WorldWideScience

Sample records for waste decomposition due

  1. Forest products decomposition in municipal solid waste landfills

    International Nuclear Information System (INIS)

    Barlaz, Morton A.

    2006-01-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO 2 -neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components

  2. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  3. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  4. Decomposition of vegetation growing on metal mine waste

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S T; McNeilly, T; Wellington, E M.H.

    1977-01-01

    Aspects of the decomposition of metal tolerant vegetation growing on mine waste containing high concentrations of lead and zinc were studied and compared with those on an adjacent uncontaminated site. High concentrations of Pb and, to a lesser extent, Zn, accumulated in metal-tolerant grass. Retarded decomposition of this vegetation as compared with that on the uncontaminated site was indicated by a greater accumulation of litter, less humus formation, reduced soil urease activity and smaller microbial and microfaunal populations. Some evidence for increased metal tolerance in microbes from the mine waste was obtained. Concentrations of lead tolerated under laboratory conditions were much lower than those extracted from the mine waste and its vegetation, probably due to the lack of an accurate method for assessing the availability of lead in soil and vegetation.

  5. Radiolytic decomposition of dioxins in liquid wastes

    International Nuclear Information System (INIS)

    Zhao Changli; Taguchi, M.; Hirota, K.; Takigami, M.; Kojima, T.

    2006-01-01

    The dioxins including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are some of the most toxic persistent organic pollutants. These chemicals have widely contaminated the air, water, and soil. They would accumulate in the living body through the food chains, leading to a serious public health hazard. In the present study, radiolytic decomposition of dioxins has been investigated in liquid wastes, including organic waste and waste-water. Dioxin-containing organic wastes are commonly generated in nonane or toluene. However, it was found that high radiation doses are required to completely decompose dioxins in the two solvents. The decomposition was more efficient in ethanol than in nonane or toluene. The addition of ethanol to toluene or nonane could achieve >90% decomposition of dioxins at the dose of 100 kGy. Thus, dioxin-containing organic wastes can be treated as regular organic wastes after addition of ethanol and subsequent γ-ray irradiation. On the other hand, radiolytic decomposition of dioxins easily occurred in pure-water than in waste-water, because the reaction species is largely scavenged by the dominant organic materials in waste-water. Dechlorination was not a major reaction pathway for the radiolysis of dioxin in water. In addition, radiolytic mechanism and dechlorinated pathways in liquid wastes were also discussed. (authors)

  6. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2007-11-01

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution

  7. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2007-11-15

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution.

  8. Microbial control on decomposition of radionuclides-containing oily waste in soil

    Science.gov (United States)

    Selivanovskaya, Svetlana; Galitskaya, Polina

    2014-05-01

    The oily wastes are formed annually during extraction, refinement, and transportation of the oil and may cause pollution of the environment. These wastes contain different concentrations of waste oil (40-60%), waste water (30-90%), and mineral particles (5-40%). Some oily wastes also contain naturally occurring radionuclides which were incorporated by water that was pumped up with the oil. For assessment of the hazard level of waste treated soil, not only measurements of contaminants content are needed, because bioavailability of oily components varies with hydrocarbon type, and soil properties. As far as namely microbial communities control the decomposition of organic contaminants, biological indicators have become increasingly important in hazard assessment and the efficiency of remediation process. In this study the decomposition of radionuclides-containing oily waste by soil microbial communities were estimated. Waste samples collected at the Tikchonovskii petroleum production yard (Tatarstan, Russia) were mixed with Haplic greyzem soil at ratio 1:4 and incubated for 120 days. During incubation period, the total hydrocarbon content of the soil mixed with the waste reduced from 156 ± 48 g kg-1 to 54 ± 8 g kg-1 of soil. The concentrations of 226Ra and 232Th were found to be 643 ± 127, 254 ± 56 Bq kg-1 and not changed significantly during incubation. Waste application led to a soil microbial biomass carbon decrease in comparison to control (1.9 times after 1 day and 1.3 times after 120 days of incubation). Microbial respiration increased in the first month of incubation (up to 120% and 160% of control after 1 and 30 days, correspondingly) and decreased to the end of incubation period (74% of control after 120 days). Structure of bacterial community in soil and soil/waste mixture was estimated after 120 days of incubation using SSCP method. The band number decreased in contaminated soil in comparison to untreated soil. Besides, several new dominant DNA

  9. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds.

    Science.gov (United States)

    Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun

    2010-07-01

    Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.

  10. Plastic waste sacks alter the rate of decomposition of dismembered bodies within.

    Science.gov (United States)

    Scholl, Kassra; Moffatt, Colin

    2017-07-01

    As a result of criminal activity, human bodies are sometimes dismembered and concealed within sealed, plastic waste sacks. Consequently, due to the inhibited ingress of insects and dismemberment, the rate of decomposition of the body parts within may be different to that of whole, exposed bodies. Correspondingly, once found, an estimation of the postmortem interval may be affected and lead to erroneous inferences. This study set out to determine whether insects were excluded and how rate of decomposition was affected inside such plastic sacks. The limbs, torsos and heads of 24 dismembered pigs were sealed using nylon cable ties within plastic garbage sacks, half of which were of a type claimed to repel insects. Using a body scoring scale to quantify decomposition, the body parts in the sacks were compared to those of ten exposed, whole pig carcasses. Insects were found to have entered both types of plastic sack. There was no difference in rate of decomposition in the two types of sack (F 1,65  = 1.78, p = 0.19), but this was considerably slower than those of whole carcasses (F 1,408  = 1453, p < 0.001), with heads showing the largest differences. As well as a slower decomposition, sacks resulted in formation of some adipocere tissue as a result of high humidity within. Based upon existing methods, postmortem intervals for body parts within sealed sacks would be significantly underestimated.

  11. Decomposition for the analysis of radionuclides in solidified cement radioactive waste

    International Nuclear Information System (INIS)

    Lee, Jeong Jin; Pyo, Hyung Yeal; Jee, Kwang Yung; Jeon, Jong Seon

    2004-01-01

    Spent ion exchange resins make solid radioactive wastes when mixed with cement as solidifying material that was widely used in securing human environment from radionuclides for at least hundreds years. The cumulative increase of low and medium level radioactive wastes results in capacity problem of temporary storage in some NPPs (Nuclear Power Plants) of Korea around 2008. Radioactive wastes are scheduled to be disposed in a permanent disposal facility in accordance with the Korean Radioactive Wastes Management Program. It is mandatory to identify kinds and concentration of radionuclides immobilized for transporting them from temporary storage in NPPs to disposal facility. Accordingly, the effective sample decomposition prior to radiochemical separation is prerequisite to obtain the analytical data about radionuclides in cement waste forms. The closed-vessel microwave digestion technology among several sample preparation methods is taken into account to decompose cement waste forms. In this study, SRM 1880a (Portland cement) which is known for its certified values was used to optimize decomposition condition of cement waste forms containing nonradioactive ion exchange resins from NPP. With such variables as reagents, time, and power, the variation of the transparency and the color of the solution after closed-vessel microwave digestion can be examine. SRM 1880a is decomposed by suggested digestion procedure and the recoveries of constituents were investigated by ICP-AES and AAS

  12. Thermal decomposition of nitrate salts liquid waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Kim, Y. K.; Lee, K. Y.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2004-01-01

    This study investigated the thermal decomposition property of nitrate salts liquid waste which is produced in a series of the processes for the sludge treatment. Thermal decomposition property was analyzed by TG/DTA and XRD. Most ammonium nitrate in the nitrate salts liquid waste was decomposed at 250 .deg. C and calcium nitrate was decomposed and converted into calcium oxide at 550 .deg. C. Sodium nitrate was decomposed at 700 .deg. C and converted into sodium oxide which reacts with water easily. But sodium oxide was able to convert into a stable compound by adding alumina. Therefore, nitrate salts liquid waste can be treated by two steps as follows. First, ammonium nitrate is decomposed at 250 .deg. C. Second, alumina is added in residual solid sodium nitrate and calcium nitrate and these are decomposed at 900 .deg. C. Final residue consists of calcium oxide and Na 2 O.Al 2 O 3 and can be stored stably

  13. Succession change of microorganisms on plant waste decomposition in simulation modelling field experiment

    Science.gov (United States)

    Vinogradova, Julia; Perminova, Evgenia; Khabibullina, Fluza; Kovaleva, Vera; Lapteva, Elena

    2016-04-01

    Plant waste decomposition processes are closely associated with living activity of soil microbiota in aboveground ecosystems. Functional activity of microorganisms and soil invertebrates determines plant material transformation rate whereby changes in plant material chemical composition during destruction - succession change of soil biota. The purpose of the work was revealing the mechanism of microorganisms succession change during plant waste decomposition in middle-taiga green-moss spruce forests and coniferous-deciduous secondary stands formed after earlier cut bilberry spruce forests. The study materials were undisturbed bilberry spruce forest (Sample Plot 1 - SP1) and coniferous-deciduous secondary stands which were formed after tree cutting activities of 2001-2002 (SP2) and 1969 and 1970 (SP3). Plant material decomposition intensity was determined in microcosms isolated into kapron bags with cell size of 1 mm. At SP1 and SP2, test material was living mosses and at SP3 - fallen birch and aspen leaves. Every test material was exposed for 2 years. Destruction rate was calculated as a weight loss for a particular time period. Composition of micromycetes which participated in plant material decomposition was assessed by the method of inoculation of soil extract to Getchinson's medium and acidified Czapek's medium (pH=4.5). Microbe number and biomass was analyzed by the method of luminescent microscopy. Chemical analysis of plant material was done in the certified Ecoanalytical Laboratory of the Institute of Biology Komi SC UrD RAS. Finally, plant material destruction intensity was similar for study plots and comprised 40-44 % weight loss for 2 years. The strongest differences in plant material decomposition rate between undisturbed spruce forests and secondary after-cut stands were observed at first stages of destruction process. In the first exposition year, mineralizing processes were most active in undisturbed spruce forest. Decomposition rate in cuts at that

  14. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition

    International Nuclear Information System (INIS)

    Hu, Yuyan; Zhang, Pengfei; Chen, Dezhen; Zhou, Bin; Li, Jianyi; Li, Xian-wei

    2012-01-01

    Highlights: ► The first study to apply Fe-sulfate in hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition. ► The first study to comprehensively evaluate the effect of hydrothermal treatment on dioxin decomposition and heavy metal stabilization in municipal solid waste incineration fly ash. ► Gaussian software chemical computational simulation was performed to investigate the mechanism of dioxin decomposition based on quantum chemistry calculation, and to support the experimental data by the calculation results. - Abstract: Hydrothermal treatment of MSWI fly ash was performed in this paper with a purpose to reduce its dioxin content. First a hydrothermal reactor was set up with a mixture of ferric sulphate and ferrous sulphate serviced as the reactant, then the effects caused by reaction conditions such as reaction temperature, pre-treatment by water-washing and reactant dosage were checked; the results showed that as a promising technology, hydrothermal treatment exhibited considerable high efficiencies in decomposition of PCDDs/PCDFs and good stabilization of heavy metals as well. Experimental results also showed that for dioxin destruction, higher reaction temperature is the most important influencing factor followed by Fe addition, and pre-treatment of raw fly ash by water-washing increased the destruction efficiencies of dioxins only very slightly. Finally with help of Gaussian software chemical computational simulation was performed to investigate the mechanism of dioxin decomposition based on quantum chemistry calculation. The calculation results were supported by the experimental data. The leaching toxicities of hydrothermal products were higher than upper limits defined in the latest Chinese standard GB 16889-2008 for sanitary landfill disposal, thus an auxiliary process is suggested after the hydrothermal treatment for heavy metal stabilization.

  15. Thermal decomposition of woody wastes contaminated with radioactive materials using externally-heated horizontal kiln

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyuki; Kato, Shigeru; Yamasaki, Akihiro; Ito, Takuya; Suzuki, Seiichi; Kojima, Toshinori; Kodera, Yoichi; Hatta, Akimichi; Kikuzato, Masahiro

    2015-01-01

    Thermal decomposition experiments of woody wastes contaminated with radioactive materials were conducted using an externally-heated horizontal kiln in the work area for segregation of disaster wastes at Hirono Town, Futaba County, Fukushima Prefecture. Radioactivity was not detected in gaseous products of thermal decomposition at 923 K and 1123 K after passage through a trap filled with activated carbon. The contents of radioactive cesium ( 134 Cs and 137 Cs) were measured in the solid and liquid products of the thermal decomposition experiments and in the residues in the kiln after all of the experiments. Although a trace amount of radioactive cesium was found in the washing trap during the start-up period of operation at 923 K, most of the cesium remained in the char, including the residues in the kiln. These results suggest that most of the radioactive cesium is trapped in char particles and is not emitted in gaseous form. (author)

  16. Electrochemical decomposition of fluorinated wetting agents in plating industry waste water.

    Science.gov (United States)

    Fath, Andreas; Sacher, Frank; McCaskie, John E

    2016-01-01

    Electrochemical decomposition of fluorinated surfactants (PFAS, perfluorinated alkyl substances) used in the plating industry was analyzed and the decomposition process parameters optimized at the laboratory scale and production scale of a 500-liter reactor using lead electrodes. The method and system was successfully demonstrated under production conditions to treat PFAS) with up to 99% efficiency in the concentration range of 1,000-20,000 μg/l (1 ppm-20 ppm). The treatment also reduced hexavalent chromium (Cr(6+)) ions to trivalent chromium (Cr(3+)) ions in the wastewater. If the PFAS-containing wastewater is mixed with other wastewater streams, specifically from nickel plating drag out solution or when pH values >5, the treatment process is ineffective. For the short chain PFAS, (perfluorobutylsulfonate) the process was less efficient than C6-C8 PFAS. The process is automated and has safety procedures and controls to prevent hazards. The PFAS were decomposed to hydrogen fluoride (HF) under the strong acid electrochemical operating conditions. Analytical tests showed no evidence of organic waste products remaining from the process. Conventional alternative PFAS removal systems were tested on the waste streams and compared with each other and with the-E-destruct (electrochemical oxidation) process. For example, ion exchange resin (IX resin) treatment of wastewater to complex and remove PFAS was found to be seven times more efficient when compared to the conventional activated carbon absorption (C-treat) process. However, the E-destruct process is higher in capacity, exhibits longer service life and lower operating costs than either IX or C-treat methods for elimination of PFAS from these electroplating waste streams.

  17. Accelerating the degradation of green plant waste with chemical decomposition agents.

    Science.gov (United States)

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  18. Hydrothermal decomposition of TBP and fixation of its decomposed residue by HHP technique

    International Nuclear Information System (INIS)

    Yamasaki, N.; Fujiki, M.; Nishioka, M.; Ioku, K.; Yanagisawa, K.; Kozai, N.; Muraoka, S.

    1991-01-01

    The tributyl phosphate (TBP) used for the fuel reprocessing by Purex process is discharged as spent solvent because of the chemical decomposition and the damage due to radiation. Alkaline hydrothermal treatment in oxygen which is the reaction in a closed system is effective for the decomposition of TBP as it can transform organic materials to stable inorganic ions. Hydrothermal hot pressing technique has been applied to the immobilization of various radioactive wastes. This work deals with the continuous treatment process for the decomposition of TBP waste and the immobilization of its decomposed residue under hydrothermal condition. These processes are outlined. The experiment and the results are reported. TBP was completely decomposed above 200degC, and COD value showed the maximum at 250degC. The reaction process consists of two steps of the hydrolysis of TBP and the oxidation of the formed organic material. (K.I.)

  19. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    Science.gov (United States)

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Ghattas, N K; Eskander, S B [Radioisotope dept., atomic energy authority, (Egypt)

    1995-10-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs.

  1. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.

    1995-01-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs

  2. Development of advanced treatment technologies of radio-aqueous waste by an environmental friendly decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Wook; Lee, E. H.; Moon, J. K. and others

    2006-01-15

    This project was aimed at the technology developments of electrode fabrication, electrolytic reactor design and fabrication, electrolytic processes and the analyses of electroytic reaction mechanisms, which were essential elements for the development of electrolytic systems to decompose or teat environmentally- friendly the several salts contained in waste solutions which are to be generated in the fields of nuclear/non-nuclear industries. Major research items carried our in this project were as follows; - Development of technologies to choose and fabricate the anodes and cathodes for the treatments of waste solutions containing nitrogen compounds and organics. - Development of a membrane electrolyzer stacked by mono-polar unit cells with independent series flow path of electrolytes - Development of an electrolyzer with a self-pH adjustment and an electrolytic process for ammonia decomposition by using the electrolyzer - Analysis of electrolytic reaction mechanism of ammonia - Development of an ion exchange membrane electrolyzer with only one discharge of pH-controlled electrolyte solution - Development of electrolytic dechlorination technology for the treatment of chloride molten salt waste salt from pyroprocess. - Development of technologies for treatment of high concentration nitric acid and recovery of waste organic solvent.

  3. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  4. A sustainable process to utilize ferrous sulfate waste from titanium oxide industry by reductive decomposition reaction with pyrite

    International Nuclear Information System (INIS)

    Huang, Penghui; Deng, Shaogang; Zhang, Zhiye; Wang, Xinlong; Chen, Xiaodong; Yang, Xiushan; Yang, Lin

    2015-01-01

    Highlights: • A newly developed treating process of ferrous sulfate was proposed. • The reaction process was discussed by thermodynamic analysis. • Thermodynamic analysis was compared with experiments results. • The kinetic model of the decomposition reaction was determined. • The reaction mechanism of autocatalytic reactions was explored. - Abstract: Ferrous sulfate waste has become a bottleneck in the sustainable development of the titanium dioxide industry in China. In this study, we propose a new method for the reductive decomposition of ferrous sulfate waste using pyrite. Thermodynamics analysis, tubular reactor experiments, and kinetics analysis were performed to analyze the reaction process. The results of the thermodynamic simulation showed that the reaction process and products were different when molar ratio of FeSO_4/FeS_2 was changed. The suitable molar ratio of FeSO_4/FeS_2 was 8–12. The reaction temperature of ferrous sulfate with pyrite was 580–770 K and the main products were Fe_3O_4 and SO_2. The simulation results agreed well with the experimental results. The desulphurization rate reached 98.55% and main solid products were Fe_3O_4 at 823.15 K when mole ratio of FeSO_4/FeS_2 was 8. Nano-sized magnetite was obtained at this condition. The kinetic model was investigated by isoconversional methods. The average E value was 244.34 kJ mol"−"1. The ferrous sulfate decomposition process can be treated as autocatalytic reaction mechanism, which corresponded to the expanded Prout–Tompson (Bna) model. The reaction mechanism of autocatalytic reactions during the process of ferrous sulfate decomposition were explored, the products of Fe oxide substances are the catalyst components.

  5. A novel decomposition technique of friable asbestos by CHClF2-decomposed acidic gas

    International Nuclear Information System (INIS)

    Yanagisawa, Kazumichi; Kozawa, Takahiro; Onda, Ayumu; Kanazawa, Masazumi; Shinohara, Junichi; Takanami, Tetsuro; Shiraishi, Masatsugu

    2009-01-01

    Asbestos was widely used in numerous materials and building products due to their desirable properties. It is, however, well known that asbestos inhalation causes health damage and its inexpensive decomposition technique is necessary to be developed for pollution prevention. We report here an innovative decomposition technique of friable asbestos by acidic gas (HF and HCl) generated from the decomposition of CHClF 2 by the reaction with superheated steam at 800 deg. C. Chrysotile-asbestos fibers were completely decomposed to sellaite and magnesium silicofluoride hexahydrate by the reaction with CHClF 2 -decomposed acidic gas at 150 deg. C for 30 min. At high temperatures beyond 400 deg. C, sellaite and hematite were detected in the decomposed product. In addition, crocidolite containing wastes and amosite containing wastes were decomposed at 500 deg. C and 600 deg. C for 30 min, respectively, by CHClF 2 -decomposed acidic gas. The observation of the reaction products by phase-contrast microscopy (PCM) and scanning electron microscopy (SEM) confirmed that the resulting products did not contain any asbestos

  6. Pollutant content in marine debris and characterization by thermal decomposition

    International Nuclear Information System (INIS)

    Iñiguez, M.E.; Conesa, J.A.; Fullana, A.

    2017-01-01

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400–500 K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800 K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). - Highlights: • The analysis and characterization of waste from marine environment were performed. • Its pollutant content has been determined, considering PAHs, PCDD/Fs and dl-PCBs. • Thermal decomposition of MDs was studied at different atmospheres and heating rates. • Kinetic models for the combustion of the five main plastics of MDs were proposed. • Composition of the waste is calculated using thermal behavior of different plastics.

  7. Decomposition of PCBs in oils using gamma radiolysis

    International Nuclear Information System (INIS)

    Mincher, B.J.; Arbon, R.E.; Schwendiman, G.L.

    1996-01-01

    This paper investigates the radiolysis of the polychlorinated biphenyls (PCBs) in several oil matrices. The results of mechanism and kinetic studies in isooctane are presented. The decomposition of PCBs in isooctane is shown to occur by reductive dechlorination due to electron capture and to proceed with pseudo-first-order kinetics. The rate is dependent on the initial PCB concentration. Electron capture detection gas chromatograms confirm that dechlorination also occurs with commercial Aroclor PCBs in irradiated transformer and hydraulic oils. The results of a demonstration experiment involving PCB contaminated waste hydraulic oils are presented

  8. Applicability of FTIR-spectroscopy for characterizing waste organic matter

    International Nuclear Information System (INIS)

    Smidt, E.

    2001-12-01

    State and development of waste organic matter were characterized by means of FTIR-spectroscopy. Due to the interaction of infrared light with matter energy is absorbed by chemical functional groups. Chemical preparation steps are not necessary and therefore this method offers a more holistic information about the material. The first part of experiments was focussed on spectra of different waste materials representing various stages of decomposition. Due to characteristics in the fingerprint- region the identity of wastes is provable. Heights of significant bands in the spectrum were measured and relative absorbances were calculated. Changes of relative absorbances indicate the development of organic matter during decomposition. Organic matter of waste samples was compared to organic matter originating from natural analogous processes (peat, soil). The second part of experiments concentrated on a composting process for a period of 260 days. Spectral characteristics of the samples were compared to their chemical, physical and biological data. The change of relative absorbances was reflected by conventional parameters. According to the development of the entire sample humic acids underwent a change as well. For practical use the method offers several possibilities: monitoring of a process, comparison of different processes, quality control of products originating from waste materials and the proof of their identity. (author)

  9. Deer carcass decomposition and potential scavenger exposure to chronic wasting disease

    Science.gov (United States)

    Jennelle, C.S.; Samuel, M.D.; Nolden, C.A.; Berkley, E.A.

    2009-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy afflicting the Cervidae family in North America, causing neurodegeneration and ultimately death. Although there are no reports of natural cross-species transmission of CWD to noncervids, infected deer carcasses pose a potential risk of CWD exposure for other animals. We placed 40 disease-free white-tailed deer (Odocoileus virginianus) carcasses and 10 gut piles in the CWD-affected area of Wisconsin (USA) from September to April in 2003 through 2005. We used photos from remotely operated cameras to characterize scavenger visitation and relative activity. To evaluate factors driving the rate of carcass removal (decomposition), we used KaplanMeier survival analysis and a generalized linear mixed model. We recorded 14 species of scavenging mammals (6 visiting species) and 14 species of scavenging birds (8 visiting species). Prominent scavengers included American crows (Corvus brachyrhynchos), raccoons (Procyon lotor), and Virginia opossums (Didelphis virginiana). We found no evidence that deer consumed conspecific remains, although they visited gut piles more often than carcasses relative to temporal availability in the environment. Domestic dogs, cats, and cows either scavenged or visited carcass sites, which could lead to human exposure to CWD. Deer carcasses persisted for 18 days to 101 days depending on the season and year, whereas gut piles lasted for 3 days. Habitat did not influence carcass decomposition, but mammalian and avian scavenger activity and higher temperatures were positively associated with faster removal. Infected deer carcasses or gut piles can serve as potential sources of CWD prions to a variety of scavengers. In areas where surveillance for CWD exposure is practical, management agencies should consider strategies for testing primary scavengers of deer carcass material.

  10. Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chaowei; Harrold, Duff R.; Claypool, Joshua T.; Simmons, Blake A.; Singer, Steven W.; Simmons, Christopher W.; VanderGheynst, Jean S.

    2017-01-01

    Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis. Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.

  11. Pollutant content in marine debris and characterization by thermal decomposition.

    Science.gov (United States)

    Iñiguez, M E; Conesa, J A; Fullana, A

    2017-04-15

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400-500K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Preliminary assessment of the possibility of supporting the decomposition of biodegradable packaging

    Directory of Open Access Journals (Sweden)

    Niekraś Lidia

    2017-01-01

    Full Text Available This article presents a preliminary evaluation of the possibility of using grass biomass from a sports field as a compost ingredient which positively affects the degree of decomposition of the biodegradable wrappings. For 5 months the biodegradable bags were stored, both empty and filled with organic waste in the heap of grass clippings. After that period, fragments of the bags were observed under the microscope and then assessed the state of their decomposition. The results indicate that the biomass used favourably affected the process of bag degradation, however the speed of decomposition of the empty bags was quicker than the bags filled with the organic waste.

  13. Radiation Dose for Self-Disposal due to the Quantity of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Daeseo; Sung, Hyun-Hee; Kim, Seung-Soo; Kim, Gye-Nam; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we evaluated resident radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 7.0. The uranium concentration of contaminated zone due to the cover depth are also analyzed. Possibility for self-disposal of uranium contaminated soil and concrete wastes is evaluated from these calculating data. There are several radioactive material disposal methods such as regulation exemption, decontamination and long term storage. To acquire radiation dose under self-disposal from them, the study on decontamination of some uranium contaminated soil and concrete wastes was performed using electrokinectic-electrodialytic. We evaluated radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 7.0. As cover depth increases, the tolerable uranium concentration increases up to cover depth (1.5 m) and then it showed saturated uranium concentration above cover depth (1.5 m). Therefore, to carry out self-disposal on the quantity (1000 drums≒300,000 kg) of radioactive waste is easier than to carry out on the quantity (2000 drums≒600,000 kg) of radioactive waste owing to the large tolerable uranium concentration for self-disposal of radioactive waste. As cover depth increases, the individual radiation dose rate decreased up to cover depth (1.5 m) and then it showed saturated individual radiation dose rate above cover depth (1.5 m)

  14. Radiation Dose for Self-Disposal due to the Quantity of Radioactive Waste

    International Nuclear Information System (INIS)

    Koo, Daeseo; Sung, Hyun-Hee; Kim, Seung-Soo; Kim, Gye-Nam; Choi, Jong-Won

    2016-01-01

    In this study, we evaluated resident radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 7.0. The uranium concentration of contaminated zone due to the cover depth are also analyzed. Possibility for self-disposal of uranium contaminated soil and concrete wastes is evaluated from these calculating data. There are several radioactive material disposal methods such as regulation exemption, decontamination and long term storage. To acquire radiation dose under self-disposal from them, the study on decontamination of some uranium contaminated soil and concrete wastes was performed using electrokinectic-electrodialytic. We evaluated radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 7.0. As cover depth increases, the tolerable uranium concentration increases up to cover depth (1.5 m) and then it showed saturated uranium concentration above cover depth (1.5 m). Therefore, to carry out self-disposal on the quantity (1000 drums≒300,000 kg) of radioactive waste is easier than to carry out on the quantity (2000 drums≒600,000 kg) of radioactive waste owing to the large tolerable uranium concentration for self-disposal of radioactive waste. As cover depth increases, the individual radiation dose rate decreased up to cover depth (1.5 m) and then it showed saturated individual radiation dose rate above cover depth (1.5 m)

  15. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    Science.gov (United States)

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. CFD SIMULATION FOR DEMILITARIZATION OF RDX IN A ROTARY KILN BY THERMAL DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    SI H. LEE

    2017-06-01

    Full Text Available Demilitarization requires the recovery and disposal of obsolete ammunition and explosives. Since open burning/detonation of hazardous waste has caused serious environmental and safety problems, thermal decomposition has emerged as one of the most feasible methods. RDX is widely used as a military explosive due to its high melting temperature and detonation power. In this work, the feasible conditions under which explosives can be safely incinerated have been investigated via a rotary kiln simulation. To solve this problem, phase change along with the reactions of RDX has been incisively analyzed. A global reaction mechanism consisting of condensed phase and gas phase reactions are used in Computational Fluid Dynamics simulation. User Defined Functions in FLUENT is utilized in this study to inculcate the reactions and phase change into the simulation. The results divulge the effect of temperature and the varying amounts of gas produced in the rotary kiln during the thermal decomposition of RDX. The result leads to the prospect of demilitarizing waste explosives to avoid the possibility of detonation.

  17. Nitrogen conservation and acidity control during food wastes composting through struvite formation.

    Science.gov (United States)

    Wang, Xuan; Selvam, Ammaiyappan; Chan, Manting; Wong, Jonathan W C

    2013-11-01

    One of the main problems of food waste composting is the intensive acidification due to initial rapid fermentation that retards decomposition efficiency. Lime addition overcame this problem, but resulted in significant loss of nitrogen as ammonia that reduces the nutrient contents of composts. Therefore, this study investigated the feasibility of struvite formation as a strategy to control pH and reduce nitrogen loss during food waste composting. MgO and K2HPO4 were added to food waste in different molar ratios (P1, 1:1; P2, 1:2), and composted in 20-L composters. Results indicate that K2HPO4 buffered the pH in treatment P2 besides supplementing phosphate into the compost. In P2, organic decomposition reached 64% while the formation of struvite effectively reduced the nitrogen loss from 40.8% to 23.3% during composting. However, electrical conductivity of the compost increased due to the addition of Mg and P salts that requires further investigation to improve this technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Technology for safe treatment of radioisotope organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na{sup +} substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH{sub 2}PO{sub 4}. From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  19. Technology for safe treatment of radioisotope organic wastes

    International Nuclear Information System (INIS)

    Oh, Won Jin; Park, Chong Mook; Choi, W. K.; Lee, K. W.; Moon, J. K.; Yang, H. Y.; Kim, B. T.; Park, S. C.

    1999-12-01

    An examination of chemical and radiological characteristics of RI organic liquid waste, wet oxidation by Fenton reaction and decomposition liquid waste treatment process were studied. These items will be applied to develop the equipment of wet oxidation and decomposition liquid waste treatment mixed processes for the safe treatment of RI organic liquid waste which is consisted of organic solvents such as toluene, alcohol and acetone. Two types of toluene solutions were selected as a candidate decomposition material. As for the first type, the concentration of toluene was above 20 vol percent. As for the second type, the solubility of toluene was considered. The decomposition ration by Fenton reaction was above 95 percent for both of them. From the adsorption equilibrium tests, a -Na + substituted/acid treated activated carbon and Zeocarbon mixed adsorbent was selected for the fixed adsorption column. This mixed adsorbent will be used to obtain the basic design data of liquid waste purification equipment for the treatment of decomposition liquid waste arising from the wet oxidation process. Solidification and degree of strength tests were performed with the simulated sludge/spent adsorbent of MgO as an oxide type and KH 2 PO 4 . From the test results, the design and fabrication of wet oxidation and liquid waste purification process equipment was made, and a performance test was carried out. (author)

  20. Chemical recycle of plastics waste; Hai purasuchikku no kemikaru risaikuru

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, A. [Sumitomo Chemical Co. Ltd., Osaka (Japan)

    1997-11-01

    Chemical recycling of the wasted plastics contains from regeneration to monomer as a constructing component in the case of single element polymer to conversion to fuel oil through thermal decomposition of the mixed wasted plastics and application to chemical raw material. Polymethyl methacrylate (PMMA) decomposes to methylmethacrylate (MMA) monomer with high selection rate at max temperature of 400{+-}50degC. The Mitsubishi Rayon Co., Ltd. Signed a cooperative development contract on the recycling technique of PMMA The ICI., Ltd., Great Britain. Depolymerization technique of Polyethylene terephthalate (PET) is already used actually on methanolysis with Coca-Cola Corp. (Hoechst-Celanese Corp.) and glycolysis with Pepsi-Cola Corp. (Goodyear Inc.). The chemical recycle due to thermal decomposition of the mixed wasted plastics is established as a technique of gasification of the mixed wasted plastics to generate methanol in Japan by the Mitsubishi Heavy Ind., Ltd., and is operated in a pilot plant of 2 ton/day. Here was summarized on these trends in and out of Japan. 29 refs., 5 figs., 4 tab.

  1. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere.

    Science.gov (United States)

    Zhang, Jinzhi; Chen, Tianju; Wu, Jingli; Wu, Jinhu

    2015-09-01

    Thermal decomposition of six representative components of municipal solid waste (MSW, including lignin, printing paper, cotton, rubber, polyvinyl chloride (PVC) and cabbage) was investigated by thermogravimetric-mass spectroscopy (TG-MS) under steam atmosphere. Compared with TG and derivative thermogravimetric (DTG) curves under N2 atmosphere, thermal decomposition of MSW components under steam atmosphere was divided into pyrolysis and gasification stages. In the pyrolysis stage, the shapes of TG and DTG curves under steam atmosphere were almost the same with those under N2 atmosphere. In the gasification stage, the presence of steam led to a greater mass loss because of the steam partial oxidation of char residue. The evolution profiles of H2, CH4, CO and CO2 were well consistent with DTG curves in terms of appearance of peaks and relevant stages in the whole temperature range, and the steam partial oxidation of char residue promoted the generation of more gas products in high temperature range. The multi-Gaussian distributed activation energy model (DAEM) was proved plausible to describe thermal decomposition behaviours of MSW components under steam atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Waste Generation in Denmark 1994-2005

    DEFF Research Database (Denmark)

    Brix, Louise Lykke; Bentzen, Jan Børsen

    In recent years the amount of waste generated by Danish firms has increased significantly. In the present analysis we use the decomposition analysis, which has been widely used in the energy economics literature to explain the mechanisms influencing energy consumption and CO2 emissions. In this p......In recent years the amount of waste generated by Danish firms has increased significantly. In the present analysis we use the decomposition analysis, which has been widely used in the energy economics literature to explain the mechanisms influencing energy consumption and CO2 emissions....... In this paper the methodology is transferred to the topic of waste generation and is used to analyse why the amount of business waste is increasing. The empirical application is related to data for the volumes of waste generated in the Danish economy for the main sectors as well as the manufacturing sector...... covering the time span 1994-2005 has been included. By means of the Log-Mean Divisia Index Method (LMDI) an algebraic decomposition of the data for the waste amounts generated is performed. This methodology separates the increases in waste amounts into effects related to economic activity, industrial...

