatment and disposal methods utilized in the management of infectious healthcare wastes in developing countries. The methods discussed include: autoclave; microwave; chemical disinfection; combustion (low-, medium-, and high-technology); and disposal on the ground (dump site, controlled landfill, pits, and sanitary landfill). Each alternative for treatment and disposal is explained, including a description of the types of wastes that can and cannot be treated. Background information on the technologies also is included in order to provide information to those who may not be familiar with the details of each alternative. In addition, a brief presentation of some of the emissions from each of the treatment and disposal alternatives is presented.

  11. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-08-31

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  12. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the...

  13. Calculation of Hazardous Waste Land Disposal Restrictions (LDR) Treatment Standards

    Science.gov (United States)

    examples of calculations of treatment standards including for High Concentration Selenium Wastes Using Data Submitted by Chemical Waste Management (CWM) and Antimony Using Data Submitted by Chemical Waste Management and Data Obtained From Rollins.

  14. Performance assessment requirements for the identification and tracking of transuranic waste intended for disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Snider, C.A. [Department of Energy, Carlsbad, NM (United States); Weston, W.W. [Westinghouse Electric Corp., Carlsbad, NM (United States)

    1997-11-01

    To demonstrate compliance with environmental radiation protection standards for management and disposal of transuranic (TRU) radioactive wastes, a performance assessment (PA) of the Waste Isolation Pilot Plant (WIPP) was made of waste-waste and waste-repository interactions and impacts on disposal system performance. An estimate of waste components and accumulated quantities was derived from a roll-up of the generator/storage sites` TRU waste inventories. Waste components of significance, and some of negligible effect, were fixed input parameters in the model. The results identified several waste components that require identification and tracking of quantities to ensure that repository limits are not exceeded. The rationale used to establish waste component limits based on input estimates is discussed. The distinction between repository limits and waste container limits is explained. Controls used to ensure that no limits are exceeded are identified. For waste components with no explicit repository based limits, other applicable limits are contained in the WIPP Waste Acceptance Criteria (WAC). The 10 radionuclides targeted for identification and tracking on either a waste container or a waste stream basis include Am-241, Pu-238, Pu-239, Pu-240, Pu-242, U-233, U-234, U-238, Sr-90, and Cs-137. The accumulative activities of these radionuclides are to be inventoried at the time of emplacement in the WIPP. Changes in inventory curie content as a function of radionuclide decay and ingrowth over time will be calculated and tracked. Due to the large margin of compliance demonstrated by PA with the 10,000 year release limits specified, the quality assurance objective for radioassay of the 10 radionuclides need to be no more restrictive than those already identified for addressing the requirements imposed by transportation and WIPP disposal operations in Section 9 of the TRU Waste Characterization Quality Assurance Program Plan. 6 refs.

  15. Radiation dose evaluation based on exposure scenario during the operation of radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeong Hyoun; Kim Chang Lak; Choi, Heui Joo; Park, Joo Wan [Korea Electric Power Corporation, Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    1999-07-01

    Radiation dose to worker in disposal facility was calculated by using point kernel MICROSHIELD V5.02 computer code based on exposure scenarios. An conceptual design model for disposal vaults in disposal facility was used for object of shielding calculation model. Selected radionuclides and their activities among radioactive wastes from nuclear power plants were assumed as radiation sources for the exposure calculation. Annual radiation doses to crane workers and to people working on disposal vaults were calculated according to exposure time and distance from the sources with conservative operation scenarios. The scenarios used for this study were based on assumption for representing disposal activities in a future Korean near surface disposal facility. Calculated exposure rates to worker during normal disposal work were very low comparing with annual allowable limit for radiation worker.

  16. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal(I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Hong, D. S.; Hwang, G. H.; Shin, J. J.; Yuk, D. S. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    Characteristics and states of management of low and intermediate level radioactive waste in site : state of management for each type of wastes, characteristics of low and intermediate level solid radioactive waste, stage of management of low and intermediate level solid radioactive waste. Survey of state of management and characteristics of low and intermediate level radioactive waste disposal facility in foreign countries : state of management of disposal facilities, classification criteria and target radionuclides for assessment in foreign disposal facilities. Survey of the assessment methods of the radionuclides inventory and establishing the direction of requirement : assessment methods of the radionuclides inventory, analysis of radionuclides assay system in KORI site, establishment the direction of requirement in the assessment methods.

  17. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  18. Potential areas for the near surface disposal of radioactive waste in Pahang

    Science.gov (United States)

    Harun, Nazran; Yaacob, Wan Zuhairi Wan; Simon, Norbert

    2016-11-01

    Radioactive material has been used in Malaysia since the 1960's. The low level radioactive wastes are generated every year and stored in Nuclear Malaysia. The storage capacities are expected to reach its maximum capacity by the year 2025. Disposal of the radioactive waste is considered as one of the best options for future radioactive and nuclear material generated in Malaysia, hence the necessary site selection. The selection process used the IAEA document as the main reference, supported by site selection procedure applied by various countries. ArcGIS software was used to simulate the selection of the near surface radioactive waste disposal. This paper suggested the best four potential areas for the near surface radioactive waste disposal in Pahang state, Malaysia, the Sg. Lembing, Gambang, Felda Lepar Utara and Cheneh areas. These areas are located within 100 km from the potential radioactive waste producer (Lynas).

  19. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  20. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  1. Hazardous Waste Land Disposal Facility Assessment. Volume 1

    Science.gov (United States)

    1988-09-01

    Facilities ( DALF ) at RVA" (USATHANA, 1984) provided the basis for the volume estimates for siting a disposal facility as discussed in Appendix 1.3. The... DALF also addressed on-site disposal options in addition to other technologies. This study supported the on-site disposal option by stating that a...impermeable bedrock do not exist at RMA. The DALF , drawing on the conclusions of the earlier WES 1983 report, recoumended a site in the northeast quarter of

  2. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  3. COMPARISON OF THE ENVIRONMENTAL IMPACT OF DIFFERENT METHODS OF MINING WASTE DISPOSAL TECHNOLOGY USING AHP METHOD

    Directory of Open Access Journals (Sweden)

    Justyna Kubicz

    2016-05-01

    Full Text Available Exploitation of tailing ponds sites for storing all types of waste materials creates multiple problems concerning waste disposal and the environmental impact of the waste. Tailing ponds waste may comprise e.g. flotation tailings from ore enrichment plants. Despite the fact that companies / corporations use state-of-the-art methods of extraction and processing of copper ore, and introduce modern systems of organization and production management, the area located closest to the reservoir is exposed to its negative effects. Many types of waste material are a valuable source of secondary raw materials which are suitable for use by various industries. Examples of such materials are mining waste (flotation tailings, usually neutral to the environment, whose quantities produced in the process of exploitation of minerals is sizeable. The article compares different technological methods of mining waste disposal using AHP method and their environmental impact.

  4. The regulatory environment for drilling and oilfield waste disposal and remediation in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, L.J.; Stimpson, S. [Macleod Dixon, Calgary, AB (Canada)

    1999-04-01

    The legislative basis of regulation of all aspects of oilfield waste, including all oil and gas, oil sands, and oilfield waste management facility operations in Alberta is discussed. The appropriate waste management practices for the upstream petroleum industry and all waste stream associated with the petroleum industry are outlined. Major topics discussed include: (1) the roles and the jurisdictions of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection (AEP), (2) drilling waste and oilfield waste disposal, EUB guides 50 and 58, (3) wellsite abandonment and reclamation of wellsites, (4) spills and contaminated sites, (5) environmental offences, enforcement, penalties and defences.

  5. WASTE CONTAINER AND WASTE PACKAGE PERFORMANCE MODELING TO SUPPORT SAFETY ASSESSMENT OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.

    2004-06-30

    Prior to subsurface burial of low- and intermediate-level radioactive wastes, a demonstration that disposal of the wastes can be accomplished while protecting the health and safety of the general population is required. The long-time frames over which public safety must be insured necessitates that this demonstration relies, in part, on computer simulations of events and processes that will occur in the future. This demonstration, known as a Safety Assessment, requires understanding the performance of the disposal facility, waste containers, waste forms, and contaminant transport to locations accessible to humans. The objective of the coordinated research program is to examine the state-of-the-art in testing and evaluation short-lived low- and intermediate-level waste packages (container and waste form) in near surface repository conditions. The link between data collection and long-term predictions is modeling. The objective of this study is to review state-of-the-art modeling approaches for waste package performance. This is accomplished by reviewing the fundamental concepts behind safety assessment and demonstrating how waste package models can be used to support safety assessment. Safety assessment for low- and intermediate-level wastes is a complicated process involving assumptions about the appropriate conceptual model to use and the data required to support these models. Typically due to the lack of long-term data and the uncertainties from lack of understanding and natural variability, the models used in safety assessment are simplistic. However, even though the models are simplistic, waste container and waste form performance are often central to the case for making a safety assessment. An overview of waste container and waste form performance and typical models used in a safety assessment is supplied. As illustrative examples of the role of waste container and waste package performance, three sample test cases are provided. An example of the impacts of

  6. Two proposals for pumping calculations of non–newtonian fluids, water treatment plants disposal sludges case

    OpenAIRE

    H. Gardea–Villegas

    2008-01-01

    This paper presents two ways to calculate the pumping power of non Newtonian fluids and especially yield pseudoplastics which are the kind of disposal fluids from Water Treatment Plants. Fluids called sludges. The proposals included here, are based in methods suggested by Levenspiel (1986) applicable to determine the performance of Bingham plastics and pseudoplastic fluids using a graphical approximation of the rheological behavior of these materials. This approach has the advantage that is a...

  7. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  8. Protocol for the E-Area Low Level Waste Facility Disposal Limits Database

    Energy Technology Data Exchange (ETDEWEB)

    Swingle, R

    2006-01-31

    A database has been developed to contain the disposal limits for the E-Area Low Level Waste Facility (ELLWF). This database originates in the form of an EXCEL{copyright} workbook. The pertinent sheets are translated to PDF format using Adobe ACROBAT{copyright}. The PDF version of the database is accessible from the Solid Waste Division web page on SHRINE. In addition to containing the various disposal unit limits, the database also contains hyperlinks to the original references for all limits. It is anticipated that database will be revised each time there is an addition, deletion or revision of any of the ELLWF radionuclide disposal limits.

  9. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-15

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  10. A quantitative analysis of municipal solid waste disposal charges in China.

    Science.gov (United States)

    Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue

    2015-03-01

    Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.

  11. Thermal analysis in the near field for geological disposal of high-level radioactive waste. Establishment of the disposal tunnel spacing and waste package pitch on the 2nd progress report for the geological disposal of HLW in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Wataru [Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Iwasa, Kengo [Japan Nuclear Cycle Development Inst., Tokyo Office, Tokyo (Japan)

    1999-11-01

    For the underground facility of the geological disposal of high-level radioactive waste (HLW), the space is needed to set the engineered barrier, and the set engineered barrier and rock-mass of near field are needed to satisfy some conditions or constraints for their performance. One of the conditions above mentioned is thermal condition arising from heat outputs of vitrified waste and initial temperature at the disposal depth. Hence, it is needed that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. Therefore, the design of engineered barrier and underground facility is conducted so that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. One of these design is establishment of the disposal tunnel spacing and waste package pitch. In this report, thermal analysis is conducted to establish the disposal tunnel spacing and waste package pitch to satisfy the constraint temperature in the near field. Also, other conditions or constraints for establishment of the disposal tunnel spacing and waste package pitch are investigated. Then, design of the disposal tunnel spacing and waste package pitch, considering these conditions or constraints, is conducted. For the near field configuration using the results of the design above mentioned, the temperature with time dependency is studied by analysis, and then the temperature variation due to the gaps, that will occur within the engineered barrier and between the engineered barrier and rock mass in setting engineered barrier in the disposal tunnel or pit, is studied. At last, the disposal depth variation is studied to satisfy the temperature constraint in the near field. (author)

  12. Developing operating procedures for a low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  13. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  14. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  15. A disposal strategy of industrial hazardous wastes in the Three Gorges Region

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A large quantity of industrial hazardous wastes (IHWs) accumulates in the Three Gorges Region. This study found that approximately 15 000 t IHWs were piled in the region by October 2001. These IHWs came from various sources and were complex in composition, mostly toxic and difficult to be disposed. IHW is regarded as a potential threat to the ecological environment, water resources and survival of local residents. It is important and indispensable to dispose the waste properly. To meet the regulation requirements on the disposal of IHWs and to minimize environmental effects on the Three Gorges Region, a disposal strategy is proposed, according to which approximately 600 t of the IHWs can be disposed by chemical stabilization,incineration and other treatment measures, and the rest need be stockpiled in safe and reliable places situated above the 177 m impoundment line of the Three Gorges dam.