  3. Implementation of domain decomposition and data decomposition algorithms in RMC code

    International Nuclear Information System (INIS)

    Liang, J.G.; Cai, Y.; Wang, K.; She, D.

    2013-01-01

    The applications of Monte Carlo method in reactor physics analysis is somewhat restricted due to the excessive memory demand in solving large-scale problems. Memory demand in MC simulation is analyzed firstly, it concerns geometry data, data of nuclear cross-sections, data of particles, and data of tallies. It appears that tally data is dominant in memory cost and should be focused on in solving the memory problem. Domain decomposition and tally data decomposition algorithms are separately designed and implemented in the reactor Monte Carlo code RMC. Basically, the domain decomposition algorithm is a strategy of 'divide and rule', which means problems are divided into different sub-domains to be dealt with separately and some rules are established to make sure the whole results are correct. Tally data decomposition consists in 2 parts: data partition and data communication. Two algorithms with differential communication synchronization mechanisms are proposed. Numerical tests have been executed to evaluate performance of the new algorithms. Domain decomposition algorithm shows potentials to speed up MC simulation as a space parallel method. As for tally data decomposition algorithms, memory size is greatly reduced

  4. Studies on the thermal decomposition of nitrates found in highly active waste and of chemicals used to convert the waste to glass

    International Nuclear Information System (INIS)

    Chun, K.S.

    1977-05-01

    The decomposition of all the individual chemicals used in the Harwell inactive vitrification pilot plant has been studied by means of a thermal balance. Weight loss curves to 1100 0 C have been obtained. The four materials sodium nitrate, cesium nitrate, lithium nitrate and ruthenium nitroso-nitrate (solution) showed a greater weight loss than that based on an oxide yield, and hence these compounds or their products of decomposition are volatile below 1100 0 C. The remaining materials suffered a weight loss no more than that corresponding to a full yield of the oxide, and hence they were not volatile below 1100 0 C. Most of the chemicals begin to decompose at less than 75 0 C but the nitrates of cesium, strontium, barium and sodium not until 295 0 to 590 0 C. The results obtained can be used in the analysis of process conditions in the vitrification and calcination of highly radioactive wastes and also of the thermal decomposition behaviour of mixtures containing those materials. The materials tested were: Al(NO 3 ) 3 .9H 2 O, Ba(NO 3 ) 2 , CaNo 3 , Cr(NO 3 ) 3 .9H 2 O, Fe(NO 3 ) 3 .9H 2 O. Mg(NO 3 ) 2 .6H 2 O, Ni(NO 3 ) 2 .6H 2 O, R.E. Nitrates, Ruthenium Solution, Sr(NO 3 ) 2 , UO 2 (NO 3 ) 2 .6H 2 O, Zn(NO 3 ) 2 .6H 2 O. Zirconium Solution, 'Gasil WP' Silica, 'Neosyl' Silica, LiOH.H 2 O. LiNO 3 .3H 2 O, Na 2 CO 3 , NaNO 3 , Na 2 B 4 O 7 .10H 2 O. (author)

  5. Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohammad Farhat; Siddiqui, Mohammad Nahid [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-08-15

    The pyrolysis and hydropyrolysis of PVC mixed plastic waste alone and with petroleum residue was carried out at 150 and 350{sup o}C under N{sub 2} gas and at 430{sup o}C under 6.5MPa H{sub 2} gas pressure. The behavior of plastic waste during thermal and catalytic decomposition has also been studied in single- and two-stage reaction processes. In the individual pyrolysis process, both the petroleum residue and polystyrene (PS) undergo more than 90% conversion to liquid and gaseous products, whereas low-density polyethylene (LDPE) and high-density polyethylene (HDPE) yielded lower conversions products, and polypropylene (PP) and polyvinyl chloride (PVC) afforded somewhere a moderate to high conversion products. In a single-stage pyrolysis reaction, PVC was processed with petroleum residue at 150 and 430{sup o}C, under N{sub 2} gas for 1h at each temperature in a glass reactor. The model PVC and waste PVC showed slight variations in the products distribution obtained from the glass reactor. In two-stage process, model PVC, vacuum gas oil (VGO) and a number of different catalysts were used in a stainless steel autoclave micro tubular reactor at 350{sup o}C under the stream of N{sub 2} gas for 1h and at 430{sup o}C under 950psi (6.5MPa) H{sub 2} pressure for the duration of 2h. Significantly, different products distributions were obtained. Among the catalysts used, fluid catalytic cracking (FCC) and hydrocracking catalysts (HC-1) were most effective in producing liquid fuel (hexane soluble) materials. The study shows that the catalytic coprocessing of PVC with VGO is a feasible process by which PVC and VGO materials can be converted into transportation fuels.

  6. Acid decomposition processing system for radioactive wastes

    International Nuclear Information System (INIS)

    Oomine, Toshimitsu.

    1984-01-01

    Purpose: To perform plutonium recovery at a low energy consumption irrespective of the plutonium density within the wastes. Method: In a decomposing and volume-reducing device for combustible or less combustible wastes containing transuranic elements using an acid, the wastes are in contact with nitric acid before feeding to a reactor. Then, the transuranic elements are transferred into the nitric acid, which is then in contact with ion exchange resins. After adsorbing the transuranic elements to the ion exchange resins, the nitric acid removed with the transuranic elements is caused to flow into a reaction vessel or heating vessel and used as a decomposing and oxidizing agent. (Seki, T.)

  7. Advanced Oxidation: Oxalate Decomposition Testing With Ozone

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2012-01-01

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  8. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  9. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  10. Effect of the use of molasses and efficient microorganisms, over the rate of decomposition of the sugar cane leaf (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Óscar Eduardo Sanclemente Reyes

    2011-10-01

    Full Text Available The rate of decomposition of sugar cane leaves mixed with an organic fertilizer compost type was evaluated, using a finite accelerator (molasses and an infinity accelerator (effective microorganisms. The trial was conducted in the greenhouse facilities of the National University of Colombia in Palmira. The results showed that molasses is a decomposition accelerator of the wastes of sugar cane leaf, since it shows a marked influence on the initial decomposition rate of the waste, but once the carbohydrates that constitute it are consumed, the rate of decomposition decreases significantly. Then the potential is evident on the waste of sugar cane leaf elements for the maintenance and/or biophysical capital improvement in the productive system of the sugar cane, as the result of their high photosynthetic efficiency.

  11. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample

    International Nuclear Information System (INIS)

    Saha, B.; Maiti, A.K.; Ghoshal, A.K.

    2006-01-01

    Pyrolysis, one possible alternative to recover valuable products from waste plastics, has recently been the subject of renewed interest. In the present study, the isoconversion methods, i.e., Vyazovkin model-free approach is applied to study non-isothermal decomposition kinetics of waste PET samples using various temperature integral approximations such as Coats and Redfern, Gorbachev, and Agrawal and Sivasubramanian approximation and direct integration (recursive adaptive Simpson quadrature scheme) to analyze the decomposition kinetics. The results show that activation energy (E α ) is a weak but increasing function of conversion (α) in case of non-isothermal decomposition and strong and decreasing function of conversion in case of isothermal decomposition. This indicates possible existence of nucleation, nuclei growth and gas diffusion mechanism during non-isothermal pyrolysis and nucleation and gas diffusion mechanism during isothermal pyrolysis. Optimum E α dependencies on α obtained for non-isothermal data showed similar nature for all the types of temperature integral approximations

  12. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Jae-Hyung Yoo; Eung-Ho Kim

    1999-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, some experimental work of photochemical decomposition of oxalate was carried out to prove its feasibility as a step of partitioning process. The decomposition of oxalic acid in the presence of nitric acid was performed in advance in order to understand the mechanistic behaviour of oxalate destruction, and then the decomposition of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was examined. The decomposition rate of neodymium oxalate was found as 0.003 mole/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  13. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  14. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    Science.gov (United States)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  15. Financial compensation due to municipalities that host radioactive waste deposits

    International Nuclear Information System (INIS)

    Silva, Renata A. da; Simoes, Francisco Fernando L.; Martins, Vivian B.

    2013-01-01

    This work aims to perform calculation about the financial compensation due to municipalities where there is viability for construction of radioactive waste deposits from low and medium activity. Were used like base structure de Resolution No. 96 of August, 10, 2010, entitled 'Model of Calculation For Financial Compensation to Municipalities' where are determinate those principal characteristics by the waste and deposits, such as the half-life, activity level, type of deposits (initial, intermediate or final), costs for construction and maintenance of deposits, demography, between others. The calculation was made according to the temporally or definitive storage for solids waste like personal protection equipment (gloves, shoes, masks, etc) resins and filters used in wastewater treatment, between others, from of nuclear and radioactivity facilities. There are presented some countries that do the compensation, financial or not, for some municipalities for the construction of waste deposits and in some cases, the way that occurred the negotiation between the stake holders, in other words, the local population and the companies. Also are presented others forms of financial compensation in Brazil in consequence of activities in large scale which result in potential risk for the surrounding population and for the environment, like compensation for oil and natural gas, hydropower plants and mining. Were used on methodology the inventory of waste presented on RMBN project (Repository of Waste of Low and Medium Activity) developed by the CDTN which present the implementation of a repository for final storage to radioactive waste. With this was possible to develop a case study with the creation of four scenarios. Values were found which initially range from R$2,6 thousand to R$79,8 thousand for month. Finally are analyzed the possible influences which that values may have on the municipality budget revenue and some divergent points about the resolution. (author)

  16. Financial compensation due to municipalities that host radioactive waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renata A. da; Simoes, Francisco Fernando L.; Martins, Vivian B., E-mail: renata.amaral@ufrj.br, E-mail: flamego@ien.gov.br, E-mail: vbmartins@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work aims to perform calculation about the financial compensation due to municipalities where there is viability for construction of radioactive waste deposits from low and medium activity. Were used like base structure de Resolution No. 96 of August, 10, 2010, entitled 'Model of Calculation For Financial Compensation to Municipalities' where are determinate those principal characteristics by the waste and deposits, such as the half-life, activity level, type of deposits (initial, intermediate or final), costs for construction and maintenance of deposits, demography, between others. The calculation was made according to the temporally or definitive storage for solids waste like personal protection equipment (gloves, shoes, masks, etc) resins and filters used in wastewater treatment, between others, from of nuclear and radioactivity facilities. There are presented some countries that do the compensation, financial or not, for some municipalities for the construction of waste deposits and in some cases, the way that occurred the negotiation between the stake holders, in other words, the local population and the companies. Also are presented others forms of financial compensation in Brazil in consequence of activities in large scale which result in potential risk for the surrounding population and for the environment, like compensation for oil and natural gas, hydropower plants and mining. Were used on methodology the inventory of waste presented on RMBN project (Repository of Waste of Low and Medium Activity) developed by the CDTN which present the implementation of a repository for final storage to radioactive waste. With this was possible to develop a case study with the creation of four scenarios. Values were found which initially range from R$2,6 thousand to R$79,8 thousand for month. Finally are analyzed the possible influences which that values may have on the municipality budget revenue and some divergent points about the resolution. (author)

  17. Gas generation phenomena in radioactive waste transportation packaging

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1998-01-01

    The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the building of gases during the storage of wastes, radiolysis and thermal decomposition appear to be main contributors during waste transport operations. (authors)

  18. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    Science.gov (United States)

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  19. Lost water and nitrogen resources due to EU consumer food waste

    Science.gov (United States)

    Vanham, D.; Bouraoui, F.; Leip, A.; Grizzetti, B.; Bidoglio, G.

    2015-08-01

    The European Parliament recently called for urgent measures to halve food waste in the EU, where consumers are responsible for a major part of total waste along the food supply chain. Due to a lack of data on national food waste statistics, uncertainty in (consumer) waste quantities (and the resulting associated quantities of natural resources) is very high, but has never been previously assessed in studies for the EU. Here we quantify: (1) EU consumer food waste, and (2) associated natural resources required for its production, in term of water and nitrogen, as well as estimating the uncertainty of these values. Total EU consumer food waste averages 123 (min 55-max 190) kg/capita annually (kg/cap/yr), i.e. 16% (min 7-max 24%) of all food reaching consumers. Almost 80%, i.e. 97 (min 45-max 153) kg/cap/yr is avoidable food waste, which is edible food not consumed. We have calculated the water and nitrogen (N) resources associated with avoidable food waste. The associated blue water footprint (WF) (the consumption of surface and groundwater resources) averages 27 litre per capita per day (min 13-max 40 l/cap/d), which slightly exceeds the total blue consumptive EU municipal water use. The associated green WF (consumptive rainwater use) is 294 (min 127-max 449) l/cap/d, equivalent to the total green consumptive water use for crop production in Spain. The nitrogen (N) contained in avoidable food waste averages 0.68 (min 0.29-max 1.08) kg/cap/yr. The food production N footprint (any remaining N used in the food production process) averages 2.74 (min 1.02-max 4.65) kg/cap/yr, equivalent to the use of mineral fertiliser by the UK and Germany combined. Among all the food product groups wasted, meat accounts for the highest amounts of water and N resources, followed by wasted cereals. The results of this study provide essential insights and information on sustainable consumption and resource efficiency for both EU policies and EU consumers.

  20. Radiolytic decomposition of pesticide carbendazim in waters and wastes for environmental protection

    International Nuclear Information System (INIS)

    Bojanowska-Czajka, A.; Drzewicz, P.; Meczynska, S.; Kruszewski, M.; Zimek, Z.; Nichipor, H.; Galezowska, A.; Nalecz-Jawecki, G.; Trojanowicz, M.; Warsaw University, Warsaw

    2011-01-01

    The radiolytic degradation of widely used fungicide, carbendazim, in synthetic aqueous solutions and industrial wastewater was investigated employing γ-irradiation. The effect of the absorbed dose, initial concentration and pH of irradiated solution on the effectiveness of carbendazim decomposition were investigated. Decomposition of carbendazim in 100 μM concentration in synthetic aqueous solutions required irradiation with 600 Gy dose. The aqueous solutions of carbendazim have been irradiated in different conditions, where particular active radical species from water radiolysis predominate. The obtained data have been compared with the kinetic modeling. The reversed-phase high-performance liquid chromatography was used for the determination of carbendazim and its radiolytic decomposition products in irradiated solutions. The changes of toxicity of irradiated solutions were examined with different test organisms and human leukemia cells. (author)

  1. Method of heat decomposition for chemical decontaminating resin waste

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1988-01-01

    Purpose: To make resin wastes into non-deleterious state, discharge them into a resin waste storage tank of existent radioactive waste processing facility and store and dispose them. Constitution: In the processing of chemical decontaminating resin wastes, iron exchange resins adsorbing chemical decontaminating agents comprising a solution of citric acid, oxalic acid, formic acid and EDTA alone or as a mixture of them are heated to dry, thermally decomposed and then separated from the ion exchange resins. That is, the main ingredients of the chemical decontaminating agents are heat-decomposed when heated and dried at about 250 deg C in air and converted into non-toxic gases such as CO, CO 2 , NO, NO 2 or H 2 O. Further, since combustion or carbonization of the basic materials for the resin is not caused at such a level of temperature, the resin wastes removed with organic acid and chelating agents are transferred to an existent resin waste storage tank and stored therein. In this way, facility cost and radiation exposure can remarkably be decreased. (Kamimura, M.)

  2. Domain decomposition with local refinement for flow simulation around a nuclear waste disposal site: direct computation versus simulation using code coupling with OCamlP3L

    Energy Technology Data Exchange (ETDEWEB)

    Clement, F.; Vodicka, A.; Weis, P. [Institut National de Recherches Agronomiques (INRA), 78 - Le Chesnay (France); Martin, V. [Institut National de Recherches Agronomiques (INRA), 92 - Chetenay Malabry (France); Di Cosmo, R. [Institut National de Recherches Agronomiques (INRA), 78 - Le Chesnay (France); Paris-7 Univ., 75 (France)

    2003-07-01

    We consider the application of a non-overlapping domain decomposition method with non-matching grids based on Robin interface conditions to the problem of flow surrounding an underground nuclear waste disposal. We show with a simple example how one can refine the mesh locally around the storage with this technique. A second aspect is studied in this paper. The coupling between the sub-domains can be achieved by computing in two ways: either directly (i.e. the domain decomposition algorithm is included in the code that solves the problems on the sub-domains) or using code coupling. In the latter case, each sub-domain problem is solved separately and the coupling is performed by another program. We wrote a coupling program in the functional language Ocaml, using the OcamIP31 environment devoted to ease the parallelism. This at the same time we test the code coupling and we use the natural parallel property of domain decomposition methods. Some simple 2D numerical tests show promising results, and further studies are under way. (authors)

  3. Domain decomposition with local refinement for flow simulation around a nuclear waste disposal site: direct computation versus simulation using code coupling with OCamlP3L

    International Nuclear Information System (INIS)

    Clement, F.; Vodicka, A.; Weis, P.; Martin, V.; Di Cosmo, R.

    2003-01-01

    We consider the application of a non-overlapping domain decomposition method with non-matching grids based on Robin interface conditions to the problem of flow surrounding an underground nuclear waste disposal. We show with a simple example how one can refine the mesh locally around the storage with this technique. A second aspect is studied in this paper. The coupling between the sub-domains can be achieved by computing in two ways: either directly (i.e. the domain decomposition algorithm is included in the code that solves the problems on the sub-domains) or using code coupling. In the latter case, each sub-domain problem is solved separately and the coupling is performed by another program. We wrote a coupling program in the functional language Ocaml, using the OcamIP31 environment devoted to ease the parallelism. This at the same time we test the code coupling and we use the natural parallel property of domain decomposition methods. Some simple 2D numerical tests show promising results, and further studies are under way. (authors)

  4. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    Science.gov (United States)

    2016-06-01

    wastewater treatment plants for the food and beverage industry . Biogas is the result of decomposition of organic wastes, but the methane is diluted with...for the food and beverage industry . Biogas is the result of decomposition of organic wastes, but the methane is diluted with large amounts of CO2

  5. Preliminary assessment of the possibility of supporting the decomposition of biodegradable packaging

    OpenAIRE

    Niekraś Lidia; Moliszewska Ewa

    2017-01-01

    This article presents a preliminary evaluation of the possibility of using grass biomass from a sports field as a compost ingredient which positively affects the degree of decomposition of the biodegradable wrappings. For 5 months the biodegradable bags were stored, both empty and filled with organic waste in the heap of grass clippings. After that period, fragments of the bags were observed under the microscope and then assessed the state of their decomposition. The results indicate that the...

  6. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wicakso, Doni Rahmat [Chemical Engineering Department, Faculty of Engineering, Lambung Mangkurat University, Jalan A. Yani KM. 36 Banjarbaru, 70714, South Kalimantan (Indonesia); Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Sutijan; Rochmadi [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Budiman, Arief, E-mail: abudiman@ugm.ac.id [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Center for Energy Studies, Gadjah Mada University, Sekip K1A, Yogyakarta, 55281 (Indonesia)

    2016-06-03

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 – 600 °C and catalyst weight between 0 – 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H{sup 2} productivity increased and calorimetric value of bio-oil increased.

  7. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Yoo, J.H.; Kim, E.H.

    1998-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, the photochemical decomposition mechanism of oxalates in the presence of nitric acid was elucidated by experimental work. The decomposition of oxalates was proved to be dominated by the reaction with hydroxyl radical generated from the nitric acid, rather than with nitrite ion also formed from nitrate ion. The decomposition rate of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was found to be 0.003 M/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  8. Total control of chromium in tanneries - thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings.

    Science.gov (United States)

    Kocurek, P; Kolomazník, K; Bařinová, M; Hendrych, J

    2017-04-01

    This paper deals with the problem of chromium recovery from chrome-tanned waste and thus with reducing the environmental impact of the leather industry. Chrome-tanned waste was transformed by alkaline enzymatic hydrolysis promoted by magnesium oxide into practically chromium-free, commercially applicable collagen hydrolysate and filtration cake containing a high portion of chromium. The crude and magnesium-deprived chromium cakes were subjected to a process of thermal decomposition at 650°C under oxygen-free conditions to reduce the amount of this waste and to study the effect of magnesium removal on the resulting products. Oxygen-free conditions were applied in order to prevent the oxidation of trivalent chromium into the hazardous hexavalent form. Thermal decomposition products from both crude and magnesium-deprived chrome cakes were characterized by high chromium content over 50%, which occurred as eskolaite (Cr 2 O 3 ) and magnesiochromite (MgCr 2 O 4 ) crystal phases, respectively. Thermal decomposition decreased the amount of chrome cake dry feed by 90%. Based on the performed experiments, a scheme for the total control of chromium in the leather industry was designed.

  9. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  10. Kinetics of thermal decomposition of aluminium hydride: I-non-isothermal decomposition under vacuum and in inert atmosphere (argon)

    International Nuclear Information System (INIS)

    Ismail, I.M.K.; Hawkins, T.

    2005-01-01

    Recently, interest in aluminium hydride (alane) as a rocket propulsion ingredient has been renewed due to improvements in its manufacturing process and an increase in thermal stability. When alane is added to solid propellant formulations, rocket performance is enhanced and the specific impulse increases. Preliminary work was performed at AFRL on the characterization and evaluation of two alane samples. Decomposition kinetics were determined from gravimetric TGA data and volumetric vacuum thermal stability (VTS) results. Chemical analysis showed the samples had 88.30% (by weight) aluminium and 9.96% hydrogen. The average density, as measured by helium pycnometery, was 1.486 g/cc. Scanning electron microscopy showed that the particles were mostly composed of sharp edged crystallographic polyhedral such as simple cubes, cubic octahedrons and hexagonal prisms. Thermogravimetric analysis was utilized to investigate the decomposition kinetics of alane in argon atmosphere and to shed light on the mechanism of alane decomposition. Two kinetic models were successfully developed and used to propose a mechanism for the complete decomposition of alane and to predict its shelf-life during storage. Alane decomposes in two steps. The slowest (rate-determining) step is solely controlled by solid state nucleation of aluminium crystals; the fastest step is due to growth of the crystals. Thus, during decomposition, hydrogen gas is liberated and the initial polyhedral AlH 3 crystals yield a final mix of amorphous aluminium and aluminium crystals. After establishing the kinetic model, prediction calculations indicated that alane can be stored in inert atmosphere at temperatures below 10 deg. C for long periods of time (e.g., 15 years) without significant decomposition. After 15 years of storage, the kinetic model predicts ∼0.1% decomposition, but storage at higher temperatures (e.g. 30 deg. C) is not recommended

  11. Decomposition of water-insoluble organic waste by water plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Choi, S; Watanabe, T

    2012-01-01

    The water plasma was generated in atmospheric pressure with the emulsion state of 1-decanol which is a source of soil and ground water pollution. In order to investigate effects of operating conditions on the decomposition of 1-decanol, generated gas and liquid from the water plasma treatment were analysed in different arc current and 1-decanol concentration. The 1-decanol was completely decomposed generating hydrogen, carbon monoxide, carbon dioxide, methane, treated liquid and solid carbon in all experimental conditions. The feeding rate of 1- decanol emulsion was increased with increasing the arc current in virtue of enhanced input power. The generation rate of gas and the ratio of carbon dioxide to carbon monoxide were increased in the high arc current, while the generation rate of solid carbon was decreased due to enhanced oxygen radicals in the high input power. Generation rates of gas and solid carbon were increased at the same time with increasing the concentration of 1-decanol, because carbon radicals were increased without enhancement of oxygen radicals in a constant power level. In addition, the ratio of carbon dioxide to carbon monoxide was increased along with the concentration of 1-decanol due to enhanced carbon radicals in the water plasma flame.

  12. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products

    Energy Technology Data Exchange (ETDEWEB)

    Belardi, G. [Environmental Geology and GeoEngineering Institute (CNR), Area della ricerca RM1, via Salaria km 29,300, 00016 Monterotondo (Rome) (Italy); Piga, L., E-mail: luigi.piga@uniroma1.it [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, 00184 Rome (Italy)

    2013-12-10

    Highlights: • We characterized end-of-life asbestos-containing materials. • In the range 620–680 °C, calcite and quartz affect decomposition of asbestos. • Hypothesized decomposition reactions match with solid phases revealed by XRD analysis. • TGA of the content of chrysotile gives good results both in air and in nitrogen. - Abstract: Three bearing-asbestos wastes, friction material, vinyl-asbestos (linoleum) and cement-asbestos mainly containing chrysotile were characterized. Powder X-ray diffraction (XRDP), scanning electron microscopy (SEM) with microanalysis observations and thermal analysis (TGA/DTA) were carried out on the materials as received and after heating at 1100 °C in order to observe their structural changes and thermal behaviours. A quantitative determination of chrysotile in the friction material was also carried out. To study the influence of CaCO{sub 3} on the decomposition of asbestos, the three techniques were also applied on the linoleum and cement-asbestos at room temperature and at 1100 °C after leaching of the materials with 1:3 HCl to remove the carbonates present in the wastes. The results show that the presence of CaCO{sub 3} prevents the asbestos to decompose according to the known decomposition reactions and leads to the formation of calcium-silicate compounds. When CaCO{sub 3} is removed by washing with HCl, decomposition of asbestos proceeds according to the expected reactions.

  13. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products

    International Nuclear Information System (INIS)

    Belardi, G.; Piga, L.

    2013-01-01

    Highlights: • We characterized end-of-life asbestos-containing materials. • In the range 620–680 °C, calcite and quartz affect decomposition of asbestos. • Hypothesized decomposition reactions match with solid phases revealed by XRD analysis. • TGA of the content of chrysotile gives good results both in air and in nitrogen. - Abstract: Three bearing-asbestos wastes, friction material, vinyl-asbestos (linoleum) and cement-asbestos mainly containing chrysotile were characterized. Powder X-ray diffraction (XRDP), scanning electron microscopy (SEM) with microanalysis observations and thermal analysis (TGA/DTA) were carried out on the materials as received and after heating at 1100 °C in order to observe their structural changes and thermal behaviours. A quantitative determination of chrysotile in the friction material was also carried out. To study the influence of CaCO 3 on the decomposition of asbestos, the three techniques were also applied on the linoleum and cement-asbestos at room temperature and at 1100 °C after leaching of the materials with 1:3 HCl to remove the carbonates present in the wastes. The results show that the presence of CaCO 3 prevents the asbestos to decompose according to the known decomposition reactions and leads to the formation of calcium-silicate compounds. When CaCO 3 is removed by washing with HCl, decomposition of asbestos proceeds according to the expected reactions

  14. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  15. Characterization of Explosives Processing Waste Decomposition Due to Composting.

    Science.gov (United States)

    1994-09-01

    leachate were injected onto an Alltech RP-C 18/Anion column (150 mm x 4.6 mm ID) and were eluted at 1 mL/min using a complex ternary gradient of 0.015 M...the study because it is an agriculturally important legume; the seeds of this plant are also an important carbon sink. Thus, Glycine was advantageous

  16. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, M.; Hernandez, J.J. [Universidad de Castilla-La Mancha, Ciudad real (Spain). Escuela Tecnica Superior de Ingenieros Industriales; Rodriguez, J.J. [Repsol-YPF, Puertollano (Spain). Chemical Department

    2004-10-01

    The great potential of Maritime pine (Pinus pinaster) wastes in the middle regions of Spain has motivated an increasing interest about the energy use of this material, either through combustion or gasification processes. Samples of these biomass wastes have been analysed by thermogravimetry under both inert and oxidant atmospheres, from room temperature up to 1100 K, at different heating rates: 10, 30, 40, 50 and 60 K min{sup -1}. An estimation of the proximate analysis of the samples was made from combination of both resulting weight loss curves. The devolatilisation process of the samples was divided into three non-interacting mass-loss events described as parallel first-order reactions, being the first event identified as the moisture loss process, the second one as the hemicellulose and cellulose decomposition process and the third one as that of lignin decomposition. A fitting algorithm to obtain the kinetic parameters permitted a good agreement with experimental results, as well as a good discrimination of the effect of the heating rate. Due to the non-homogeneous nature of the tested samples, the use of other conventional methods for obtaining the kinetic parameters has been proved to be inadequate. (author)

  17. Decomposition of olive mill waste compost, goat manure and Medicago sativa in Lebanese soils using the litterbag technique

    Science.gov (United States)

    Atallah, Therese

    2014-05-01

    Organic amendments, green manure and plant residues incorporation are the main sources of nutrients in organic farming, their decomposition rate is crucial for the accumulation and long-term storage of organic matter in soils. In this study the decomposition of compost from olive mill waste (N: 29.3 g kg-1; total dissolved nitrogen or TDN: 3.82 g kg-1), goat manure (N: 31.5 g kg-1; TDN: 0.94 g kg-1), the shoots (N: 33.6 g kg-1; TDN: 17.57 g kg-1) and roots (N: 22.12 g kg-1; TDN: 8.87 g kg-1) of Medicago sativa was followed in three Lebanese soils. The nitrogen, phosphorus and potassium released were followed over one year, starting in early winter (December-January). The mild sub-humid Mediterranean conditions allowed a rapid mass loss in alfalfa shoots 30 days after incorporation. Manure and compost were more persistent. Between 80 and 90% of TDN were released, after 30 days of in-situ incubation for compost, the release was over 90% for alfalfa shoots. The movement of P was slower, as the compost (6.99 g kg-1 of P) and manure (9.81 g kg-1 of P) lost 33% and 22%, respectively, during 30 days of incubation. After one year, 15 to 35% of P remained in the soils. The manure was the richest in potassium (19.66 g kg-1) followed by the alfalfa shoots (15.56 g kg-1), the compost (8.19 g kg-1) and the roots (5.96 g kg-1). The loss of potassium was important, as over 88% had disappeared over the year. All decomposition curves followed an exponential model. The calculated coefficients of decomposition for total nitrogen (lnfinal - lninitial/days) were significantly higher for alfalfa shoots (0.00547 day-1) and similar for the compost (0.00184 day-1) and the manure (0.00175 day-1). The ANOVA test showed a difference between two of the sites (Site A: 521 g kg-1 of clay and 42 g kg-1 of calcium carbonate; Site S: 260 g kg-1 of clay and 269 g kg-1 of CaCO3) and the third one (Site L: 315 g kg-1 of clay and 591 g kg-1 of CaCO3). The relationships between the soil calcium

  18. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    International Nuclear Information System (INIS)

    Orr, R.M.; Sims, H.E.; Taylor, R.J.

    2015-01-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or ‘finishing’ processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO_2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles. - Highlights: • Critical review of plutonium oxalate decomposition reactions. • New analysis of relationship between SSA and calcination temperature. • New SEM

  19. Decomposition of forest products buried in landfills

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-01-01

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g −1 dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  20. Decomposition of forest products buried in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Padgett, Jennifer M. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Powell, John S. [Department of Chemical and Biomolecular Engineering, Campus Box 7905, North Carolina State University, Raleigh, NC 27695-7905 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  1. DECOMPOSITION STUDY OF CALCIUM CARBONATE IN COCKLE SHELL

    Directory of Open Access Journals (Sweden)

    MUSTAKIMAH MOHAMED

    2012-02-01

    Full Text Available Calcium oxide (CaO is recognized as an efficient carbon dioxide (CO2 adsorbent and separation of CO2 from gas stream using CaO based adsorbent is widely applied in gas purification process especially at high temperature reaction. CaO is normally been produced via thermal decomposition of calcium carbonate (CaCO3 sources such as limestone which is obtained through mining and quarrying limestone hill. Yet, this study able to exploit the vast availability of waste resources in Malaysia which is cockle shell, as the potential biomass resources for CaCO3 and CaO. In addition, effect of particle size towards decomposition process is put under study using four particle sizes which are 0.125-0.25 mm, 0.25-0.5 mm, 1-2 mm, and 2-4 mm. Decomposition reactivity is conducted using Thermal Gravimetric Analyzer (TGA at heating rate of 20°C/minutes in inert (Nitrogen atmosphere. Chemical property analysis using x-ray fluorescence (XRF, shows cockle shell is made up of 97% Calcium (Ca element and CaO is produced after decomposition is conducted, as been analyzed by x-ray diffusivity (XRD analyzer. Besides, smallest particle size exhibits the highest decomposition rate and the process was observed to follow first order kinetics. Activation energy, E, of the process was found to vary from 179.38 to 232.67 kJ/mol. From Arrhenius plot, E increased when the particle size is larger. To conclude, cockle shell is a promising source for CaO and based on four different particles sizes used, sample at 0.125-0.25 mm offers the highest decomposition rate.

  2. Chemical decomposition of high-level nuclear waste storage/disposal glasses under irradiation. 1997 annual progress report

    International Nuclear Information System (INIS)

    Griscom, D.L.; Merzbacher, C.I.

    1997-01-01

    'The objective of this research is to use the sensitive technique of electron spin resonance (ESR) to look for evidence of radiation-induced chemical decomposition of vitreous forms contemplated for immobilization of plutonium and/or high-level nuclear wastes, to interpret this evidence in terms of existing knowledge of glass structure, and to recommend certain materials for further study by other techniques, particularly electron microscopy and measurements of gas evolution by high-vacuum mass spectroscopy. Previous ESR studies had demonstrated that an effect of y rays on a simple binary potassium silicate glass was to induce superoxide (O 2 - ) and ozonide (O 3 - ) as relatively stable product of long-term irradiation Accordingly, some of the first experiments performed as a part of the present effort involved repeating this work. A glass of composition 44 K 2 O: 56 SiO 2 was prepared from reagent grade K 2 CO3 and SiO 2 powders melted in a Pt crucible in air at 1,200 C for 1.5 hr. A sample irradiated to a dose of 1 MGy (1 MGy = 10 8 rad) indeed yielded the same ESR results as before. To test the notion that the complex oxygen ions detected may be harbingers of radiation-induced phase separation or bubble formation, a small-angle neutron scattering (SANS) experiment was performed. SANS is theoretically capable of detecting voids or bubbles as small as 10 305 in diameter. A preliminary experiment was carried out with the collaboration of Dr. John Barker (NIST). The SANS spectra for the irradiated and unirradiated samples were indistiguishable. A relatively high incoherent background (probably due to the presence of protons) may obscure scattering from small gas bubbles and therefore decrease the effective resolution of this technique. No further SANS experiments are planned at this time.'

  3. THE EFFECT OF F/M RATIO TO THE ANAEROBIC DECOMPOSITION OF BIOGAS PRODUCTION FROM FISH OFFAL WASTE

    Directory of Open Access Journals (Sweden)

    Agus Hadiyarto

    2016-01-01

    Full Text Available Biogas is a gas produced from the anaerobic decomposition of organic compounds. In the production of biogas from anaerobic digestion, value of F/M ratio shows a ratio between the mass of food available in the waste substrate with a mass of microorganisms that act as decomposers. F/M ratio is too small causing microbes could not metabolize perfectly and vice versa on the value of the ratio F / M overload resulting metabolic imbalance. The purpose of this study was to assess the effect of F/M ratio to optimal production of biogas from fish offal waste. The process of anaerobic digestion is conducted in the biodigester with four-liter volume and batch system operated at ambient temperature for 38 days. As a raw material, fish offal and microbial sludge obtained from the curing of fish and river mud discharges in the region of Bandarharjo, Semarang, Central Java. F/M ratio is set at 0.2, 0.4, and 0.6 are derived from sewage sludge VSS weight ratio of fish offal with sludge containing microbes. The addition of micronutrients supplied with a concentration of 0.4 mg/liter. Yield maximum methane gas obtained was 164,7 l/kg CODMn when the ratio F/M was 0.2. Based on the results of the study, found that the ratio F/M affect the amount of biogas produced. Meanwhile, the retention time (HRT is only influenced by the ratio F/M.

  4. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions

    OpenAIRE

    Koh, Kai Seng; Chin, Jitkai; Wahida Ku Chik, Tengku F.

    2013-01-01

    Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition ...

  5. Mechanisms of gas generation from simulated SY tank farm wastes: FY 1995 progress report

    International Nuclear Information System (INIS)

    Barefield, E.K.; Boatright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1996-07-01

    The objective of this work is to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants such as HEDTA and sodium glycolate in simulated SY tank farm waste mixtures. This report summarizes the results of work done at the Georgia Institute of Technology in fiscal year 1995. Topics discussed are (1) long-term studies of the decomposition of HEDTA in simulated waste mixtures under an argon atmosphere at 90 and 120 degrees C, including time profiles for disappearance of HEDTA and appearance of products and the quantitative analysis of the kinetic behavior; (2) considerations of hydroxylamine as an intermediate in the production of nitrogen containing gases by HEDTA decomposition; (3) some thoughts on the revision of the global mechanism for thermal decomposition of HEDTA under argon; (4) preliminary long-term studies of the decomposition of HEDTA in simulated waste under an oxygen atmosphere at 120 degrees C; (5) estimation of the amount of NH 3 in the gas phase above HEDTA reaction mixtures; and (6) further, examination of the interaction of aluminum with nitrite ion using 27 Al NMR spectroscopy. Section 2 of this report describes the work conducted over the last three years at GIT. Section 3 contains a discussion of the kinetic behavior of HEDTA under argon; Section 4 discusses the role of hydroxylamine. Thermal decomposition of HEDTA to ED3A is the subject of Section 5, and decomposition of HEDTA in simulated waste mixtures under oxygen is covered in Section 6. In Section 7 we estimate ammonia in the gas phase; the role of aluminum is discussed in Section 8

  6. Characterization of surrogate radioactive cemented waste: a laboratory study

    International Nuclear Information System (INIS)

    Fiset, J.F.; Lastra, R.; Bilodeau, A.; Bouzoubaa

    2011-01-01

    Portland cement is commonly used to stabilize intermediate and low level of radioactive wastes. The stabilization/solidification process needs to be well understood as waste constituents can retard or activate cement hydration. The objectives of this project were to prepare surrogate radioactive cemented waste (SRCW), develop a comminution strategy for SRCW, determine its chemical characteristics, and develop processes for long term storage. This paper emphasizes on the characterization of surrogate radioactive cemented waste. The SRCW produced showed a high degree of heterogeneity mainly due to the method used to add the solution to the host cement. Heavy metals such as uranium and mercury were not distributed uniformly in the pail. Mineralogical characterization (SEM, EDS) showed that uranium is located around the rims of hydrated cement particles. In the SRCW, uranium occurs possibly in the form of a hydrated calcium uranate.The SEM-EDS results also suggest that mercury occurs mainly in the form of HgO although some metallic mercury may be also present as a result of partial decomposition of the HgO. (author)

  7. Incineration of technological waste contaminated with alpha emitters

    International Nuclear Information System (INIS)

    Otter, C.; Moncouyoux, J.P.; Cartier, R.; Durec, J.P.; Afettouche, R.

    1990-01-01

    A large R and D programme is in progress at the CEA on alpha-bearing waste incineration. The program is developed in the laboratory and a pilot plant including the following aspects: physico-chemical characterization of wastes, study of thermal decomposition of wastes, laboratory study of generated gases (first with inactive then with active wastes), development of an industrial pilot plant with inactive wastes, study of corrosion resistance of material (laboratory and pilot plant), study and qualification of nuclear measurements on wastes, ashes and equipment [fr

  8. Calculation of financial compensation due of municipalities hosting nuclear waste deposit

    International Nuclear Information System (INIS)

    Silva, Renata A. da; Simoes, Francisco Fernando L.; Martins, Vivian B.

    2011-01-01

    The present work evaluates the math from monthly financial transfers to municipalities with technical viability for building of initial or intermediate repository for storing of radioactivity nuclear waste: gloves, sneakers, mask, resins and filters came from thermonuclear facilities. Several aspects have been considered as the geological factors of the site as presence of capable faults, groundwater vulnerability, infiltration of seawater. Also, it was take into account socioeconomic factors: population density, costs for construction, maintenance and operation of repository; size and activity of waste; among others. Hereafter, we have presented the key features of low and average activity repository and high activity repository even as initial, intermediate and final repository and the possible environment impact. The methodology for calculation of financial compensation of municipalities was established by CNEN will be applied for a specific assumed municipality. The analysis of financial compensation due to the specific nuclear waste deposit and the possible guidelines for the use of that compensation by the municipality will be analyzed. In addiction, it will be compared the model for compensation used for nuclear wastes with other plants receiving permanent wastes from cemeteries and sanitary landfills, where the land should not be allowed for the human activities the same as: crops, livestock and buildings. Also, comparison with royalties and indemnities were paid by facilities of energy production as hydroelectric dams as well as petroleum and gas exploration plants. The destination of financial compensation transfer to the municipality is in charge of the city administration. The compensation could be applied of investments in education and culture, health, sanitation works, improvement of public transport, environment, among others. It will be discussed the cost-benefit relation for the assumed municipality. (author)

  9. Calculation of financial compensation due of municipalities hosting nuclear waste deposit

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renata A. da, E-mail: renata.amaral@ufrj.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Simoes, Francisco Fernando L.; Martins, Vivian B., E-mail: flamego@ien.gov.b [Instituto de Engenharia Nuclear (LIMA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Impactos Ambientais

    2011-07-01

    The present work evaluates the math from monthly financial transfers to municipalities with technical viability for building of initial or intermediate repository for storing of radioactivity nuclear waste: gloves, sneakers, mask, resins and filters came from thermonuclear facilities. Several aspects have been considered as the geological factors of the site as presence of capable faults, groundwater vulnerability, infiltration of seawater. Also, it was take into account socioeconomic factors: population density, costs for construction, maintenance and operation of repository; size and activity of waste; among others. Hereafter, we have presented the key features of low and average activity repository and high activity repository even as initial, intermediate and final repository and the possible environment impact. The methodology for calculation of financial compensation of municipalities was established by CNEN will be applied for a specific assumed municipality. The analysis of financial compensation due to the specific nuclear waste deposit and the possible guidelines for the use of that compensation by the municipality will be analyzed. In addiction, it will be compared the model for compensation used for nuclear wastes with other plants receiving permanent wastes from cemeteries and sanitary landfills, where the land should not be allowed for the human activities the same as: crops, livestock and buildings. Also, comparison with royalties and indemnities were paid by facilities of energy production as hydroelectric dams as well as petroleum and gas exploration plants. The destination of financial compensation transfer to the municipality is in charge of the city administration. The compensation could be applied of investments in education and culture, health, sanitation works, improvement of public transport, environment, among others. It will be discussed the cost-benefit relation for the assumed municipality. (author)

  10. Preparation of surface modified TiO2/rGO microspheres and application in the photocatalytic decomposition of oleic acid

    Science.gov (United States)

    Wu, Xin; Zeng, Min; Tong, Xiaoling; Li, Fuyun; Xu, Youyou

    2018-05-01

    The comprehensive utilization of waste cooking oil is an important research topic in food science. In this study, the surface modified mesoporous anatase TiO2/reduced graphene oxide (rGO) microspheres with a high specific surface area have been successfully synthesized, through hydrothermal routes and hydrazine reduced graphene oxide. The photocatalytic decomposition of waste rapeseed oil has also been studied using TiO2/rGO microspheres as photocatalyst. The result shows that the reduced graphene oxide in these nanocomposites can act as adsorbent and photocatalyst, and the temperature and the oxygen amount also are the most important factors affecting the oleic acid decomposition products. There interesting results not only helpful for the study of the mechanism of photocatalytic, but also useful for the rational use of waste cooking oil.

  11. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  12. Basic dye decomposition kinetics in a photocatalytic slurry reactor

    International Nuclear Information System (INIS)

    Wu, C.-H.; Chang, H.-W.; Chern, J.-M.

    2006-01-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO 2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO 2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO 2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 deg. C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO 2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO 2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well

  13. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  14. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Energy Technology Data Exchange (ETDEWEB)

    Orr, R.M.; Sims, H.E.; Taylor, R.J., E-mail: robin.j.taylor@nnl.co.uk

    2015-10-15

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or ‘finishing’ processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO{sub 2} product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles. - Highlights: • Critical review of plutonium oxalate decomposition reactions. • New analysis of relationship between SSA and calcination temperature.

  15. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  16. Mixed-waste pyrolysis of biomass and plastics waste – A modelling approach to reduce energy usage

    International Nuclear Information System (INIS)

    Oyedun, Adetoyese Olajire; Gebreegziabher, Tesfaldet; Ng, Denny K.S.; Hui, Chi Wai

    2014-01-01

    Thermal co-processing of waste mixtures had gained a lot of attention in the last decade. This is largely due to certain synergistic effects such as higher quantity and better quality of oil, limited supply of certain feedstock and improving the overall pyrolysis process. Many experiments have been conducted via TGA analysis and different reactors to achieve the stated synergistic effects in co-pyrolysis of biomass and plastic wastes. The thermal behaviour of plastics during pyrolysis is different from that of biomass because its decomposition happens at a high temperature range with sudden release of volatile compared to biomass which have a wide range of thermal decomposition. A properly designed recipe and operational strategy of mixing feedstock can ease the operational difficulties and at the same time decrease energy consumption and/or improve the product yield. Therefore it is worthwhile to study the possible synergistic effects on the overall energy used during co-pyrolysis process. In this work, two different modelling approaches were used to study the energy related synergistic effect between polystyrene (PS) and bamboo waste. The mass loss and volatile generation profiles show that significant interactions between the two feedstocks exist. The results also show that both modelling approaches give an appreciable synergy effect of reduction in overall energy when PS and bamboo are co-pyrolysed together. However, the second approach which allows interaction between the two feedstocks gives a more reduction in overall energy usage up to 6.2% depending on the ratio of PS in the mixed blend. - Highlights: • Proposed the mixed-waste pyrolysis modelling via two modelling approaches. • Study the energy related synergistic effects when plastics and biomass are pyrolysed together. • Mass loss and volatile generation profiles show the existence of significant interactions. • Energy usage can be reduced by up to 6.2% depending on the percentage of the plastic

  17. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  18. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Science.gov (United States)

    Orr, R. M.; Sims, H. E.; Taylor, R. J.

    2015-10-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.

  19. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  20. Decomposition of ammonium nitrate in homogeneous and catalytic denitration

    International Nuclear Information System (INIS)

    Anan'ev, A. V.; Tananaev, I. G.; Shilov, V. P.

    2005-01-01

    Ammonium nitrate is one of potentially explosive by-products of spent fuel reprocessing. Decomposition of ammonium nitrate in the HNO 3 -HCOOH system was studied in the presence or absence of Pt/SiO 2 catalyst. It was found that decomposition of ammonium nitrate is due to homogeneous noncatalytic oxidation of ammonium ion with nitrous acid generated in the HNO 3 -HCOOH system during denitration. The platinum catalyst initiates the reaction of HNO 3 with HCOOH to form HNO 2 . The regular trends were revealed and the optimal conditions of decomposition of ammonium nitrate in nitric acid solutions were found [ru

  1. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  2. Quantitative and qualitative measures of decomposition: Is there a link?

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, Robert, J.; Sanchez, Felipe, G.

    2009-03-01

    Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase in snags compared with the CON. The additional CWD in the CD treatment plots and the additional snags in the CS plots were achieved by felling (for the CD plots) or girdling followed by herbicide injection (for the CS plots) select trees in these plots. Consequently,mortality on the CD plots is due to natural causes and felling. Likewise, mortality on the CS plots is due to natural causes and girdle-poison. In each treatment plot, mortality due to natural causes was inventoried since 1997, whereas mortality due to girdle-poison and felling were inventoried since 2001. No significant difference was detected between the rates of decomposition for the CWD on these treatment plots, indicating that source of the tree mortality did not influence rates of decomposition once the tree fell. These experimental measures of decomposition were compared with two decay classification systems (three- and five-unit classifications) to determine linkages. Changes in wood density did not correlate to any decay classification, whereas mass loss had a weak correlation with decay class. However, the large degree of variation limits the utility of decay classification systems in estimating mass loss.

  3. Co-composting of rose oil processing waste with caged layer manure and straw or sawdust: effects of carbon source and C/N ratio on decomposition.

    Science.gov (United States)

    Onursal, Emrah; Ekinci, Kamil

    2015-04-01

    Rose oil is a specific essential oil that is produced mainly for the cosmetics industry in a few selected locations around the world. Rose oil production is a water distillation process from petals of Rosa damascena Mill. Since the oil content of the rose petals of this variety is between 0.3-0.4% (w/w), almost 4000 to 3000 kg of rose petals are needed to produce 1 kg of rose oil. Rose oil production is a seasonal activity and takes place during the relatively short period where the roses are blooming. As a result, large quantities of solid waste are produced over a limited time interval. This research aims: (i) to determine the possibilities of aerobic co-composting as a waste management option for rose oil processing waste with caged layer manure; (ii) to identify effects of different carbon sources - straw or sawdust on co-composting of rose oil processing waste and caged layer manure, which are both readily available in Isparta, where significant rose oil production also takes place; (iii) to determine the effects of different C/N ratios on co-composting by the means of organic matter decomposition and dry matter loss. Composting experiments were carried out by 12 identical laboratory-scale composting reactors (60 L) simultaneously. The results of the study showed that the best results were obtained with a mixture consisting of 50% rose oil processing waste, 64% caged layer manure and 15% straw wet weight in terms of organic matter loss (66%) and dry matter loss (38%). © The Author(s) 2015.

  4. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia

    Directory of Open Access Journals (Sweden)

    T. Broder

    2012-04-01

    Full Text Available Ombrotrophic bogs in southern Patagonia have been examined with regard to paleoclimatic and geochemical research questions but knowledge about organic matter decomposition in these bogs is limited. Therefore, we examined peat humification with depth by Fourier Transformed Infrared (FTIR measurements of solid peat, C/N ratio, and δ13C and δ15N isotope measurements in three bog sites. Peat decomposition generally increased with depth but distinct small scale variation occurred, reflecting fluctuations in factors controlling decomposition. C/N ratios varied mostly between 40 and 120 and were significantly correlated (R2 > 0.55, p < 0.01 with FTIR-derived humification indices. The degree of decomposition was lowest at a site presently dominated by Sphagnum mosses. The peat was most strongly decomposed at the driest site, where currently peat-forming vegetation produced less refractory organic material, possibly due to fertilizing effects of high sea spray deposition. Decomposition of peat was also advanced near ash layers, suggesting a stimulation of decomposition by ash deposition. Values of δ13C were 26.5 ± 2‰ in the peat and partly related to decomposition indices, while δ15N in the peat varied around zero and did not consistently relate to any decomposition index. Concentrations of DOM partly related to C/N ratios, partly to FTIR derived indices. They were not conclusively linked to the decomposition degree of the peat. DOM was enriched in 13C and in 15N relative to the solid phase probably due to multiple microbial modifications and recycling of N in these N-poor environments. In summary, the depth profiles of C/N ratios, δ13C values, and FTIR spectra seemed to reflect changes in environmental conditions affecting decomposition, such as bog wetness, but were dominated by site specific factors, and are further influenced by ash

  5. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    during the HP decomposition. The model assumes that the enzyme decay is controlled by an inactivation stoichiometry related to the HP decomposition. In order to make the model easily applicable, it is furthermore assumed that the COD is a proxy of the active biomass concentration of the water and thereby......Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... reared or the nitrifying bacteria in the biofilters at concentrations required to eliminating pathogens. This calls for quantitative insight into the fate of the disinfectant residuals during water treatment. This paper presents a kinetic model that describes the HP decomposition in aquaculture water...

  6. Input-Output model for waste management plan for Nigeria | Njoku ...

    African Journals Online (AJOL)

    An Input-Output Model for Waste Management Plan has been developed for Nigeria based on Leontief concept and life cycle analysis. Waste was considered as source of pollution, loss of resources, and emission of green house gasses from bio-chemical treatment and decomposition, with negative impact on the ...

  7. Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-06-01

    Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.

  8. Survey of the energy use rationalization freon decomposition technology (public use); Energy shiyo gorika freon bunkai gijutsu chosa. (kokaiyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper made a research survey of a technology to decompose the recovered CFC (specified freon) in which energy efficiency is high and no hazardous materials such as dioxin are generated. As to the technology to decompose specified freon, the high frequency plasma method, the cement kiln method and the combustion method are at the stage of the demonstration test and close to the commercialization. The catalyst method has finished the basic test and is at the stage of a pilot plant. Besides, there are the supercritical water decomposition method, the ultraviolet decomposition method, etc., but they are at the stage of the fundamental research. Mechanisms of the dioxin generation and the suppression of dioxin generation in case of incinerating waste mixed with halide have been made clear. In the fundamental test, conditions were obtained under which the freon decomposition rate of more than 99.99% is attained by the combustion of a mixture of industrial waste and freon using the combustion method, and measures for reduction in hazardous materials such as dioxin were expected to be taken. In the catalyst method, the result obtained was the decomposition rate of more than 99.99% and the catalyst life of more than 1000 years, and its practicality was confirmed. 43 refs., 97 figs., 29 tabs.

  9. Decomposition techniques

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  10. Chlorinated aliphatic and aromatic VOC decomposition in air mixture by using electron beam irradiation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Sun Yongxia; Bulka, S.; Zimek, Z.

    2004-01-01

    Chlorinated aliphatic and aromatic hydrocarbons, which are emitted from coal power station and waste incinerators, are very harmful to the environment and human health. Recent studies show that chlorinated aliphatic and aromatic hydrocarbons are suspected to be the precursors of dioxin's formation. Dioxin's emission into atmosphere will cause severe environmental problems by ecology contamination. l,4-dichlorobenzene(l,4-DCB) and cis-dichloroethylene(cis-DCE) were chosen as representative chlorinated aromatic and aliphatic compounds, respectively. Their decomposition was investigated by electron beam irradiation. The experiments were carried out 'in batch' system. It is found that over 97% cis-DCE is decomposed having an initial concentration of 661 ppm. G-values of cis-DCE decomposition vary from 10 to 28 (molecules/100 eV) for initial concentration of 270-1530 ppm cis-DCE. The decomposition is mainly caused by secondary electron attachment and Cl addition reactions. Comparing with cis-DCE, 1,4-DCB decomposition needs higher absorbed dose. G-value of 1,4-DCB is below 4 molecules/100 eV

  11. Trends for minimization of radioactive waste arising from spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Koltunov, V.S.; Marchenko, V.I.; Ilozhev, A.P.; Mukhin, I.V.

    2000-01-01

    Research and development of technologies for radioactive waste (RAW) minimization arising from spent nuclear fuel reprocessing are discussed. Novel reductants of Pu and Np ions, reagents of purification recycled extractant, possibility of the electrochemical methods are studied. The partitioning of high activity level waste are considered. Examples of microbiological methods decomposition of radioactive waste presented. (authors)

  12. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    Science.gov (United States)

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Decomposition of SnH{sub 4} molecules on metal and metal–oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, D. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Storm, A.J.; Verberk, R. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Brouwer, J.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G., E-mail: w.g.sloof@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH{sub 4} decomposition. This phenomenon of SnH{sub 4} decomposition during tin cleaning has been quantified for various metallic and metal-oxide surfaces using X-ray photoelectron spectroscopy (XPS). It was observed that the metal oxide surfaces (TiO{sub 2} and ZrO{sub 2}) were significantly less contaminated than metallic surfaces. Tin contamination due to SnH{sub 4} decomposition can thus be reduced or even mitigated by application of a suitable metal-oxide coating.

  14. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.

    2016-08-08

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former is difficult to parallelize due to the preponderant number of memory-bound operations during the bidiagonal reduction. We investigate the latter scenario, which performs more floating-point operations but exposes at the same time more parallelism, and therefore, runs closer to the theoretical peak performance of the system, thanks to more compute-bound matrix operations. Profiling results show the performance scalability of QDWH for calculating the polar decomposition using around 9200 MPI processes on well and ill-conditioned matrices of 100K×100K problem size. We study then the performance impact of the QDWH-based polar decomposition as a pre-processing step toward calculating the SVD itself. The new distributed-memory implementation of the QDWH-SVD solver achieves up to five-fold speedup against current state-of-the-art vendor SVD implementations. © Springer International Publishing Switzerland 2016.

  15. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  16. Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition.

    Science.gov (United States)

    Xu, Li; Jiang, Yong; Qiu, Rong

    2018-01-01

    In present study, co-pyrolysis behavior of rape straw, waste tire and their various blends were investigated. TG-FTIR indicated that co-pyrolysis was characterized by a four-step reaction, and H 2 O, CH, OH, CO 2 and CO groups were the main products evolved during the process. Additionally, using BBD-based experimental results, best-fit multiple regression models with high R 2 -pred values (94.10% for mass loss and 95.37% for reaction heat), which correlated explanatory variables with the responses, were presented. The derived models were analyzed by ANOVA at 95% confidence interval, F-test, lack-of-fit test and residues normal probability plots implied the models described well the experimental data. Finally, the model uncertainties as well as the interactive effect of these parameters were studied, the total-, first- and second-order sensitivity indices of operating factors were proposed using Sobol' variance decomposition. To the authors' knowledge, this is the first time global parameter sensitivity analysis has been performed in (co-)pyrolysis literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN solutions

    Directory of Open Access Journals (Sweden)

    Kai Seng Koh

    2013-09-01

    Full Text Available Decomposition of hydroxylammonium nitrate (HAN solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition of HAN solution. In the case of using copper wire to electrolyse HAN solutions, approximately 10 seconds is required to reach 100 °C regardless of concentration of HAN. In term of power consumption, 100 W–300 W was found to be the range in which decomposition could be triggered effectively using copper wire as electrodes.

  18. The pyrolytic-plasma method and the device for the utilization of hazardous waste containing organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Opalińska, Teresa [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Wnęk, Bartłomiej, E-mail: bartlomiej.wnek@itr.org.pl [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Witowski, Artur; Juszczuk, Rafał; Majdak, Małgorzata [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Bartusek, Stanilav [VŠB—Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava − Poruba Czech Republic (Czech Republic)

    2016-11-15

    Highlights: • A first stage of the process of waste utilization consisted in pyrolysis of waste. • Then the pyrolytic gas was oxidized with a use of non-equilibrium plasma. • The device for the process implementation was built and characterized. • Correctness of the device operation was proven with a use of the decomposition of PE. • Usefulness of the method was proven in the process of utilization of EW. - Abstract: This paper is focused on the new method of waste processing. The waste, including hazardous waste, contain organic compounds. The method consists in two main processes: the pyrolysis of waste and the oxidation of the pyrolytic gas with a use of non-equilibrium plasma. The practical implementation of the method requires the design, construction and testing of the new device in large laboratory scale. The experiments were carried out for the two kinds of waste: polyethylene as a model waste and the electronic waste as a real waste. The process of polyethylene decomposition showed that the operation of the device is correct because 99.74% of carbon moles contained in the PE samples was detected in the gas after the process. Thus, the PE samples practically were pyrolyzed completely to hydrocarbons, which were completely oxidized in the plasma reactor. It turned out that the device is useful for decomposition of the electronic waste. The conditions in the plasma reactor during the oxidation process of the pyrolysis products did not promote the formation of PCDD/Fs despite the presence of the oxidizing conditions. An important parameter determining the efficiency of the oxidation of the pyrolysis products is gas temperature in the plasma reactor.

  19. Greenhouse Gas Emission Reduction Due to Improvement of Biodegradable Waste Management System

    Science.gov (United States)

    Bendere, R.; Teibe, I.; Arina, D.; Lapsa, J.

    2014-12-01

    To reduce emissions of greenhouse gas (GHG) from landfills, the European Union (EU) Landfill Directive 1999/31/EC requires that there be a progressive decrease in the municipal biodegradable waste disposal. The main problem of waste management (WM) in Latvia is its heavy dependence on the waste disposal at landfills. The poorly developed system for the sorted municipal waste collection and the promotion of landfilling as a major treatment option led to the disposal of 84% of the total collected municipal waste in 2012, with a high biodegradable fraction. In Latvia, the volume of emissions due to activities of the WM branch was 5.23% (632.6 CO2 eq.) of the total GHG emissions produced in the National economy in 2010 (12 097 Gg CO2 eq., except the land use, land-use change and forestry). Having revised the current situation in the management of biodegradable waste in Latvia, the authors propose improvements in this area. In the work, analysis of environmental impact was carried out using Waste Management Planning System (WAMPS) software in the WM modelling scenarios. The software computes the emissions, energy and turnover of waste streams for the processes within the WM system such as waste collection and transportation, composting, anaerobic digestion, and the final disposal (landfilling or incineration). The results of WAMPS modelling are presented in four categories associated with the environmental impact: acidification, global warming, eutrophication and photo-oxidant formation, each characterised by a particular emission. These categories cover an integrated WM system, starting with the point when products turn to waste which is then thrown into the bin for waste at its generation source, and ending with the point where the waste transforms either into useful material (recycled material, biogas or compost) or contributes to emissions into environment after the final disposal at a landfill or an incineration plant Rakstā veikts pašvaldības bioloģiski no

  20. Applicability of molten salt oxidation to the destruction of actinide-contaminated wastes

    International Nuclear Information System (INIS)

    West, M.H.; Garcia, E.; Griego, W.J.; Court, D.B.; Rodriguez, L.

    1992-01-01

    A 1989 ban on incineration in the state of New Mexico caused cessation of actinide-contaminated cheesecloth, paper, and wood incineration within the Plutonium Facility (TA-55) at Los Alamos National Laboratory. Subsequently, plastic wipes were substituted for cheesecloth in the cleaning of glovebox interiors. However, waste minimization is not achieved by these measures since the wipes are discarded as Waste Isolation Pilot Plant certifiable wastes. After the ban was instituted, thermal decomposition of cheesecloth under argon at elevated temperature was examined and found satisfactory although scale of operation and speed were inferior to incineration. In 1991, the ban on incineration was lifted in New Mexico but Alamos has not chosen to pursue renewal of incineration at the Plutonium Facility. This paper reports that Los Alamos is looking from alternatives to incineration and thermal decomposition which are compatible with molten salt processing technology, historically a strength in actinide research at the Laboratory. Also, the technology must significantly reduce the volume of the waste upon treatment, i.e. waste minimization. Molten salt oxidation (MSO) has the promise of such a technology

  1. Fate of gaseous tritium and carbon-14 released from buried low-level radioactive waste

    International Nuclear Information System (INIS)

    Striegl, R.G.

    1988-01-01

    Microbial decomposition, chemical degradation, and volatilization of buried low-level radioactive waste results in the release of gases containing tritium ( 3 H) and carbon-14 ( 14 C) to the surrounding environment. Water vapor, carbon dioxide, and methane that contain 3 H or 14 C are primary products of microbial decomposition of the waste. Depending on the composition of the waste source, chemical degradation and volatilization of waste also may result in the production of a variety of radioactive gases and organic vapors. Movement of the gases in materials that surround waste trenches is affected by physical, geochemical, and biological mechanisms including sorption, gas-water-mineral reactions, isotopic dilution, microbial consumption, and bioaccumulation. These mechanisms either may transfer 3 H and 14 C to solids and infiltrating water or may result in the accumulation of the radionuclides in plant or animal tissue. Gaseous 3 H or 14 C that is not transferred to other forms is ultimately released to the atmosphere

  2. Effects of anthropogenic heavy metal contamination on litter decomposition in streams – A meta-analysis

    International Nuclear Information System (INIS)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K.; Guérold, François

    2016-01-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. - Highlights: • A meta-analysis was done to assess the effects of heavy metals on litter decomposition. • Heavy metals significantly and strongly inhibited litter decomposition in streams.

  3. Bregmanized Domain Decomposition for Image Restoration

    KAUST Repository

    Langer, Andreas

    2012-05-22

    Computational problems of large-scale data are gaining attention recently due to better hardware and hence, higher dimensionality of images and data sets acquired in applications. In the last couple of years non-smooth minimization problems such as total variation minimization became increasingly important for the solution of these tasks. While being favorable due to the improved enhancement of images compared to smooth imaging approaches, non-smooth minimization problems typically scale badly with the dimension of the data. Hence, for large imaging problems solved by total variation minimization domain decomposition algorithms have been proposed, aiming to split one large problem into N > 1 smaller problems which can be solved on parallel CPUs. The N subproblems constitute constrained minimization problems, where the constraint enforces the support of the minimizer to be the respective subdomain. In this paper we discuss a fast computational algorithm to solve domain decomposition for total variation minimization. In particular, we accelerate the computation of the subproblems by nested Bregman iterations. We propose a Bregmanized Operator Splitting-Split Bregman (BOS-SB) algorithm, which enforces the restriction onto the respective subdomain by a Bregman iteration that is subsequently solved by a Split Bregman strategy. The computational performance of this new approach is discussed for its application to image inpainting and image deblurring. It turns out that the proposed new solution technique is up to three times faster than the iterative algorithm currently used in domain decomposition methods for total variation minimization. © Springer Science+Business Media, LLC 2012.

  4. Application research of cost construction on radioactive waste management

    International Nuclear Information System (INIS)

    Gao Yanfeng; Bi Sheng; Liu Zhenhe

    2009-01-01

    This paper summarizes the theoretical basis systems for the cost component on radioactive waste management. Through the decomposition production of various types of project content, analysis of the cost elements of operating activities, study subjects at reason-able cost and expense. On the basis of the formation of radioactive waste management costs of the various operating structure Into, and established a comprehensive system of price system. (authors)

  5. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika; Amato, Nancy M.; Lu, Yanyan; Lien, Jyh-Ming

    2013-01-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  6. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika

    2013-02-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  7. Thermal decomposition of biphenyl (1963); Decomposition thermique du biphenyle (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Clerc, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The rates of formation of the decomposition products of biphenyl; hydrogen, methane, ethane, ethylene, as well as triphenyl have been measured in the vapour and liquid phases at 460 deg. C. The study of the decomposition products of biphenyl at different temperatures between 400 and 460 deg. C has provided values of the activation energies of the reactions yielding the main products of pyrolysis in the vapour phase. Product and Activation energy: Hydrogen 73 {+-} 2 kCal/Mole; Benzene 76 {+-} 2 kCal/Mole; Meta-triphenyl 53 {+-} 2 kCal/Mole; Biphenyl decomposition 64 {+-} 2 kCal/Mole; The rate of disappearance of biphenyl is only very approximately first order. These results show the major role played at the start of the decomposition by organic impurities which are not detectable by conventional physico-chemical analysis methods and the presence of which accelerates noticeably the decomposition rate. It was possible to eliminate these impurities by zone-melting carried out until the initial gradient of the formation curves for the products became constant. The composition of the high-molecular weight products (over 250) was deduced from the mean molecular weight and the dosage of the aromatic C - H bonds by infrared spectrophotometry. As a result the existence in tars of hydrogenated tetra, penta and hexaphenyl has been demonstrated. (author) [French] Les vitesses de formation des produits de decomposition du biphenyle: hydrogene, methane, ethane, ethylene, ainsi que des triphenyles, ont ete mesurees en phase vapeur et en phase liquide a 460 deg. C. L'etude des produits de decomposition du biphenyle a differentes temperatures comprises entre 400 et 460 deg. C, a fourni les valeurs des energies d'activation des reactions conduisant aux principaux produits de la pyrolyse en phase vapeur. Produit et Energie d'activation: Hydrogene 73 {+-} 2 kcal/Mole; Benzene 76 {+-} 2 kcal/Mole; Metatriphenyle, 53 {+-} 2 kcal/Mole; Decomposition du biphenyle 64 {+-} 2 kcal/Mole; La

  8. Development of a Novel Food Waste Collection Kiosk and Waste-to-Energy Business Model

    Directory of Open Access Journals (Sweden)

    Matthew Franchetti

    2016-08-01

    Full Text Available The U.S. generates more than 37 million metric tons of food waste each year, and over 95% of it is disposed of at U.S. landfills. This paper describes the development of a novel food waste collection kiosk and business model called “Greenbox” that will collect and store food waste from households and restaurants with incentives for user participation to spur food waste-to-energy production in a local community. Greenbox offers a low-cost collection point to divert food waste from landfills, reduce greenhouse gases from decomposition, and aid in generating cleaner energy. A functional prototype was successfully developed by a team of engineering students and a business model was created as part of a senior design capstone course. Each Greenbox unit has the potential to reduce 275 metric tons of food waste per year, remove 1320 kg of greenhouse gases, and create 470,000 liters of methane gas while providing a payback period of 4.2 years and a rate of return of 14.9%.