  16. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  17. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gomberg, Steve [USDOE, Washington, DC (United States)

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal) could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.

  18. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  19. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  20. The alternatives for pot-ale disposal. [Evaporation by waste heat recovery and anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, S. (UKAEA Harwell Lab. (UK). Energy Technology Div.)

    1990-01-01

    Pot-ale is a by-product of whisky distilling and when concentrated by evaporation can be sold as cattle feed. Examples of energy savings achieved by recovering waste heat from distilleries and using this waste heat to evaporate the water from the pot-ale are described. Another option for pot-ale disposal is anaerobic digestion to biogas. (UK).

  1. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    Energy Technology Data Exchange (ETDEWEB)

    Swita, W.R.

    1998-01-05

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

  2. 75 FR 65482 - Approval of a Petition for Exemption From Hazardous Waste Disposal Injection Restrictions to...

    Science.gov (United States)

    2010-10-25

    ... (code K062 under 40 CFR part 261), into one Class I hazardous waste injection well specifically... AGENCY Approval of a Petition for Exemption From Hazardous Waste Disposal Injection Restrictions to... ArcelorMittal Burns Harbor, LLC (AMBH) of Burns Harbor, Indiana, for three Class I injection wells located...

  3. Incineration: why this may be the most environmentally sound method of renal healthcare waste disposal.

    Science.gov (United States)

    James, Ray

    2010-09-01

    The environment and 'green' issues are currently being promoted in the healthcare sector through recently launched initiatives. This paper considers aspects of healthcare waste management, with particular reference to waste generated in dialysis units. With dialysis being dependent upon large amounts of disposables, it generates considerable volumes of waste. This paper focuses upon a typical haemodialysis unit, evaluating and quantifying the volumes and categories of waste generated. Each haemodialysis patient on thrice weekly dialysis generates some 323 kg per year of waste, of which 271 kg is classified as clinical. This equates to 1626 kg of (solid) clinical waste per dialysis bed, which is around three times the volume of clinical waste generated per general hospital bed. Waste disposal routes are considered and this suggests that present healthcare waste paradigms are outmoded. They do not allow for flexible approaches to solving what is a dynamic problem, and there is a need for new thinking models in terms of managing the unsustainable situation of disposal in constantly growing landfills. Healthcare waste management must be considered not only in terms of the environmental impact and potential long-term health effects, but also in terms of society's future energy requirements.

  4. 2008 State-of-the-art: Development of the Geological Disposal System for High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, Jong Youl; Jung, Jong Tae; Kim, Sung Ki; Lee, Min Soo; Kook, Dong Hak

    2008-11-15

    This report is for grasping the current status of the time of high level radioactive waste(HLW) disposal and being useful for our conceptual repository design. We performed the analyses for the HLW disposal design of preceding countries. This analyses include design principles, and comparisons for the all characteristics of HLW source, disposal canister, buffer specification, and disposal systems. During the past 10 years, retrievability concept are getting more important with perceiving the waste as new resources and almost countries planning the disposal are concerning more complex designs including this new concept. According to this trend, our country also should investigate the compliance of retrievability with our own disposal design concept. Most countries applies 'Cost Estimation base on conceptual design' method on disposal cost estimation in compliance with their own situation. Even though several estimation conditions, e.g. disposal scale and estimation time, are different, our rough estimation values for the unit disposal cost of PWR and CANDU spent fuels are analogous to other countries' values.

  5. Comparison of low-level waste disposal programs of DOE and selected international countries

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

  6. E-waste bans and U.S. households' preferences for disposing of their e-waste.

    Science.gov (United States)

    Milovantseva, Natalia; Saphores, Jean-Daniel

    2013-07-30

    To deal with the inadequate disposal of e-waste, many states have instituted bans on its disposal in municipal landfills. However, the effectiveness of e-waste bans does not seem to have been analyzed yet. This paper starts addressing this gap. Using data from a survey of U.S. households, we estimate multivariate logit models to explain past disposal behavior by households of broken/obsolete ("junk") cell phones and disposal intentions for "junk" TVs. Our explanatory variables include factors summarizing general awareness of environmental issues, pro-environmental behavior in the past year, attitudes toward recycling small electronics (for the cell phones model only), socio-economic and demographic characteristics, and the presence of state e-waste bans. We find that California's Cell Phone Recycling Act had a significant and positive impact on the recycling of junk cell phones; however, state disposal bans for junk TVs seem to have been mostly ineffective, probably because they were poorly publicized and enforced. Their effectiveness could be enhanced by providing more information about e-waste recycling to women, and more generally to adults under 60. Given the disappointing performance of policies implemented to-date to enhance the collection of e-waste, it may be time to explore economic instruments such as deposit-refund systems.

  7. RESULTS OF THE PERFORMANCE ASSESSMENT FOR THE CLASSIFIED TRANSURANIC WASTES DISPOSED AT THE NEVADA TEST SITE

    Energy Technology Data Exchange (ETDEWEB)

    J. COCHRAN; ET AL

    2001-02-01

    Most transuranic (TRU) wastes are destined for the Waste Isolation Pilot Plant (WIPP). However, the TRU wastes from the cleanup of US nuclear weapons accidents are classified for national security reasons and cannot be disposed in WIPP. The US Department of Energy (DOE) sought an alternative disposal method for these ''special case'' TRU wastes and from 1984 to 1987, four Greater Confinement Disposal (GCD) boreholes were used to place these special case TRU wastes a minimum of 21 m (70 ft) below the land surface and a minimum of 200 m (650 ft) above the water table. The GCD boreholes are located in arid alluvium at the DOE's Nevada Test Site (NTS). Because of state regulatory concerns, the GCD boreholes have not been used for waste disposal since 1989. DOE requires that TRU waste disposal facilities meet the US Environmental Protection Agency's (EPA's) requirements for disposal of TRU wastes, which are contained in 40 CFR 191. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU waste emplaced in the GCD boreholes complies with the EPA's requirements. Sandia has completed the PA using all available information and an iterative PA methodology. This paper overviews the PA of the TRU wastes in the GCD boreholes [1]. As such, there are few cited references in this paper and the reader is referred to [1] and [2] for references. The results of the PA are that disposal of TRU wastes in the GCD boreholes easily complies with the EPA's 40 CFR 191 safety standards for disposal of TRU wastes. The PA is undergoing a DOE Headquarters (DOE/HQ) peer review, and the final PA will be released in FY2001 or FY2002.

  8. An evaluation of some special techniques for nuclear waste disposal in space

    Science.gov (United States)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  9. U.S. program assessing nuclear waste disposal in space - A status report

    Science.gov (United States)

    Rice, E. E.; Priest, C. C.; Friedlander, A. L.

    1980-01-01

    Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.

  10. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  11. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  12. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  13. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  14. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  15. Waste disposal conditions at the Incel thermal power plant at Banja Luka

    Energy Technology Data Exchange (ETDEWEB)

    Lazic, P.; Knezevic, D. (Rudarski Institut, Belgrade (Yugoslavia). Zavod za Pripremu Mineralnih Sirovina)

    1990-01-01

    Proposes variants of a modernized ash disposal system at the Banja Luka coal power plant in Yugoslavia (Bosnia Herzegovina). The plant combusts coal from the Gracanica, Kreka, Stanari and Kamengrad mines, as well as wood wastes and spent liquor from the paper industry of the area. Possibilities for disposal include dry ash disposal by dump truck transportation after ash pelletizing, or wet ash disposal by hydraulic pipeline transport (over 1 km) to the disposal site. Chemical properties of the ash are given. Optimum ash and water mixture for hydraulic transport was found to have a 50% solids content. Pelletizing of ash without additional binders is regarded as feasible due to chemical properties of the ash. Ground insulation of the disposal site is required due to the high alkaline content of the ash. 4 refs.

  16. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  17. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  18. 21 CFR 1250.75 - Disposal of human wastes.

    Science.gov (United States)

    2010-04-01

    ... containers which have come in contact with human wastes shall be required to wash their hands thoroughly with soap and warm water and to remove any garments which have become soiled with such wastes before...

  19. Regional and urban solid waste disposal. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning regional and urban solid waste disposal and recycling technology. Citations discuss methods and facilities for the treatment of municipal, industrial, household, and medical wastes. Topics include incineration, landfills, treatment of hazardous materials, composting techniques, waste utilization, and open dumps. Also discussed are pollution regulations, laws and legal aspects, facility design, and markets for composts.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    This report describes the many fundamental issues relating to the strategy being proposed by Atomic Energy of Canada Limited for the long-term management of nuclear fuel waste. It discusses the need for a method for disposal of nuclear fuel waste that would permanently protect human health and the natural environment and that would not unfairly burden future generations. It also describes the background and mandate of the Nuclear Fuel Waste Management Program in Canada.

  1. A thermodynamic reference database for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Brendler, V. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Altmaier, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Moog, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Braunschweig (Germany); Voigt, W. [TU Bergakademie Freiberg (Germany); Wilhelm, S. [AF Consult Switzerland AG, Baden (Switzerland)

    2015-07-01

    Safety analysis for a geological repository for radioactive waste as well as remediation measures for uranium mining and processing legacies share an essential: the need for a reliable, traceable and accurate assessment of potential migration of toxic constituents into the biosphere. The respective computational codes require site-independent thermodynamic data concerning aqueous speciation, solubility limiting solid phases and ion-interaction parameters. Such databases, however, show several constraints: - Incompleteness in terms of major and trace elements - Inconsistencies between species considered and corresponding formation constants - Restricted variation ranges of intensive parameters (temperature, density, pressure) - Limitations with respect to solution compositions (ionic strength). To overcome these limitations to a significant degree, an ambitious database project - THEREDA - has been launched in 2006 by institutions leading in the field of safety research for nuclear waste disposal in Germany. The main objective is a centrally administrated and maintained database of verified thermodynamic parameters for environmental applications in general and radiochemical issues in particular. During the last year, the most important point was the official release of four more datasets (adding carbonate, An(III), Np(V) and Cs to the hexary system of oceanic salts), all based on the Pitzer model describing the ion-ion interactions. They can all be downloaded as separate files from the project web site www.thereda.de (navigation menu: THEREDA Data Query → Tailored Databases) as generic ASCII type, and in formats specific to the geochemical speciation codes PhreeqC, EQ3/6, ChemApp and Geochemist Workbench. Moreover, access to data records is now also possible through interactive forms (menu: THEREDA Data Query → Single Data Query // Complex Systems), both with export options as CSV or MS Excel file. Additional releases of thermodynamic data for Th(IV), U(IV) and

  2. Geologic disposal of radioactive waste: Ethical and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T.H. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    defensible doses that show that future people will be protected as well as present-day people are protected from licensed nuclear facilities? If so, the need for a geologic repository could be balanced against the desire for assuring such conservative and careful protection of public health. Relaxation of the safety standard itself, as attempted so prematurely by the House and Senate bills of the present and last Congress, should be made only after specialreview of that need by the scientific community and the public and approval by Congress. The desire for safeguards protection of buried spent nuclear fuel will be an additional burden on repository design and prediction of performance. Thus, the Yucca Mountain Project faces a demanding technical challenge. Similar challenges face policy makers. They must reject pressures for short-term expediency and economy lest, by enacting policies that compromise scientific validity and credibility, they further undermine public confidence and irreparably harm the programs for disposing of high-level radioactive waste.

  3. Storage, Collection and Disposal of Kariakoo Market Wastes in Dar Es Salaam, Tanzania

    DEFF Research Database (Denmark)

    Yhdego, Michael

    1992-01-01

    waste management in Kariakoo market, Dar es Salaam. The main problems identified were poor market design and lack of a well organized waste storage, collection and disposal systems. Two-thirds of the waste consists of vegetable matter. Proposals for improved design of storage and collection facilities...... are described. Experiments revealed wastes from the market are readily decomposable by composting. A change in the design of covered markets and improvements in waste handling are essential to reduce the potential health hazards in developing countries....

  4. The modeling method of diffusion of radio activated materials in clay waste disposals

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Reza; Sepanloo, Kamran [NSTRI, Tehran (Iran, Islamic Republic of); Alinejad, Majid [Engineering Research Institute of Natural Hazard, Isfahan (Iran, Islamic Republic of); Mozaffari, Ali [KNT Univ. of Technology, Tehran (Iran, Islamic Republic of)

    2017-02-15

    New nuclear power plants are necessary to meet today's and future challenges of energy supply. Nuclear power is the only large-scale energy source that takes full responsibility for all its wastes. Nuclear wastes are particularly hazardous and hard to manage relative to different toxic industrial wastes. Three methods are presented and analysed to model the diffusion of the waste from the waste disposal to the bottom surface. For this purpose three software programmes such as ABAQUS, Matlab coding, Geostudio and ArcGIS have been applied.

  5. Household waste disposal in Mekelle city, Northern Ethiopia

    NARCIS (Netherlands)

    Tadesse Woeldesenbet, T.; Ruijs, A.J.W.; Hagos, F.

    2008-01-01

    In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes

  6. Household waste disposal in Mekelle city, Northern Ethiopia

    NARCIS (Netherlands)

    Tadesse Woeldesenbet, T.; Ruijs, A.J.W.; Hagos, F.

    2008-01-01

    In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes o

  7. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  8. Food waste disposal units in UK households: the need for policy intervention.

    Science.gov (United States)

    Iacovidou, Eleni; Ohandja, Dieudonne-Guy; Voulvoulis, Nikolaos

    2012-04-15

    The EU Landfill Directive requires Member States to reduce the amount of biodegradable waste disposed of to landfill. This has been a key driver for the establishment of new waste management options, particularly in the UK, which in the past relied heavily on landfill for the disposal of municipal solid waste (MSW). MSW in the UK is managed by Local Authorities, some of which in a less conventional way have been encouraging the installation and use of household food waste disposal units (FWDs) as an option to divert food waste from landfill. This study aimed to evaluate the additional burden to water industry operations in the UK associated with this option, compared with the benefits and related savings from the subsequent reductions in MSW collection and disposal. A simple economic analysis was undertaken for different FWD uptake scenarios, using the Anglian Region as a case study. Results demonstrated that the significant savings from waste collection arising from a large-scale uptake of FWDs would outweigh the costs associated with the impacts to the water industry. However, in the case of a low uptake, such savings would not be enough to cover the increased costs associated with the wastewater provision. As a result, this study highlights the need for policy intervention in terms of regulating the use of FWDs, either promoting them as an alternative to landfill to increase savings from waste management, or banning them as a threat to wastewater operations to reduce potential costs to the water industry.

  9. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  10. ATTITUDE OF URBAN DWELLERS TO WASTE DISPOSAL AND MANAGEMENT IN CALABAR, NIGERIA.

    Directory of Open Access Journals (Sweden)

    Afangideh, Asuquo.I.

    2012-02-01

    Full Text Available The problems of waste generation and management has become a serious issue ofconcern to many scholars in environmental studies. This paper critically examine theattitude of urban dwellers to waste disposal and management. One hundred and fiftycopies of questionnaire were administered to residents in the area. Information suchas the various classes of waste, frequency of waste disposal and methods of wasteevacuation were obtained from the questionnaire. Finding revealed that family sizehas a great influence on waste disposal and generation which was evidence in thehypothesis with a calculated value of 7.32 greater than the critical value of 2.43 at0.05 level of significance. Besides, environmental enlightenment has changed people’sattitude towards waste generation and management in the area. This was affirmed inthe calculated f-value of 3.18 greater than critical t-value of 1.97 at 0.05 level ofsignificance. However, this result indicate that effective environmental enlightenmentwould help avert the attitude of urban dwellers to waste disposal and management inthe area.

  11. Importance of patient education on home medical care waste disposal in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yukihiro, E-mail: yuyu@med.kindai.ac.jp

    2014-07-15

    Highlights: • Attached office nurses more recovered medical waste from patients’ homes. • Most nurses educated their patients on how to store home medical care waste in their homes and on how to separate them. • Around half of nurses educated their patients on where to dispose of their home medical care waste. - Abstract: To determine current practices in the disposal and handling of home medical care (HMC) waste, a questionnaire was mailed to 1965 offices nationwide. Of the office that responded, 1283 offices were analyzed. Offices were classified by management configuration: those attached to hospitals were classified as ”attached offices” and others as “independent offices”. More nurses from attached offices recovered medical waste from patients’ homes than those from independent offices. Most nurses educated their patients on how to store HMC waste in their homes (79.3% of total) and on how to separate HMC waste (76.5% of total). On the other hand, only around half of nurses (47.3% from attached offices and 53.2% from independent offices) educated their patients on where to dispose of their HMC waste. 66.0% of offices replied that patients had separated their waste appropriately. The need for patient education has emerged in recent years, with education for nurses under the diverse conditions of HMC being a key factor in patient education.

  12. IMPACT OF THE JAKUŠEVEC-PRUDINEC WASTE DISPOSAL SITE ON GROUNDWATER QUALITY

    Directory of Open Access Journals (Sweden)

    Zoran Nakić

    2007-12-01

    Full Text Available The main goal of the research shown in this paper is to investigate the cause and effect relation of the Jakuševec-Prudinec waste disposal site and the groundwater pollution. The recovery of the Jakuševec-Prudinec waste disposal site by the end of 2003 did not have any significant impact on the pollution reduction in groundwater. Very high values of the pollution index defined in the area southeastern from the waste disposal site show spreading of the pollution toward Mičevec village. The analysis of the hydrogeochemical characteristics showed that in the waste disposal site area the local geochemical anomalies of the partial CO2 pressure exist, indicating that the intensive carbonate dissolution processes and HCO3- enrichment dominate in this area. Near the border of the waste disposal site groundwater with high ammonium ion (NH4+ and chloride ion (Cl- dominates. The high concentrations of the heavy metals and very strong geochemical bonds determined from the correlation coefficients show that in the reductive aquifer conditions heavy metals strongly release (the paper is published in Croatian.

  13. Research on treatment and disposal of RI and Research Institute Waste. Progress in Department of Fuel Cycle Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Department of Fuel Cycle Safety Research, JAERI, has been carrying out research on safe and rational disposal systems of radioactive wastes arising from medical activities and research institutes (RI and Research Institute Waste). The research area includes a study on molten solidified waste form, a geological survey on Japan, a proposal on integrated disposal systems, data acquisition for safety evaluation, and a safety analysis of disposal systems. This report introduces progress and future works for the treatment and disposal of RI and Research Institute Waste. (author)

  14. DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

    2011-01-13

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  15. [Disposal of waste glass in sanitary departments: a sample survey in the Lazio region].

    Science.gov (United States)

    Del Sole, A; Fonda, A

    2004-01-01

    As a result of Italian law, DPR 15/7/2003 n. 254, about hospital waste, and given that little has been written about recycling waste glass in hospitals, a survey of 28 health departments in Lazio was performed. The objectives were: to estimate the mean quantity of clear vitreous waste in one year, to estimate how vitreous waste is administered, to estimate the extent of the use of plastic instead of glass, to analyse the costs and benefits of glass use and/or plastic use and to evaluate staff training about hospital waste disposal. The average production of clear vitreous waste was 0.28 kilogram per day per hospital bed occupied. (This would be the theoretical maximum quantity of glass to be recycled). Among the 28 departments studied, 82% separated waste products but only 36% disposed of glass in accordance with the law. The estimated possible savings on glass phleboclysis in 2002 year were 35,000 euro. Staff training could avoid this conspicuous waste of money. Fifteen departments also used plastic phleboclysis; of these, in 2 departments plastic waste is separated in the wards, but unfortunately this material is later disposed of in the bins for general solid urban waste. The other thirteen hospitals dispose of waste plastic as infectious material. Using glass phleboclysis instead of plastic phleboclysis would save about 680,000 euros per year. The disposal of glass waste material in practice was not found to follow the principles taught in the training courses. Theoretic data about glass production, estimated in this survey, refers only to clear glass and it is an underestimate of that of all glass used in departments. The quantity of glass actually recycled has been about 0.14 kilogram per day per hospital bed occupied and thus only 50% of the theoretical quantity (0.28 kilogram per day per hospital bed occupied). This percentage could be improved by effective training. Ideally, the disposal of waste glass would follow the legal requirements and be monitored

  16. FIELD VALIDATION OF CORROSION RATES FOR LOW-LEVEL WASTE DISPOSAL PERFORMANCE ASSESSMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Flitton, M.K. Adler; Seitz, R.R.

    2003-02-27

    Research is being conducted at the Idaho National Engineering and Environmental Laboratory to assess corrosion rates of metals in the subsurface environment in direct support of waste management operations and environmental restoration activities. This research addresses a need identified by Department of Energy-Headquarters when reviewing the performance assessment for the low-level waste disposal facility at the Radioactive Waste Management Complex. Corrosion rates are a key factor determining release rates of long-lived radionuclides from activated metal waste streams. Radionuclide releases from these wastes are key contributors to the projected long-term dose associated with the disposal facility. Short-term results from the corrosion samples buried for one and three years suggest that the corrosion rates assumed for the assessments are conservative. However, the rates appear to be increasing, thus, future retrievals of coupons will be used to identify whether the increasing trend continues.

  17. Status of Drum Assay System for disposal of Radioactive Waste Drums stored at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Hyuk; Kwak, Kyung Kil; Hong, Dae Seok; Shin, Ki Baek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    According to the construction schedule for the final repository at Kyeong-ju in the southeast of Korea, a disposal plan for the radioactive waste drums at KAERI was required. More than 95% of all radionuclides contained in radioactive waste package should be identified for final disposal. To characterize the radioactive waste drums at KAERI, a radioactive waste drum assay facility equipped with a Wide-Range SGS system manufactured by ANTECH has been constructed. According to the acceptance criteria of KORAD and the government, KAERI make thorough preparation of disposal plan. To characterize the radioactive waste drums at KAERI, a radioactive waste drum assay facility equipped with a Wide-Range SGS system manufactured by ANTECH has been constructed. Since then, about 400 drums have been completed gamma radionuclide assay. Co-60 and Cs-137 were major radionuclides of the radioactive waste drums at KAERI. We have a plan to examine radionuclides and activity of a radioactive waste drum and secure reliability of analysis results with cross analysis using drum assay equipment at institute for inspection.

  18. Factors Explaining Households’ Cash Payment for Solid Waste Disposal and Recycling Behaviors in South Africa

    Directory of Open Access Journals (Sweden)

    Abayomi Samuel Oyekale

    2015-11-01

    Full Text Available Environmental safety is one of the top policy priorities in some developing countries. This study analyzed the factors influencing waste disposal and recycling by households in South Africa. The data were collected by Statistics South Africa in 2012 during the General Household Survey (GHS. Analysis of the data was carried out with the Bivariate Probit model. The results showed that 56.03% and 31.98% of all the households disposed waste through local authority/private companies and own refuse dump sites, respectively. Limpopo and Mpumalanga had the highest usage of own refuse dump sites and dumping of waste anywhere. Littering (34.03% and land degradation (31.53% were mostly perceived by the households, while 38.42% were paying for waste disposal and 8.16% would be willing to pay. Only 6.54% and 1.70% of all the households were recycling and selling waste respectively with glass (4.10% and papers (4.02% being most recycled. The results of the Bivariate Probit model identified income, access to social grants, Indian origin, and attainment of formal education as significant variables influencing payment for waste disposal and recycling. It was inter alia recommended that revision of environmental law, alleviating poverty, and gender sensitive environmental education and awareness creation would enhance environmental conservation behaviors in South Africa.

  19. Impact of Unconventional Shale Gas Waste Water Disposal on Surficial Streams

    Science.gov (United States)

    Cozzarelli, I.; Akob, D.; Mumford, A. C.

    2014-12-01

    The development of unconventional natural gas resources has been rapidly increasing in recent years, however, the environmental impacts and risks are not yet well understood. A single well can generate up to 5 million L of produced water (PW) consisting of a blend of the injected fluid and brine from a shale formation. With thousands of wells completed in the past decade, the scope of the challenge posed in the management of this wastewater becomes apparent. The USGS Toxic Substances Hydrology Program is studying both intentional and unintentional releases of PW and waste solids. One method for the disposal of PW is underground injection; we are assessing the potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in the Wolf Creek watershed in WV. Disposal of PW via injection begun in 2002, with over 5.5 mil. L of PW injected to date. The facility consists of the injection well, a tank farm, and two former holding ponds (remediated in early 2014) and is bordered by two small tributaries of Wolf Creek. Water and sediments were acquired from these streams in June 2014, including sites upstream, within, and downstream from the facility. We are analyzing aqueous and solid phase geochemistry, mineralogy, hydrocarbon content, microbial community composition, and potential toxicity. Field measurements indicated that conductivity downstream (416 μS/cm) was elevated in comparison to upstream (74 μS/cm) waters. Preliminary data indicated elevated Cl- (115 mg/L) and Br- (0.88 mg/L) concentrations downstream, compared to 0.88 mg/L Cl- and streams. In addition, total Fe concentrations downstream were 8.1 mg/L, far in excess of the 0.13 mg/L found upstream from the facility, suggesting the potential for microbial Fe cycling. We are conducting a broad suite of experiments to assess the potential for microbial metabolism of the organic components of PW, and to determine the effects of this metabolism on the geochemistry of

  20. The factors that have correlation with student behavior to dispose liquid waste

    Science.gov (United States)

    Kusmawaningtyas, Rieneke; Darmajanti, Linda; Soesilo, Tri Edhi Budhi

    2017-03-01

    Students majoring in chemistry could produce toxic liquid waste in their laboratory practices. They are not allowed to dispose of hazardous laboratory liquid into the environment. The formulation of problem in this study is that not all students have good behavior to dispose liquid waste properly according to their type and chemical properties while it is expected that all students have good behavior to dispose liquid waste with the type and chemical properties in container vessel, even though all students are expected to have behavior to dispose waste in the container vessel with the support of the predisposing factors, enabling factors, and driving factors. The aim of this study is to analyze the type and chemical properties of liquid waste and the relationship between three factors forming behavior with student behavior. The relationship between three factors forming behavior with student behavior was analyzed by correlative analysis. Type and chemical properties known through observation and qualitative analysis. The results of this research is found that enabling factors and driving behavior have a weak relation with student behavior. Nevertheless, predisposing factors has no relation with student behavior. The result of analysis of waste laboratory are known that laboratory liquid waste contains Cu, Fe, and methylene blue which potentially pollute the environment. The findings show that although generally the laboratory use chemicals in small quantities, but the total quantity of laboratory liquid waste produced from all laboratories in some regions must be considered. Moreover, the impact of the big quantity of liquid waste to environment must be taken into account. Thus, it is recommended that students should raise awareness of the risks associated with laboratory liquid waste and, we should provide proper management for a laboratory and policy makers.