  9. Characterization of Explosives Processing Waste Decomposition Due to Composting. Phase 2

    Science.gov (United States)

    1992-11-01

    first was a group of static compost piles with 7, 10, 20, 30, and 40 volume percent of explosives-contaminated lagoon soil. The main variable thus was...piles and day 44 for the mechanical composters) venus the 100% contaminated soil which was removed from the lagoon for treatment. Percentage decreases...would become integrated into the soil by plants, soil bacteria and fungi, micro- and macroinvertebrates (e.g., arthropods, earthworms) and small

  10. Characterization of explosives processing waste decomposition due to composting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Ho, C.H.; Tyndall, R.L.; Vass, A.A.; Caton, J.E.; Caldwell, W.M.

    1994-09-01

    The objective of this work was to provide data and methodology assisting the transfer and acceptance of composting technology for the remediation of explosives-contaminated soils and sediments. Issues and activities addressed included: (a) chemical and toxicological characterization of compost samples from new field composting experiments, and the environmental availability of composting efficiency by isolation of bacterial consortia and natural surfactants from highly efficient composts, and (c) improved assessment of compost product suitability for land application.

  11. Molecular Mechanisms in the shock induced decomposition of FOX-7

    Science.gov (United States)

    Mishra, Ankit; Tiwari, Subodh C.; Nakano, Aiichiro; Vashishta, Priya; Kalia, Rajiv; CACS Team

    Experimental and first principle computational studies on FOX 7 have either involved a very small system consisting of a few atoms or they did not take into account the decomposition mechanisms under extreme conditions of temperature and pressure. We have performed a large-scale reactive MD simulation using ReaxFF-lg force field to study the shock decomposition of FOX 7. The chemical composition of the principal decomposition products correlates well with experimental observations. Furthermore, we observed that the production of N2 and H2O was inter molecular in nature and was through different chemical pathways. Moreover, the production of CO and CO2 was delayed due to production of large stable C,O atoms cluster. These critical insights into the initial processes involved in the shock induced decomposition of FOX-7 will greatly help in understanding the factors playing an important role in the insensitiveness of this high energy material. This research is supported by AFOSR Award No. FA9550-16-1-0042.

  12. Catalytic non-thermal plasma reactor for the decomposition of a ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Among the catalytic study, MnOx/SMF (manganese oxide on sintered metal fibres electrode) shows better performance, probably due to the formation of active oxygen species by in situ decomposition of ozone on the catalyst surface. Water vapour further enhanced the performance due to the in situ ...

  13. SF{sub 6} decomposition and layer formation due to excimer laser photoablation of SiO{sub 2} surface at gas-solid system

    Energy Technology Data Exchange (ETDEWEB)

    Sajad, Batool [Physics Department, Amirkabir University, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Parvin, Parviz [Physics Department, Amirkabir University, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Bassam, Mohamad Amin [Excimer Laser Lab, Emam Hussain University, PO Box 16575-4347, Tehrann (Iran, Islamic Republic of)

    2004-12-21

    In this work, the effect of an excimer laser has been studied for presenting a method for SF{sub 6} decomposition and simultaneous formation of a SiF{sub 2} layer on amorphous SiO{sub 2}. Though the excimer laser did not establish a gas phase photodissociation, we have shown that UV photoablation leads strongly to molecular decomposition in the SF{sub 6}-SiO{sub 2} system. Moreover, the dependence of the decomposition process on the exposure parameters such as the wavelength and intensity as well as the gas pressure and the focal point distance from the gas-solid interface has been investigated.

  14. The solidification of radioactive waste

    International Nuclear Information System (INIS)

    Nagaya, Kiichi; Fujimoto, Yoshio; Hashimoto, Yasuo; Nomura, Ichiro

    1985-01-01

    A previous paper covered the decomposition and vitrification of Na 2 SO 4 (the primary component of the liquid waste from BWR) with silica. Now, in order to establish an integrated treatment system for the radioactive waste from BWR, this paper examines the effects of combining incinerator ash and other incinerator wastes with radioactive waste on the durability of the final vitrified products. A bench scale test plat consisting of a waiped file evaporator/dryer, a Joule-heated glass melter and SO 2 absorber was therefore put into operation and run safety for a period of 3000 hours. The combination of the radioactive waste with incinerator ash and the secondary waste of the incinerator was found to make no difference on the durability of the final vitrified products effecting no increase or decrease. Durability similar to that displayed in the beaker tests was proven, with the final vitrified products exhibiting a leaching rate less than 3 x 10 -4 g/cm 2 /day at 95 deg C. (author)

  15. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    Science.gov (United States)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  16. Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures

    Science.gov (United States)

    Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en

    2015-08-01

    Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.

  17. Recycling of Organic Wastes to Achieve the Clean Agriculture Approach with Aid of Nuclear Techniques

    International Nuclear Information System (INIS)

    Moursy, A.A.A.

    2012-01-01

    The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. This desirtatation has the following targets: - Amendment and improving sandy soil properties - Utilization of farm wastes (Recycling) in safe mode -Benefits form organic matter decomposition. - Follow up the fate of same nutrients (Nitrogen) released in soil media after organic matter (O.M) decomposition and Impact on plant nutrition status.-saving the environment on short and long run.

  18. Development of ecologically safety technology for steam-thermal treatment of organic wastes

    International Nuclear Information System (INIS)

    Juravskij, J.

    1997-01-01

    The experience on mitigation of the consequences of the Chernobyl's nuclear power station accident proves that the treatment of large amounts of organic and mixed wastes containing radionuclides is a very urgent scientific and technical problem. In this connection a search for new ideas and development of highly efficient and ecologically safety technologies for treatment of organic radioactive wastes has been undertaken. This study is based on use of physico-mechanical properties of various organic materials (wood, rubber-containing composites, plastics, biomass) subjected to thermal decomposition in the overheated water steam medium. Under such conditions, there is a possibility, under relatively low temperatures (400 - 500 deg. C), to realize thermal decomposition and considerably (in 8 - 50 times) to reduce the amount of wastes, to obtain the main concentration of radionuclides in the solid residue and to prevent releases of gaseous products containing radionuclides to the environment. (author). 5 figs, 1 tab

  19. Process for treating waste water containing hydrazine from power stations

    International Nuclear Information System (INIS)

    Hoffmann, W.

    1982-01-01

    A process for treating waste water containing hydrazine from nuclear power stations is proposed, characterized by the fact that the water is taken continuously through a water decomposition cell. If the water does not have sufficient conductivity itself, a substance raising the electrical conductivity is added to the water to be treated. The electrolysis is situated in the waste water tank. (orig./RB) [de

  20. Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation

    Science.gov (United States)

    2017-04-24

    decomposition due to reduction in the acidity (i.e., [HNO3]) in the mixture. Reaction 2 has an activation barrier of Ea = 105 kJ/mol and is dominant at low...Propellants. Appl . Catal., B 2006, 62, 217−225. (15) Amariei, D.; Courtheóux, L.; Rossignol, S.; Kappenstein, C. Catalytic and Thermal Decomposition...Monopropellants: Thermal and Catalytic Decom- position Processes. Appl . Catal., B 2012, 127, 121−128. (19) Amrousse, R.; Katsumi, T.; Itouyama, N.; Azuma

  1. Investigation on the characteristics of liquid wastes depending on their generation sources and study on optimum treatment method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Guk; Kim, Dong Chan; Shin, Dae Hyun; Son, Seung Geun; Roh, Nam Sun; Woo, Je Kyung [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The major research contents conducted this year are as follows: (1) environmental regulation with respect to the treatment of the liquid waste in the U.S.A., (2) the present status of the generation and treatment of liquid wastes for large producers(>1,000 ton/year), (3) analysis for heating value element, heavy metal content, halogenated species on collected samples, (4) investigation on estimation method of energy recovery rate from liquid waste, (5) design of a lab. scale reactor which could be capable of conducting thermal decomposition test with small quantity of sample. In this study, present status of liquid waste generation and treatment is investigated, and thermal decomposition characteristics are studied using a lab. scale thermal reactor. The purpose of this research is to divide liquid waste into groups and to present best treatment method for their each group. (author). 24 refs., 21 figs., 23 tabs.

  2. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  3. Development of new treatment process for low level radioactive waste at Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Horiguchi, Kenichi; Sugaya, Atsushi; Saito, Yasuo; Tanaka, Kenji; Akutsu, Shigeru; Hirata, Toshiaki

    2009-01-01

    The Low-level radioactive Waste Treatment Facility (LWTF) was constructed at the Tokai Reprocessing Plant (TRP) and cold testing has been carried out since 2006. The waste which will be treated in the LWTF is combustible/incombustible solid waste and liquid waste. In the LWTF, the combustible/incombustible solid waste will be incinerated. The liquid waste will be treated by a radio-nuclides removal process and subsequently solidified in cement. This report describes the essential technologies of the LWTF and results of R and D work for the nitrate-ion decomposition technology for the liquid waste. (author)

  4. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  5. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  6. Thermal decomposition studies of aqueous and nitric solutions of hydroxyurea

    International Nuclear Information System (INIS)

    Shekhar Kumar; Pranay Kumar Sinha; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Hydroxyurea and its derivatives are important nonsalt forming reductants in partitioning of uranium and plutonium in the nuclear fuel reprocessing operations. There is no experimental data available in open literature describing pressurization due to the thermal decomposition of aqueous and nitric solutions of hydroxyurea at elevated temperatures. Authors studied thermal decomposition of hydroxyurea-nitric acid system and resultant pressurization at various concentrations of nitric acid in an adiabatic calorimeter in closed-vent conditions. During these experiments, pressurization was observed. In this paper, results of these experiments have been discussed. (author)

  7. Electrolytic treatment of liquid waste containing ammonium nitrate

    International Nuclear Information System (INIS)

    Komori, R.; Ogawa, N.; Ohtsuka, K.; Ohuchi, J.

    1981-01-01

    A study was made on the safe decomposition of ammonium nitrate, which is the main component of α-liquid waste from plutonium fuel facilities, by means of electrolytic reduction and thermal decomposition. In the first stage, ammonium nitrate is reduced to ammonium nitrite by electrolytic reduction using an electrolyser with a cation exchange membrane as a diaphragm. In the second stage, ammonium nitrite is decomposed to N 2 and H 2 O. The alkaline region and a low temperature are preferable for electrolytic reduction and the acidic region and high temperature for thermal decomposition. A basis was established for an ammonium nitrate treatment system in aqueous solution through the operation of a bench-scale unit, and the operating data obtained was applied to the basic design of a 10-m 3 /a facility. (author)

  8. Mixed radioactive and chemotoxic wastes (RMW)

    International Nuclear Information System (INIS)

    Dejonghe, I.P.

    1991-01-01

    During the first decades of development of nuclear energy, organizations involved in the management of nuclear wastes had their attention focused essentially on radioactive components. The impression may have prevailed that, considering the severe restrictions on radioactive materials, the protection measured applied for radioactive components of wastes would be more than adequate to cope with potential hazards from non radioactive components associated with radioactive wastes. More recently it was acknowledged that such interpretation is not necessarily justified in all cases since certain radioactive wastes also contain non-negligible amounts of heavy metals or hazardous organic components which, either, do not decay, or are subject to completely different decay (decomposition) mechanisms. The main purposes of the present study are to analyze whether mixed radioactive wastes are likely to occur in Europe and in what form, whether one needs a basis for integration for evaluating various forms of toxicity and by which practical interventions possible problems can be avoided or at least reduced. (au)

  9. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

    Directory of Open Access Journals (Sweden)

    A. Shitu

    2015-07-01

    Full Text Available Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to the pollution from agricultural waste streams by regulatory agencies are stringent and hence the application of toxic solvents during processing has become public concern. Recent development in valuable materials extraction from the decomposition of agricultural waste by sub-critical water treatment from the published literature was review. Physico-chemical characteristic (reaction temperature, reaction time and solid to liquid ratio of the sub-critical water affecting its yield were also reviewed. The utilization of biomass residue from agriculture, forest wood production and from food and feed processing industry may be an important alternative renewable energy supply. The paper also presents future research on sub-critical water.

  10. Separation of {sup 90}Sr from radioactive waste matrices-Microwave versus fusion decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M. [Paul Scherrer Institut, Department Logistics for Radiation Safety and Security, Radioanalytics, 5232 Villigen (Switzerland)], E-mail: maya.jaeggi@psi.ch; Eikenberg, J. [Paul Scherrer Institut, Department Logistics for Radiation Safety and Security, Radioanalytics, 5232 Villigen (Switzerland)

    2009-05-15

    Radioactive waste (slurry) from a detention pond deriving from two research reactors and several inactive and active drain outlets at the Paul Scherrer Institute are the basis for the current {sup 90}Sr investigation. For decomposition, a microwave method was applied, where 1 g of dry-ashed slurry was partially dissolved (HNO{sub 3} (65%)/H{sub 2}O{sub 2} (30%); v:v=8:2). In this slurry we obtained an {sup 90}Sr activity of 5.3{+-}0.2 Bq/g in solution. In a second run, we applied a borate-fusion (Li metaborate/Li tetraborate (80:20 w/w%) dissolving 1 g of dry-ashed 'Si-free' slurry at 1100 deg. C in a muffle furnace. We achieved an {sup 90}Sr activity of (7.8{+-}0.3) Bq/g, yet observing BaSO{sub 4} precipitation during the chromatographical separation of Sr. An alkali fusion using Na{sub 2}CO{sub 3} was done using the Bunsen burner and the muffle furnace for 20 min at 1000 deg. C, in combination. During formation of the hot glass, the surplus of Na{sub 2}CO{sub 3}, produced Na{sub 2}SO{sub 4} and BaCO{sub 3} in solid form. The hot glass was dissolved in deionised water, removing thus the SO{sub 4}{sup 2-} ions. Dissolving the residue directly in HNO{sub 3}, solves Ba as Ba(NO{sub 3}){sub 2} and thus we achieved over 80% of the {sup 133}Ba activity in the solution, as measured by {gamma}-spectrometry. {sup 85}Sr tracer of 88.0%{+-}3.3% was recovered, yielding on average in (7.4{+-}0.3) Bq/g of {sup 90}Sr activity. The increase of 2.1-2.5 Bq/g of {sup 90}Sr activity achieved with the alkali fusion, and the Li metaborate/Li tetraborate 80:20 w/w% fusion, respectively, clearly shows that some Sr must have been present as SrSO{sub 4} in the slurry.

  11. Development of ecologically safety technology for steam-thermal treatment of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Juravskij, J [Centre for Science, Technology and Industrial Applications, ` ` Tokema` ` , Minsk (Belarus)

    1997-02-01

    The experience on mitigation of the consequences of the Chernobyl`s nuclear power station accident proves that the treatment of large amounts of organic and mixed wastes containing radionuclides is a very urgent scientific and technical problem. In this connection a search for new ideas and development of highly efficient and ecologically safety technologies for treatment of organic radioactive wastes has been undertaken. This study is based on use of physico-mechanical properties of various organic materials (wood, rubber-containing composites, plastics, biomass) subjected to thermal decomposition in the overheated water steam medium. Under such conditions, there is a possibility, under relatively low temperatures (400 - 500 deg. C), to realize thermal decomposition and considerably (in 8 - 50 times) to reduce the amount of wastes, to obtain the main concentration of radionuclides in the solid residue and to prevent releases of gaseous products containing radionuclides to the environment. (author). 5 figs, 1 tab.

  12. Installation and Setup of Whole School Food Waste Composting Program

    Science.gov (United States)

    Zhang, A.; Forder, S. E.

    2014-12-01

    Hong Kong, one of the busiest trading harbors in the world, is also a city of 8 million of people. The biggest problem that the government faces is the lack of solid waste landfill space. Hong Kong produces around 13,500 tons of waste per day. There are three landfills in Hong Kong in operation. These three landfills will soon be exhausted in around 2020, and the solid waste in Hong Kong is still increasing. Out of the 13,500 tons of solid waste, 9,000 tons are organic solid waste or food waste. Food waste, especially domestic waste, is recyclable. The Independent Schools Foundation Academy has a project to collect domestic food waste (from the school cafeteria) for decomposition. Our school produces around 15 tons of food waste per year. The project includes a sub-project in the Primary school, which uses the organic soil produced by an aerobic food waste machine, the Rocket A900, to plant vegetables in school. This not only helps our school to process the waste, but also helps the Primary students to study agriculture and have greater opportunities for experimental learning. For this project, two types of machines will be used for food waste processing. Firstly, the Dehydra made by Tiny Planet reduces the volume and the mass of the food waste, by dehydrating the food waste and separating the ground food waste and the excessive water inside machine for further decomposition. Secondly, the A900 Rocket, also made by Tidy Planet; this is used to process the dehydrated ground food waste for around 14 days thereby producing usable organic soil. It grinds the food waste into tiny pieces so that it is easier to decompose. It also separates the wood chips inside the ground food waste. This machine runs an aerobic process, which includes O2 and will produce CO2 during the process and is less harmful to the environment. On the other hand, if it is an anaerobic process occurs during the operation, it will produce a greenhouse gas- CH4 -and smells bad.

  13. Tensor gauge condition and tensor field decomposition

    Science.gov (United States)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  14. The processing of aluminum gasarites via thermal decomposition of interstitial hydrides

    Science.gov (United States)

    Licavoli, Joseph J.

    Gasarite structures are a unique type of metallic foam containing tubular pores. The original methods for their production limited them to laboratory study despite appealing foam properties. Thermal decomposition processing of gasarites holds the potential to increase the application of gasarite foams in engineering design by removing several barriers to their industrial scale production. The following study characterized thermal decomposition gasarite processing both experimentally and theoretically. It was found that significant variation was inherent to this process therefore several modifications were necessary to produce gasarites using this method. Conventional means to increase porosity and enhance pore morphology were studied. Pore morphology was determined to be more easily replicated if pores were stabilized by alumina additions and powders were dispersed evenly. In order to better characterize processing, high temperature and high ramp rate thermal decomposition data were gathered. It was found that the high ramp rate thermal decomposition behavior of several hydrides was more rapid than hydride kinetics at low ramp rates. This data was then used to estimate the contribution of several pore formation mechanisms to the development of pore structure. It was found that gas-metal eutectic growth can only be a viable pore formation mode if non-equilibrium conditions persist. Bubble capture cannot be a dominant pore growth mode due to high bubble terminal velocities. Direct gas evolution appears to be the most likely pore formation mode due to high gas evolution rate from the decomposing particulate and microstructural pore growth trends. The overall process was evaluated for its economic viability. It was found that thermal decomposition has potential for industrialization, but further refinements are necessary in order for the process to be viable.

  15. A simple method for decomposition of peracetic acid in a microalgal cultivation system.

    Science.gov (United States)

    Sung, Min-Gyu; Lee, Hansol; Nam, Kibok; Rexroth, Sascha; Rögner, Matthias; Kwon, Jong-Hee; Yang, Ji-Won

    2015-03-01

    A cost-efficient process devoid of several washing steps was developed, which is related to direct cultivation following the decomposition of the sterilizer. Peracetic acid (PAA) is known to be an efficient antimicrobial agent due to its high oxidizing potential. Sterilization by 2 mM PAA demands at least 1 h incubation time for an effective disinfection. Direct degradation of PAA was demonstrated by utilizing components in conventional algal medium. Consequently, ferric ion and pH buffer (HEPES) showed a synergetic effect for the decomposition of PAA within 6 h. On the contrary, NaNO3, one of the main components in algal media, inhibits the decomposition of PAA. The improved growth of Chlorella vulgaris and Synechocystis PCC6803 was observed in the prepared BG11 by decomposition of PAA. This process involving sterilization and decomposition of PAA should help cost-efficient management of photobioreactors in a large scale for the production of value-added products and biofuels from microalgal biomass.

  16. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  17. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  18. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  19. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  20. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential.

    Science.gov (United States)

    Pathma, Jayakumar; Sakthivel, Natarajan

    2012-01-01

    Vermicomposting is a non-thermophilic, boioxidative process that involves earthworms and associated microbes. This biological organic waste decomposition process yields the biofertilizer namely the vermicompost. Vermicompost is a finely divided, peat like material with high porosity, good aeration, drainage, water holding capacity, microbial activity, excellent nutrient status and buffering capacity thereby resulting the required physiochemical characters congenial for soil fertility and plant growth. Vermicompost enhances soil biodiversity by promoting the beneficial microbes which inturn enhances plant growth directly by production of plant growth-regulating hormones and enzymes and indirectly by controlling plant pathogens, nematodes and other pests, thereby enhancing plant health and minimizing the yield loss. Due to its innate biological, biochemical and physiochemical properties, vermicompost may be used to promote sustainable agriculture and also for the safe management of agricultural, industrial, domestic and hospital wastes which may otherwise pose serious threat to life and environment.

  1. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  2. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  3. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson , R.A.

    1998-04-01

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variables on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB. These tests showed the following.The testing demonstrates that current facility configuration does not provide assured safety of operations relative to the hazards of benzene (in particular to maintain the tank headspace below 60 percent of the lower flammability limit (lfl) for benzene generation rates of greater than 7 mg/(L.h)) from possible accelerated reaction of excess NaTPB. Current maximal operating temperatures of 40 degrees C and the lack of protection against palladium entering Tank 48H provide insufficient protection against the onset of the reaction. Similarly, control of the amount of excess NaTPB, purification of the organic, or limiting the benzene content of the slurry (via stirring) and ionic strength of the waste mixture prove inadequate to assure safe operation.

  4. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.

    1998-04-01

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variables on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB. These tests showed the following.The testing demonstrates that current facility configuration does not provide assured safety of operations relative to the hazards of benzene (in particular to maintain the tank headspace below 60 percent of the lower flammability limit (lfl) for benzene generation rates of greater than 7 mg/(L.h)) from possible accelerated reaction of excess NaTPB. Current maximal operating temperatures of 40 degrees C and the lack of protection against palladium entering Tank 48H provide insufficient protection against the onset of the reaction. Similarly, control of the amount of excess NaTPB, purification of the organic, or limiting the benzene content of the slurry (via stirring) and ionic strength of the waste mixture prove inadequate to assure safe operation

  5. EPR characterization of carbonate ion effect on TCE and PCE decomposition by gamma-rays

    International Nuclear Information System (INIS)

    Yoon, J.H.; Chung, H.H.; Lee, M.J.; Jung, J.

    2002-01-01

    Carbonate ions significantly inhibit the decomposition of TCE (trichloroethylene) and PCE (perchloroethylene) by gamma-rays. The inhibition effect is larger in the case of TCE than PCE due to a greater dependence of TCE decomposition on hydroxyl radicals. The inhibition effect of carbonate ions was characterized by an EPR/spin-trapping technique. The intensity of DMPO-OH adduct signal decreased as the carbonate ion concentration increased and the percent of signal reduction was linearly proportional to the logarithm of carbonate ion concentration. This directly proves that the carbonate ions inhibit the decomposition of TCE and PCE by scavenging hydroxyl radicals. (author)

  6. Infiltration properties of covering soil into the void of buried concrete waste due to fluctuation of ground water level and its prevention

    International Nuclear Information System (INIS)

    Takatsu, Tadashi; Tadano, Hideki; Abe, Satoshi; Imai, Jun; Yanagisawa, Eiji; Mitachi, Toshiyuki

    1999-01-01

    Low level radioactive concrete waste will be produced in future by breaking up the nuclear facilities, and the waste will be disposed in shallow depth of ground. In order to prepare for those situation, it is needed to clarify the infiltration properties of the covering soil into the void of buried concrete waste due to the fluctuation of ground water level and to develop the prevention methods against the infiltration of the covering soil. In this study, full-scale concrete structure specimens were broken up, and were compacted in large scale testing boxes and a series tests changing water level up and down in the concrete waste and covering soil were performed. From the test results, it was found that the appropriate filter installed between the covering soil and the concrete waste, enable us to prevent the infiltration of covering soil into the void of concrete waste. (author)

  7. A Study on The Management of Municipal Residential Solid Waste in China

    Institute of Scientific and Technical Information of China (English)

    Lu Mingzhong; Shao Tianyi; Li Huayou

    2004-01-01

    As the main organic pollutant in municipal living waste, kitchen waste causes secondary pollution in the course of its being gathered and transported to the landfill by mixing with other refuse and by decomposition. This makes pollution prevention more difficult and raises the cost of landfill engineering. However, the amount of solid waste to be treated can be decreased and such pollution burden lessened by disposing of the solid waste in local municipal areas. The program in Beijing also shows that this works well with our situation in China and can accelerate marketization and public participation.

  8. Mapping of Natural Radionuclides using Noise Adjusted Singular Value Decomposition, NASVD

    DEFF Research Database (Denmark)

    Aage, Helle Karina

    2006-01-01

    Mapping of natural radionuclides from airborne gamma spectrometry suffer from random ”noise” in the spectra due to short measurement times. This is partly compensated for by using large volume detectors to improve the counting statistics. One method of further improving the quality of the measured...... spectra is to remove from the spectra a large fraction of this random noise using a special variant of Singular Value Decomposition: Noise Adjusted Singular Value Decomposition. In 1997-1999 the natural radionuclides on the Danish Island of Bornholm were mapped using a combination of the standard 3...

  9. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1999-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  10. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1998-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  11. Organic Tanks Safety Program: Waste aging studies

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year's findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to γ radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H 2 . Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs

  12. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance.

    Science.gov (United States)

    Lange, Lene; Huang, Yuhong; Busk, Peter Kamp

    2016-03-01

    Discovery of keratin-degrading enzymes from fungi and bacteria has primarily focused on finding one protease with efficient keratinase activity. Recently, an investigation was conducted of all keratinases secreted from a fungus known to grow on keratinaceous materials, such as feather, horn, and hooves. The study demonstrated that a minimum of three keratinases is needed to break down keratin, an endo-acting, an exo-acting, and an oligopeptide-acting keratinase. Further, several studies have documented that disruption of sulfur bridges of the keratin structure acts synergistically with the keratinases to loosen the molecular structure, thus giving the enzymes access to their substrate, the protein structure. With such complexity, it is relevant to compare microbial keratin decomposition with the microbial decomposition of well-studied polymers such as cellulose and chitin. Interestingly, it was recently shown that the specialized enzymes, lytic polysaccharide monoxygenases (LPMOs), shown to be important for breaking the recalcitrance of cellulose and chitin, are also found in keratin-degrading fungi. A holistic view of the complex molecular self-assembling structure of keratin and knowledge about enzymatic and boosting factors needed for keratin breakdown have been used to formulate a hypothesis for mode of action of the LPMOs in keratin decomposition and for a model for degradation of keratin in nature. Testing such hypotheses and models still needs to be done. Even now, the hypothesis can serve as an inspiration for designing industrial processes for keratin decomposition for conversion of unexploited waste streams, chicken feather, and pig bristles into bioaccessible animal feed.

  13. Developing a Decision Support Tool for Waste to Energy Calculations Using Energy Return on Investment

    Science.gov (United States)

    2016-12-01

    began with. There are multiple methods to accomplish this process, from the standard V- models to complex waterfall methods, but ultimately each...required data and data sources. The team conducted stakeholder analysis and functional decomposition of the requisite model before constructing its...decomposition of the requisite model before constructing its additional module to the tool. This study shows the viability of waste-to-energy technologies to

  14. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent

    Czech Academy of Sciences Publication Activity Database

    Wall, D.H.; Bradford, M.A.; John, M.G.St.; Trofymow, J.A.; Behan-Pelletier, V.; Bignell, D.E.; Dangerfield, J.M.; Parton, W.J.; Rusek, Josef; Voigt, W.; Wolters, V.; Gardel, H.Z.; Ayuke, F. O.; Bashford, R.; Beljakova, O.I.; Bohlen, P.J.; Brauman, A.; Flemming, S.; Henschel, J.R.; Johnson, D.L.; Jones, T.H.; Kovářová, Marcela; Kranabetter, J.M.; Kutny, L.; Lin, K.-Ch.; Maryati, M.; Masse, D.; Pokarzhevskii, A.; Rahman, H.; Sabará, M.G.; Salamon, J.-A.; Swift, M.J.; Varela, A.; Vasconcelos, H.L.; White, D.; Zou, X.

    2008-01-01

    Roč. 14, č. 11 (2008), s. 2661-2677 ISSN 1354-1013 Institutional research plan: CEZ:AV0Z60660521; CEZ:AV0Z60050516 Keywords : climate decomposition index * decomposition * litter Subject RIV: EH - Ecology, Behaviour Impact factor: 5.876, year: 2008

  15. Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Xingpeng Chen

    2014-12-01

    Full Text Available As the largest solid waste (SW generator in the world, China is facing serious pollution issues induced by increasing quantities of SW. The sustainability assessment of SW management is very important for designing relevant policy for further improving the overall efficiency of solid waste management (SWM. By focusing on industrial solid waste (ISW and municipal solid waste (MSW, the paper investigated the sustainability performance of SWM by applying decoupling analysis, and further identified the main drivers of SW change in China by adopting Logarithmic Mean Divisia Index (LMDI model. The results indicate that China has made a great achievement in SWM which was specifically expressed as the increase of ISW utilized amount and harmless disposal ratio of MSW, decrease of industrial solid waste discharged (ISWD, and absolute decoupling of ISWD from economic growth as well. However, China has a long way to go to achieve the goal of sustainable management of SW. The weak decoupling, even expansive negative decoupling of ISW generation and MSW disposal suggests that China needs timely technology innovation and rational institutional arrangement to reduce SW intensity from the source and promote classification and recycling. The factors of investment efficiency and technology are the main determinants of the decrease in SW, inversely, economic growth has increased SW discharge. The effects of investment intensity showed a volatile trend over time but eventually decreased SW discharged. Moreover, the factors of population and industrial structure slightly increased SW.

  16. Investigation on treatment of cyanide in waste water of coke-oven plant with radiation-technique

    International Nuclear Information System (INIS)

    Qi Shengchu; He Yongke; Wu Jilan

    1992-01-01

    The treatment of cyanide in waste water of coke-oven plant with radiation-technique was investigated. The investigation indicated that toxic products under γ-ray irradiation were changed into less-toxic or non-toxic products. Organic pollutants will compete with cyanide for scavenging active intermediates of water (H, e aq - and OH radical). Therefore, it will inhibit cyanide radiolysis. The pretreatment with active carbon increases the radiolytic decomposition rate of cyanide and damage rate of organism in waste water. H 2 O 2 and N 2 O convert e aq - into OH radical. however they improve the efficiency decomposition of cyanide. OH radical plays an important role in reducing cyanide content and COD value

  17. Pyrolysis of Waste Castor Seed Cake: A Thermo-Kinetics Study

    Directory of Open Access Journals (Sweden)

    Abdullahi Muhammad Sokoto

    2018-03-01

    Full Text Available Biomass pyrolysis is a thermo-chemical conversion process that is of both industrial and ecological importance. The efficient chemical transformation of waste biomass to numerous products via pyrolysis reactions depends on process kinetic rates; hence the need for kinetic models to best design and operate the pyrolysis. Also, for an efficient design of an environmentally sustainable pyrolysis process of a specific lignocellulosic waste, a proper understanding of its thermo-kinetic behavior is imperative. Thus, pyrolysis kinetics of castor seed de-oiled cake (Ricinus communis using thermogravimetric technique was studied. The decomposition of the cake was carried out in a nitrogen atmosphere with a flow rate of 100mL min-1 from ambient temperature to 900 °C. The results of the thermal profile showed moisture removal and devolatilization stages, and maximum decomposition of the cake occurred at a temperature of 200-400 °C. The kinetic parameters such as apparent activation energy, pre-exponential factor, and order of reaction were determined using Friedman (FD, Kissinger-Akahira-Sunose (KAS, and Flynn-Wall-Ozawa (FWO kinetic models. The average apparent activation energy values of 124.61, 126.95 and 129.80 kJmol-1 were calculated from the slopes of the respective models. The apparent activation energy values obtained depends on conversion, which is an evidence of multi-step kinetic process during the pyrolytic decomposition of the cake. The kinetic data would be of immense benefit to model, design and develop a suitable thermo-chemical system for the conversion of waste de-oil cake to energy carrier.

  18. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  19. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb climate.

    Directory of Open Access Journals (Sweden)

    Shari L Forbes

    Full Text Available The investigation of volatile organic compounds (VOCs associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L. were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry (GC × GC-TOFMS. The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC × GC-TOFMS were

  20. Identification of efficient chelating acids responsible for Cesium, Strontium and Barium complexes solubilization in mixed wastes

    International Nuclear Information System (INIS)

    Borai, E.H.