  1. Geological aspects of the high level waste and spent fuel disposal programme in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Matej, Gedeon; Milos, Kovacik; Jozef, Hok [Geological Survey of Slovak Republic, Bratislava (Slovakia)

    2001-07-01

    An autonomous programme for development of a deep geological high level waste and spent fuel disposal began in 1996. One of the most important parts in the programme is siting of the future deep seated disposal. Geological conditions in Slovakia are complex due to the Alpine type tectonics that formed the geological environment during Tertiary. Prospective areas include both crystalline complexes (tonalites, granites, granodiorites) and Neogene (Miocene) argillaceous complexes. (author)

  2. Information on commercial disposal facilities that may have received offshore drilling wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, J. R.; Veil, J. A.; Ayers, R. C., Jr.

    2000-08-25

    The U.S. Environmental Protection Agency (EPA) is developing regulations that would establish requirements for discharging synthetic-based drill cuttings from offshore wells into the ocean. Justification for allowing discharges of these cuttings is that the environmental impacts from discharging drilling wastes into the ocean may be less harmful than the impacts from hauling them to shore for disposal. In the past, some onshore commercial facilities that disposed of these cuttings were improperly managed and operated and left behind environmental problems. This report provides background information on commercial waste disposal facilities in Texas, Louisiana, California, and Alaska that received or may have received offshore drilling wastes in the past and are now undergoing cleanup.

  3. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    Science.gov (United States)

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods.

  4. Information on commercial disposal facilities that may have received offshore drilling wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, J. R.; Veil, J. A.; Ayers, R. C., Jr.

    2000-08-25

    The U.S. Environmental Protection Agency (EPA) is developing regulations that would establish requirements for discharging synthetic-based drill cuttings from offshore wells into the ocean. Justification for allowing discharges of these cuttings is that the environmental impacts from discharging drilling wastes into the ocean may be less harmful than the impacts from hauling them to shore for disposal. In the past, some onshore commercial facilities that disposed of these cuttings were improperly managed and operated and left behind environmental problems. This report provides background information on commercial waste disposal facilities in Texas, Louisiana, California, and Alaska that received or may have received offshore drilling wastes in the past and are now undergoing cleanup.

  5. Disposal of Soluble Salt Waste from Coal Gasification,

    Science.gov (United States)

    1980-06-01

    AD-A090 419 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERO-ETC F/S 13/2 DISPOSAL OF SOLUBLE SALT VBASTE FROM COAL GASIFICATION . 1W JUN 80 C E...use as pipe- line gasjof the Lurgi type will be used as a basis to explain the disposal process. The purpose of the coal gasification plant is to 470 MC...KNIGHT produce methane starting with coal, gasifying it and hydrogenating it. As supplies of low-sulfur coal diminish, coal gasification must operate

  6. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  7. Consideration of Criteria for a Conceptual Near Surface Radioactive Waste disposal Facility in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nderitu, Stanley Werugia; Kim, Changlak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures. This study will present an approach for establishing radiological waste acceptance criteria using a safety assessment methodology and illustrate some of its application in establishing limits on the total activity and the activity concentrations of radioactive waste to be disposed in a conceptual near surface disposal facility in Kenya. The approach will make use of accepted methods and computational schemes currently used in assessing the safety of near surface disposal facilities. The study will mainly focus on post-closure periods. The study will employ some specific inadvertent human intrusion scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. The specific performance assessments will use modified scenarios and data to establish acceptable disposal concentrations for specific disposal sites and conditions. Safety and environmental impacts assessments is required in the post-closure phase to support particular decisions in development, operation, and closure of a near surface repository.

  8. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in

  9. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees.

    Science.gov (United States)

    Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M

    2016-03-01

    Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site.

  10. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  11. 1997 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R. L.

    1998-08-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1997 and a comparison of waste volumes and radioactivity by state for 1993 through 1997; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1997.

  12. Thermal investigation of nuclear waste disposal in space

    Science.gov (United States)

    Wilkinson, C. L.

    1981-01-01

    A thermal analysis has been conducted to determine the allowable size and response of bare and shielded nuclear waste forms in both low earth orbit and at 0.85 astronomical units. Contingency conditions of re-entry with a 45 deg and 60 deg aeroshell are examined as well as re-entry of a spherical shielded waste form. A variety of shielded schemes were examined and the waste form thermal response for each determined. Two optimum configurations were selected. The thermal response of these two shielded waste configurations to indefinite exposure to ground conditions following controlled and uncontrolled re-entry is determined. In all cases the prime criterion is that waste containment must be maintained.

  13. Municipal solid waste disposal by using metallurgical technologies and equipments

    Directory of Open Access Journals (Sweden)

    Jiuju Cai, Wenqiang Sun

    2012-01-01

    Full Text Available Pyrolysis of municipal solid waste can take full advantage of energy and resource and avoid producing hazardous material during this period. In combination with mature metallurgical technologies of coking by coke oven, regenerative flame furnace technology and melting by electric arc furnace, technologies of regenerative fixed bed pyrolysis technology for household waste, co-coking technology for waste plastic and blend coal, and incineration ash melting technology by electric arc technology for medical waste were respectively developed to improve current unsatisfied sorting status of waste. The investigation results of laboratory experiments, semi-industrial experiments and industrial experiments as well as their economic benefits and environmental benefits for related technologies were separately presented.

  14. Analog information and the Canadian concept for disposal of nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    AECL, with support from Ontario Hydro under auspices of the Candu Owners Group, has assessed a concept for the safe disposal of nuclear fuel waste in Canada. The disposal concept is to place nuclear fuel waste in corrosion-resistant containers and emplace the containers with sealing materials in an engineered vault at depths of 500 to 1000m in plutonic rock of the Canadian Shield. Humans and the environment would be protected from contaminants in the waste by several barriers; the waste itself, the container, the sealing materials, and the rock. This disposal concept permits a great deal of flexibility in its implementation, which means that a wide range of circumstances could be accommodated. Studies of natural analogues provide important information for evaluating and improving our knowledge and understanding of the disposal concept. Analogue information is used to develop the scenarios and conceptual models, to provide input to databases, and to test models, thereby enhancing the level of confidence in the safety predictions from the assessment models. In addition, natural analogues are valuable illustrative tools when presenting information on the disposal concept to the non-expert and the public.

  15. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Science.gov (United States)

    2010-07-01

    ... defined in 40 CFR 261.5. Non-municipal non-hazardous waste disposal units that meet the requirements of... permit program for 40 CFR part 257, subpart B and 40 CFR part 258 regulated facilities. Uppermost...

  16. Household disposables as breeding habitats of dengue vectors: Linking wastes and public health

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Soumyajit, E-mail: soumyajitb@gmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India); Aditya, Gautam, E-mail: gautamaditya2001@gmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India); Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713 104 (India); Saha, Goutam K, E-mail: gkszoo@rediffmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities of tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that

  17. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    Science.gov (United States)

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  18. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  19. Phosphate retention by soil in relation to waste disposal

    NARCIS (Netherlands)

    Beek, J.

    1979-01-01

    The disposal of large amounts of domestic sewage water and liquid manure, both containing dissolved phosphates, is often problematic. Discharge of these into (shallow and standing) surface waters is highly undesirable, as phosphate is considered to be one of the prime causes of eutrophication. If, o

  20. Phosphate retention by soil in relation to waste disposal

    NARCIS (Netherlands)

    Beek, J.

    1979-01-01

    The disposal of large amounts of domestic sewage water and liquid manure, both containing dissolved phosphates, is often problematic. Discharge of these into (shallow and standing) surface waters is highly undesirable, as phosphate is considered to be one of the prime causes of eutrophication. If, o

  1. Research on Layout Optimization of Urban Circle Solid Waste Transfer and Disposal Stations

    Directory of Open Access Journals (Sweden)

    Xuhui Li

    2013-08-01

    Full Text Available Based on the Systematic Layout Planning theory and the analysis of transfer stations’ technological processes, a layout optimization model for solid waste transfer and disposal stations was made. The operating units’ layout of the solid waste transfer and disposal stations was simulated and optimized using the genetic algorithm, which could achieve reasonable technological processes, the smallest floor space and the lowest construction cost. The simulation result can also direct the initial engineering design and can also provide reference for similar engineering design methods.

  2. Development of database systems for safety of repositories for disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hun; Han, Jeong Sang; Shin, Hyeon Jun; Ham, Sang Won; Kim, Hye Seong [Yonsei Univ., Seoul (Korea, Republic of)

    1999-03-15

    In the study, GSIS os developed for the maximizing effectiveness of the database system. For this purpose, the spatial relation of data from various fields that are constructed in the database which was developed for the site selection and management of repository for radioactive waste disposal. By constructing the integration system that can link attribute and spatial data, it is possible to evaluate the safety of repository effectively and economically. The suitability of integrating database and GSIS is examined by constructing the database in the test district where the site characteristics are similar to that of repository for radioactive waste disposal.

  3. International program to study subseabed disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

    1984-01-01

    This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables.

  4. Evaluation of Collection and Disposal of Hospital Waste in Hospitals and Healthcare Centers

    Directory of Open Access Journals (Sweden)

    Saeid Nazemi

    2012-08-01

    Full Text Available Currently, one of the environmental issues is waste of hospitals and healthcare facilities which due to hazardous, toxic, and disease-causing agents such as pharmaceutical, chemical and infectious disease, is of particular sensitivity. According to a 2002 survey by WHO, it was determined that 22 million people worldwide suffer from infectious diseases annually, because of contacting hospital wastes. Also based on a research conducted in 22 countries, 18 to 64 percent of hospitals wastes are not disposed properly [1]. The purpose f the study is to appraise collection and disposal of hospital wastes in hospitals and healthcare centers of Shahroud.In this sectional study, 3 university hospitals (580 beds and 10 healthcare facilities were investigated for six months (mehr-azar 89 at Shahroud. In order to determine the amount of waste, produced waste of an entire day was weighted in hospitals and health centers. In this research, proposed questionnaires of WHO for developing countries was used to evaluate collection and disposal system of hospitals waste. Collected data was coded and analyzed by SPSS ver.15.

  5. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  6. Economic and ecological optimal strategies of management of the system of regional solid waste disposal

    Directory of Open Access Journals (Sweden)

    Samoylik Marina S.

    2014-01-01

    Full Text Available The article develops an economic and ecological model of optimal management of the system of solid waste disposal at the regional level, identifies its target functions and forms optimisation scenarios of management of this sphere with theoretically optimal parameters’ values. Based on the model of management of the sphere of solid waste disposal the article forms an algorithm of identification of optimal managerial strategies and mechanisms of their realisation, which allows solution of the set tasks of optimisation of development of the sphere of solid waste disposal at a given set of values and parameters of the state of the system for a specific type of life cycle of solid waste and different subjects of this sphere. The developed model has a number of feasible solutions and, consequently, offers selection of the best of them with consideration of target functions. The article conducts a SWOT analysis of the current state of solid waste disposal in the Poltava region and identifies a necessity of development of a relevant strategy on the basis of the developed economic and ecological model with consideration of optimisation of mutually opposite criteria: ecological risk for the population from the sphere of solid waste disposal and total expenditures for this sphere functioning. The article conducts modelling of this situation by basic (current situation and alternative scenarios and finds out that, at this stage, it is most expedient to build in the region four sorting lines and five regional solid waste grounds, while expenditures on this sphere are UAH 62.0 million per year, income from secondary raw material sales – UAH 71.2 per year and reduction of the ecological risk – UAH 13 million per year.