    2007-01-01

    The present paper is focused to characterize the available multi dentate ligand species and their metal ion complexes of cesium (Cs), strontium (Sr) and barium (Ba) formed with the parent chelators, complexing agents and its fragment products in mixed waste filtrate. The developed separation programs of different ligands by different mobile phases were based on the decrease of the effective charge of the anionic species in a differentiated way hence, the retention times on the stationary phases (AS-4A and AS-12A) are changed. Ion chromatographic (IC) analysis of the metal complexes showed that the carboxylic acids that are responsible for solubilizing Cs, Sr and Ba in the waste filtrate are NTA, Citrate and PDCA, respectively. Therefore, the predominant metal complexes in the filtrate at high ph are Cs (I)-NTA, Sr (IT)-Citrate and Ba (IT)-PDCA. Identification of the metal ion complexes responsible for solubilizing Cs, Sr and Ba was applied on the fresh and aged waste filtrates, to monitor their chemical behavior, which leads to increased control of the waste treatment process. Although, concentration measurements of both fresh and aged filtrates confirmed that the degradation process has occurred mainly due to a harsh chemical environment, the concentration of Cs(I), Sr(II) and Ba(II) increased slightly in the aged filterate compared with the fresh filtrate. This is due to the decomposition and/or degradation of their metal complexes and hence leads to free metal ion species in the filtrate. These observations indicate that the organic content of mixed waste filtrate is dynamic and need continuous analytical monitoring

  1. Dictionary-Based Tensor Canonical Polyadic Decomposition

    Science.gov (United States)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  2. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications

    International Nuclear Information System (INIS)

    Pan, Shu-Yuan; Chang, E.-E.; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-01-01

    Highlights: • Key carbonation parameters of wastes are determined by integrated thermal analyses. • A modified TG-DTG interpretation is proposed, and validated by the DSC technique. • The modified TG-DTG interpretation is further verified by DTA, TG-MS and TG-FTIR. • Kinetics and thermodynamics of CaCO 3 decomposition in solid wastes are determined. • Implication to maximum carbonation conversion of various solid wastes is described. - Abstract: Accelerated carbonation of alkaline solid wastes is an attractive method for CO 2 capture and utilization. However, the evaluation criteria of CaCO 3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200–900 °C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO 3 standards, carbonated BOFS samples and synthetic CaCO 3 /BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO 3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for

  3. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan (China); Chang, E.-E. [Department of Biochemistry, Taipei Medical University, Taipei 110, Taiwan (China); Kim, Hyunook [Department of Environmental Engineering, University of Seoul, Seoul 130-743 (Korea, Republic of); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan (China)

    2016-04-15

    Highlights: • Key carbonation parameters of wastes are determined by integrated thermal analyses. • A modified TG-DTG interpretation is proposed, and validated by the DSC technique. • The modified TG-DTG interpretation is further verified by DTA, TG-MS and TG-FTIR. • Kinetics and thermodynamics of CaCO{sub 3} decomposition in solid wastes are determined. • Implication to maximum carbonation conversion of various solid wastes is described. - Abstract: Accelerated carbonation of alkaline solid wastes is an attractive method for CO{sub 2} capture and utilization. However, the evaluation criteria of CaCO{sub 3} content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200–900 °C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO{sub 3} standards, carbonated BOFS samples and synthetic CaCO{sub 3}/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO{sub 3} in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed

  4. Cellular decomposition in vikalloys

    International Nuclear Information System (INIS)

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  5. Types of organic materials present in BNFL intermediate level waste streams

    International Nuclear Information System (INIS)

    Barlow, P.

    1988-01-01

    This presentation lists the constituents present in BNFL intermediate-level radioactive wastes. The inorganic and organic components are listed and there is a detailed analysis of the plutonium contaminated materials in terms of proportion of combustible and non-combustible content, up to the year 2000. A description of the Waste Treatment Complex at Sellafield is presented. The research programme for leach testing, sorption and solubility testing and decomposition of organic matter was outlined. (U.K.)

  6. Repeated application of organic waste affects soil organic matter composition

    DEFF Research Database (Denmark)

    Peltre, Clément; Gregorich, Edward G.; Bruun, Sander

    2017-01-01

    Land application of organic waste is an important alternative to landfilling and incineration because it helps restore soil fertility and has environmental and agronomic benefits. These benefits may be related to the biochemical composition of the waste, which can result in the accumulation...... of different types of carbon compounds in soil. The objective of this study was to identify and characterise changes in soil organic matter (SOM) composition after repeated applications of organic waste. Soil from the CRUCIAL field experiment in Denmark was sampled after 12 years of annual application...... that there was accumulation in soil of different C compounds for the different types of applied organic waste, which appeared to be related to the degree to which microbial activity was stimulated and the type of microbial communities applied with the wastes or associated with the decomposition of applied wastes...

  7. Early Decomposition of Retained Heavy Silicone Oil Droplets

    Directory of Open Access Journals (Sweden)

    Touka Banaee

    2012-01-01

    Full Text Available Purpose: To report a case of early decomposition of retained heavy silicone oil droplets. Case Report: The single highly myopic eye of a 16-year-old boy with history of scleral buckling and buckle revision developed redetachment due to inferior retinal dialysis. The patient underwent pars plana vitrectomy and injection of heavy silicone oil. Early emulsification of the silicone oil was observed following surgery, which was removed 4 weeks later in another operation. Retained heavy silicone droplets lost their heavier- than-water specific gravity within 2 months together with extensive iris depigmentation, and release of pigment granules into the anterior chamber and vitreous cavity. Conclusion: This case report demonstrates that heavy silicone oil droplets can undergo in vivo chemical decomposition with possible toxic effects on ocular tissues.

  8. The Effect of Topography on Target Decomposition of Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Sang-Eun Park

    2015-04-01

    Full Text Available Polarimetric target decomposition enables the interpretation of radar images more easily, mostly based on physical assumptions, i.e., fitting physically-based scattering models to the polarimetric SAR observations. However, the model-fitting result cannot be always successful. Particularly, the performance of model-fitting in sloping forests is still an open question. In this study, the effect of ground topography on the model-fitting-based polarimetric decomposition techniques is investigated. The estimation accuracy of each scattering component in the decomposition results are evaluated based on the simulated target matrix by using the incoherent vegetation scattering model that accounts for the tilted scattering surface beneath the forest canopy. Experimental results show that the surface and the double-bounce scattering components can be significantly misestimated due to the topographic slope, even when the volume scattering power is successfully estimated.

  9. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    Science.gov (United States)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid

  10. Development of the destruction technology for radioactive organic solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Park, H.S.; Lee, K.W. [and others

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs.

  11. Development of the destruction technology for radioactive organic solid wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Park, H.S.; Lee, K.W.

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs

  12. Studies on the decomposition of oxalic acid by nitric acid in presence of catalysts

    International Nuclear Information System (INIS)

    Noronha, D.M.; Pius, I.C.; Chaudhury, S.

    2015-01-01

    Impure Plutonium oxalate generated from the recovery of plutonium from waste solutions may require further purification via anion exchange. Conventionally, plutonium oxalate is converted to oxide in a furnace and the oxide is dissolved in Conc. HNO 3 containing HF and purified by anion exchange route. Studies initiated on the decomposition of oxalic acid with Conc. HNO 3 to facilitate direct dissolution of plutonium oxalate and quantitative destruction of oxalate are discussed in this paper. (author)

  13. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  14. Research and development for treatment and disposal technologies of TRU waste

    International Nuclear Information System (INIS)

    Kamei, Gento; Honda, Akira; Mihara, Morihiro; Oda, Chie; Murakami, Hiroshi; Masuda, Kenta; Yamaguchi, Kohei; Nakanishi, Hiroshi; Sasaki, Ryoichi; Ichige, Satoru; Takahashi, Kuniaki; Meguro, Yoshihiro; Yamaguchi, Hiromi; Aoyama, Yoshio

    2007-09-01

    After the publication of the 2nd progress report of geological disposal of TRU waste in Japan, policy and general scheme of future study for the waste disposal in Japan was published by ANRE and JAEA. This annual report summarized aim and progress of individual problem, which was assigned into JAEA in the published policy and general scheme. The problems are as follows; characteristics of TRU waste and its geologic disposal, treatment and waste production, quality control and inspection methodology for waste, mechanical analysis of near-field, data acquisition and preparation on radionuclides migration, cementitious material transition, bentonite and rock alteration in alkaline solution, nitrate effect, performance assessment of the disposal system and decomposition of nitrate as an alternative technology. (author)

  15. Influence of radiation on the system liquid radioactive wastes: geologic formation

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Balukova, V.D.; Kabakchi, S.A.; Medvedeva, M.L.

    1979-01-01

    Introduction of liquid radioactive wastes into deep strata-collectors results in a number of physical-chemical processes: precipitation, dissolution, complex formation, sorption, etc. The area occupied by the injected waste and changes in the nature of the liquid phase depend primarily on radiolysis processes in the heterogeneous system of liquid waste-stratal material occurring at elevated temperatures and pressures. Experiments that simulate actual conditions of temperature, pressure and high radiation levels on this system have been performed. Results are presented for radiolytic gas formation and for changes in the liquid phase and sorption capacity of stratal minerals. It is shown that the temperature increase in the stratum-collector significantly enhances waste decomposition processes, promotes sorption of radionuclides and decreases the mobility of the waste in the formation

  16. Improved Empirical Mode Decomposition Algorithm of Processing Complex Signal for IoT Application

    OpenAIRE

    Yang, Xianzhao; Cheng, Gengguo; Liu, Huikang

    2015-01-01

    Hilbert-Huang transform is widely used in signal analysis. However, due to its inadequacy in estimating both the maximum and the minimum values of the signals at both ends of the border, traditional HHT is easy to produce boundary error in empirical mode decomposition (EMD) process. To overcome this deficiency, this paper proposes an enhanced empirical mode decomposition algorithm for processing complex signal. Our work mainly focuses on two aspects. On one hand, we develop a technique to obt...

  17. Single-step scalable conversion of waste natural oils to carbon nanowhiskers and their interaction with mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Abheek [Indian Institute of Science Education and Research, Department of Chemical Sciences (India); Dutta, Priyanka [Indian Institute of Science Education and Research, Department of Biological Sciences (India); Sadhu, Anustup [Indian Institute of Science Education and Research, Department of Chemical Sciences (India); Maiti, Sankar [Indian Institute of Science Education and Research, Department of Biological Sciences (India); Bhattacharyya, Sayan, E-mail: sayanb@iiserkol.ac.in [Indian Institute of Science Education and Research, Department of Chemical Sciences (India)

    2013-07-15

    Waste cooking oil has daily deliberate hazardous effects on human health due to consumption of re-cooked oil and on the environment from disposal of the waste oil. These hazards can be controlled if there are ways to economically convert the waste oils into industrially relevant materials. Large-scale controlled catalytic conversion of the waste natural oils to carbon nanowhiskers (CNWs; diameter: 98-191 nm, length: {<=}2 {mu}m) was achieved by a one-pot, environmentally friendly process. The no-cost CNWs consist of carbon spirals with spacing between two adjacent layers at 3.1 {+-} 0.2 nm and arranged perpendicular to the whisker axis. The reactions were performed inside a sealed container at 500-850 Degree-Sign C and autogenic pressure for 4-10 h. It was demonstrated that the gaseous pressure from the decomposition of the fatty acids was crucial for formation of the semi-graphitic filamentous structures. The dilute acid-washed catalyst free CNWs were found to be negligibly toxic to the mammalian cells and can be localized inside the cell nucleus. The cellular internalization studies of the fluorescent CNWs demonstrated their viability as potential delivery vehicles into the mammalian cells.

  18. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition

    NARCIS (Netherlands)

    Chen, Hongmei; Oram, Natalie J.; Barry, Kathryn E.; Mommer, Liesje; Ruijven, van Jasper; Kroon, de Hans; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Gleixner, Gerd; Gessler, Arthur; González Macé, Odette; Hacker, Nina; Hildebrandt, Anke; Lange, Markus; Scherer-lorenzen, Michael; Scheu, Stefan; Oelmann, Yvonne; Wagg, Cameron; Wilcke, Wolfgang; Wirth, Christian; Weigelt, Alexandra

    2017-01-01

    Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we

  19. Effectivity of the Earthworms Pheretima hupiensis, Eudrellus sp. and Lumbricus sp. on the Organic Matter Decomposition Process

    Directory of Open Access Journals (Sweden)

    Ea Kosman Anwar

    2009-05-01

    Full Text Available The earthworms are the one of soil fauna component in soil ecosystem have an important role in organic matter decomposition procces. The earthworm feed plant leaf and plant matter up to apart and dissolved. Earthworm metabolisms produce like faeces that mixed with decomposed organic matter mean vermicompost. The vermicompost fertility varies because of some kind of earthworm differ in “niche” and attitude. The experiment was to study the effectivity of earthworm on organic matter decomposition which has been conducted in Soil Biological and Healthy Laboratory and Green House of Soil Research Institute Bogor, during 2006 Budget Year. The three kind of earthworms i.e Pheretima hupiensis, Lumbricus sp. and Eudrellus sp. combined with three kind of organic matter sources i.e rice straw, trash and palm oil plant waste (compost heap. The result shows that the Lumbricus sp. are the most effective decomposer compared to Pheretima hupiensis and Eudrellus sp. and the organic matter decomposed by Lumbricus sp. as followed: market waste was decomposed of 100%, palm oil empty fruit bunch (compost heap 95.8 % and rice straw 84.9%, respectively. Earthworm effectively decreased Fe, Al, Mn, Cu dan Zn.

  20. Innovative on-site approach to oil based drilling mud waste management

    International Nuclear Information System (INIS)

    Laurell, A.

    1999-01-01

    An innovative system has been developed by Unique Oilfield Technology Services (UNOTEC) for the environmentally safe containment and decomposition of oily drilling residuals. The approach is a complete management system which provides an on-site alternative to off-site disposal. The approach uses the principles of total containment and microbial decomposition of hydrocarbons. The complete management system transforms the waste into an end product suitable for on-site land treatment, in accordance with regulatory guidelines. This paper describes how the approach can eliminate the future environmental risk and economic liability associated with hydrocarbon contaminated materials

  1. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  2. Global burden of mortalities due to chronic exposure to ambient PM2.5 from open combustion of domestic waste

    Science.gov (United States)

    Kodros, John K.; Wiedinmyer, Christine; Ford, Bonne; Cucinotta, Rachel; Gan, Ryan; Magzamen, Sheryl; Pierce, Jeffrey R.

    2016-12-01

    Uncontrolled combustion of domestic waste has been observed in many countries, creating concerns for air quality; however, the health implications have not yet been quantified. We incorporate the Wiedinmyer et al (2014 Environ. Sci. Technol. 48 9523-30) emissions inventory into the global chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities from chronic exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. Using the concentration-response functions (CRFs) of Burnett et al (2014 Environ. Health Perspect. 122 397-403), we estimate that waste-combustion emissions result in 270 000 (5th-95th: 213 000-328 000) premature adult mortalities per year. The confidence interval results only from uncertainty in the CRFs and assumes equal toxicity of waste-combustion PM2.5 to all other PM2.5 sources. We acknowledge that this result is likely sensitive to choice of chemical-transport model, CRFs, and emission inventories. Our central estimate equates to 9% of adult mortalities from exposure to ambient PM2.5 reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion increases the risk of premature mortality by more than 0.5% for greater than 50% of the population. We consider sensitivity simulations to uncertainty in waste-combustion emission mass, the removal of waste-combustion emissions, and model resolution. A factor-of-2 uncertainty in waste-combustion PM2.5 leads to central estimates ranging from 138 000 to 518 000 mortalities per year for factors-of-2 reductions and increases, respectively. Complete removal of waste combustion would only avoid 191 000 (5th-95th: 151 000-224 000) mortalities per year (smaller than the total contributed premature mortalities due to nonlinear CRFs). Decreasing model resolution from 2° × 2.5° to 4° × 5° results in 16% fewer mortalities attributed to waste-combustion PM2.5, and over Asia, decreasing resolution from 0.5° × 0.666° to 2° × 2

  3. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  4. Thermal decomposition of beryllium perchlorate tetrahydrate

    International Nuclear Information System (INIS)

    Berezkina, L.G.; Borisova, S.I.; Tamm, N.S.; Novoselova, A.V.

    1975-01-01

    Thermal decomposition of Be(ClO 4 ) 2 x4H 2 O was studied by the differential flow technique in the helium stream. The kinetics was followed by an exchange reaction of the perchloric acid appearing by the decomposition with potassium carbonate. The rate of CO 2 liberation in this process was recorded by a heat conductivity detector. The exchange reaction yielding CO 2 is quantitative, it is not the limiting one and it does not distort the kinetics of the process of perchlorate decomposition. The solid products of decomposition were studied by infrared and NMR spectroscopy, roentgenography, thermography and chemical analysis. A mechanism suggested for the decomposition involves intermediate formation of hydroxyperchlorate: Be(ClO 4 ) 2 x4H 2 O → Be(OH)ClO 4 +HClO 4 +3H 2 O; Be(OH)ClO 4 → BeO+HClO 4 . Decomposition is accompained by melting of the sample. The mechanism of decomposition is hydrolytic. At room temperature the hydroxyperchlorate is a thick syrup-like compound crystallizing after long storing

  5. Sulfurized limonite as material for fast decomposition of organic compounds by heterogeneous Fenton reaction

    International Nuclear Information System (INIS)

    Toda, Kei; Tanaka, Toshinori; Tsuda, Yutaka; Ban, Masahiro; Koveke, Edwin P.; Koinuma, Michio; Ohira, Shin-Ichi

    2014-01-01

    Graphical abstract: - Highlights: • Used limonite degrades organic compounds by heterogeneous Fenton reaction. • Sulfurized limonite removes methylene blue color in seconds. • Recycled limonite can be used for biogas purification and wastewater treatment. - Abstract: Rapid decomposition of wastewater contaminants using sulfurized limonite (S-limonite) was investigated. Limonite is used for desulfurization of biogases, and S-limonite is obtained from desulfurization plants as solid waste. In this work, the profitable use of S-limonite in water treatment was examined. The divalent Fe in S-limonite was expected to produce OH radicals, as Fe 2+ ions and limonite thermally treated with H 2 do. Methylene blue was used for batch-wise monitoring of the decomposition performance. The decomposition rate was fast and the methylene blue solution color disappeared in only 10 s when a small amount of H 2 O 2 was added (1 mM in the sample solution) in the presence of S-limonite. The OH radicals were formed by a heterogeneous reaction on the S-limonite surface and Fenton reaction with dissolved Fe 2+ . The decomposition of pentachlorophenol was also examined; it was successfully decomposed in batch-wise tests. The surfaces of limonite before sulfurization, S-limonite, and S-limonite after use for water treatment were performed using scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that S-limonite reverted to limonite after being used for water treatment

  6. Sulfurized limonite as material for fast decomposition of organic compounds by heterogeneous Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Kei, E-mail: todakei@sci.kumamoto-u.ac.jp [Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Tanaka, Toshinori; Tsuda, Yutaka; Ban, Masahiro; Koveke, Edwin P. [Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Koinuma, Michio [Department of Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Ohira, Shin-Ichi [Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-08-15

    Graphical abstract: - Highlights: • Used limonite degrades organic compounds by heterogeneous Fenton reaction. • Sulfurized limonite removes methylene blue color in seconds. • Recycled limonite can be used for biogas purification and wastewater treatment. - Abstract: Rapid decomposition of wastewater contaminants using sulfurized limonite (S-limonite) was investigated. Limonite is used for desulfurization of biogases, and S-limonite is obtained from desulfurization plants as solid waste. In this work, the profitable use of S-limonite in water treatment was examined. The divalent Fe in S-limonite was expected to produce OH radicals, as Fe{sup 2+} ions and limonite thermally treated with H{sub 2} do. Methylene blue was used for batch-wise monitoring of the decomposition performance. The decomposition rate was fast and the methylene blue solution color disappeared in only 10 s when a small amount of H{sub 2}O{sub 2} was added (1 mM in the sample solution) in the presence of S-limonite. The OH radicals were formed by a heterogeneous reaction on the S-limonite surface and Fenton reaction with dissolved Fe{sup 2+}. The decomposition of pentachlorophenol was also examined; it was successfully decomposed in batch-wise tests. The surfaces of limonite before sulfurization, S-limonite, and S-limonite after use for water treatment were performed using scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that S-limonite reverted to limonite after being used for water treatment.

  7. Mobility Modelling through Trajectory Decomposition and Prediction

    OpenAIRE

    Faghihi, Farbod

    2017-01-01

    The ubiquity of mobile devices with positioning sensors make it possible to derive user's location at any time. However, constantly sensing the position in order to track the user's movement is not feasible, either due to the unavailability of sensors, or computational and storage burdens. In this thesis, we present and evaluate a novel approach for efficiently tracking user's movement trajectories using decomposition and prediction of trajectories. We facilitate tracking by taking advantage ...

  8. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2001-01-01

    Experiments on aqueous TiO 2 photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO 2 photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5∼3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs

  9. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2001-01-01

    Experiments on aqueous TiO{sup 2} photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO{sup 2} photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5{approx}3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs.

  10. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  11. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  12. Task 3 - Pyrolysis of plastic waste. Semi-annual report, April 1- September 30, 1997

    International Nuclear Information System (INIS)

    Ness, R.O.; Aulich, T.R.

    1997-09-01

    The Energy and Environmental Research Center is developing a technology for the thermal decomposition of high-organic-content, radionuclide-contaminated mixed wastes and spent (radioactive) ion-exchange resins from the nuclear power industry that will enable the separation and concentration of radionuclides as dry particulate solids and the generation of nonradioactive condensable and noncondensable gas products. Successful application of the technology will enable a significant volume reduction of radioactive waste and the production of an inexpensively disposable nonradioactive organic product. The project objective is to develop and demonstrate the commercial viability of a continuous thermal decomposition process that can fulfill the following requirements: separate radionuclides from radioactive waste streams containing a variety of types and levels of polymers, chlorinated species, and other organics, including rubber, oils, resins, and cellulosic-based materials; concentrate radionuclides in a homogeneous, dry particulate product that can be recovered, handled, and disposed of efficiently and safely; separate and recover any chlorine present (as PVC, chlorinated solvents, or inorganic chlorine) in the contaminated mixed-waste stream; and yield a nonradioactive, low-chlorine-content, condensable organic product that can be economically disposed. Progress is described

  13. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.

    Science.gov (United States)

    Rocca, Stefania; van Zomeren, André; Costa, Giulia; Dijkstra, Joris J; Comans, Rob N J; Lombardi, Francesco

    2013-02-01

    The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG-MS) analysis of the gaseous thermal decomposition products. Results of TG-MS analysis on RDF-I BA indicated that the LOI measured at 550°C was due to moisture evaporation and dehydration of Ca(OH)(2) and hydrocalumite. Results for the HW-I BA showed that LOI at 550°C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO(3) around 700°C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO(3) contents of the HW-I BA during TG-MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)(2) in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650°C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Thermal Decomposition Behaviors and Burning Characteristics of AN/Nitramine-Based Composite Propellant

    Science.gov (United States)

    Naya, Tomoki; Kohga, Makoto

    2015-04-01

    Ammonium nitrate (AN) has attracted much attention due to its clean burning nature as an oxidizer. However, an AN-based composite propellant has the disadvantages of low burning rate and poor ignitability. In this study, we added nitramine of cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX) as a high-energy material to AN propellants to overcome these disadvantages. The thermal decomposition and burning rate characteristics of the prepared propellants were examined as the ratio of AN and nitramine was varied. In the thermal decomposition process, AN/RDX propellants showed unique mass loss peaks in the lower temperature range that were not observed for AN or RDX propellants alone. AN and RDX decomposed continuously as an almost single oxidizer in the AN/RDX propellant. In contrast, AN/HMX propellants exhibited thermal decomposition characteristics similar to those of AN and HMX, which decomposed almost separately in the thermal decomposition of the AN/HMX propellant. The ignitability was improved and the burning rate increased by the addition of nitramine for both AN/RDX and AN/HMX propellants. The increased burning rates of AN/RDX propellants were greater than those of AN/HMX. The difference in the thermal decomposition and burning characteristics was caused by the interaction between AN and RDX.

  15. 1998 report on development of high-efficiency waste power generation technology. 2. Development of waste gasification and ash melting power generation technology; 1998 nendo kokoritsu haikibutsu hatsuden gijutsu kaihatsu seika hokokusho. Haikibutsu gas ka yoyu hatsuden gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In regard to waste gasification and ash melting power generation, a basic test and examination were conducted in fiscal 1998, with a full-scale development test made ready to start. In the development of technology for raising steam temperature, evaluation of high temperature corrosivity of SH materials and development of high-temperature dust removal system were carried out for example, as were development of dechlorination technology for thermal decomposition process and development of ceramic high-temperature air heater. In the development of technology to prevent exhaust gas reheating, preliminary examination was made on denitrification technologies using a catalyst with superior low-temperature activity. In the development of technology to reduce self-heat melting critical calorific value, investigation and basic test were carried out concerning a stable waste feed system, with a pilot test device experimentally manufactured and tested based on the findings. In the development of technology for reducing external fuel input, examination and analysis were performed on pretreatment techniques for waste plastics, with basic data obtained for a waste blowing system project. In addition, the thermal decomposition and combustion characteristics of waste plastics were clarified by the basic test. (NEDO)

  16. Requirements on sealing measures due to gas production

    Energy Technology Data Exchange (ETDEWEB)

    Arens, G.; Hoeglund, L.; Wiborgh, M.

    1995-03-01

    Since 1981 the former rock salt mine Bartensleben near Morsleben (former GDR) ERAM has been in operation as a repository for low and intermediate level radioactive waste. As a result of the reunification and the changed licensing situation a new closure concept for the repository has to be developed. During the post-operational phase of a repository for radioactive waste gas may be produced by corrosion of metals, microbial degradation and radiolytic decomposition. In the process of developing the concept to be used for backfilling and sealing in ERAM it is important that gas formed in the repository will not disrupt the barrier against radionuclide escape or enhance the radionuclide release. To evaluate the performance and the properties for a bentonite plug as the main element of the sealings gas transport modelling with TOUGH were performed. Due to the lack of site-specific data literature data were used. Consequently, large uncertainties in data remain at present, which were taken into account by a great number of parameter variations. To handle this a course discretisation for the calculations were developed. Started with a two-dimensional grid at the end the calculations were performed with a coarse one-dimensional grid. The primary question to answer in these calculations is if there is a risk for excessive pressurization of the repository caverns as a result of gas generation. In the reference case a maximum pressure of approximately 10 Mpa inside a cavern is reached after 1000 years which seems not to jeopardize the integrity of the repository.

  17. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  18. Universality of Schmidt decomposition and particle identity

    Science.gov (United States)

    Sciara, Stefania; Lo Franco, Rosario; Compagno, Giuseppe

    2017-03-01

    Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, its formulation for identical particles remains controversial, jeopardizing its application to analyze general many-body quantum systems. Here we prove, using a newly developed approach, a universal Schmidt decomposition which allows faithful quantification of the physical entanglement due to the identity of particles. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in separated places. For the case of two qutrits in the same place, we show that their entanglement behavior, whose physical interpretation is given, differs from that obtained before by different methods. Our results are generalizable to multiparticle systems and open the way for further developments in quantum information processing exploiting particle identity as a resource.

  19. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  20. IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NITRIC OXIDE (NO); FINAL

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. The authors have investigated the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. The silanation approach failed to stabilize Cu-ZSM-5 activity under hydrothermal condition. Silanation blocked the oxygen migration and inhibited oxygen desorption. Oxygen spillover was found to be an effective approach for promoting NO decomposition activity on Pt-based catalysts. Detailed mechanistic study revealed the oxygen inhibition in NO decomposition and reduction as the most critical issue in developing an effective catalytic approach for controlling NO emission

  1. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    Science.gov (United States)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  2. Development of Concentration and Calcination Technology For High Level Liquid Waste

    International Nuclear Information System (INIS)

    Pande, D.P.

    2006-01-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  3. Decomposition of Multi-player Games

    Science.gov (United States)

    Zhao, Dengji; Schiffel, Stephan; Thielscher, Michael

    Research in General Game Playing aims at building systems that learn to play unknown games without human intervention. We contribute to this endeavour by generalising the established technique of decomposition from AI Planning to multi-player games. To this end, we present a method for the automatic decomposition of previously unknown games into independent subgames, and we show how a general game player can exploit a successful decomposition for game tree search.

  4. Blood Cockle Shells Waste as Renewable Source for the Production of Biogenic CaCO3 and Its Characterisation

    Science.gov (United States)

    Asmi, D.; Zulfia, A.

    2017-11-01

    The prowess to reuse and recycle of blood cockle shells for raw material in bio-ceramics applications is an attractive component of integrated waste management program. In this paper an attempt is made to introduce a simple process to manufacture biogenic CaCO3 powder from blood cockle shells waste. The biogenic CaCO3 powder was produced from rinsing of blood cockle shells waste using deionised water and oxalic acid for cleaning the dirt and stain on the shells, then drying and grinding followed by heat treatment at 500 and 800 °C for 5 h. The powder obtained was characterised by XRF, DTA/TG, SEM, FTIR, and XRD analysis. The amount of 97.1 % CaO was obtained from XRF result. The thermal decomposition of CaCO3 become CaO due to mass loss was observed in the TG curve. The SEM result shows the needle-like aragonite morphology of blood cockle shells powder transformed to cubic-like calcite after heat treated at 500 °C. These results were consistent with FTIR and XRD results.

  5. FY 1994 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1994 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This 5-year joint project (FY 1990 to 1994) by Japan and the Philippines is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized in the Philippines into electric power, in which thermal decomposition/gasification of the wastes is combined with a gas engine system. The field tests of the demonstration plant successfully produce power of 100 kW by burning only the low-calorie gas with a heating value near critical level for self-sustained combustion, obtained by gasification of sawdust by the fluidized gasifier and refined, attaining the object of the project. It is confirmed that a 200 to 300 kW class commercial plant can be designed and constructed basically by scaling up the 100 kW demonstration plant. The other data obtained by the field tests include those for improved operability and maintainability, gas purification, and reducing sizes of the facilities, including utility facilities. (NEDO)

  6. Decomposition of diesel oil by various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Netzsch-Lehner, A

    1969-01-01

    Previous experiments demonstrated the decomposition of diesel oil in different soils. In this experiment the decomposition of /sup 14/C-n-Hexadecane labelled diesel oil by special microorganisms was studied. The results were as follows: (1) In the experimental soils the microorganisms Mycoccus ruber, Mycobacterium luteum and Trichoderma hamatum are responsible for the diesel oil decomposition. (2) By adding microorganisms to the soil an increase of the decomposition rate was found only in the beginning of the experiments. (3) Maximum decomposition of diesel oil was reached 2-3 weeks after incubation.

  7. The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-06-15

    Energy generation by wastes is considered one method of waste management that has the benefit of energy recovery. From the waste-to-energy point of view, waste cooking oil, waste lubricating oil, and waste plastics have been considered good candidates for feedstocks for energy conversion due to their high heating values. Compared to the independent management of these three wastes, the idea of co-processing them in integration is expected to gain more benefit. The economies of scale and the synergy of co-processing these wastes results in higher quality and higher yield of the end products. In this study, we use cost-benefit analysis to evaluate the integrated management scenario of collecting the three wastes and converting them to energy. We report the total heat of combustion of pyrolytic oil at the maximum and minimum conversion rates, and conduct a sensitivity analysis in which the parameters of an increase of the electricity cost for operating the process and increase of the feedstock transportation cost are tested. We evaluate the effects of economy of scale in the case of integrated waste management. We compare four cases of waste-to-energy conversion with the business as usual (BAU) scenario, and our results show that the integrated co-processing of waste cooking oil, waste lubricating oil, and waste plastics is the most profitable from the viewpoints of energy yield and economics. (author)

  8. Multilinear operators for higher-order decompositions.

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, Tamara Gibson

    2006-04-01

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

  9. The dispersal and impact of salt from surface storage piles the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Reith, C.C.; Louderbough, E.T.

    1986-01-01

    A comprehensive program of ecological studies occurs at the Waste Isolation Pilot Plant (WIPP) in an effort to detect and quantify impacts of excavated salt which is stored on the surface in two piles: one having originated in 1980, the other in 1984. Both piles are surrounded by berms which channel runoff to holding ponds, so nearly all dispersal is due to the resuspension, transport, and deposition of salt particles by wind. Ecological parameters which have been monitored since 1984 include: visual evidence (via photography), soil properties, microbial activity, leaf-litter decomposition, seedling emergence, plant foliar cover, and plant species diversity. These are periodically assessed at experimental plots near the salt piles, and at control plots several kilometers away

  10. Interacting effects of insects and flooding on wood decomposition.

    Directory of Open Access Journals (Sweden)

    Michael D Ulyshen

    Full Text Available Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L. decomposition rates in both seasonally flooded and unflooded forests over a 31-month period in the southeastern United States. Wood specific gravity (based on initial wood volume was significantly lower in bolts placed in unflooded forests and for those unprotected from insects. Approximately 20.5% and 13.7% of specific gravity loss after 31 months was attributable to insect activity in flooded and unflooded forests, respectively. Importantly, minimal between-treatment differences in water content and the results from a novel test carried out separately suggest the mesh bags had no significant impact on wood mass loss beyond the exclusion of insects. Subterranean termites (Isoptera: Rhinotermitidae: Reticulitermes spp. were 5-6 times more active below-ground in unflooded forests compared to flooded forests based on wooden monitoring stakes. They were also slightly more active above-ground in unflooded forests but these differences were not statistically significant. Similarly, seasonal flooding had no detectable effect on above-ground beetle (Coleoptera richness or abundance. Although seasonal flooding strongly reduced Reticulitermes activity below-ground, it can be concluded from an insignificant interaction between forest type and exclusion treatment that reduced above-ground decomposition rates in seasonally flooded forests were due largely to suppressed microbial activity at those locations. The findings from this study indicate that southeastern U.S. arthropod communities accelerate above-ground wood decomposition significantly and to a similar extent in both flooded and unflooded forests

  11. Control of Effluent Gases from Solid Waste Processing using Impregnated Carbon Nanotubes

    Science.gov (United States)

    Li, Jing; Fisher, John; Wignarajah, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored. Data showing decomposition of NO on metal impregnated carbon nanotubes is presented. Comparisons are made of the existing TCCS systems with the carbon nanotube based technology for removing NOx based on mass/energy penalties.

  12. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2000-01-01

    Experiments on aqueous TiO 2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO 2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  13. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  14. Decomposition of tetrachloroethylene by ionizing radiation

    International Nuclear Information System (INIS)

    Hakoda, T.; Hirota, K.; Hashimoto, S.

    1998-01-01

    Decomposition of tetrachloroethylene and other chloroethenes by ionizing radiation were examined to get information on treatment of industrial off-gas. Model gases, airs containing chloroethenes, were confined in batch reactors and irradiated with electron beam and gamma ray. The G-values of decomposition were larger in the order of tetrachloro- > trichloro- > trans-dichloro- > cis-dichloro- > monochloroethylene in electron beam irradiation and tetrachloro-, trichloro-, trans-dichloro- > cis-dichloro- > monochloroethylene in gamma ray irradiation. For tetrachloro-, trichloro- and trans-dichloroethylene, G-values of decomposition in EB irradiation increased with increase of chlorine atom in a molecule, while those in gamma ray irradiation were almost kept constant. The G-value of decomposition for tetrachloroethylene in EB irradiation was the largest of those for all chloroethenes. In order to examine the effect of the initial concentration on G-value of decomposition, airs containing 300 to 1,800 ppm of tetrachloroethylene were irradiated with electron beam and gamma ray. The G-values of decomposition in both irradiation increased with the initial concentration. Those in electron beam irradiation were two times larger than those in gamma ray irradiation

  15. Electrochemistry and Radioactive Wastes: A Scientific Overview

    Directory of Open Access Journals (Sweden)

    Maher Abed Elaziz

    2015-12-01

    Full Text Available Radioactive wastes are arising from nuclear applications such as nuclear medicine and nuclear power plants. Radioactive wastes should be managed in a safe manner to protect human beings and the environment now and in the future. The management strategy depends on collection, segregation, treatment, immobilization, and disposal. The treatment process is a very important step in which the hazardous materials were converted to a more concentrated, less volume and less movable materials. Electrochemistry is the branch of chemistry in which the passage of electric current was producing a chemical change. Electrochemical treatment of radioactive wastes is widely used all over the world. It has a number of advantages and hence benefits. Electrochemistry can lead to remote, automatic control and increasing safety. The present work is focusing on the role of electrochemistry in the treatment of radioactive wastes worldwide. It contains the fundamentals of electrochemistry, the brief story of radioactive wastes, and the modern trends in the electrochemical treatment of radioactive wastes. An overview of electrochemical decomposition of organic wastes, electrochemical reduction of nitrates, electro- precipitation, electro- ion exchange, and electrochemical remediation of soil are outlined. The main operating factors, the mechanism of decontamination, energy consumption and examples of field trials are considered.

  16. An Efficient Local Correlation Matrix Decomposition Approach for the Localization Implementation of Ensemble-Based Assimilation Methods

    Science.gov (United States)

    Zhang, Hongqin; Tian, Xiangjun

    2018-04-01

    Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.

  17. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1979-01-01

    The effect of γ-pre-irradiation of cellulose in cellulose containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation. (author)

  18. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M; Kaetsu, I [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1979-03-01

    The effect of ..gamma..-pre-irradiation of cellulose in cellulose containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation.

  19. Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials

    Energy Technology Data Exchange (ETDEWEB)

    Kamakura, M; Kaetsu, I

    1979-03-01

    The effect of gamma-pre-irradiation of cellulose in cellulose-containing waste plants was investigated through enzymatic and acidic hydrolysis reaction. Pre-irradiation of waste rice straw, chaff and saw dust accelerated the enzymatic hydrolysis by cellulase. Reducing sugar and glucose yields were higher with an increasing radiation dose in these materials. The required dose for effective acceleration of enzymatic hydrolysis was much reduced by the addition of chlorine during radiation. However, reducing sugar and glucose yields in the subsequent acidic hydrolysis of waste products decreased through pre-irradiation treatment. This was attributed to an acceleration effect of a secondary acidic decomposition of sugar to lower molecular weight-products through pre-irradiation.

  20. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  1. Fate of mercury in tree litter during decomposition

    Directory of Open Access Journals (Sweden)

    A. K. Pokharel

    2011-09-01

    Full Text Available We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C mass and concentration, mercury (Hg mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23 % of initial mass after 18 months, which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48 to 63 % Hg loss per unit dry mass loss, although one litter type showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64 % compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field likely from atmospheric deposition. Solubility of Hg, assessed by exposure of litter to water upon harvest, was very low (<0.22 ng Hg g−1 dry mass and decreased with increasing stage of decomposition for all litter types. Our results indicate potentially large gaseous emissions, or re-emissions, of Hg originally associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by additional sorption of Hg, with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition suggesting that emissions, retention, and sorption of Hg are dependent on litter type.

  2. Thermal decomposition of γ-irradiated lead nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Kumar, T.S.S.

    1990-01-01

    The thermal decomposition of unirradiated and γ-irradiated lead nitrate was studied by the gas evolution method. The decomposition proceeds through initial gas evolution, a short induction period, an acceleratory stage and a decay stage. The acceleratory and decay stages follow the Avrami-Erofeev equation. Irradiation enhances the decomposition but does not affect the shape of the decomposition curve. (author) 10 refs.; 7 figs.; 2 tabs

  3. Decomposing Nekrasov decomposition

    International Nuclear Information System (INIS)

    Morozov, A.; Zenkevich, Y.

    2016-01-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  4. Decomposing Nekrasov decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); Institute for Information Transmission Problems,19-1 Bolshoy Karetniy, Moscow, 127051 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Zenkevich, Y. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Institute for Nuclear Research of Russian Academy of Sciences,6a Prospekt 60-letiya Oktyabrya, Moscow, 117312 (Russian Federation)

    2016-02-16

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  5. VERMICOMPOSTING AS AN ALTERNATIVE WAY OF BIODEGRADABLE WASTE MANAGEMENT FOR SMALL MUNICIPALITIES

    Directory of Open Access Journals (Sweden)

    Aleksandra Sosnecka

    2016-07-01

    Full Text Available The aim of the study was to assess the usefulness of vermicomposting as a method of bioconversion of organic wastes, inter alia sewage sludge, biodegradable fraction of municipal solid wastes and green wastes. Vermicomposting is a biological process in which earthworms are employed to cooperate with microorganisms in order to convert organic wastes into a valuable product. It is considered as a relatively low cost and environmentally-friendly method of waste treatment. Nevertheless, as each biotechnology, the process is limited to some physical, chemical and biological parameters. In this study, sewage sludge coming from medium-sized wastewater treatment plant was mixed with mown grass, sawdust and organic fraction of municipal wastes and vermicomposted for 5 weeks with Eisenia fetida and Eisenia andrei as main actors. The scope of the research was to 1 assess the influence of E. fetida and E.andrei composting earthworms on the physical and chemical properties of the product; 2 changes of concentration of selected heavy metals and their available forms in compost during the process, 3 the effects of substrates on earthworms survival and reproduction. Selected earthworm species had shown a high tolerance to the contaminants present in sewage sludge and a positive impact on the quality of the product was noted. Vermicomposting enhances decomposition of organic matter, leads to decrease in C/N ratio and pH, and changes the availability of some heavy metals and its total content in substratum. Experimental medium led earthworms to increase body weight due to the presence of large amount of organic matter, while the reproduction was importantly reduced. Vermicomposting can be considered as a method of treatment of solid wastes, mainly in the case of small municipalities.

  6. Freeman-Durden Decomposition with Oriented Dihedral Scattering

    Directory of Open Access Journals (Sweden)

    Yan Jian

    2014-10-01

    Full Text Available In this paper, when the azimuth direction of polarimetric Synthetic Aperature Radars (SAR differs from the planting direction of crops, the double bounce of the incident electromagnetic waves from the terrain surface to the growing crops is investigated and compared with the normal double bounce. Oriented dihedral scattering model is developed to explain the investigated double bounce and is introduced into the Freeman-Durden decomposition. The decomposition algorithm corresponding to the improved decomposition is then proposed. The airborne polarimetric SAR data for agricultural land covering two flight tracks are chosen to validate the algorithm; the decomposition results show that for agricultural vegetated land, the improved Freeman-Durden decomposition has the advantage of increasing the decomposition coherency among the polarimetric SAR data along the different flight tracks.

  7. Fate of mercury in tree litter during decomposition

    Science.gov (United States)

    Pokharel, A. K.; Obrist, D.

    2011-09-01

    We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C) mass and concentration, mercury (Hg) mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23 % of initial mass after 18 months), which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48 to 63 % Hg loss per unit dry mass loss), although one litter type showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64 % compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field likely from atmospheric deposition. Solubility of Hg, assessed by exposure of litter to water upon harvest, was very low (associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by additional sorption of Hg, with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition suggesting that emissions, retention, and sorption of Hg are dependent on litter type.

  8. Study of non-catalytic thermal decomposition of triglyceride at hydroprocessing condition

    International Nuclear Information System (INIS)

    Palanisamy, Shanmugam; Gevert, Borje S.

    2016-01-01

    Highlights: • Thermolysis of triglycerides occurs above 300 °C and cracking intensify above 350 °C. • Decomposition of carboxylic group observed, and β-H abstraction gives radical. • Product contains aldehyde, ketonic, saturated/unsaturated, cyclic, glycerol group. • Gasoline fraction contains lighter, cyclic and unsaturated hydrocarbons. • Residues contain ester, dimer and carboxylic groups. - Abstract: Non-catalytic thermal decomposition of triglyceride is studied between 300 and 410 °C at 0.1 and 5 MPa in the presence of H 2 or inert gas. This test is carried in tubular reactor filled with inert material (borosilicate glass pellet). The qualitative and analytical results showed that n-alkanes and alkenes with oxygenated olefins were primary products, consistent with thermal cracking to lighter hydrocarbons. The resulting outlet fuel gas obtained mainly from the radical reaction and had high concentration of CO, ethylene and methane. The decomposition forms a large number of radical compounds containing acids, aldehydes, ketones, aliphatic and aromatic hydrocarbon groups. Lighter fraction contains mostly naphthenic group, and heavy fraction contains straight chain paraffinic hydrocarbons. When H 2 partial pressure raised, the cracking of heavy fractions is low, and products contain low concentration of the lighter and gasoline fractions. Here, the thermal decomposition of triglyceride yields lighter fractions due to cracking, decarboxylation and decarbonylation.

  9. Method of decomposing treatment for radioactive organic phosphate wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1985-01-01

    Purpose: To decompose the organic phosphoric-acid ester wastes containing radioactive material, which is produced from spent fuel reprocessing facilities, into inorganic materials using a simple device, under moderate conditions and at high decomposing ratio. Method: Radioactive organic phosphate wates are oxidatively decomposed by H 2 O 2 in an aqueous phosphoric-acid solution of metal phosphate salts. Copper phosphates are used as the metal phosphate salts and the decomposed solution of the radioactive organic phosphate wastes is used as the aqueous solution of the copper phosphate. The temperature used for the oxidizing decomposition ranges from 80 to 100 0 C. (Ikeda, J.)

  10. Control of Effluent Gases from Solid Waste Processing Using Carbon Nanotubes

    Science.gov (United States)

    Fisher, John; Cinke, Martin; Wignarajab, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is the release of effluent gases and contaminants that are in gaseous formed from the processes. A number of other gases, in particular NO(x), SO2, NH3, Hydrocarbons (e.g. CH4) do present hazards to the crew in space habitats. Reduction of mass, power, volume and resupply can be achieved by using catalyst impregnated carbon nanotubes as compared to other catalytic systems. The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. For example, SWNTs have high adsorptive capacity for NO and the adsorbed NO can be decomposed to N2 and O2 . Experimental results showing the decomposition of NO on metal impregnated carbon nanotubes is presented. Equivalent System Mass (ESM) comparisons are made of the existing TCCS systems with the carbon nanotube technology for removing NO(x). The potential for methane decomposition using carbon nanotubes catalysts is also discussed.

  11. Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK)

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yuwei; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Li, Xi; Yang, Aijun; Wu, Yi; Rong, Mingzhe, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 XianNing West Road, Xi’an, Shaanxi Province 710049 (China); Han, Guohui; Lu, Yanhui [Pinggao Group Co. Ltd., Pingdingshan, Henan Province 467001 (China)

    2016-08-15

    Due to the high global warming potential (GWP) and increasing environmental concerns, efforts on searching the alternative gases to SF{sub 6}, which is predominantly used as insulating and interrupting medium in high-voltage equipment, have become a hot topic in recent decades. Overcoming the drawbacks of the existing candidate gases, C5- perfluorinated ketone (C5 PFK) was reported as a promising gas with remarkable insulation capacity and the low GWP of approximately 1. Experimental measurements of the dielectric strength of this novel gas and its mixtures have been carried out, but the chemical decomposition pathways and products of C5 PFK during breakdown are still unknown, which are the essential factors in evaluating the electric strength of this gas in high-voltage equipment. Therefore, this paper is devoted to exploring all the possible decomposition pathways and species of C5 PFK by density functional theory (DFT). The structural optimizations, vibrational frequency calculations and energy calculations of the species involved in a considered pathway were carried out with DFT-(U)B3LYP/6-311G(d,p) method. Detailed potential energy surface was then investigated thoroughly by the same method. Lastly, six decomposition pathways of C5 PFK decomposition involving fission reactions and the reactions with a transition states were obtained. Important intermediate products were also determined. Among all the pathways studied, the favorable decomposition reactions of C5 PFK were found, involving C-C bond ruptures producing Ia and Ib in pathway I, followed by subsequent C-C bond ruptures and internal F atom transfers in the decomposition of Ia and Ib presented in pathways II + III and IV + V, respectively. Possible routes were pointed out in pathway III and lead to the decomposition of IIa, which is the main intermediate product found in pathway II of Ia decomposition. We also investigated the decomposition of Ib, which can undergo unimolecular reactions to give the

  12. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*

    Science.gov (United States)

    Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang

    2017-01-01

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839

  13. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.

    Science.gov (United States)

    Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

  14. Destruction studies of hazardous wastes by thermal plasma

    International Nuclear Information System (INIS)

    Cota S, G.

    1998-01-01

    Plasma technology appears promising because its high degree of controllability, capability to process waste without the adverse effects of combustion, and a very wide temperature range of operation. The goal of this work was to develop a process for a high throughput system to turn hazardous waste into inert stable products, which can be safely stored and to greatly reduce air pollution relative to incineration. The experiments have shown that the thermal plasma reactor can provide a high degree of decomposition of CCl 4 , C 6 H 6 , C 2 Cl 4 and commercial oil at low gas input speeds, with modest power requirements. Decomposition of 99.9999 % has been obtained in our laboratory and all the organic components are decomposed in base molecules (C, CO, CO 2 , H 2 , HCl). The analysis of exhaust gases was made by using a mass filter quadrupole. The equipment consist of a cylindrical reactor hermetically sealed, double-walled and water-cooled container made of special steel, this container in halt the crucible which serves to receive the waste materials. The whole system is designed for a maximal internal temperature of 2000 Centigrade. The gaseous result components of the material are transferred to a scrubber unit through an exit arranged on the top of reactor. The thermal efficiency evaluation of the plasma torch was also realized, obtaining a reasonable agreement between measurements and predictions in temperature profiles. (Author)

  15. Danburite decomposition by hydrochloric acid

    International Nuclear Information System (INIS)

    Mamatov, E.D.; Ashurov, N.A.; Mirsaidov, U.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by hydrochloric acid. The interaction of boron containing ores of Ak-Arkhar Deposit of Tajikistan with mineral acids, including hydrochloric acid was studied. The optimal conditions of extraction of valuable components from danburite composition were determined. The chemical composition of danburite of Ak-Arkhar Deposit was determined as well. The kinetics of decomposition of calcined danburite by hydrochloric acid was studied. The apparent activation energy of the process of danburite decomposition by hydrochloric acid was calculated.

  16. FY 1992 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1992 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1992 as the third year include on-the-spot surveys, tests for validating elementary techniques, designs and fabrication of part of the demonstration plant, and invitation of Philippine researchers to Japan. (NEDO)

  17. FY 1991 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1991 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1991 as the second year include on-the-spot surveys, tests for validating elementary techniques, designs and fabrication of part of the demonstration plant, and invitation of Philippine researchers to Japan. (NEDO)

  18. FY 1990 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1990 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1990 as the initial year include negotiations with the Philippines, on-the-spot surveys for the demonstration plant sites and conditions, and conceptual designs of the demonstration plant. (NEDO)

  19. LMDI decomposition approach: A guide for implementation

    International Nuclear Information System (INIS)

    Ang, B.W.

    2015-01-01

    Since it was first used by researchers to analyze industrial electricity consumption in the early 1980s, index decomposition analysis (IDA) has been widely adopted in energy and emission studies. Lately its use as the analytical component of accounting frameworks for tracking economy-wide energy efficiency trends has attracted considerable attention and interest among policy makers. The last comprehensive literature review of IDA was reported in 2000 which is some years back. After giving an update and presenting the key trends in the last 15 years, this study focuses on the implementation issues of the logarithmic mean Divisia index (LMDI) decomposition methods in view of their dominance in IDA in recent years. Eight LMDI models are presented and their origin, decomposition formulae, and strengths and weaknesses are summarized. Guidelines on the choice among these models are provided to assist users in implementation. - Highlights: • Guidelines for implementing LMDI decomposition approach are provided. • Eight LMDI decomposition models are summarized and compared. • The development of the LMDI decomposition approach is presented. • The latest developments of index decomposition analysis are briefly reviewed.

  20. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    Science.gov (United States)

    Ficken, Cari D; Wright, Justin P

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  1. Sediment mechanical response due to emplacement of a waste canister

    International Nuclear Information System (INIS)

    Karnes, C.H.; Dawson, P.R.; Silva, A.J.; Brown, W.T.

    1980-01-01

    Preliminary studies have been conducted to determine the interaction between a waste canister and seabed sediment during and after emplacement. Empirical and approximate methods for determining the depth reached by a freefall penetrator indicate that a boosted penetrator emplacement method may be necessary. Hole closure is necessary, but has not been verified because calculations and laboratory experiments show sensitivity to boundary conditions which control the degree of dynamic hole closure. Laboratory studies show that closure will take place by creep deformation but closure times in seabed environments are uncertain. For assumed thermomechanical properties of sediments, it is shown that a heat generating waste canister will probably not move a significant distancce during the heat generation period

  2. FDG decomposition products

    International Nuclear Information System (INIS)

    Macasek, F.; Buriova, E.

    2004-01-01

    In this presentation authors present the results of analysis of decomposition products of [ 18 ]fluorodexyglucose. It is concluded that the coupling of liquid chromatography - mass spectrometry with electrospray ionisation is a suitable tool for quantitative analysis of FDG radiopharmaceutical, i.e. assay of basic components (FDG, glucose), impurities (Kryptofix) and decomposition products (gluconic and glucuronic acids etc.); 2-[ 18 F]fluoro-deoxyglucose (FDG) is sufficiently stable and resistant towards autoradiolysis; the content of radiochemical impurities (2-[ 18 F]fluoro-gluconic and 2-[ 18 F]fluoro-glucuronic acids in expired FDG did not exceed 1%

  3. Global sensitivity analysis by polynomial dimensional decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2011-07-15

    This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

  4. Bacterial Community Succession in Pine-Wood Decomposition.

    Science.gov (United States)

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  5. Management intensity alters decomposition via biological pathways

    Science.gov (United States)

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  6. Digital Image Stabilization Method Based on Variational Mode Decomposition and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Duo Hao

    2017-11-01

    Full Text Available Cameras mounted on vehicles frequently suffer from image shake due to the vehicles’ motions. To remove jitter motions and preserve intentional motions, a hybrid digital image stabilization method is proposed that uses variational mode decomposition (VMD and relative entropy (RE. In this paper, the global motion vector (GMV is initially decomposed into several narrow-banded modes by VMD. REs, which exhibit the difference of probability distribution between two modes, are then calculated to identify the intentional and jitter motion modes. Finally, the summation of the jitter motion modes constitutes jitter motions, whereas the subtraction of the resulting sum from the GMV represents the intentional motions. The proposed stabilization method is compared with several known methods, namely, medium filter (MF, Kalman filter (KF, wavelet decomposition (MD method, empirical mode decomposition (EMD-based method, and enhanced EMD-based method, to evaluate stabilization performance. Experimental results show that the proposed method outperforms the other stabilization methods.

  7. Elevated UV-B radiation increased the decomposition of Cinnamomum camphora and Cyclobalanopsis glauca leaf litter in subtropical China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xinzhang Z.; Zhang, Huiling L.; Jiang, Hong; Yu, Shuquan Q. [Zhejiang Agriculture and Forestry Univ., Lin' an (China). The Nurturing Station for the State Key Lab. of Subtropical Silviculture; Zhejiang Agriculture and Forestry Univ., Lin' an (China). Zhejiang Provincial Key Lab. of Carbon Cycling and Carbon Sequestration in Forest Ecosystems; Chang, Scott X. [Alberta Univ., Edmonton (Canada). Dept. of Renewable Resources; Peng, Changhui H. [Quebec Univ., Montreal (Canada). Inst. of Environment Sciences

    2012-03-15

    Ultraviolet-B (UV-B) radiation reaching the earth's surface has been increasing due to ozone depletion and can profoundly influence litter decomposition and nutrient cycling in terrestrial ecosystems. The role of UV-B radiation in litter decomposition in humid environments is poorly understood; we thus investigated the effect of UV-B radiation on litter decomposition and nitrogen (N) release in a humid subtropical ecosystem in China. We conducted a field-based experiment using the litterbag method to study litter decomposition and N release under ambient and elevated (31% above ambient) UV-B radiation, using the leaf litter of two common tree species, Cinnamomum camphora and Cyclobalanopsis glauca, native to subtropical China. Elevated UV-B radiation significantly increased the decomposition rate of C. camphora and C. glauca leaf litter by 16.7% and 27.8%, respectively, and increased the N release from the decomposing litter of C. glauca but not C. camphora. Elevated UV-B radiation significantly accelerated the decomposition of litter of two native tree species and the N release from the decomposition litter of C. glauca in humid subtropical China, which has implications for soil carbon flux and forest productivity. (orig.)

  8. Status and integration of studies of gas generation in Hanford wastes

    International Nuclear Information System (INIS)

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments

  9. Status and integration of studies of gas generation in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments.

  10. Photochemical decomposition of catecholamines

    International Nuclear Information System (INIS)

    Mol, N.J. de; Henegouwen, G.M.J.B. van; Gerritsma, K.W.

    1979-01-01

    During photochemical decomposition (lambda=254 nm) adrenaline, isoprenaline and noradrenaline in aqueous solution were converted to the corresponding aminochrome for 65, 56 and 35% respectively. In determining this conversion, photochemical instability of the aminochromes was taken into account. Irradiations were performed in such dilute solutions that the neglect of the inner filter effect is permissible. Furthermore, quantum yields for the decomposition of the aminochromes in aqueous solution are given. (Author)

  11. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  12. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    Directory of Open Access Journals (Sweden)

    Cari D Ficken

    Full Text Available Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression. Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  13. Characterization and Utilization of Calcium Oxide (CaO) Thermally Decomposed from Fish Bones as a Catalyst in the Production of Biodiesel from Waste Cooking Oil

    OpenAIRE

    Aldes Lesbani; Sabat Okta Ceria Sitompul; Risfidian Mohadi; Nurlisa Hidayati

    2016-01-01

    Thermal decomposition of fish bones to obtain calcium oxide (CaO) was conducted at various temperatures of 400, 500, 800, 900, 1000, and 1100 °C. The calcium oxide was then characterized using X-ray diffractometer, FTIR spectrophotometer, and SEM analysis. The calcium oxide obtained from the decomposition at 1000 °C was then used as a catalyst in the production of biodiesel from waste cooking oil. Diffraction pattern of the calcium oxide produced from decomposition at 1000...

  14. Three-dimensional decomposition models for carbon productivity

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2012-01-01

    This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO 2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.

  15. Multilevel index decomposition analysis: Approaches and application

    International Nuclear Information System (INIS)

    Xu, X.Y.; Ang, B.W.

    2014-01-01

    With the growing interest in using the technique of index decomposition analysis (IDA) in energy and energy-related emission studies, such as to analyze the impacts of activity structure change or to track economy-wide energy efficiency trends, the conventional single-level IDA may not be able to meet certain needs in policy analysis. In this paper, some limitations of single-level IDA studies which can be addressed through applying multilevel decomposition analysis are discussed. We then introduce and compare two multilevel decomposition procedures, which are referred to as the multilevel-parallel (M-P) model and the multilevel-hierarchical (M-H) model. The former uses a similar decomposition procedure as in the single-level IDA, while the latter uses a stepwise decomposition procedure. Since the stepwise decomposition procedure is new in the IDA literature, the applicability of the popular IDA methods in the M-H model is discussed and cases where modifications are needed are explained. Numerical examples and application studies using the energy consumption data of the US and China are presented. - Highlights: • We discuss the limitations of single-level decomposition in IDA applied to energy study. • We introduce two multilevel decomposition models, study their features and discuss how they can address the limitations. • To extend from single-level to multilevel analysis, necessary modifications to some popular IDA methods are discussed. • We further discuss the practical significance of the multilevel models and present examples and cases to illustrate

  16. Thermic decomposition of biphenyl; Decomposition thermique du biphenyle

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-03-01

    Liquid and vapour phase pyrolysis of very pure biphenyl obtained by methods described in the text was carried out at 400 C in sealed ampoules, the fraction transformed being always less than 0.1 per cent. The main products were hydrogen, benzene, terphenyls, and a deposit of polyphenyls strongly adhering to the walls. Small quantities of the lower aliphatic hydrocarbons were also found. The variation of the yields of these products with a) the pyrolysis time, b) the state (gas or liquid) of the biphenyl, and c) the pressure of the vapour was measured. Varying the area and nature of the walls showed that in the absence of a liquid phase, the pyrolytic decomposition takes place in the adsorbed layer, and that metallic walls promote the reaction more actively than do those of glass (pyrex or silica). A mechanism is proposed to explain the results pertaining to this decomposition in the adsorbed phase. The adsorption seems to obey a Langmuir isotherm, and the chemical act which determines the overall rate of decomposition is unimolecular. (author) [French] Du biphenyle tres pur, dont la purification est decrite, est pyrolyse a 400 C en phase vapeur et en phase liquide dans des ampoules scellees sous vide, a des taux de decomposition n'ayant jamais depasse 0,1 pour cent. Les produits provenant de la pyrolyse sont essentiellement: l' hydrogene, le benzene, les therphenyles, et un depot de polyphenyles adherant fortement aux parois. En plus il se forme de faibles quantites d'hydrocarbures aliphatiques gazeux. On indique la variation des rendements des differents produits avec la duree de pyrolyse, l'etat gazeux ou liquide du biphenyle, et la pression de la vapeur. Variant la superficie et la nature des parois, on montre qu'en absence de liquide la pyrolyse se fait en phase adsorbee. La pyrolyse est plus active au contact de parois metalliques que de celles de verres (pyrex ou silice). A partir des resultats experimentaux un mecanisme de degradation du biphenyle en phase

  17. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador.

    Directory of Open Access Journals (Sweden)

    J Jara-Samaniego

    Full Text Available Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador, more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17 with a C/N ratio 25; pile 2: (60:30:10 with C/N ratio 24 and pile 3 (75:0:25 with C/N ratio 33, prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter

  18. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador.

    Science.gov (United States)

    Jara-Samaniego, J; Pérez-Murcia, M D; Bustamante, M A; Paredes, C; Pérez-Espinosa, A; Gavilanes-Terán, I; López, M; Marhuenda-Egea, F C; Brito, H; Moral, R

    2017-01-01

    Currently, the management of urban waste streams in developing countries is not optimized yet, and in many cases these wastes are disposed untreated in open dumps. This fact causes serious environmental and health problems due to the presence of contaminants and pathogens. Frequently, the use of specific low-cost strategies reduces the total amount of wastes. These strategies are mainly associated to the identification, separate collection and composting of specific organic waste streams, such as vegetable and fruit refuses from food markets and urban gardening activities. Concretely, in the Chimborazo Region (Ecuador), more than 80% of municipal solid waste is dumped into environment due to the lack of an efficient waste management strategy. Therefore, the aim of this study was to develop a demonstration project at field scale in this region to evaluate the feasibility of implanting the composting technology not only for the management of the organic waste fluxes from food market and gardening activities to be scaled-up in other developing regions, but also to obtain an end-product with a commercial value as organic fertilizer. Three co-composting mixtures were prepared using market wastes mixed with pruning of trees and ornamental palms as bulking agents. Two piles were created using different proportions of market waste and prunings of trees and ornamental palms: pile 1 (50:33:17) with a C/N ratio 25; pile 2: (60:30:10) with C/N ratio 24 and pile 3 (75:0:25) with C/N ratio 33), prepared with market waste and prunings of ornamental palm. Throughout the process, the temperature of the mixtures was monitored and organic matter evolution was determined using thermogravimetric and chemical techniques. Additionally, physico-chemical, chemical and agronomic parameters were determined to evaluate compost quality. The results obtained indicated that all the piles showed a suitable development of the composting process, with a significant organic matter decomposition

  19. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.

    Science.gov (United States)

    Jeong, Tae Su; Choi, Chang Ho; Lee, Ji Ye; Oh, Kyeong Keun

    2012-07-01

    Acid-catalyzed hydrothermal hydrolysis is one path to cellulosic glucose and subsequently to its dehydration end products such as hydroxymethyl furfural (HMF), formic acid and levulinic acid. The effect of sugar decomposition not only lowers the yield of fermentable sugars but also forms decomposition products that inhibit subsequent fermentation. The present experiments were conducted with four different acid catalysts (H(2)SO(4), HNO(3), HCl, and H(3)PO(4)) at various acid normalities (0.5-2.1N) in batch reactors at 180-210 °C. From the results, H(2)SO(4) was the most suitable catalyst for glucose production, but glucose decomposition occurred during the hydrolysis. The glucose production was maximized at 160.7 °C, 2.0% (w/v) H(2)SO(4), and 40 min, but resulted in a low glucan yield of 33.05% due to the decomposition reactions, which generated formic acid and levulinic acid. The highest concentration of levulinic acid, 7.82 g/L, was obtained at 181.2 °C, 2.0% (w/v) H(2)SO(4), and 40 min. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Primary decomposition of torsion R[X]-modules

    Directory of Open Access Journals (Sweden)

    William A. Adkins

    1994-01-01

    Full Text Available This paper is concerned with studying hereditary properties of primary decompositions of torsion R[X]-modules M which are torsion free as R-modules. Specifically, if an R[X]-submodule of M is pure as an R-submodule, then the primary decomposition of M determines a primary decomposition of the submodule. This is a generalization of the classical fact from linear algebra that a diagonalizable linear transformation on a vector space restricts to a diagonalizable linear transformation of any invariant subspace. Additionally, primary decompositions are considered under direct sums and tensor product.

  1. Differential Decomposition Among Pig, Rabbit, and Human Remains.

    Science.gov (United States)

    Dautartas, Angela; Kenyhercz, Michael W; Vidoli, Giovanna M; Meadows Jantz, Lee; Mundorff, Amy; Steadman, Dawnie Wolfe

    2018-03-30

    While nonhuman animal remains are often utilized in forensic research to develop methods to estimate the postmortem interval, systematic studies that directly validate animals as proxies for human decomposition are lacking. The current project compared decomposition rates among pigs, rabbits, and humans at the University of Tennessee's Anthropology Research Facility across three seasonal trials that spanned nearly 2 years. The Total Body Score (TBS) method was applied to quantify decomposition changes and calculate the postmortem interval (PMI) in accumulated degree days (ADD). Decomposition trajectories were analyzed by comparing the estimated and actual ADD for each seasonal trial and by fuzzy cluster analysis. The cluster analysis demonstrated that the rabbits formed one group while pigs and humans, although more similar to each other than either to rabbits, still showed important differences in decomposition patterns. The decomposition trends show that neither nonhuman model captured the pattern, rate, and variability of human decomposition. © 2018 American Academy of Forensic Sciences.

  2. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Ozkaya, Bestamin

    2007-01-01

    In this study, the effect of leachate recirculation on aerobic and anaerobic degradation of municipal solid wastes is determined by four laboratory-scale landfill reactors. The options studied and compared with the traditional anaerobic landfill are: leachate recirculation, landfill aeration, and aeration with leachate recirculation. Leachate quality is regularly monitored by the means of pH, alkalinity, total dissolved solids, conductivity, oxidation-reduction potential, chloride, chemical oxygen demand, ammonia, and total Kjeldahl nitrogen, in addition to generated leachate quantity. Aerobic leachate recirculated landfill appears to be the most effective option in the removal of organic matter and ammonia. The main difference between aerobic recirculated and non-recirculated landfill options is determined at leachate quantity. Recirculation is more effective on anaerobic degradation of solid waste than aerobic degradation. Further studies are going on to determine the optimum operational conditions for aeration and leachate recirculation rates, also with the operational costs of aeration and recirculation

  3. Exploring Patterns of Soil Organic Matter Decomposition with Students and the Public Through the Global Decomposition Project (GDP)

    Science.gov (United States)

    Wood, J. H.; Natali, S.

    2014-12-01

    The Global Decomposition Project (GDP) is a program designed to introduce and educate students and the general public about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. This easy-to-use hands-on activity focuses on questions such as "How do environmental conditions control decomposition of organic matter in soil?" and "Why do some areas accumulate organic matter and others do not?" Soil organic matter is important to local ecosystems because it affects soil structure, regulates soil moisture and temperature, and provides energy and nutrients to soil organisms. It is also important globally because it stores a large amount of carbon, and when microbes "eat", or decompose organic matter they release greenhouse gasses such as carbon dioxide and methane into the atmosphere, which affects the earth's climate. The protocol describes a commonly used method to measure decomposition using a paper made of cellulose, a component of plant cell walls. Participants can receive pre-made cellulose decomposition bags, or make decomposition bags using instructions in the protocol and easily obtained materials (e.g., window screen and lignin-free paper). Individual results will be shared with all participants and the broader public through an online database. We will present decomposition bag results from a research site in Alaskan tundra, as well as from a middle-school-student led experiment in California. The GDP demonstrates how scientific methods can be extended to educate broader audiences, while at the same time, data collected by students and the public can provide new insight into global patterns of soil decomposition. The GDP provides a pathway for scientists and educators to interact and reach meaningful education and research goals.

  4. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  5. Enhanced fertilization effect of a compost obtained from mixed herbs waste inoculated with novel strains of mesophilic bacteria

    Directory of Open Access Journals (Sweden)

    Dimitrijević Snežana M.