  7. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Alison [USDOE Office of Environmental Management (EM), Washington, DC (United States); Barkley, Michelle [USDOE Office of Environmental Management (EM), Washington, DC (United States); Poppiti, James [USDOE Office of Environmental Management (EM), Washington, DC (United States)

    2017-07-01

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  8. [Investigation of actual condition of management and disposal of medical radioactive waste in Korea].

    Science.gov (United States)

    Watanabe, Hiroshi; Nagaoka, Hiroaki; Yamaguchi, Ichiro; Horiuchi, Shoji; Imoto, Atsushi

    2009-07-20

    In order to realize the rational management and disposal of radioactive waste like DIS or its clearance as performed in Europe, North America, and Japan, we investigated the situation of medical radioactive waste in Korea and its enforcement. We visited three major Korean facilities in May 2008 and confirmed details of the procedure being used by administering a questionnaire after our visit. From the results, we were able to verify that the governmental agency had established regulations for the clearance of radioactive waste as self-disposal based on the clearance level of IAEA in Korea and that the medical facilities performed suitable management and disposal of radioactive waste based on the regulations and superintendence of a radiation safety officer. The type of nuclear medicine was almost the same as that in Japan, and the half-life of all radiopharmaceuticals was 60 days or less. While performing regulatory adjustment concerning the rational management and disposal of radioactive waste in Korea for reference also in this country, it is important to provide an enforcement procedure with quality assurance in the regulations.

  9. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    Energy Technology Data Exchange (ETDEWEB)

    Adelman, D.D. [Water Resources Engineer, Lincoln, NE (United States); Stansbury, J. [Univ. of Nebraska-Lincoln, Omaha, NE (United States)

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  10. Issues around household pharmaceutical waste disposal through community pharmacies in Croatia.

    Science.gov (United States)

    Jonjić, Danijela; Vitale, Ksenija

    2014-06-01

    Croatian regulations mandate pharmacies to receive unused medicines from households. Pharmacies are considered as producers and holders of pharmaceutical waste and are obliged to finance this service. Model where pharmacies are responsible for financing disposal of unused medicines without reimbursement is not common in Europe. Present service was not tested before implementation. To investigate the elements of the pharmaceutical waste disposal service provided by pharmacies, and to gain insight into the factors that might influence the effectiveness of the service. Setting All pharmacies in the city of Zagreb. Each pharmacy was asked to weigh the collected waste from the public during a period of 30 days, between June 1st and July 10th of 2011, absent from any media advertisement and answer a specifically designed questionnaire that was exploring possible connections between the amount of collected waste, type of pharmacy ownership, discretion while disposing, location of the container, appropriate labeling and to compare the amount of collected waste between neighborhoods. Quantity of collected unused medicines from the public. Of 210 pharmacies, 91 participated completing the questionnaire (43 % response rate). The total amount of collected waste was 505 kg. Pharmacies owned by the city of Zagreb had higher response rate (74 %) than privately owned pharmacies (36 %), and collected significantly higher amount of waste. Anonymity when disposing influenced collected quantity, while labelling and location of the container did not. There were differences in the amount of collected waste between neighborhoods due to the demographic characteristics and number of pharmacies per capita. The effectiveness of the pharmacy service of collecting unused medicines in Croatia shows a number of weaknesses. The amount of collected medicines is below the European average. Functioning of the service seems to be negatively influenced by the type of pharmacy ownership, distribution

  11. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but

  12. Remote Sensing Analysis Techniques and Sensor Requirements to Support the Mapping of Illegal Domestic Waste Disposal Sites in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Katharine Glanville

    2015-10-01

    Full Text Available Illegal disposal of waste is a significant management issue for contemporary governments with waste posing an economic, social, and environmental risk. An improved understanding of the distribution of illegal waste disposal sites is critical to enhance the cost-effectiveness and efficiency of waste management efforts. Remotely sensed data has the potential to address this knowledge gap. However, the literature regarding the use of remote sensing to map illegal waste disposal sites is incomplete. This paper aims to analyze existing remote sensing methods and sensors used to monitor and map illegal waste disposal sites. The purpose of this paper is to support the evaluation of existing remote sensing methods for mapping illegal domestic waste sites in Queensland, Australia. Recent advances in technology and the acquisition of very high-resolution remote sensing imagery provide an important opportunity to (1 revisit established analysis techniques for identifying illegal waste disposal sites, (2 examine the applicability of different remote sensors for illegal waste disposal detection, and (3 identify opportunities for future research to increase the accuracy of any illegal waste disposal mapping products.

  13. Reversed mining and reversed-reversed mining: the irrational context of geological disposal of nuclear waste

    Science.gov (United States)

    van Loon, A. J.

    2000-06-01

    Man does not only extract material from the Earth but increasingly uses the underground for storage and disposal purposes. One of the materials that might be disposed of this way is high-level nuclear waste. The development of safe disposal procedures, the choice of suitable host rocks, and the design of underground facilities have taken much time and money, but commissions in several countries have presented reports showing that — and how — safe geological disposal will be possible in such a way that definite isolation from the biosphere is achieved. Political views have changed in the past few years, however, and there is a strong tendency now to require that the high-level waste disposed of will be retrievable. Considering the underlying arguments for isolation from the biosphere, and also considering waste policy in general, this provides an irrational context. The development of new procedures and the design of new disposal facilities that allow retrieval will take much time again. A consequence may be that the high-active, heat-generating nuclear waste will be stored temporarily for a much longer time than objectively desirable. The delay in disposal and the counterproductive requirement of retrievability are partly due to the fact that earth-science organisations have failed to communicate in the way they should, possibly fearing public (and financial) reactions if taking a position that is (was?) considered as politically incorrect. Such an attitude should not be maintained in modern society, which has the right to be informed reliably by the scientific community.

  14. Solid secondary waste testing for maintenance of the Hanford Integrated Disposal Facility Performance Assessment - FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Ralph L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, Kenneth L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the information necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.

  15. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  16. Road Routes for Waste Disposal - MDC_WCSBulkyBook

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The WCS Bulky Books (Books) polygon feature class was created for the Miami-Dade Enterprise Technology Department with data provided by the Department of Solid Waste...

  17. Road Routes for Waste Disposal - MDC_WCSBulkyBook

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — The WCS Bulky Books (Books) polygon feature class was created for the Miami-Dade Enterprise Technology Department with data provided by the Department of Solid Waste...

  18. Road Routes for Waste Disposal - MDC_RecyclingRoute

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This CURBSIDE RECYCLING ROUTES BOUNDARIES LAYER IS A polygon feature class created for the Miami-Dade Department of Solid Waste Management (DSWM). It contains the...

  19. Recycling and disposal of plastics waste in South Africa

    CSIR Research Space (South Africa)

    Nurse, RH

    1976-06-01

    Full Text Available wastes, the National Programme also includes research relating to ecosystems, their structure, functioning and exploitation and disturbance by man. It includes research relating to environmental problems in inland waters, terrestrial ecosystems, the sea...

  20. Characterization and comparison of emissions from rudimentary waste disposal technologies

    Science.gov (United States)

    Results from 2011 simulation of burn pit emissions and air curtain incinerator emissions, recent developments in methods for open air sampling, comparison of waste energy technologies, current SERDP programs in this area.

  1. Waste processing and geological disposal. Where do we stand?

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-07-15

    How far are major nuclear countries with their radioactive waste management programmes? The brief outline of the situation in six countries provided below illustrates how diverse the priority concerns and the corresponding technical options are throughout the European continent. (orig.)

  2. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Hinman

    2010-10-01

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  3. 1996 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1997-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1996 and a comparison of waste volumes and radioactivity by state for 1992 through 1996; also included is a list of all commercial nuclear power reactors in the US as of December 31, 1996. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  4. Decades of delay in nuclear waste disposal - a failure to communicate

    Energy Technology Data Exchange (ETDEWEB)

    Tammemagi, H.

    2014-06-15

    Nuclear waste disposal in Canada has been stalled for three long decades, and a central reason is the inability to communicate with the public. This article explores the nuclear industry's communication program and suggests methods for improvement. Although the focus of this article is communication in waste management, the lessons learned apply to the overall nuclear industry, as well as many other industries that struggle with public acceptance. (author)

  5. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Science.gov (United States)

    2010-01-01

    ... maintain the system under a lease-purchase arrangement which provides that: (1) The urban community will... part of an urban area. 1951.232 Section 1951.232 Agriculture Regulations of the Department of... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal...

  6. 77 FR 17093 - Certain Food Waste Disposers and Components and Packaging Thereof: Notice of Receipt of Complaint...

    Science.gov (United States)

    2012-03-23

    ... COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof: Notice of Receipt of Complaint... complaint entitled Certain Food Waste Disposers and Components and Packaging Thereof, DN 2886; the Commission is soliciting comments on any public interest issues raised by the complaint or...

  7. Geological Disposal Options for the Radioactive Wastes from a Recycling Process of Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Choi, H. J.; Lee, M. S.; Jeong, J. T.; Choi, J. W.; Kim, S. K.; Cho, D. K.; Kuk, D. H.; Cha, J. H

    2008-10-15

    The electricity from the nuclear power plants is around 40 % of total required electricity in Korea and according to the energy development plan, the proportion will be raised about 60 % in near future. To implement this plan, the most important factor is the back-end fuel cycle, namely the safe management of the spent fuel or high level radioactive wastes from the nuclear power plants. Various researches are being carried out to manage the spent fuel effectively in the world. In our country, as one of the management alternatives which is more effective and non-proliferation, pyro-processing method is being developed actively to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a Nuclear power plant. This is a new dry recycling process. In this report, the amount of various wastes and their characteristics are estimated in a Pyro-process. Based on these information, the geological disposal alternatives are developed. According to the amount and the characteristics of each waste, the concepts of waste packages and the disposal container are developed. And also from the characteristics of the radioactivity and the heat generation, multi-layer of the depth is considered to dispose these wastes. The proposed various alternatives in this report can be used as input data for design of the deep geological disposal system. And they will be improved through the application of the real site data and safety assessment in the future. After then, the final disposal concept will be selected with various assessment and the optimization will be carried out.

  8. Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal.

    Science.gov (United States)

    Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel

    2014-12-09

    The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.

  9. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  10. Intraurban Analysis of Domestic Solid Waste Disposal Methods in a Sub-Sahara African City

    Directory of Open Access Journals (Sweden)

    Oluwole Samuel Ojewale

    2014-01-01

    Full Text Available The study examined the influence of socioeconomic attributes of residents on domestic solid waste disposal methods in Lagos metropolis, Nigeria. Primary data for the study were obtained through questionnaire administered on residents in Eti-Osa, Ikeja, and Mushin Local Government Areas (LGAs representing the low, medium, and high densities, respectively, into which the sixteen LGAs in Lagos metropolis were stratified. One out of every four wards in each LGA was selected for survey. From a total of 15,275 residential buildings in the ten wards, one out of every forty buildings (2.5% was selected using systematic random sampling where a household head was sampled. Information obtained includes the residential characteristics and the disposal methods. Enquiries into the socioeconomic attributes of the residents showed that 59.9% were high income earners and 76.6% had attained tertiary school education. This study concluded that six disposal methods were common in the study area. Furthermore, through multinomial logistic regression, the influence of socioeconomic characteristics of residents (density, income, age of respondents, educational status, and length of stay on domestic solid waste disposal methods varied significantly in Lagos metropolis. The study established that most of the solid waste disposal methods utilized by residents in Lagos metropolis were not environment-friendly.

  11. Hydrogeologic setting east of a low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Core samples from 45 test wells and 4 borings were used to describe the glacial geology of the area east of the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Previous work has shown that shallow ground water beneath the disposal site flows east through a pebbly-sand unit of the Toulon Member of the Glasford Formation. The pebbly sand was found in core samples from wells in an area extending northeast from the waste-disposal site to a strip-mine lake and east along the south side of the lake. Other stratigraphic units identified in the study area are correlated with units found on the disposal site. The pebbly-sand unit of the Toulon Member grades from a pebbly sand on site into a coarse gravel with sand and pebbles towards the lake. The Hulick Till Member, a key bed, underlies the Toulon Member throughout most of the study area. A narrow channel-like depression in the Hulick Till is filled with coarse gravelly sand of the Toulon Member. The filled depression extends eastward from near the northeast corner of the waste-disposal site to the strip-mine lake. (USGS)

  12. Waste Disposal and Pollution Management in Urban Areas: A Workable Remedy for the Environment in Developing Countries

    OpenAIRE

    Awomeso, J. A.; A. M. Taiwo; A. M. Gbadebo; A. O. Arimoro

    2010-01-01

    Problem statement: Both wastes and the crude disposal techniques have created subtle and yet serious environmental pollution havoc in many developing countries. This has lead to the degradation of abiotic and biotic components of these nations ecological systems. Poor industrial waste disposal systems as well as the indiscriminate and inappropriate domestic litter disposal habit have been identified and proved to be basic features in rural settlements, semi-urban areas and urban centers of th...

  13. DISPOSAL OF AGRO-INDUSTRIALS WASTES AS SOIL AMENDMENTS

    Directory of Open Access Journals (Sweden)

    Ali Mekki

    2013-01-01

    Full Text Available We investigated the fertilizing potential of three agro-industrial wastes (Compost (C, Dehydrated Manures (DM and Digestate (D on soil properties, on seeds germination and the plants growth. Results showed that the addition of wastes modified several soil properties as pH, Electrical Conductivity (EC, Water Retention Capacity (WRC and Soil Organic Matter (SOM. Hence, SOM increase from 1.5% in unamended soil to 2, 2.3 and to 3.1% in soils amended with (D, with (DM and with (C respectively. A fast SOM biodegradation was illustrated in presence of compost where we noted a decrease of 20% of initial organic matter content. Besides, wastes improve strongly microbial and respirometric soil activities mainly in presence of DM and D. These same wastes stimulate seeds germination of two standard plants species (Tomato (Lycopersicon esculentum and Alfalfa (Medicago sativa. The growth levels of three cultivated plants species (Wheat (Triticum durum, Sorghum (Sorghum bicolor and Alfalfa (Medicago sativa were enhanced in presence of wastes than those irrigated with water.

  14. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  15. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    Directory of Open Access Journals (Sweden)

    Vanessa Regina Lasaro Mangieri

    2015-04-01

    Full Text Available Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid disposal, considering the hypothesis that the agricultural use of waste is promising for reducing waste treatment costs, promoting nutrient reuse and improving the physical and chemical conditions of soil. Thus, this literature review, based on previously published data, seeks to confirm or disprove the hypothesis regarding the promising use of solid waste in agriculture to decrease the environmental liability that challenges public administrators in the development of efficient management. The text below addresses the following subtopics after the introduction: current solid waste disposal and environmental issues, the use of solid waste in agriculture, and the effect on the physical and chemical properties of soil and on organic matter, ending with final considerations.

  16. Emplacement Guidance for Criticality Safety in Low-Level-Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Elam, K.R.

    2001-06-23

    The disposal of low-level radioactive waste (LLW) containing special nuclear material (SNM) presents some unusual challenges for LLW disposal site operators and regulators. Radiological concerns associated with the radioactive decay of the SNM are combined with concerns associated with the avoidance of a nuclear criticality both during handling and after disposal of the waste. Currently, there are three operating LLW disposal facilities: Envirocare, Barnwell, and Richland. All these facilities are located in U.S. Nuclear Regulatory Commission (NRC) Agreement States and are regulated by their respective state: Utah, South Carolina, and Washington. As such, the amount of SNM that can be possessed by each of these facilities is limited to the 10 CFR Part 150 limits (i.e., 350 g of uranium-235, 200 g of uranium-233, and 200 g of Pu, with the sum-of-fractions rule applying), unless an exemption is issued. NRC has applied these SNM possession limits to above-ground possession. The purpose of this report is to provide data which could demonstrate that SNM waste at emplacement will not cause a nuclear criticality accident. Five different SNM isotopic compositions were studied: 100 wt% enriched uranium, 10 wt% enriched uranium, uranium-233, plutonium-239, and an isotopic mixture of plutonium (76 wt% plutonium-239, 12 wt% plutonium-240, and 12 wt% plutonium-241). Three different graded-approach methods are presented. The first graded-approach method is the most conservative and may be applicable to facilities that dispose of very low areal densities of SNM, or dispose of material with a low average enrichment. It relies on the calculation of average areal density or on the average enrichment of SNM. The area over which averaging may be performed is also specified, but the emplacement depth is not constrained. The second graded-approach method relies on limiting the average concentration by weight of SNM in the waste, and on limiting the depth of the emplacement. This method

  17. Analysis of nuclear waste disposal in space, phase 3. Volume 1: Executive summary of technical report

    Science.gov (United States)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The objectives, approach, assumptions, and limitations of a study of nuclear waste disposal in space are discussed with emphasis on the following: (1) payload characterization; (2) safety assessment; (3) health effects assessment; (4) long-term risk assessment; and (5) program planning support to NASA and DOE. Conclusions are presented for each task.

  18. 1999 Report on Hanford Site land disposal restriction for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, D.G.

    1999-03-25

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  19. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to increase arsenic mobilization in the aqueous phase, raising concerns with this approach.

  20. A model for heat flow in deep borehole disposals of high-level nuclear waste

    Science.gov (United States)

    Gibb, Fergus G. F.; Travis, Karl P.; McTaggart, Neil A.; Burley, David

    2008-05-01

    Deep borehole disposal (DBD) is emerging as a viable alternative to mined repositories for many forms of highly radioactive waste. It is geologically safer, more secure, less environmentally disruptive and potentially more cost-effective. All high-level wastes generate heat leading to elevated temperatures in and around the disposal. In some versions of DBD this heat is an essential part of the disposal while in others it affects the performances of materials and waste forms and can threaten the success of the disposal. Different versions of DBD are outlined, for all of which it is essential to predict the distribution of temperature with time. A generic physical model is established and a mathematical model set up involving the transient conductive heat flow differential equation for a cylindrical source term with realistic decay. This equation is solved using the method of Finite Differences. A Fortran computer code (GRANITE) has been developed for the model in the context of DBD and validated against theoretical and other benchmarks. The limitations of the model, code, input parameters and data used are discussed and it is concluded that the model provides a satisfactory basis for predicting temperatures in DBD. Examples of applications to some DBD scenarios are given and it is shown that the results are essential to the design strategy of the DBD versions, geometric details and choice of materials used. Without such modeling it would be impossible to progress DBD of nuclear wastes; something that is now being given serious consideration in several countries.

  1. Optimal routes scheduling for municipal waste disposal garbage trucks using evolutionary algorithm and artificial immune system

    Directory of Open Access Journals (Sweden)

    Bogna MRÓWCZYŃSKA

    2011-01-01

    Full Text Available This paper describes an application of an evolutionary algorithm and an artificial immune systems to solve a problem of scheduling an optimal route for waste disposal garbage trucks in its daily operation. Problem of an optimisation is formulated and solved using both methods. The results are presented for an area in one of the Polish cities.

  2. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  3. A data base for low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

  4. Effect of temperature on the fracture-surface energy of a waste disposal glass

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, I.C.I.; Martin, D.M.

    1982-02-01

    The work-of-fracture of a glass frit designed for nuclear waste disposal was measured at six temperatures, ranging from 298 to 680 K. The fracture-surface energy and toughness went through a minimum at 580 K. Elastic moduli were measured by determining mechanical resonance frequencies. 16 refs.

  5. Development by AVN of review guidance for safety assessment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Nys, V.; Smidts, O.; Mertens, J. [Association Vincotte Nuclear (AVN), Brussels (Belgium)

    2006-07-01

    This paper describes the evolution of the waste disposal context in Belgium since 1998 and the implications this had on AVN and its international relationships. The way in which AVN responded to these changes through the development of a review methodology is explained in detail. (authors)

  6. 75 FR 30392 - Approval of a Petition for Exemption from Hazardous Waste Disposal Injection Restrictions to...

    Science.gov (United States)

    2010-06-01

    ...Notice is hereby given by the United States Environmental Protection Agency (EPA) that an exemption to the land disposal restrictions under the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) has been granted to Cabot Corporation Tuscola Plant (Cabot Corporation) of Tuscola, Illinois, for two Class I injection wells located in Tuscola,......

  7. 40 CFR 61.149 - Standard for waste disposal for asbestos mills.

    Science.gov (United States)

    2010-07-01

    ... asbestos mills. 61.149 Section 61.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Asbestos § 61.149 Standard for waste disposal for asbestos mills. Each owner or operator of any source covered under the provisions of § 61.142 shall: (a) Deposit all asbestos-containing...

  8. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  9. Hospital Workers' Awareness of Health and Environmental Impacts of Poor Clinical Waste Disposal in the Northwest Region of Cameroon

    DEFF Research Database (Denmark)

    Mochungong, Peter I. K.; Gulis, Gabriel; Sodemann, Morten

    2010-01-01

    a survey to evaluate hospital workers' awareness of health and environmental impacts of poor clinical waste disposal in Cameroon. We randomly distributed 500 questionnaires to hospital workers in three hospitals in the Northwest Region of Cameroon in April 2008. In addition, we observed collection......, segregation, transportation, and disposal of clinical waste at the three hospitals. Of 475 total respondents, most lacked sufficient awareness of any environmental or public health impacts of poor clinical waste disposal and had never heard of any policy-national or international- on safe clinical waste...

  10. Place of the final disposal of short lived dismantling waste; Plats foer slutfoervaring av kortlivat rivningsavfall

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    This report deals with the short-lived low and intermediate level radioactive waste, which will mainly arise from the dismantling of the Swedish nuclear power plants, but also the dismantling of other nuclear facilities. For these installations to be dismantled, there must be the capacity to receive and dispose of dismantling waste. SKB plans to expand the existing final repository for short-lived radioactive waste (SFR) in Forsmark for this purpose. The legislation requires alternatives to the chosen location. The alternate location for the disposal of decommissioning waste SKB has chosen to compare with is a location in the Simpevarp area outside Oskarshamn. There are currently Oskarshamn nuclear power plant and SKB between stock 'CLAB'. The choice of Simpevarp as alternative location is based on that it's one of the places in the country where data on the bedrock is available to an extent that allows an assessment of the prospects for long-term security, such an assessment is actually showing good potential, and that the location provide realistic opportunities to put into practice the disposal of decommissioning waste. At a comparison between the disposal of short-lived decommissioning waste in an extension of SFR with the option to build a separate repository for short-lived decommissioning waste in Simpevarp, the conclusion is that both options offer potentially good prospects for long-term security. The differences still indicated speaks to the Forsmark advantage. Similar conclusions were obtained when comparing the factors of environment, health and social aspects.

  11. STUDY ON SOLID WASTE COLLECTION AND DISPOSAL IN HOSPITALS AND HEALTA CARE CENTERS OF TEHRAN PROVINCE

    Directory of Open Access Journals (Sweden)

    A. Omrani

    1998-10-01

    Full Text Available The main objective of this investigation was to achieve a clear pattern of solid waste collection and disposal in selected hospital and health care establishments in certain cities of Tehran province. This study was done in more than 82 percent of all hospitals with 3017 beds during the year 1996. Solid waste produced per bed was evaluated to be 2.87 kg per day which was 8670 kg per day, for all beds, comprising less than 1% of the total solid waste generated in the same cities during the same period. According to the information gathered in the 84.2% hospitals and health care centres, solid wastes were collected manually by labourers from various sections. Detention time of the waste in 89.5% of the cases was nearly 24 h. Densities of this type of waste were estimated to be 193.18kg/m3 with plastic bag and 247.72 kg/m3 without bag. Physical analysis of the wastes indicated 15.1% plastic and rubbery, 9.6% linen, 12.45% paper and cardboard, 8.5% various types of metals, 1.7% glass and 52.4% other different materials. In Iran, hospital administrations are directly responsible for collection transport and ultimate disposal of hospital wastes. Incinerators installed in 21.1% of the clinical centres, were not operating at all. Overall conclusion is that, solid wastes collection transportation and disposal in Tehran district is not satisfactory, according to the health and management criteria.

  12. Natural analogue studies for the safety case development of radioactive waste disposal in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyung-Woo [Korea Institute of Nuclear Safety, 305-338 Daejeon (Korea, Republic of); Baik, Min-Hoon [Korea Atomic Energy Research Institute, 305-353 Daejeon (Korea, Republic of)

    2014-07-01

    The natural analogue study is an analogy approach to investigate natural occurrences of materials, conditions and processes that are similar to those known or predicted to occur in some part of a radioactive waste disposal system. Countries considering the disposal of radioactive waste have been working on their domestic natural analogue studies for developing the safety case and improving the disposal safety. Natural analogue study can effectively be applied to the understanding of a long-term behavior of the post-closure repository, the provision of quantitative data required for the safety assessment models, and the supplementary safety indicator to prove the safety of deep geological disposal. Therefore the natural analogue studies play an important role in the safety case which requires a multiple lines of evidence including the safety assessment for the geological disposal of radioactive wastes. In this study, current status of foreign natural analogue studies was investigated by summarizing their results related with repository materials, radionuclide migration and retardation. Main results, issues, and their applicability of the foreign natural analogue studies were also analyzed. The results of natural analogue studies in Korea were categorized and summarized according to the studies on the uranium ore bodies, rocks, groundwater, and archeological artifacts. Although so many studies on the natural analogue have been carried out during last several decades in Korea, their results have not been actively applied to the safety assessment and safety case development for radioactive waste disposal. Therefore, applicable methods of natural analogues were summarized and a methodology for improving their applicability was examined. Additionally, in order to improve the application of these results from natural analogue studies, build-up of a natural analogue information database was in progress and its status will be presented. (authors)

  13. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste

  14. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  15. Interim radiological safety standards and evaluation procedures for subseabed high-level waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R.D.