    2017-01-01

    Full Text Available Mixed medicinal plant waste was composted with addition of novel bacterial strains belonging to the genera Streptomyces, Paenybacillus, Bacillus and Hymenobacter. The composting was followed by assessment of chemical and biological parameters including C/N ratio, loss of organic matter, phosphorous and potassium content as well as CO2 generation and dehydrogenase activity during 164 days. The selected mesophilic bacterial starters had a potential to significantly reduce the period of mixed herb waste decomposition, from about 6 months to about 2.5 months. Based on the seed germination index of four plants (Fagopirum esculentum, Thymus vulgaris, Cynara scolimus and Lavandula officinalis the germination and radial root growth of the investigated plants was improved by the inoculated compost. The germination index of all tested species on the mature inoculated composts was in average 60% higher compared to the control compost. The research indicates that the mesophilic starter addition into the herbs waste can contribute to the speed of waste decomposition and lead to the improvement of biofertilization effect of the obtained compost. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31035

  6. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study

    DEFF Research Database (Denmark)

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2009-01-01

    The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH(4) potentials of solid wastes during 27 months of landfilling operation in two pilot...... scale landfill reactors. The initial methane potential of solid wastes filled to the reactors was around 0.347 L/CH(4)/g dry waste, which decreased with operational time of landfill reactors to values of 0.117 and 0.154 L/CH(4)/g dry waste for leachate recirculated (R1) and non-recirculated (R2...

  7. Pitfalls in VAR based return decompositions: A clarification

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard; Tanggaard, Carsten

    in their analysis is not "cashflow news" but "inter- est rate news" which should not be zero. Consequently, in contrast to what Chen and Zhao claim, their decomposition does not serve as a valid caution against VAR based decompositions. Second, we point out that in order for VAR based decompositions to be valid......Based on Chen and Zhao's (2009) criticism of VAR based return de- compositions, we explain in detail the various limitations and pitfalls involved in such decompositions. First, we show that Chen and Zhao's interpretation of their excess bond return decomposition is wrong: the residual component...

  8. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    Science.gov (United States)

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. Published by Elsevier B.V.

  9. A model of gas generation and transport within TRU [transuranic] waste drums

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1987-01-01

    Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled. Concentrations of gas throughout the waste drum are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that hydrogen gas can accumulate to concentrations greater than 4 mole percent (lower flammable limit) with about 5 Ci of plutonium. Polyethylene provides a worst case for combustible waste material. If the drum liner is punctured and a carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. 5 refs., 7 figs., 4 tabs

  10. An ab initio molecular dynamics study of thermal decomposition of 3,6-di(azido)-1,2,4,5-tetrazine.

    Science.gov (United States)

    Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2014-10-21

    Ab initio molecular dynamics simulations were performed to study the thermal decomposition of isolated and crystal 3,6-di(azido)-1,2,4,5-tetrazine (DiAT). During unimolecular decomposition, the three different initiation mechanisms were observed to be N-N2 cleavage, ring opening, and isomerization, respectively. The preferential initial decomposition step is the homolysis of the N-N2 bond in the azido group. The release mechanisms of nitrogen gas are found to be very different in the early and later decomposition stages of crystal DiAT. In the early decomposition, DiAT decomposes very fast and drastically without forming any stable long-chains or heterocyclic clusters, and most of the nitrogen gases are released through rapid rupture of nitrogen-nitrogen and carbon-nitrogen bonds. But in the later decomposition stage, the release of nitrogen gas is inhibited due to low mobility, long distance from each other, and strong carbon-nitrogen bonds. To overcome the obstacles, the nitrogen gases are released through slow formation and disintegration of polycyclic networks. Our simulations suggest a new decomposition mechanism for the organic polyazido initial explosive at the atomistic level.

  11. Treatment of off-gas from lagoon sludge thermal decomposition

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Ga, M. J.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has launched a decommissioning program of the uranium conversion plant in 2001. The treatment of the sludge waste, which was generated during the operation of the plant and stored in the lagoon, is one of the most important tasks in the decommissioning program of the plant. The major compounds of the lagoon sludge are ammonium nitrate, sodium nitrate, calcium nitrate, calcium carbonate, and uranium compounds. The minor compounds are iron, magnesium, aluminum, silicon and phosphorus. A treatment process of the sludge was developed as figure 1 based on the results of the sludge characteristics and the developed treatment technologies. A treatment of off-gas evolved from the nitrate salts thermal decomposition is one of the important process. Off-gas treatment by using a selective catalytic reduction (SCR) method was investigated in this study

  12. Wool-waste as organic nutrient source for container-grown plants

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State University, North Mississippi Research and Extension Center, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Stratton, Glenn W [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Pincock, James [Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3 (Canada); Butler, Stephanie [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Jeliazkova, Ekaterina A [Mississippi State University, Department of Plant and Soil Sciences, Mississippi State, MS 39762 (United States); Nedkov, Nedko K [Research Institute for Roses and Aromatic Crops, 49 Osvobojdenie Blv., Kazanluk (Bulgaria); Gerard, Patrick D [Department of Applied Economics and Statistics, Clemson University, Clemson, SC 29634 (United States)

    2009-07-15

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  13. Wool-waste as organic nutrient source for container-grown plants

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James; Butler, Stephanie; Jeliazkova, Ekaterina A.; Nedkov, Nedko K.; Gerard, Patrick D.

    2009-01-01

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO 3 -N and NH 4 -N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  14. An investigation on thermal decomposition of DNTF-CMDB propellants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei; Wang, Jiangning; Ren, Xiaoning; Zhang, Laying; Zhou, Yanshui [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China)

    2007-12-15

    The thermal decomposition of DNTF-CMDB propellants was investigated by pressure differential scanning calorimetry (PDSC) and thermogravimetry (TG). The results show that there is only one decomposition peak on DSC curves, because the decomposition peak of DNTF cannot be separated from that of the NC/NG binder. The decomposition of DNTF can be obviously accelerated by the decomposition products of the NC/NG binder. The kinetic parameters of thermal decompositions for four DNTF-CMDB propellants at 6 MPa were obtained by the Kissinger method. It is found that the reaction rate decreases with increasing content of DNTF. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. Decomposition studies of no-clean solder flux systems in connection with corrosion reliability of electronics

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Verdingovas, Vadimas

    2013-01-01

    with specific soldering process and parameters, while most important factors are the flux chemistry and its decomposition characteristics. Active parts of the flux residue can cause increased water absorption due to their hygroscopic nature and in solution they will increase leakage current and corrosion...... the contaminated PCBA parts to varying humidity and measuring the resulting leakage current. Results revealed a significant influence of flux chemistry including the amount of WOAs, while aggressiveness of the residue seems to vary with content and type of WOAs, and their nature of decomposition....

  16. Bacterial community succession in pine-wood decomposition

    Directory of Open Access Journals (Sweden)

    Anna eKielak

    2016-03-01

    Full Text Available Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  17. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    Science.gov (United States)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  18. Waste transport and storage: Packaging refused due to failure in fulfilling QC/QA requirements

    International Nuclear Information System (INIS)

    Bruno, N.C.; Brandao, R.O.; Cavalcante, V.L.

    2001-01-01

    The Brazilian Nuclear Programme comprises several nuclear and radioactive facilities including Angra I Nuclear Power Plant, in operation since 1981, and Angra II, scheduled to start its operation by the end of 1999. Among the other ones there are uranium mining and milling facilities, four research reactors and one industrial facility of monazite sands processing. The already existing waste generation and near future ones claim to a solution regarding waste disposal. Although site selection criteria for waste repository in Brazil has already been defined, political and psychosocial aspects have strong impact. Trauma generated by Goiania's radiological accident has led to difficulties when decisions about this matter have to be taken. As a consequence, the waste generated by Angra I is still in a provisional facility at the plant's site. Wastes from the medical sources are stored in research institutes while waste generated from monazite sands is kept in a dam system. In order to overpack non-qualified packages containing waste of Angra I NPP, 70 lost concrete shielding packagings had to be provided. Based on successfully designed and tested prototype, packagings and respective lids specifications were written, approved and released for serial production. As part of packaging certification process, Brazilian Competent Authority performed a regulatory inspection and audit. Various findings, such as weaknesses in quality control and quality assurance records, unacceptable test results as well as failure in modify the concrete composition during a testified packaging manufacturing, led Competent Authority to refuse the packagings as containers until complementary tests could be performed. Further tests and evaluations led the Competent Authority to conclude that the manufacturer failed to both comply with requirements established in packaging specification and fulfill quality control/quality assurance requirements. As responsible by federal law for the reception and

  19. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  20. Patched bimetallic surfaces are active catalysts for ammonia decomposition.

    Science.gov (United States)

    Guo, Wei; Vlachos, Dionisios G

    2015-10-07

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  1. Selected methods of waste monitoring using modern analytical techniques

    International Nuclear Information System (INIS)

    Hlavacek, I.; Hlavackova, I.

    1993-11-01

    Issues of the inspection and control of bituminized and cemented waste are discussed, and some methods of their nondestructive testing are described. Attention is paid to the inspection techniques, non-nuclear spectral techniques in particular, as employed for quality control of the wastes, waste concentrates, spent waste leaching solutions, as well as for the examination of environmental samples (waters and soils) from the surroundings of nuclear power plants. Some leaching tests used abroad for this purpose and practical analyses by the ICP-AES technique are given by way of example. The ICP-MS technique, which is unavailable in the Czech Republic, is routinely employed abroad for alpha nuclide measurements; examples of such analyses are also given. The next topic discussed includes the monitoring of organic acids and complexants to determine the degree of their thermal decomposition during the bituminization of wastes on an industrial line. All of the methods and procedures highlighted can be used as technical support during the monitoring of radioactive waste properties in industrial conditions, in the chemical and radiochemical analyses of wastes and related matter, in the calibration of nondestructive testing instrumentation, in the monitoring of contamination of the surroundings of nuclear facilities, and in trace analysis. (author). 10 tabs., 1 fig., 14 refs

  2. Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Yan

    2014-01-01

    Full Text Available We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  3. Constructive quantum Shannon decomposition from Cartan involutions

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Byron; Love, Peter [Department of Physics, 370 Lancaster Ave., Haverford College, Haverford, PA 19041 (United States)], E-mail: plove@haverford.edu

    2008-10-03

    The work presented here extends upon the best known universal quantum circuit, the quantum Shannon decomposition proposed by Shende et al (2006 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain the basis of the circuit's design in a pair of Cartan decompositions. This insight gives a simple constructive factoring algorithm in terms of the Cartan involutions corresponding to these decompositions.

  4. Constructive quantum Shannon decomposition from Cartan involutions

    International Nuclear Information System (INIS)

    Drury, Byron; Love, Peter

    2008-01-01

    The work presented here extends upon the best known universal quantum circuit, the quantum Shannon decomposition proposed by Shende et al (2006 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain the basis of the circuit's design in a pair of Cartan decompositions. This insight gives a simple constructive factoring algorithm in terms of the Cartan involutions corresponding to these decompositions

  5. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  6. Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition.

    Science.gov (United States)

    Wang, Chenxing; Kemao, Qian; Da, Feipeng

    2017-10-02

    Fringe-based optical measurement techniques require reliable fringe analysis methods, where empirical mode decomposition (EMD) is an outstanding one due to its ability of analyzing complex signals and the merit of being data-driven. However, two challenging issues hinder the application of EMD in practical measurement. One is the tricky mode mixing problem (MMP), making the decomposed intrinsic mode functions (IMFs) have equivocal physical meaning; the other is the automatic and accurate extraction of the sinusoidal fringe from the IMFs when unpredictable and unavoidable background and noise exist in real measurements. Accordingly, in this paper, a novel bidimensional sinusoids-assisted EMD (BSEMD) is proposed to decompose a fringe pattern into mono-component bidimensional IMFs (BIMFs), with the MMP solved; properties of the resulted BIMFs are then analyzed to recognize and enhance the useful fringe component. The decomposition and the fringe recognition are integrated and the latter provides a feedback to the former, helping to automatically stop the decomposition to make the algorithm simpler and more reliable. A series of experiments show that the proposed method is accurate, efficient and robust to various fringe patterns even with poor quality, rendering it a potential tool for practical use.

  7. Growth of wheat and lettuce and enzyme activities of soils under garlic stalk decomposition for different durations.

    Science.gov (United States)

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2017-07-01

    Garlic (Allium sativum L.) stalk is a byproduct of garlic production that is normally thought of as waste but is now considered a useful biological resource. It is necessary to utilize this resource efficiently and reasonably to reduce environmental pollution and achieve sustainable agricultural development. The effect of garlic stalk decomposed for different durations was investigated in this study using wheat (Triticum aestivum L.) and lettuce (Lactuca sativa var. crispa L.) as test plants. Garlic stalk in early stages of decomposition inhibited the shoot and root lengths of wheat and lettuce, but it promoted the shoot and root lengths in later stages; longer durations of garlic stalk decomposition significantly increased the shoot and root fresh weights of wheat and lettuce, whereas shorter decomposing durations significantly decreased the shoot and root fresh weights; and garlic stalk at different decomposition durations increased the activities of urease, sucrase and alkaline phosphatase in soil where wheat or lettuce was planted. Garlic stalk decomposed for 30 or 40 days could promote the growth of wheat and lettuce plants as well as soil enzyme activities. These results may provide a scientific basis for the study and application of garlic stalk. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. In situ study of glasses decomposition layer

    International Nuclear Information System (INIS)

    Zarembowitch-Deruelle, O.

    1997-01-01

    The aim of this work is to understand the involved mechanisms during the decomposition of glasses by water and the consequences on the morphology of the decomposition layer, in particular in the case of a nuclear glass: the R 7 T 7 . The chemical composition of this glass being very complicated, it is difficult to know the influence of the different elements on the decomposition kinetics and on the resulting morphology because several atoms have a same behaviour. Glasses with simplified composition (only 5 elements) have then been synthesized. The morphological and structural characteristics of these glasses have been given. They have then been decomposed by water. The leaching curves do not reflect the decomposition kinetics but the solubility of the different elements at every moment. The three steps of the leaching are: 1) de-alkalinization 2) lattice rearrangement 3) heavy elements solubilization. Two decomposition layer types have also been revealed according to the glass heavy elements rate. (O.M.)

  9. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.

    Science.gov (United States)

    Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe

    2014-03-01

    The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.

  10. Decontamination of organic waste

    International Nuclear Information System (INIS)

    Schulz, W.

    1977-01-01

    Decontamination stands for the sack collecting of wc-waste water of nuclear-medical tracts and especially the collecting of primary urine and primary faeces of patients after application of radio-isotopes (e.g. iodine 131). They are tied up in the sacks, treated with antiseptic and decomposition-preventing agents, and finally stored in a decupation depot over the time constant. The decupation depot can, for example, be a deep-freezor with separations and clocks, which is radiation-isolated. After the time constant a chemical and/or physical destruction (e.g. comminution) takes place, with simultaneous disinfection and thawing (vapour heating) and the transfer to the canalization. (DG) [de

  11. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  12. Decomposition studies of group 6 hexacarbonyl complexes. Pt. 2. Modelling of the decomposition process

    Energy Technology Data Exchange (ETDEWEB)

    Usoltsev, Ilya; Eichler, Robert; Tuerler, Andreas [Paul Scherrer Institut (PSI), Villigen (Switzerland); Bern Univ. (Switzerland)

    2016-11-01

    The decomposition behavior of group 6 metal hexacarbonyl complexes (M(CO){sub 6}) in a tubular flow reactor is simulated. A microscopic Monte-Carlo based model is presented for assessing the first bond dissociation enthalpy of M(CO){sub 6} complexes. The suggested approach superimposes a microscopic model of gas adsorption chromatography with a first-order heterogeneous decomposition model. The experimental data on the decomposition of Mo(CO){sub 6} and W(CO){sub 6} are successfully simulated by introducing available thermodynamic data. Thermodynamic data predicted by relativistic density functional theory is used in our model to deduce the most probable experimental behavior of the corresponding Sg carbonyl complex. Thus, the design of a chemical experiment with Sg(CO){sub 6} is suggested, which is sensitive to benchmark our theoretical understanding of the bond stability in carbonyl compounds of the heaviest elements.

  13. Cellulase and xylanase activity during the decomposition of three aquatic macrophytes in a tropical oxbow lagoon

    Directory of Open Access Journals (Sweden)

    L Sciessere

    2011-09-01

    Full Text Available Due to the connection between enzymatic activity and degradation of different fractions of organic matter, enzyme assays can be used to estimate degradation rates of particulate and dissolved organic carbon in freshwater systems. The aim of this study was to quantify and model the enzymatic degradation involving the decomposition of macrophytes, describing temporal activity of cellulases (EC 3.2.1.4 and EC 3.2.1.91 and xylanase (EC 3.2.1.8 during in situ decomposition of three aquatic macrophytes (Salvinia sp., Eichhornia azurea and Cyperus giganteus on the surface and water-sediment interface (w-s interface of an oxbow lagoon (Óleo lagoon within a natural Brazilian Savanna Reserve. Overall, the enzymatic degradation of aquatic macrophytes in Óleo lagoon occurred during the whole year and was initiated together with leaching. Xylanase production was ca. 5 times higher than cellulase values due to easy access to this compound by cellulolytic microorganisms. Enzymatic production and detritus mass decay were similar on the surface and w-s interface. Salvinia sp. was the most recalcitrant detritus, with low mass decay and enzymatic activity. E. azurea and C. giganteus decomposition rates and enzymatic production were high and similar. Due to the physicochemical homogeneity observed in the Óleo lagoon, the differences between the decay rates of each species are mostly related with detritus chemical quality.

  14. Schwarz methods for discrete elliptic and parabolic problems with an application to nuclear waste repository modellingSchwarz methods for discrete elliptic and parabolic problems with an application to nuclear waste repository modelling

    Czech Academy of Sciences Publication Activity Database

    Blaheta, Radim; Kohut, Roman; Neytcheva, M.; Starý, Jiří

    2007-01-01

    Roč. 76, 1-3 (2007), s. 18-27 ISSN 0378-4754 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z30860518 Keywords : Overlapping domain decomposition * Schwarz methods * Nuclear waste repository Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007

  15. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  16. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    Science.gov (United States)

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  17. Microbiological decomposition of bagasse after radiation pasteurization

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Ishigaki, Isao

    1987-01-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms. (author)

  18. Microbiological decomposition of bagasse after radiation pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao

    1987-11-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms.

  19. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained

  20. Self-decomposition of radiochemicals. Principles, control, observations and effects

    International Nuclear Information System (INIS)

    Evans, E.A.

    1976-01-01

    The aim of the booklet is to remind the established user of radiochemicals of the problems of self-decomposition and to inform those investigators who are new to the applications of radiotracers. The section headings are: introduction; radionuclides; mechanisms of decomposition; effects of temperature; control of decomposition; observations of self-decomposition (sections for compounds labelled with (a) carbon-14, (b) tritium, (c) phosphorus-32, (d) sulphur-35, (e) gamma- or X-ray emitting radionuclides, decomposition of labelled macromolecules); effects of impurities in radiotracer investigations; stability of labelled compounds during radiotracer studies. (U.K.)

  1. Reactive Goal Decomposition Hierarchies for On-Board Autonomy

    Science.gov (United States)

    Hartmann, L.

    2002-01-01

    As our experience grows, space missions and systems are expected to address ever more complex and demanding requirements with fewer resources (e.g., mass, power, budget). One approach to accommodating these higher expectations is to increase the level of autonomy to improve the capabilities and robustness of on- board systems and to simplify operations. The goal decomposition hierarchies described here provide a simple but powerful form of goal-directed behavior that is relatively easy to implement for space systems. A goal corresponds to a state or condition that an operator of the space system would like to bring about. In the system described here goals are decomposed into simpler subgoals until the subgoals are simple enough to execute directly. For each goal there is an activation condition and a set of decompositions. The decompositions correspond to different ways of achieving the higher level goal. Each decomposition contains a gating condition and a set of subgoals to be "executed" sequentially or in parallel. The gating conditions are evaluated in order and for the first one that is true, the corresponding decomposition is executed in order to achieve the higher level goal. The activation condition specifies global conditions (i.e., for all decompositions of the goal) that need to hold in order for the goal to be achieved. In real-time, parameters and state information are passed between goals and subgoals in the decomposition; a termination indication (success, failure, degree) is passed up when a decomposition finishes executing. The lowest level decompositions include servo control loops and finite state machines for generating control signals and sequencing i/o. Semaphores and shared memory are used to synchronize and coordinate decompositions that execute in parallel. The goal decomposition hierarchy is reactive in that the generated behavior is sensitive to the real-time state of the system and the environment. That is, the system is able to react

  2. Further development of technology for liquid waste processing

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1998-01-01

    Passing through of radiation causes chemical and physical changes in materials. These effects of radiation are able to be utilized for decomposition of organic compounds, precipitation of suspended small particles. Thus, clarification of waste water using radiation has been investigated. This report summarizes the principle, the studies and the trend to practical use of waste water processing with radiation. Generally, γ-ray from 60 Co and electron beam from electron accelerator are usable for water treatment. The penetrating power of electron beam is smaller than that of γ-ray, but the former is more suitable for the processing of a large amount of waste water since an electron accelerator with large power is usable now. Utilization of radiation has been examined for degradation of organic compounds with toxicity, sterilization and inactivation of pathological microbials and viruses, and reactivation of used active carbon and radiation was found applicable to all such purposes. (M.N.)

  3. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Katsuta, H.; Naruse, Y.; Ohno, H.; Yoshida, H.

    1984-01-01

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 500 0 C to 950 0 C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  4. Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal: Chloroform destruction in oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamgang-Youbi, Georges, E-mail: kamyougeo@yahoo.fr [French Atomic Commission-CEA, Marcoule-DTCD/SCDV/LPIC, BP 17171, 30207 Bagnols-Sur-Cèze Cedex (France); Department of Inorganic Chemistry, The University of Yaounde I, P.O Box, 812 Yaounde (Cameroon); Poizot, Karine; Lemont, Florent [French Atomic Commission-CEA, Marcoule-DTCD/SCDV/LPIC, BP 17171, 30207 Bagnols-Sur-Cèze Cedex (France)

    2013-01-15

    Highlights: ► Inductively plasma torch is used for the decomposition of organochlorine molecule. ► We examine the impact of liquid water substitution by oxygen gas as oxidant. ► Complete and safe decomposition is achieved with the presence of oxygen. ► The energy efficiency and capabilities of process are better with O{sub 2} than H{sub 2}O. -- Abstract: The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ∼4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl{sub 3} feed rates up to 400 g h{sup −1} with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g kWh{sup −1}. The conversion end products were identified and assayed by online FTIR spectroscopy (CO{sub 2}, HCl and H{sub 2}O) and redox titration (Cl{sub 2}). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (<1 g h{sup −1}) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO{sub 2} and H{sub 2}O have been found in the final off-gases composition.

  5. Magic Coset Decompositions

    CERN Document Server

    Cacciatori, Sergio L; Marrani, Alessio

    2013-01-01

    By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.

  6. The Effectivity of Marine Bio-activator and Surimi Liquid Waste Addition of Characteristics Liquid Organic Fertilizer from Sargassum sp.

    Directory of Open Access Journals (Sweden)

    Putri Wening Ratrinia

    2017-02-01

    Full Text Available AbstractOrganic fertilizer is highly recommended for soil and plant because it can improve the productivity and repair physical, chemical, and biological of soil. Sargassum sp. and surimi liquid wastes contain organic matter and nutrient needed by plants and soils. The addition of marine bio-activator which contains bacterial isolates from litter mangrove serves to accelerate the composting time and increases the activity of microorganisms in the decomposition process. The purpose of this study was to determine optimum time and the best formulation of decomposition process organic fertilizer. Raw materials used a waste of seaweed Sargassum sp., marine bio-activator and surimi liquid waste from catfish (Clarias sp.. The research was conducted six treatments control, Sargassum sp. + marine bio-activator, surimi liquid waste , Sargassum sp. + marine bio-activator + surimi liquid waste 80%, 90%, 100%. All treatments were fermented for 9 days and analysed the C-organic, total N, C/N ratio, P2O5, K2O on days 0, 3, 6 and 9. The results showed the optimum fermentation period was on the 6th day. The most optimum concentration of surimi liquid waste added was at a concentration of 90%, with characteristics of the products was C-organic 0.803±0.0115%, total N 740.063±0.0862 ppm, C/N ratio 10.855±0.1562, P2O5 425.603±0.2329 ppm, K2O 2738.627±0.2836 ppm.

  7. The Effectivity of Marine Bio-activator and Surimi Liquid Waste Addition of Characteristics Liquid Organic Fertilizer from Sargassum sp.

    Directory of Open Access Journals (Sweden)

    Putri Wening Ratrinia

    2016-12-01

    Full Text Available Organic fertilizer is highly recommended for soil and plant because it can improve the productivity and repair physical, chemical, and biological of soil. Sargassum sp. and surimi liquid wastes contain organic matter and nutrient needed by plants and soils. The addition of marine bio-activator which contains bacterial isolates from litter mangrove serves to accelerate the composting time and increases the activity of microorganisms in the decomposition process. The purpose of this study was to determine optimum time and the best formulation of decomposition process organic fertilizer. Raw materials used a waste of seaweed Sargassum sp., marine bio-activator and surimi liquid waste from catfish (Clarias sp.. The research was conducted six treatments control, Sargassum sp. + marine bio-activator, surimi liquid waste , Sargassum sp. + marine bio-activator + surimi liquid waste 80%, 90%, 100%. All treatments were fermented for 9 days and analysed the C-organic, total N, C/N ratio, P2 O5 , K2 O on days 0, 3, 6 and 9. The results showed the optimum fermentation period was on the 6th day. The most optimum concentration of surimi liquid waste added was at a concentration of 90%, with characteristics of the products was C-organic 0.803 ± 0.0115 %, total N 740.063 ± 0.0862 ppm, C/N ratio 10.855 ± 0.1562, P2 O5 425.603 ± 0.2329 ppm, K2 O 2738.627 ± 0.2836 ppm.

  8. Preliminary observation on the effect of baking soda volume on controlling odour from discarded organic waste.

    Science.gov (United States)

    Qamaruz-Zaman, N; Kun, Y; Rosli, R-N

    2015-01-01

    Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Public concerns and behaviours towards solid waste management in Italy.

    Science.gov (United States)

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  10. A FEASIBILITY STUDY OF PLANT FOR COMPOSTING ORGANIC WASTE IN THE CITY OF KRAGUJEVAC

    Directory of Open Access Journals (Sweden)

    Nebojša Jovičić

    2009-09-01

    Full Text Available Growing of waste quantity, its harmful influence on natural environments and world experiences has had so far impose the necessity for the analyses of techno-economic possibilities of the processes for treating the organic fraction of municipal solid waste stream, in our region. In this paper, problematic of treatment solid waste and composting process, which represents one of the most acceptable options for the processing of solid waste, are given. Composting involves the aerobic biological decomposition of organic materials to produce a stable humus-like product. Base of composting process, review of composting feedstock, use of compost, benefits of composting process and concrete proposal for composting process realization, with techno-economic analysis for the construction of composting plant on territory community Kragujevac, are given in this paper, too.

  11. Survey the Effect of Pistachio Waste Composting Process with Different Treatments on Concentration of Heavy Metals

    Directory of Open Access Journals (Sweden)

    M Jalili

    2016-09-01

    Full Text Available Abstract Introduction: Composting is one of the pistachio wastes management methods. In the appropriate compost production nutrients and heavy metals are determinant. The aim of this study is survey the effect of pistachio wastes composting process with different treatments on the concentration of heavy metals. Methods: In this study, during the 60-day pistachio wastes composting process with two treatments of dewatered sewage sludge and cow manure, pH, EC, carbon to nitrogen ratio, Heavy metals and nutrients indicators were studied. The results were compared with WHO and Iranian National standard. Drawing the diagrams by Excel software (Version 2007 and Statistical analysis was performed by Spss Software (version 20 at a significance level of 0.005.  Results: During the 60-day composting pH initially had downward trend and then increased. The Cu, Zn, Fe, Mn and C/N ratio had downward trend and the EC, Na, K had increasing trend. Eventually, Iron, zinc, copper and manganese were less than the standard, Sodium was in Standard range and potassium was more than specified standards in the produced compost from pistachios waste with both treatments.  Conclusion: The results showed that the concentration of heavy metals and nutrients in the produced compost with both treatments were in the acceptable range. Eventually quality of produced compost with cow manure treatment due to better decomposition and greater stability was better than processed compost with dewatered sewage sludge treatment.

  12. On the hadron mass decomposition

    Science.gov (United States)

    Lorcé, Cédric

    2018-02-01

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.

  13. On the hadron mass decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [Universite Paris-Saclay, Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2018-02-15

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force. (orig.)

  14. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    Science.gov (United States)

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  15. Mathematical modelling of the decomposition of explosives

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2010-01-01

    Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.

  16. Decomposition of fresh and anaerobically digested plant biomass in soil

    International Nuclear Information System (INIS)

    Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.

    1987-01-01

    Using water hyacinth [Eichhornia crassipes (Mart.) Solms] for waste water renovation produces biomass that must be disposed of. This biomass may be anaerobically digested to produce CH 4 or added to soil directly as an amendment. In this study, fresh and anaerobically digested water hyacinth biomass, with either low or high N tissue content, were added to soil to evaluate C and N mineralization characteristics. The plant biomass was labeled with 15 N before digestion. The fresh plant biomass and digested biomass sludge were freeze-dried and ground to pass a 0.84-mm sieve. The materials were thoroughly mixed with a Kindrick fine sand at a rate of 5 g kg -1 soil and incubated for 90 d at 27 0 C at a moisture content adjusted to 0.01 MPa. Decomposition was evaluated by CO 2 evolution and 15 N mineralization. After 90 d, approximately 20% of the added C of the digested sludges had evolved as CO 2 compared to 39 and 50% of the added C of the fresh plant biomass with a low and high N content, respectively. First-order kinetics were used to describe decomposition stages. Mineralization of organic 15 N to 15 NO 3 - -N accounted for 8% of applied N for both digested sludges at 90 d. Nitrogen mineralization accounted for 3 and 33% of the applied organic N for fresh plant biomass with a low and high N content, respectively

  17. Early stage litter decomposition across biomes

    Science.gov (United States)

    Ika Djukic; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alberto Humber; Alejandro Valdecantos; Alessandro Petraglia; Heather Alexander; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; André-Jean Francez; Andrea Fischer; Andreas Bohner; Andrey Malyshev; Andrijana Andrić; Andy Smith; Angela Stanisci; Anikó Seres; Anja Schmidt; Anna Avila; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Arely N. Palabral-Aguilera; Artur Stefanski; Aurora Gaxiola; Bart Muys; Bernard Bosman; Bernd Ahrends; Bill Parker; Birgit Sattler; Bo Yang; Bohdan Juráni; Brigitta Erschbamer; Carmen Eugenia Rodriguez Ortiz; Casper T. Christiansen; E. Carol Adair; Céline Meredieu; Cendrine Mony; Charles A. Nock; Chi-Ling Chen; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dana Polyanskaya; David Fuentes Delgado; Dirk Wundram; Diyaa Radeideh; Eduardo Ordóñez-Regil; Edward Crawford; Elena Preda; Elena Tropina; Elli Groner; Eric Lucot; Erzsébet Hornung; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Evy Ampoorter; Fabio Padilha Bolzan; Felipe Varela; Ferdinand Kristöfel; Fernando T. Maestre; Florence Maunoury-Danger; Florian Hofhansl; Florian Kitz; Flurin Sutter; Francisco Cuesta; Francisco de Almeida Lobo; Franco Leandro de Souza; Frank Berninger; Franz Zehetner; Georg Wohlfahrt; George Vourlitis; Geovana Carreño-Rocabado; Gina Arena; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Hanna Lee; Hans Verbeeck; Harald Auge; Harald Pauli; Hassan Bismarck Nacro; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena C. Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hideaki Shibata; Hiroko Kurokawa; Hugo López Rosas; Hugo L. Rojas Villalobos; Ian Yesilonis; Inara Melece; Inge Van Halder; Inmaculada García Quirós; Isaac Makelele; Issaka Senou; István Fekete; Ivan Mihal; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Shoqeir; Jean-Christophe Lata; Jean-Paul Theurillat; Jean-Luc Probst; Jess Zimmerman; Jeyanny Vijayanathan; Jianwu Tang; Jill Thompson; Jiří Doležal; Joan-Albert Sanchez-Cabeza; Joël Merlet; Joh Henschel; Johan Neirynck; Johannes Knops; John Loehr; Jonathan von Oppen; Jónína Sigríður Þorláksdóttir; Jörg Löffler; José-Gilberto Cardoso-Mohedano; José-Luis Benito-Alonso; Jose Marcelo Torezan; Joseph C. Morina; Juan J. Jiménez; Juan Dario Quinde; Juha Alatalo; Julia Seeber; Jutta Stadler; Kaie Kriiska; Kalifa Coulibaly; Karibu Fukuzawa; Katalin Szlavecz; Katarína Gerhátová; Kate Lajtha; Kathrin Käppeler; Katie A. Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Lambiénou Yé; Laryssa Helena Ribeiro Pazianoto; Laura Dienstbach; Laura Williams; Laura Yahdjian; Laurel M. Brigham; Liesbeth van den Brink; Lindsey Rustad; al. et

    2018-01-01

    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies...