    1997-06-01

    The Seabed Disposal Project (SDP) was evaluating the technical feasibility of high-level nuclear waste disposal in deep ocean sediments. Working standards were needed for risk assessments, evaluation of alternative designs, sensitivity studies, and conceptual design guidelines. This report completes a three part program to develop radiological standards for the feasibility phase of the SDP. The characteristics of subseabed disposal and how they affect the selection of standards are discussed. General radiological protection standards are reviewed, along with some new methods, and a systematic approach to developing standards is presented. The selected interim radiological standards for the SDP and the reasons for their selection are given. These standards have no legal or regulatory status and will be replaced or modified by regulatory agencies if subseabed disposal is implemented. 56 refs., 29 figs., 15 tabs.

  16. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes.

    Science.gov (United States)

    Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier

    2014-06-01

    This study emphasizes different experimental approaches and provides perspectives to apprehend biocorrosion phenomena in the specific disposal environment by investigating microbial activity with regard to the modification of corrosion rate, which in turn can have an impact on the safety of radioactive waste geological disposal. It is found that iron-reducing bacteria are able to use corrosion products such as iron oxides and "dihydrogen" as new energy sources, especially in the disposal environment which contains low amounts of organic matter. Moreover, in the case of sulphate-reducing bacteria, the results show that mixed aerobic and anaerobic conditions are the most hazardous for stainless steel materials, a situation which is likely to occur in the early stage of a geological disposal. Finally, an integrated methodological approach is applied to validate the understanding of the complex processes and to design experiments aiming at the acquisition of kinetic data used in long term predictive modelling of biocorrosion processes.

  17. Development of Improved Oil Field Waste Injection Disposal Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  18. Tannery and coal mining waste disposal on soil

    Energy Technology Data Exchange (ETDEWEB)

    Kray, C.H.; Tedesco, M.J.; Bissani, C.A.; Gianello, C.; da Silva, K.J. [CEFET BG, Goncalves (Brazil)

    2008-11-15

    Tannery residues and coal mine waste are heavily polluting sources in Brazil, mainly in the Southern States of Rio Grande do Sul and Santa Catarina. In order to study the effects of residues of chrome leather tanning (sludge and leather shavings) and coal waste on soybean and maize crops, a field experiment is in progress since 1996, at the Federal University of Rio Grande do Sul Experimental Station, county of Eldorado do Sul, Brazil. The residues were applied twice (growing seasons 1996/97 and 1999/00). The amounts of tannery residues were applied according to their neutralizing value, at rates of up to 86.8 t ha{sup -1}, supplying from 671 to 1.342 kg ha{sup -1} Cr(III); coal waste was applied at a total rate of 164 t ha{sup -1}. Crop yield and dry matter production were evaluated, as well as the nutrients (N, P, K, Ca, Mg, Cu and Zn) and Cr contents. Crop yields with tannery sludge application were similar to those obtained with N and lime supplied with mineral amendments. Plant Cr absorption did not increase significantly with the residue application. Tannery sludge can be used also to neutralize the high acidity developed in the soil by coal mine waste.

  19. Contributions of Solid Wastes Disposal Practice to Malaria ...

    African Journals Online (AJOL)

    Akorede

    with use of RDT, open drainage, stagnation of water in drain, solid waste in drain and presence of weed were found ... 2013, approximately 78% of malaria deaths globally were of children under 5 years ..... Social Sustainability, 3(3): 103-112.

  20. On-Line Learning Modules For Waste Treatment, Waste Disposal and Waste Recycling

    Science.gov (United States)

    O'Callaghan, Paul; Soos, Lubomir; Brokes, Peter

    2011-12-01

    This contribution is devoted to the development of an advanced vocational education and training system for professionals working in (or intending to enter) the waste management industry realized through the Leonardo project WASTRE. The consortium of the Project WASTRE includes 3 well known Technical Universities in Central Europe (TU Vienna, CVUT Prague and STU Bratislava). The project implements new didactical tools from projects EDUET, ELEVATE, RESNET and MENUET developed by MultiMedia SunShine, headed by Prof. Paul Callaghan for this education and training system. This system will be tested within courses organized by at least 3 institutions of vocational education and training: the Technical and vocational secondary school Tlmace, CHEWCON Humenne and the Union of Chambers of Craftsmen and Tradesmen of ESKISEHIR. The faculty of Mechanical Engineering (FME) of STU will coordinate the project WASTRE and will participate in the preparation of e-learning materials, organization of the courses and in the design of syllabuses, curricula, assessment and evaluation methods for the courses, the testing of developed learning materials, evaluating experiences from a pilot course and developing the e-learning materials according to the needs of end-users.

  1. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  2. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  3. Monitoring the dispersion of ocean waste disposal plumes from ERTS-1 and Skylab. [Delaware coastal waters

    Science.gov (United States)

    Klemas, V. (Principal Investigator); Davis, G.; Myers, T.

    1974-01-01

    The author has identified the following significant results. About forty miles off the Delaware coast is located the disposal site for waste discharged from a plant processing titanium dioxide. The discharge is a greenish-brown; 15-20% acid liquid which consists primarily of iron chlorides and sulfates. The barge which transports this waste has a 1,000,000 gallon capacity and makes approximately three trips to the disposal site per week. ERTS-1 MSS digital tapes are being used to study the dispersion patterns and drift velocities of the iron-acid plume. Careful examination of ERTS-1 imagery disclosed a fishhook-shaped plume about 40 miles east of Cape Henlopen caused by a barge disposing acid wastes. The plume shows up more strongly in the green band than in the red band. Since some acids have a strong green component during dumping and turn slowly more brownish-reddish with age, the ratio of radiance signatures between the green and red bands may give an indication of how long before the satellite overpass the acid was dumped. Enlarged enhancements of the acid waste plumes, prepared from the ERTS-1 MSS digital tapes aided considerably in studies of the dispersion of the waste plume. Currently acid dumps are being coordinated with ERTS-1 overpasses.

  4. [From the Cloaca Maxima to current sewage treatment works--historical aspects of waste disposal].

    Science.gov (United States)

    Schadewaldt, H

    1983-09-01

    According to calculations made by the well-known hygienist Max Rubner in 1890, the annual quantity of waste made up of excreta, urine, kitchen refuse, ashes and water for general use than ran to 7,300 kgs. Thus it appears quite obvious that as early as in the ancient high cultures special waste disposal plants existed. In the Old Testament cesspools were in use, in Ancient Egypt sliding boxes served the same purpose, the Cretan palace of Knossos was provided with a really sophisticated water closet system and there is evidence that a similar facility existed in Mesopotamia. The Roman Cloaca maxima which functioned as a sanitary system for the entire capital, has never ceased to impress. With the advent of the so-called "miasma theory", public health legislations also started to take care of waste disposal, and as a result, various lavatories, slaughter-house and waste water facilities were created. When bacteriology began to establish itself, close attention was devoted to the ground water and the rivers. The "squatting closet" in Roman countries contrasted with the flush closet in England. For waste disposal, the so-called "Heidelberg barrel system" or the "Kiel exchange bucket system" were introduced. Of more recent date are the digestion chambers, the flow settling tanks and the "trickling or oxydation system" on the sprinkling fields.

  5. 1998 report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  6. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand.

    Science.gov (United States)

    Wangyao, Komsilp; Towprayoon, Sirintornthep; Chiemchaisri, Chart; Gheewala, Shabbir H; Nopharatana, Annop

    2010-05-01

    Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.

  7. Feasibility of space disposal of radioactive nuclear waste. 2: Technical summary

    Science.gov (United States)

    1974-01-01

    The feasibility of transporting radioactive waste produced in the process of generating electricity in nuclear powerplants into space for ultimate disposal was investigated at the request of the AEC as a NASA in-house effort. The investigation is part of a broad AEC study of methods for long-term storage or disposal of radioactive waste. The results of the study indicate that transporting specific radioactive wastes, particularly the actinides with very long half-lives, into space using the space shuttle/tug as the launch system, appears feasible from the engineering and safety viewpoints. The space transportation costs for ejecting the actinides out of the solar system would represent less than a 5-percent increase in the average consumer's electric bill.

  8. On the thermal impact on the excavation damaged zone around deep radioactive waste disposal

    CERN Document Server

    Delage, Pierre

    2014-01-01

    Clays and claystones are considered in some countries (including Belgium, France and Switzerland) as a potential host rock for high activity long lived radioactive waste disposal at great depth. One of the aspects to deal with in performance assessment is related to the effects on the host rock of the temperature elevation due to the placement of exothermic wastes. The potential effects of the thermal impact on the excavated damaged zone in the close field are another important issue that was the goal of the TIMODAZ European research project. In this paper, some principles of waste disposal in clayey host rocks at great depth are first presented and a series of experimental investigations carried out on specific equipment specially developed to face the problem are presented. Both drained and undrained tests have been developed to investigate the drained thermal volume changes of clays and claystone and the thermal pressurization occurring around the galleries. This importance of proper initial saturation (un...

  9. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  10. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  11. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2009-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  12. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  13. The disposal of flue gas desulphurisation waste: sulphur gas emissions and their control.

    Science.gov (United States)

    Raiswell, R; Bottrell, S H

    1991-06-01

    Flue gas desulphurisation (FGD) equipment to be fitted to UK coal-fired power stations will produce more than 0.8 Mtonnes of calcium sulphate, as gypsum. Most gypsum should be of commercial quality, but any low grade material disposed as waste has the potential to generate a range of sulphur gases, including H2S, COS, CS2, DMS and DMDS. Literature data from the USA indicates that well-oxidised waste with a high proportion of calcium sulphate (the main UK product of FGD) has relatively low emissions of sulphur gases, which are comparable to background levels from inland soils. However, sulphur gas fluxes are greatly enhanced where reducing conditions become established within the waste, hence disposal strategies should be formulated to prevent the sub-surface consumption of oxygen.

  14. 1997 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  15. Development of A Web based GIS Waste Disposal Management System for Nigeria

    Directory of Open Access Journals (Sweden)

    Adebayo P. Idowu

    2012-07-01

    Full Text Available Waste management has to do with handling of solid refuse from their sources of generation through storage, collection, transportation, recovery and treatment processes to disposal This research developed a web based GIS waste disposal management system, with aim of achieving an effective waste management system and a spatial view of waste collection locations in any local government area in Nigeria. The system was developed using Extensive Hypertext Markup Language and Cascading Style Sheet (XHTML/CSS, and Asynchronous Java Scripting with XML (AJAX and the software packages used for the development of the application are Adobe Dreamweaver and Adobe Fireworks, MySQL, Apache Server and PHP scripting. With this waste management system, the locations of all the waste collection tanks in any location will be, monitored, managed and maintained. The use of this system will ease the job of the waste management unit of the local government areas in Nigeria in achieving a clean environment and mitigate the spread of epidemic in a way to ensure safety of all and sundry.

  16. A CONCERN OF E-WASTE IN THE HOSPITAL SETTING AND ITS WAYS OF DISPOSAL

    Directory of Open Access Journals (Sweden)

    Manjula Shantaram

    2014-04-01

    Full Text Available The most effective solution to the growing e-waste problem is to recycle raw materials from end-of-life electronics. Most electronic devices contain a range of materials, including metals that can be recovered for future uses. By dismantling and providing reuse possibilities, intact natural resources are conserved and air and water pollution caused by hazardous dumping is avoided. Objectives of our study were to understand the various issues of e-waste management in the hospital settings and ways of e- waste disposal. Discussion: The hospitals visited by us have not considered the environmental impact of electronic waste, let alone come to terms with how they will dispose of their electronic trash. All the hospitals in the city can have agreement with one organization to collect their e-waste which should pay these hospitals for the e-waste and process it by sorting without melting. Recycling reduces the amount of greenhouse gas emissions caused by the manufacturing of new products. It simply makes good judgment and is competent to recycle and to do our part to keep the environment green. Conclusion: With this study, we make a genuine effort to have hospitals free from e-waste, thereby leading to less carbon footprints.

  17. Tank waste remediation system retrieval and disposal mission phase 1 financial analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wells, M.W.

    1998-01-09

    The purpose of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Phase 1 Financial Analysis is to provide a quantitative and qualitative cost and schedule risk analysis of HNF-1946, Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (Swita et al. 1998). The Updated Baseline (Section 3.0) is compared to the current TWRS Project Multi-Year Work Plan (MYWP) for fiscal year (FY) 1998 and target budgets for FY 1999 through FY 2011 (Section 4.1). The analysis then evaluates the executability of HNF-1946 (Sections 4.2 through 4.5) and recommends a path forward for risk mitigation (Sections 4.6, 4.7, and 5.0). A sound systems engineering approach was applied to understand and analyze the Phase 1B Retrieval and Disposal mission. Program and Level 1 Logics were decomposed to Level 8 of the Work Breakdown Structure (WBS) where logic was detailed, scope was defined, detail durations and estimates prepared, and resource loaded schedules developed. Technical Basis Review (TBR) packages were prepared which include this information and, in addition, defined the enabling assumptions for each task, and the risks associated with performance. This process is discussed in Section 2.1. Detailed reviews at the subactivity within the Level 1 Logic TBR levels were conducted to provide the recommended solution to the Phase 1B Retrieval and Disposal Mission. Independent cost analysis and risk assessments were performed by members of the Lockheed Martin Hanford Corporation (LMHC) Business Management and Chief Financial Officer organization along with specialists in risk analysis from TRW, Inc. and Lockheed Martin Energy Systems. The process evaluated technical, schedule, and cost risk by category (program specific fixed and variable, integrated program, and programmatic) based on risk certainly from high probability well defined to very low probability that is not bounded or priceable as discussed in Section 2.2. The results have been

  18. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households.

    Science.gov (United States)

    Lau, Winifred Ka-Yan; Chung, Shan-Shan; Zhang, Chan

    2013-03-01

    A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.

  19. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  20. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A. [Dames and Moore, Denver, CO (United States)

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program.

  1. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  2. Underwater characterization of control rods for waste disposal using SMOPY

    Energy Technology Data Exchange (ETDEWEB)

    Gallozzi-Ulmann, A.; Couturier, P.; Amgarou, K.; Rothan, D.; Menaa, N. [CANBERRA France,1 rue des Herons, 78182 ST Quentin Yvelines Cedex (France); Chard, P. [CANBERRA UK, Lower Dunbeath House, Forss Business Park, Thurso, Caithness KW14 7UZ (United Kingdom)

    2015-07-01

    Storage of spent fuel assemblies in cooling ponds requires careful control of the geometry and proximity of adjacent assemblies. Measurement of the fuel burnup makes it possible to optimise the storage arrangement of assemblies taking into account the effect of the burnup on the criticality safety margins ('burnup credit'). Canberra has developed a measurement system for underwater measurement of spent fuel assemblies. This system, known as 'SMOPY', performs burnup measurements based on gamma spectroscopy (collimated CZT detector) and neutron counting (fission chamber). The SMOPY system offers a robust and waterproof detection system as well as the needed capability of performing radiometric measurements in the harsh high dose - rate environments of the cooling ponds. The gamma spectroscopy functionality allows powerful characterization measurements to be performed, in addition to burnup measurement. Canberra has recently performed waste characterisation measurements at a Nuclear Power Plant. Waste activity assessment is important to control costs and risks of shipment and storage, to ensure that the activity level remains in the range allowed by the facility, and to declare activity data to authorities. This paper describes the methodology used for the SMOPY measurements and some preliminary results of a radiological characterisation of AIC control rods. After describing the features and normal operation of the SMOPY system, we describe the approach used for establishing an optimum control rod geometric scanning approach (optimum count time and speed) and the method of the gamma spectrometry measurements as well as neutron check measurements used to verify the absence of neutron sources in the waste. We discuss the results obtained including {sup 60}Co, {sup 110m}Ag and {sup 108m}Ag activity profiles (along the length of the control rods) and neutron results including Total Measurement Uncertainty evaluations. Full self-consistency checks were

  3. A study on characterization and evaluation methodologies of radioactive waste forms for safe disposal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C.; Lee, G. S.; Kim, G. J.; Nam, H.; Seok, J. H. [Yonsei Univ., Seoul (Korea, Republic of)

    2004-02-15

    The contents and scope of the study are summarized as follows : elicitation of significant items for characteristic assessment about stability analysis of radioactive waste forms for safe disposal, compressive strength, free water, leaching rate, and weatherability. Suggestion of assessment methods through the characteristic test of waste forms, comparison of assessment methods and suggestion of suitable testing methods about the above stated 4 items. Assessment modeling development for long-term stability of radioactive waste forms, weatherometric test of waste forms, expectation modeling development through VOM(Valance-Oxygen Model). Suggestion of determination standard together assessment testing methods and description about the standard. Explanation to be suitable guideline and regulation of waste handling and acceptance.

  4. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Science.gov (United States)

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  5. Perspectives on Radioactive Waste Disposal: A Consideration of Economic Efficiency and Intergenerational Equity

    Energy Technology Data Exchange (ETDEWEB)

    Neill, H. R.; Neill, R. H.

    2003-02-25

    There are both internal and external pressures on the U.S. Department of Energy to reduce the estimated costs of isolating radioactive waste, $19 billion for transuranic waste at Waste Isolation Pilot Plant (WIPP) and $57 billion for high level waste at Yucca Mountain. The question arises whether economic analyses would add to the decision-making process to reduce costs yet maintain the same level of radiological protection. This paper examines the advantages and disadvantages of using cost-benefit analysis (CBA), a tool used to measure economic efficiency as an input for these decisions. Using a comparative research approach, we find that CBA analyses appear particularly applicable where the benefits and costs are in the near term. These findings can help policymakers become more informed on funding decisions and to develop public confidence in the merits of the program for waste disposal.

  6. Confidence improvement of disosal safety bydevelopement of a safety case for high-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Ko, Nak Youl; Jeong, Jong Tae; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Many countries have developed a safety case suitable to their own countries in order to improve the confidence of disposal safety in deep geological disposal of high-level radioactive waste as well as to develop a disposal program and obtain its license. This study introduces and summarizes the meaning, necessity, and development process of the safety case for radioactive waste disposal. The disposal safety is also discussed in various aspects of the safety case. In addition, the status of safety case development in the foreign countries is briefly introduced for Switzerland, Japan, the United States of America, Sweden, and Finland. The strategy for the safety case development that is being developed by KAERI is also briefly introduced. Based on the safety case, we analyze the efforts necessary to improve confidence in disposal safety for high-level radioactive waste. Considering domestic situations, we propose and discuss some implementing methods for the improvement of disposal safety, such as construction of a reliable information database, understanding of processes related to safety, reduction of uncertainties in safety assessment, communication with stakeholders, and ensuring justice and transparency. This study will contribute to the understanding of the safety case for deep geological disposal and to improving confidence in disposal safety through the development of the safety case in Korea for the disposal of high-level radioactive waste.

  7. Radiological safety studies on ground disposal of low-level radioactive wastes. Environmental simulation test

    Energy Technology Data Exchange (ETDEWEB)

    Wadachi, Yoshiki; Yamamoto, Tadatoshi; Takebe, Shinichi; Ohnuki, Toshihiko; Washio, Masakazu (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)

    1982-03-01

    As the method of disposing low level radioactive wastes on land, the underground disposal method disposing the wastes in the structures constructed underground near the ground surface has been investigated as a feasible method. In order to contribute to the environmental safety assessment for this underground disposal method, environmental simulation test is planned at present, in which earth is sampled in the undisturbed state, and the behavior of radioactive nuclides is examined. The testing facilities are to be constructed in Japan Atomic Energy Research Institute from fiscal 1981. First, the research made so far concerning the movement of radioactive nuclides in airing layer and aquifer which compose natural barrier is outlined. As for the environmental simulation test, the necessity and method of the test, earth sampling, the underground simulation facility and the contribution to environmental safety assessment are explained. By examining the movement of radioactive nuclides through natural barrier and making the effective mddel for the underground movement of radioactive nuclides, the environmental safety assessment for the disposal can be performed to obtain the national consensus.

  8. The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

    1994-04-01

    For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

  9. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr/sup 90/, Cs/sup 137/, and Pu/sup 239/. Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150/sup 0/C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated.

  10. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Persoff, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    The goal of the Fifth Worldwide Review is to document evolution in the state-of-the-art of approaches for nuclear waste disposal in geological formations since the Fourth Worldwide Review that was released in 2006. The last ten years since the previous Worldwide Review has seen major developments in a number of nations throughout the world pursuing geological disposal programs, both in preparing and reviewing safety cases for the operational and long-term safety of proposed and operating repositories. The countries that are approaching implementation of geological disposal will increasingly focus on the feasibility of safely constructing and operating their repositories in short- and long terms on the basis existing regulations. The WWR-5 will also address a number of specific technical issues in safety case development along with the interplay among stakeholder concerns, technical feasibility, engineering design issues, and operational and post-closure safety. Preparation and publication of the Fifth Worldwide Review on nuclear waste disposal facilitates assessing the lessons learned and developing future cooperation between the countries. The Report provides scientific and technical experiences on preparing for and developing scientific and technical bases for nuclear waste disposal in deep geologic repositories in terms of requirements, societal expectations and the adequacy of cases for long-term repository safety. The Chapters include potential issues that may arise as repository programs mature, and identify techniques that demonstrate the safety cases and aid in promoting and gaining societal confidence. The report will also be used to exchange experience with other fields of industry and technology, in which concepts similar to the design and safety cases are applied, as well to facilitate the public perception and understanding of the safety of the disposal approaches relative to risks that may increase over long times frames in the absence of a successful

  11. Chemical Dewatering Technique of waste Polymer Drilling Fluid

    Institute of Scientific and Technical Information of China (English)

    Li Gang; Zhu Muo

    1997-01-01

    @@ On the basis of the compositional analysis of waste polymer drilling fluid, we adopt chemical dewatering technique and thoroughly break down the colloid system of the drilling fluid. Having changed the surface properties of the clay particles and made the waste mud flocculate, the floc lost mud making ability and the phemeonenon of the floc returning mud is completely dispelled when it is buried. The recovered water can be reused in the mud system.

  12. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  13. Shale: an overlooked option for US nuclear waste disposal

    Science.gov (United States)

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  14. Hazardous Waste Land Disposal Facility Assessment. Volume 2. Appendices

    Science.gov (United States)

    1988-09-01

    Decontamination Assessment of Land and Facilities at RIA ( DALF )(RNACCPHT, 3 1984/RIC 84034R01), identified three types of potentially contaminated waste...Bibliography were reviewed. The DALF and the current Remedial Investigation/Feasibility Studies (RI/FS) of Ebasco Services Incorporated (Ebasco) and...53,000 12 119,000 -- 119,000 -- - 119,000I TOTALS L.s 65,010 AI R 6,7.6s,284.907 I )A/ DALF , 1984. 2/ Volume rounded to nearest thousand bank

  15. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  16. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    Science.gov (United States)

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  17. Development of database systems for safety of repositories for disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hoon; Han, Jeong Sang; Shin, Hyeon Joon; Ham, Sang Won; Moon, Sang Kee [Yonsei Univ., Seoul (Korea, Republic of)

    1998-03-15

    In this study, contents and survey and supervision items in each part are selected to avoid overlap between different parts referring national lows, criterion, and guidance related to atomic energy. The items consist of climatology, hydrology, geology, seismology, engineering geology, geochemistry, and civil and social parts. Based on these items, general study and systematic control related to the stability of disposal sites os established and as specific region required with the properties that is similar to properties of radioactive waste disposal sites, Ulsan region equipped with LPG underground storage facility was selected and its datum were surveyed and inputted. So propriety of established database system was proved.

  18. Performance assessment overview for subseabed disposal of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R.D.

    1997-06-01

    The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed.

  19. Scoping survey of perceived concerns, issues, and problems for near-surface disposal of FUSRAP waste

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.E.; Gilbert, T.L.

    1982-12-01

    This report is a scoping summary of concerns, issues, and perceived problems for near-surface disposal of radioactive waste, based on a survey of the current literature. Near-surface disposal means land burial in or within 15 to 20 m of the earth's surface. It includes shallow land burial (burial in trenches, typically about 6 m deep with a 2-m cap and cover) and some intermediate-depth land burial (e.g., trenches and cap similar to shallow land burial, but placed below 10 to 15 m of clean soil). Proposed solutions to anticipated problems also are discussed. The purpose of the report is to provide a better basis for identifying and evaluating the environmental impacts and related factors that must be analyzed and compared in assessing candidate near-surface disposal sites for FUSRAP waste. FUSRAP wastes are of diverse types, and their classification for regulatory purposes is not yet fixed. Most of it may be characterized as low-activity bulk solid waste, and is similar to mill tailings, but with somewhat lower average specific activity. It may also qualify as Class A segregated waste under the proposed 10 CFR 61 rules, but the parent radionuclides of concern in FUSRAP (primarily U-238 and Th-232) have longer half-lives than do the radionuclides of concern in most low-level waste. Most of the references reviewed deal with low-level waste or mill tailings, since there is as yet very little literature in the public domain on FUSRAP per se.

  20. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.