  18. Thermal characteristics of rocks for high-level waste repository

    International Nuclear Information System (INIS)

    Shimooka, Kenji; Ishizaki, Kanjiro; Okamoto, Masamichi; Kumata, Masahiro; Araki, Kunio; Amano, Hiroshi

    1980-12-01

    Heat released by the radioactive decay of high-level waste in an underground repository causes a long term thermal disturbance in the surrounding rock mass. Several rocks constituting geological formations in Japan were gathered and specific heat, thermal conductivity, thermal expansion coefficient and compressive strength were measured. Thermal analysis and chemical analysis were also carried out. It was found that volcanic rocks, i.e. Andesite and Basalt had the most favorable thermal characteristics up to around 1000 0 C and plutonic rock, i.e. Granite had also favorable characteristics under 573 0 C, transition temperature of quartz. Other igneous rocks, i.e. Rhyolite and Propylite had a problem of decomposition at around 500 0 C. Sedimentary rocks, i.e. Zeolite, Tuff, Sandstone and Diatomite were less favorable because of their decomposition, low thermal conductivity and large thermal expansion coefficient. (author)

  19. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    International Nuclear Information System (INIS)

    Ortuño, Nuria; Conesa, Juan A.; Moltó, Julia; Font, Rafael

    2014-01-01

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO 2005 -TEQ/kg sample, corresponding to the sample with and without metals, respectively. - Highlights: • Thermal decomposition of printed circuit boards (with and without metals) is studied. • Important differences were found at the different experimental conditions. • Emission of brominated pollutants is much higher than that of chlorinated. • Metal enhances emission of halogenated compounds. • An increase in the temperature produces the destruction of pollutants

  20. Optimization and kinetics decomposition of monazite using NaOH

    International Nuclear Information System (INIS)

    MV Purwani; Suyanti; Deddy Husnurrofiq

    2015-01-01

    Decomposition of monazite with NaOH has been done. Decomposition performed at high temperature on furnace. The parameters studied were the comparison NaOH / monazite, temperature and time decomposition. From the research decomposition for 100 grams of monazite with NaOH, it can be concluded that the greater the ratio of NaOH / monazite, the greater the conversion. In the temperature influences decomposition 400 - 700°C, the greater the reaction rate constant with increasing temperature greater decomposition. Comparison NaOH / monazite optimum was 1.5 and the optimum time of 3 hours. Relations ratio NaOH / monazite with conversion (x) following the polynomial equation y = 0.1579x 2 – 0.2855x + 0.8301 (y = conversion and x = ratio of NaOH/monazite). Decomposition reaction of monazite with NaOH was second orde reaction, the relationship between temperature (T) with a reaction rate constant (k), k = 6.106.e - 1006.8 /T or ln k = - 1006.8/T + 6.106, frequency factor A = 448.541, activation energy E = 8.371 kJ/mol. (author)

  1. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z. [Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China)

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  2. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-01-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  3. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    Science.gov (United States)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  4. Decompositional equivalence: A fundamental symmetry underlying quantum theory

    OpenAIRE

    Fields, Chris

    2014-01-01

    Decompositional equivalence is the principle that there is no preferred decomposition of the universe into subsystems. It is shown here, by using simple thought experiments, that quantum theory follows from decompositional equivalence together with Landauer's principle. This demonstration raises within physics a question previously left to psychology: how do human - or any - observers agree about what constitutes a "system of interest"?

  5. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  6. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Barlaz, Morton A.

    2016-01-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH_4) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH_4 and CO_2 ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH_4 yield, carbon conversion, and CSF measured here, 59.4 mL CH_4 g"−"1 dry material, 13.9%, and 0.39 g carbon stored g"−"1 dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste. - Highlights: • Characterized biodegradation of branches under simulated but optimized landfill conditions • Observed varied biodegradation between HW and SW branches with different diameters • Inhibitory extractives were observed on boughs or twigs of some branch species. • CH_4 yield and carbon storage factors presented for use in landfill related inventories.

  7. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: wangxiaoming@cqu.edu.cn [Key Laboratory of Three Gorges Reservoir Region' s Eco-Environment under Ministry of Education, Chongqing University, Chongqing 400044 (China); Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2016-07-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH{sub 4}) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH{sub 4} and CO{sub 2} ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH{sub 4} yield, carbon conversion, and CSF measured here, 59.4 mL CH{sub 4} g{sup −1} dry material, 13.9%, and 0.39 g carbon stored g{sup −1} dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste. - Highlights: • Characterized biodegradation of branches under simulated but optimized landfill conditions • Observed varied biodegradation between HW and SW branches with different diameters • Inhibitory extractives were observed on boughs or twigs of some branch species. • CH{sub 4} yield and carbon storage factors presented for use in landfill related inventories.

  8. Predicting Mineral N Release during Decomposition of Organic Wastes in Soil by Use of the SOILNNO Model

    International Nuclear Information System (INIS)

    Sogn, T.A.; Haugen, L.E.

    2011-01-01

    In order to predict the mineral N release associated with the use of organic waste as fertilizer in agricultural plant production, the adequacy of the SOILN N O model has been evaluated. The original thought was that the model calibrated to data from simple incubation experiments could predict the mineral N release from organic waste products used as N fertilizer on agricultural land. First, the model was calibrated to mineral N data achieved in a laboratory experiment where different organic wastes were added to soil and incubated at 15 degree C for 8 weeks. Secondly, the calibrated model was tested by use of NO 3 -leaching data from soil columns with barley growing in 4 different soil types, added organic waste and exposed to natural climatic conditions during three growing seasons. The SOILN N O model reproduced relatively well the NO 3 -leaching from some of the soils included in the outdoor experiment, but failed to reproduce others. Use of the calibrated model often induced underestimation of the observed NO 3 -leaching. To achieve a satisfactory simulation of the NO 3 -leaching, recalibration of the model had to be carried out. Thus, SOILN N O calibrated to data from simple incubation experiments in the laboratory could not directly be used as a tool to predict the N-leaching following organic waste application in more natural agronomic plant production systems. The results emphasised the need for site- and system-specific data for model calibration before using a model for predictive purposes related to fertilizer N value of organic wastes applied to agricultural land.

  9. Disposal of low-level radioactive wastes. Plasma furnace for the treatment of low-level radwastes in Switzerland. Plasma furnace for the treatment of low-level radwastes in Switzerland

    International Nuclear Information System (INIS)

    Hoffelner, W.; Mueller, T.; Fuenfschilling, M.R.; Jacobi, A.; Eschenbach, R.; Lutz, H.R.; Vuilleumier, C.

    1994-01-01

    The treatment method to be applied consists of thermal decomposition and vitrification. The facility to be constructed at the Zwilag is a plasma-arc furnace, and planning activities are heading towards the final phase. There will be only this one facility for treating in only one process step solid, mixed wastes, liquid wastes, sludges, metals, and inorganic wastes, producing vitrified waste packages ready for ultimate storage as 200-l waste drums. The main features of the plasma-arc furnace are explained. (orig./HP) [de

  10. Generalized Fisher index or Siegel-Shapley decomposition?

    International Nuclear Information System (INIS)

    De Boer, Paul

    2009-01-01

    It is generally believed that index decomposition analysis (IDA) and input-output structural decomposition analysis (SDA) [Rose, A., Casler, S., Input-output structural decomposition analysis: a critical appraisal, Economic Systems Research 1996; 8; 33-62; Dietzenbacher, E., Los, B., Structural decomposition techniques: sense and sensitivity. Economic Systems Research 1998;10; 307-323] are different approaches in energy studies; see for instance Ang et al. [Ang, B.W., Liu, F.L., Chung, H.S., A generalized Fisher index approach to energy decomposition analysis. Energy Economics 2004; 26; 757-763]. In this paper it is shown that the generalized Fisher approach, introduced in IDA by Ang et al. [Ang, B.W., Liu, F.L., Chung, H.S., A generalized Fisher index approach to energy decomposition analysis. Energy Economics 2004; 26; 757-763] for the decomposition of an aggregate change in a variable in r = 2, 3 or 4 factors is equivalent to SDA. They base their formulae on the very complicated generic formula that Shapley [Shapley, L., A value for n-person games. In: Kuhn H.W., Tucker A.W. (Eds), Contributions to the theory of games, vol. 2. Princeton University: Princeton; 1953. p. 307-317] derived for his value of n-person games, and mention that Siegel [Siegel, I.H., The generalized 'ideal' index-number formula. Journal of the American Statistical Association 1945; 40; 520-523] gave their formulae using a different route. In this paper tables are given from which the formulae of the generalized Fisher approach can easily be derived for the cases of r = 2, 3 or 4 factors. It is shown that these tables can easily be extended to cover the cases of r = 5 and r = 6 factors. (author)

  11. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Chanakya, H.N.; Sharma, Isha; Ramachandra, T.V.

    2009-01-01

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks

  12. Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Frøsig Østergaard, L.; Nielsen, S.P.

    2005-01-01

    An analytical method for the determination of Ni-63 and Fe-55 in nuclear waste samples such as graphite, heavy concrete, aluminium and lead was developed. Different decomposition methods (i.e. ashing, acid digestion and alkali fusion) were investigated for the decomposition of the samples...... by extraction chromatography. The purified Ni-63 and Fe-55 was then measured by liquid scintillation counting. The chemical yields of the separation procedures for Fe-55 and Ni-63 are above 90% and the decontamination factors for all interfering radionuclides are more than 10(5). The detection limits...

  13. Gas emission from anaerobic decomposition of plant resources

    Directory of Open Access Journals (Sweden)

    Marcela Bianchessi da Cunha-Santino

    Full Text Available Abstract: Aim The aim of this study was to quantify the emission rates of gases resulting from the anaerobic decomposition of different plant resources under conditions usually found in sediments of tropical aquatic systems and drained organic soils. Methods Incubations were prepared with green leaves, bark, twigs, plant litter, sugarcane stalks and leaves, soybean leaves, grasses, forest leaves and an aquatic macrophyte (Typha domingensis. Over 10 months, the daily volume of gas evolved from decay was measured and a kinetic model was used to describe the anaerobic mineralization. Results Using the mathematical model, it can be observed that the composition of the plant resources is heterogeneous. The temporal variation of the gas rates indicated that the mineralization of the labile fractions of detritus varied, on a carbon basis, from 16.2 (bark to 100% (samples composed of leaves, grasses and sugar cane stalks. High gas emissions were observed during the mineralization of grasses, sugar cane stalks, leaves and plant litter, while low volumes of gases were measured during the mineralization of bark, twigs, forest leaves and T. domingensis, which are the most fibrous and recalcitrant resources (carbon content: 83.8, 78.2, 64.8 and 53.4%, respectively. The mineralization of labile carbon presented half-life values, which varied from 41 (twigs to 295 days (grasses. Conclusions Considering the high amount of remaining recalcitrant fraction, the anaerobic decomposition of these plant resources showed a strong trend towards accumulating organic matter in flooded soils. Despite the higher temperatures found in the tropical environment, these environments represent a sink of particulate detritus due to its slow decomposition.

  14. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Ohno, H.; Yoshida, H.; Katsuta, H.; Naruse, Y.

    1986-01-01

    The decomposition of tritiated water vapor by means of solid oxide electrolysis cells has been proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in an argon carrier was performed using a tube-type stabilized zirconia cell with porous platinum electrodes over the temperature range 500-950 0 C. High conversion ratios from water to hydrogen, of up to 99.9%, were achieved. The characteristics of the cell were deduced from the Nernst equation and the conversion ratios expressed as a function of the IR-free voltage. Experimental results agreed with the equation. The isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. The obtained separation factor was slightly higher than the theoretical value. (author)

  15. Generalized requirements and decompositions for the design of test parts for micro additive manufacturing research

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Clemmensen, Line Katrine Harder

    2015-01-01

    The design of experimental test parts to characterize micro additive manufacturing (AM) processes is challenging due to the influence of the manufacturing and metrology processes. This work builds on the lessons learned from a case study in the literature to derive generalized requirements and high...... level decompositions for the design of test parts and the design of experiments to characterize micro additive manufacturing processes. While the test parts and the experiments described are still work in progress, the generic requirements derived from them can serve as a starting point for the design...... of other micro additive manufacturing related studies and their decompositions can help structure future work....

  16. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongyan, E-mail: hongyan.sun1@gmail.com, E-mail: ghanshyam.vaghjiani@us.af.mil; Vaghjiani, Ghanshyam L., E-mail: hongyan.sun1@gmail.com, E-mail: ghanshyam.vaghjiani@us.af.mil [Propellants Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, 10 E. Saturn Blvd., Edwards AFB, California 93524 (United States)

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH{sub 2} group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C{sub 2v} symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which

  17. Effect of intermediate soil cover on municipal solid waste decomposition.

    Science.gov (United States)

    Márquez-Benavides, L; Watson-Craik, I

    2003-01-01

    A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.

  18. Prospects of effective microorganisms technology in wastes treatment in Egypt

    Institute of Scientific and Technical Information of China (English)

    Emad A Shalaby

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  19. Reactivity continuum modeling of leaf, root, and wood decomposition across biomes

    Science.gov (United States)

    Koehler, Birgit; Tranvik, Lars J.

    2015-07-01

    Large carbon dioxide amounts are released to the atmosphere during organic matter decomposition. Yet the large-scale and long-term regulation of this critical process in global carbon cycling by litter chemistry and climate remains poorly understood. We used reactivity continuum (RC) modeling to analyze the decadal data set of the "Long-term Intersite Decomposition Experiment," in which fine litter and wood decomposition was studied in eight biome types (224 time series). In 32 and 46% of all sites the litter content of the acid-unhydrolyzable residue (AUR, formerly referred to as lignin) and the AUR/nitrogen ratio, respectively, retarded initial decomposition rates. This initial rate-retarding effect generally disappeared within the first year of decomposition, and rate-stimulating effects of nutrients and a rate-retarding effect of the carbon/nitrogen ratio became more prevalent. For needles and leaves/grasses, the influence of climate on decomposition decreased over time. For fine roots, the climatic influence was initially smaller but increased toward later-stage decomposition. The climate decomposition index was the strongest climatic predictor of decomposition. The similar variability in initial decomposition rates across litter categories as across biome types suggested that future changes in decomposition may be dominated by warming-induced changes in plant community composition. In general, the RC model parameters successfully predicted independent decomposition data for the different litter-biome combinations (196 time series). We argue that parameterization of large-scale decomposition models with RC model parameters, as opposed to the currently common discrete multiexponential models, could significantly improve their mechanistic foundation and predictive accuracy across climate zones and litter categories.

  20. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  1. Crop residue decomposition in Minnesota biochar amended plots

    OpenAIRE

    S. L. Weyers; K. A. Spokas

    2014-01-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with ...

  2. Excimer laser decomposition of silicone

    International Nuclear Information System (INIS)

    Laude, L.D.; Cochrane, C.; Dicara, Cl.; Dupas-Bruzek, C.; Kolev, K.

    2003-01-01

    Excimer laser irradiation of silicone foils is shown in this work to induce decomposition, ablation and activation of such materials. Thin (100 μm) laminated silicone foils are irradiated at 248 nm as a function of impacting laser fluence and number of pulsed irradiations at 1 s intervals. Above a threshold fluence of 0.7 J/cm 2 , material starts decomposing. At higher fluences, this decomposition develops and gives rise to (i) swelling of the irradiated surface and then (ii) emission of matter (ablation) at a rate that is not proportioned to the number of pulses. Taking into consideration the polymer structure and the foil lamination process, these results help defining the phenomenology of silicone ablation. The polymer decomposition results in two parts: one which is organic and volatile, and another part which is inorganic and remains, forming an ever thickening screen to light penetration as the number of light pulses increases. A mathematical model is developed that accounts successfully for this physical screening effect

  3. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    Science.gov (United States)

    Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan; Majzoub, Eric H.; Ozoliņš, Vidvuds

    2016-05-01

    We analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments have found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.

  4. Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina

    DEFF Research Database (Denmark)

    Huang, Yuhong; Kamp Busk, Peter; Herbst, Florian Alexander

    2015-01-01

    , the proteases secreted by O. corvina are interesting in view of their potential relevance for industrial decomposition of keratinaceous wastes. We sequenced and assembled the genome of O. corvina and used a method called peptide pattern recognition to identify 73 different proteases. Comparative genome analysis...... broth was fractionated by ion exchange chromatography to isolate active fractions with five novel proteases belonging to three protease families (S8, M28, and M3). Enzyme blends composed of three of these five proteases, one from each family, showed high degree of degradation of keratin in vitro....... A blend of novel proteases, such as those we discovered, could possibly find a use for degrading keratinaceous wastes and provide proteins, peptides, and amino acids as valuable ingredients for animal feed....

  5. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  6. Bifunctional Characteristics of Al2O3 supported Ni in the HI Decomposition of Sulfur-Iodine Process

    Directory of Open Access Journals (Sweden)

    Park Chu-Sik

    2016-01-01

    Full Text Available The Sulfur-Iodine process is in need of catalytic reactor for HI decomposition because the HI decomposition reaction rate is very slow. Nickel as an alternative catalyst for platinum was investigated in this study. Al2O3 supported Ni catalysts were prepared by impregnation method. Ni amounts loaded over Al2O3 were in the range of 0.1~20 wt. %. HI decompositions were carried out in the temperature range of 573 ~ 773 K using the fixed-bed quartz reactor. The difference of catalysts before and after the reaction was analyzed using BET, CO/H2 chemisorption, XRD, XRF and SEM. It was confirmed by XRD and SEM-EDX analysis that Ni was converted to NiI2 during the HI decomposition. Catalyst deactivation due to the formation of NiI2 leads to a reduction of HI conversion. Although Ni of catalyst converted to NiI2, HI decomposition with low loading (up to 3 wt. % catalyst showed a little decrease of HI conversion. However, with more than 5 wt. % catalyst, the initial HI conversion was considerably decreased. In the particular case of 20 wt. %, the initial conversion was increased close to 60 %, which is higher than 20 % as an equilibrium conversion at 723 K. These results showed that Ni had not only a catalytic function for HI decomposition, but also function as a sorbent to absorb I2 produced from HI.

  7. Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi

    2018-04-01

    Experiments are performed using dry and humid air to clarify the effects of water vapour on the characteristics of surface dielectric barrier discharge (SDBD) and investigate its impact on the performance of the SDBD for decomposition of gaseous naphthalene in air stream. The current characteristics, including the discharge and the capacitive currents, are deeply analyzed and the discharge mechanism is explored. The results confirmed that the humidity affected the microdischarge distribution without affecting the discharge mode. Interestingly, it is found that the water vapour had a significant influence on the capacitance of the reactor due to its deposition on the discharge electrode and the dielectric, which, in turn, affects the power loss in the dielectric and the total power consumed in the reactor. Thus, the factor of the humidity effect on the power loss in the dielectric should be considered in addition to its effect on the attachment coefficient. Additionally, there was an optimum level of the humidity for the decomposition of naphthalene in the SDBD, and its value depended on the gas composition, where the maximum naphthalene decomposition efficiency in O2/H2O is achieved at the humidity level ˜10%, which was lower than that obtained in air/H2O (˜28%). The results also revealed that the role of the humidity in the decomposition efficiency was not significant in the humidified O2 at high power level. This was attributed to the significant increase in oxygen-derived species (such as O atoms and O3) at high power, which was enough to overcome the negative effects of the humidity.

  8. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  9. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications.

    Science.gov (United States)

    Pan, Shu-Yuan; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-04-15

    Accelerated carbonation of alkaline solid wastes is an attractive method for CO2 capture and utilization. However, the evaluation criteria of CaCO3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200-900°C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO3 standards, carbonated BOFS samples and synthetic CaCO3/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for determining CaCO3 content in alkaline wastes was precise and accurate, thereby enabling to effectively assess the CO2 capture capacity of alkaline wastes for mineral carbonation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Improvement of the IRIS Process for Incineration of Various Radioactive Waste Compositions

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J. P.

    2003-01-01

    Incineration represents a promising weight and volume reduction technique for alpha-contaminated organic waste. Following several years of laboratory research initiated in 1983 on a nonradioactive prototype unit at the CEA's Rhone Valley (Marcoule) Research Center, an innovative process, IRIS, has been developed to meet the need for processing nuclear glove box waste containing large amounts of chlorine. In March 1999, the first highly chlorinated alpha-contaminated waste was incinerated in the industrial facility based on the IRIS process at the CEA's Valduc Center. The nonradioactive prototype at Marcoule and the radioactive facility at Valduc demonstrated that the process is highly effective with a continuously fed rotating tubular kiln and with a very effective control of corrosion by pyrolytic decomposition of the waste initially at 550 C. The ash quality meets specification requirements (< 1% carbon, < 1% chlorine) and the volume and weight reduction factors are sufficient (around 30). The offgas treatment system exhibits very high operating efficiency complying with gaseous emission standards

  11. Nuclear heat-load limits for above-grade storage of solid transuranium wastes

    International Nuclear Information System (INIS)

    Clontz, B.G.

    1978-06-01

    Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190 0 F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450 0 F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265 0 F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative

  12. Degradation of organochloride pesticides by molten salt oxidation at IPEN: spin-off nuclear activities

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2013-01-01

    Nuclear spin-off has at least two dimensions. It may provide benefits to the society such as enlarge knowledge base, strengthen infrastructure and benefit technology development. Besides this, to emphasize that some useful technologies elapsed from nuclear activities can affect favorably the public opinion about nuclear energy. In this paper is described a technology developed initially by the Rockwell Int. company in the USA more than thirty years ago to solve some problems of nuclear fuel cycle wastes. For different reasons the technology was not employed. In the last years the interest in the technology was renewed and IPEN has developed his version of the method applicable mainly to the safe degradation of hazardous wastes. This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs - persistent organic pollutants and particularly for the organ chlorides. A tendency observed at several countries is the adoption of progressively more demanding legislation for the atmospheric emissions, resultants of the waste decomposition processes. The suitable final disposal of hazardous organic wastes such as PCBs (polychlorinated biphenyls), pesticides, herbicides and hospital residues constitutes a serious problem. In some point of their life cycles, these wastes should be destroyed, in reason of the risk that they represent for the human being, animals and plants. The process involves using a chemical reactor containing molten salts, sodium carbonate or some alkaline carbonates mixtures to decompose the organic waste. The decomposition is performed by submerged oxidation and the residue is injected below the surface of a turbulent salt bath along with the oxidizing agent. Decomposition of halogenated compounds, among which some pesticides, is particularly effective in molten salts. The process presents properties such as intrinsically safe

  13. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories

    Science.gov (United States)

    Chen, Ruirui; Senbayram, Mehmet; Blagodatsky, Sergey; Dittert, Klaus; Lin, Xiangui; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4-sucrose or C4-maize straw to C3-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM

  14. The conditioning of low-level waste and of hazardous waste in Austria

    International Nuclear Information System (INIS)

    Krejsa, P.

    1988-01-01

    In 1978 in Austria some 50% (total 30%) of the people voted against the use of nuclear power for the production of electricity. Nevertheless radioactive wastes are produced in Austria from hospitals, industrial and research activities. The concept of waste management was therefore not altered. This paper discusses how, due to the low amounts of wastes (some 200 m 3 /y), of high costs of the waste treatment and of the concept of a central final disposal for radwastes the research center Seibersdorf was charged with the task to act as central storage and conditioning plant for the wastes arising from Austria

  15. Multi hollow needle to plate plasmachemical reactor for pollutant decomposition

    International Nuclear Information System (INIS)

    Pekarek, S.; Kriha, V.; Viden, I.; Pospisil, M.

    2001-01-01

    Modification of the classical multipin to plate plasmachemical reactor for pollutant decomposition is proposed in this paper. In this modified reactor a mixture of air and pollutant flows through the needles, contrary to the classical reactor where a mixture of air and pollutant flows around the pins or through the channel plus through the hollow needles. We give the results of comparison of toluene decomposition efficiency for (a) a reactor with the main stream of a mixture through the channel around the needles and a small flow rate through the needles and (b) a modified reactor. It was found that for similar flow rates and similar energy deposition, the decomposition efficiency of toluene was increased more than six times in the modified reactor. This new modified reactor was also experimentally tested for the decomposition of volatile hydrocarbons from gasoline distillation range. An average efficiency of VOC decomposition of about 25% was reached. However, significant differences in the decomposition of various hydrocarbon types were observed. The best results were obtained for the decomposition of olefins (reaching 90%) and methyl-tert-butyl ether (about 50%). Moreover, the number of carbon atoms in the molecule affects the quality of VOC decomposition. (author)

  16. Quaternary herbicides retention by the amendment of acid soils with a bentonite-based waste from wineries.

    Science.gov (United States)

    Pateiro-Moure, M; Nóvoa-Muñoz, J C; Arias-Estévez, M; López-Periago, E; Martínez-Carballo, E; Simal-Gándara, J

    2009-05-30

    The agronomic utility of a solid waste, waste bentonite (WB), from wine companies was assessed. In this sense, the natural characteristics of the waste were measured, followed by the monitoring of its effects on the adsorption/desorption behaviour of three quaternary herbicides in acid soils after the addition of increasing levels of waste. This was done with the intention of studying the effect of the added organic matter on their adsorption. The high content in C (294 g kg(-1)), N (28 g kg(-1)), P (584 mg kg(-1)) and K (108 g kg(-1)) of WB turned it into an appropriate amendment to increase soil fertility, solving at the same time its disposal. WB also reduced the potential Cu phytotoxicity due to a change in Cu distribution towards less soluble fractions. The adsorption of the herbicides paraquat, diquat and difenzoquat by acid soils amended with different ratios of WB was measured. In all cases, Langmuir equation was fitted to the data. Paraquat (PQ) and diquat (DQ) were adsorbed and retained more strongly than difenzoquat (DFQ) in the acid soil studied. However, the lowest retention of DFQ in an acid soil can be increased by amendment with organic matter through a solid waste from wineries, and it is enough for duplicate retention a dosage rate of 10t/ha. Anyway, detritivores ecology can still be affected. Detritivores are the organisms that consume organic material, and in doing so contribute to decomposition and the recycling of nutrients. The term can also be applied to certain bottom-feeders in wet environments, which play a crucial role in benthic ecosystems, forming essential food chains and participating in the nitrogen cycle.

  17. A handbook of decomposition methods in analytical chemistry

    International Nuclear Information System (INIS)

    Bok, R.

    1984-01-01

    Decomposition methods of metals, alloys, fluxes, slags, calcine, inorganic salts, oxides, nitrides, carbides, borides, sulfides, ores, minerals, rocks, concentrates, glasses, ceramics, organic substances, polymers, phyto- and biological materials from the viewpoint of sample preparation for analysis have been described. The methods are systemitized according to decomposition principle: thermal with the use of electricity, irradiation, dissolution with participation of chemical reactions and without it. Special equipment for different decomposition methods is described. Bibliography contains 3420 references

  18. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Putrefactive rigor: apparent rigor mortis due to gas distension.

    Science.gov (United States)

    Gill, James R; Landi, Kristen

    2011-09-01

    Artifacts due to decomposition may cause confusion for the initial death investigator, leading to an incorrect suspicion of foul play. Putrefaction is a microorganism-driven process that results in foul odor, skin discoloration, purge, and bloating. Various decompositional gases including methane, hydrogen sulfide, carbon dioxide, and hydrogen will cause the body to bloat. We describe 3 instances of putrefactive gas distension (bloating) that produced the appearance of inappropriate rigor, so-called putrefactive rigor. These gases may distend the body to an extent that the extremities extend and lose contact with their underlying support surface. The medicolegal investigator must recognize that this is not true rigor mortis and the body was not necessarily moved after death for this gravity-defying position to occur.

  20. Reduction experiment of iron scale by adding waste plastics.

    Science.gov (United States)

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2009-01-01

    The special features of waste plastics in China are huge in total amount, various in type and dispersive in deposition. Therefore, it is necessary to try some new ways that are fit to Chinese situation for disposing waste plastics as metallurgical raw materials more effectively and flexibly. Owing to its high ferrous content and less impurity, the iron scale became ideal raw material to produce pure iron powder. One of the methods to produce pure iron powder is Hoganas Method, by which, after one or multistage of reduction steps, the iron scale can be reduced pure iron powder. However, combining utilization of waste plastics and iron powder production, a series of reduction experiments were arranged and investigated, which is hoped to take use of both thermal and chemical energy contained in waste plastics as well as to improve the reducing condition of iron scale, and hence to develop a new metallurgical way of disposing waste plastics. The results show that under these experimental conditions, the thermal-decomposition of water plastics can conduce to an increase of porosity in the reduction systems. Moreover, better thermodynamics and kinetics conditions for the reduction of scale can be reached. As a result, the reduction rate is increased.

  1. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  2. A systematic review on the composting of green waste: Feedstock quality and optimization strategies.

    Science.gov (United States)

    Reyes-Torres, M; Oviedo-Ocaña, E R; Dominguez, I; Komilis, D; Sánchez, A

    2018-04-27

    Green waste (GW) is an important fraction of municipal solid waste (MSW). The composting of lignocellulosic GW is challenging due to its low decomposition rate. Recently, an increasing number of studies that include strategies to optimize GW composting appeared in the literature. This literature review focuses on the physicochemical quality of GW and on the effect of strategies used to improve the process and product quality. A systematic search was carried out, using keywords, and 447 papers published between 2002 and 2018 were identified. After a screening process, 41 papers addressing feedstock quality and 32 papers on optimization strategies were selected to be reviewed and analyzed in detail. The GW composition is highly variable due to the diversity of the source materials, the type of vegetation, and climatic conditions. This variability limits a strict categorization of the GW physicochemical characteristics. However, this research established that the predominant features of GW are a C/N ratio higher than 25, a deficit in important nutrients, namely nitrogen (0.5-1.5% db), phosphorous (0.1-0.2% db) and potassium (0.4-0.8% db) and a high content of recalcitrant organic compounds (e.g. lignin). The promising strategies to improve composting of GW were: i) GW particle size reduction (e.g. shredding and separation of GW fractions); ii) addition of energy amendments (e.g. non-refined sugar, phosphate rock, food waste, volatile ashes), bulking materials (e.g. biocarbon, wood chips), or microbial inoculum (e.g. fungal consortia); and iii) variations in operating parameters (aeration, temperature, and two-phase composting). These alternatives have successfully led to the reduction of process length and have managed to transform recalcitrant substances to a high-quality end-product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Note on Symplectic SVD-Like Decomposition

    Directory of Open Access Journals (Sweden)

    AGOUJIL Said

    2016-02-01

    Full Text Available The aim of this study was to introduce a constructive method to compute a symplectic singular value decomposition (SVD-like decomposition of a 2n-by-m rectangular real matrix A, based on symplectic refectors.This approach used a canonical Schur form of skew-symmetric matrix and it allowed us to compute eigenvalues for the structured matrices as Hamiltonian matrix JAA^T.

  4. Domain decomposition and multilevel integration for fermions

    International Nuclear Information System (INIS)

    Ce, Marco; Giusti, Leonardo; Schaefer, Stefan

    2016-01-01

    The numerical computation of many hadronic correlation functions is exceedingly difficult due to the exponentially decreasing signal-to-noise ratio with the distance between source and sink. Multilevel integration methods, using independent updates of separate regions in space-time, are known to be able to solve such problems but have so far been available only for pure gauge theory. We present first steps into the direction of making such integration schemes amenable to theories with fermions, by factorizing a given observable via an approximated domain decomposition of the quark propagator. This allows for multilevel integration of the (large) factorized contribution to the observable, while its (small) correction can be computed in the standard way.

  5. Evaluating litter decomposition and soil organic matter dynamics in earth system models: contrasting analysis of long-term litter decomposition and steady-state soil carbon

    Science.gov (United States)

    Bonan, G. B.; Wieder, W. R.

    2012-12-01

    Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual

  6. Application of PistachioWaste as Organic Manure in Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Mohammad Shahin Daneshmandi

    2017-05-01

    Full Text Available Plant residuals and waste products of agricultural crops form organic fertilizer sources that are traditionally used as organic manure. From 230000 t of dry pistachios produced in 2014, more than 766000 t waste was generated and a large part was to pistachio orchards in fertile regions to be used as organic manure. This study investigated the positive and negative effects of the used of pistachio waste as organic fertilizer over two consecutive years in the form of statistical designs for compound decomposition (overtime. The results indicate that if pistachio waste accumulates without being disinfected, it is a suitable environment for the growth and activity of Aspergillus and Penicillium fungi. The presence of aflatoxin G2 was confirmed in the pistachio waste (0.028 μg, but this contamination did not exist in the soil of the orchard to which the pistachio waste was added. The addition of waste to soil significantly reduced the EC and pH and increased the levels of Zn, P, and K by 270%, 195%, and 89.5%, respectively, in comparison with the control. The level of B did not differ significantly at between treatments. The results suggest that adding pistachio waste to soil enriches it with elements that are directly absorbable by pistachio trees, but it is necessary for the waste to be disinfected with proper fungicides to prevent development of toxin contamination. Furthermore, to recover the decomposability of soil, application of waste to orchards with intervals of twice or three times a year is recommended.

  7. The decomposition of estuarine macrophytes under different ...

    African Journals Online (AJOL)

    The aim of this study was to determine the decomposition characteristics of the most dominant submerged macrophyte and macroalgal species in the Great Brak Estuary. Laboratory experiments were conducted to determine the effect of different temperature regimes on the rate of decomposition of 3 macrophyte species ...

  8. Decomposition and flame structure of hydrazinium nitroformate

    NARCIS (Netherlands)

    Louwers, J.; Parr, T.; Hanson-Parr, D.

    1999-01-01

    The decomposition of hydrazinium nitroformate (HNF) was studied in a hot quartz cell and by dropping small amounts of HNF on a hot plate. The species formed during the decomposition were identified by ultraviolet-visible absorption experiments. These experiments reveal that first HONO is formed. The

  9. Spectral decomposition of tent maps using symmetry considerations

    International Nuclear Information System (INIS)

    Ordonez, G.E.; Driebe, D.J.

    1996-01-01

    The spectral decompostion of the Frobenius-Perron operator of maps composed of many tents is determined from symmetry considerations. The eigenstates involve Euler as well as Bernoulli polynomials. The authors have introduced some new techniques, based on symmetry considerations, enabling the construction of spectral decompositions in a much simpler way than previous construction algorithms, Here we utilize these techniques to construct the spectral decomposition for one- dimensional maps of the unit interval composed of many tents. The construction uses the knowledge of the spectral decomposition of the r-adic map, which involves Bernoulli polynomials and their duals. It will be seen that the spectral decomposition of the tent maps involves both Bernoulli polynomials and Euler polynomials along with the appropriate dual states

  10. [Analysis of the bacterial community developing in the course of Sphagnum moss decomposition].

    Science.gov (United States)

    Kulichevskaia, I S; Belova, S E; Kevbrin, V V; Dedysh, S N; Zavarzin, G A

    2007-01-01

    Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 x 10(7) cells ml(-1). About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Phanctomycetes. The population sizes of Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.

  11. Parallel processing for pitch splitting decomposition

    Science.gov (United States)

    Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris

    2009-10-01

    Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.

  12. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    KAUST Repository

    Ghommem, Mehdi; Presho, Michael; Calo, Victor M.; Efendiev, Yalchin R.

    2013-01-01

    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  13. Why did China's energy intensity increase during 1998-2006. Decomposition and policy analysis

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Ma, Chunbo; Hong, Dongyue

    2010-01-01

    Despite the fact that China's energy intensity has continuously decreased during the 1980s and mostly 1990s, the decreasing trend has reversed since 1998 and the past few years have witnessed rapid increase in China's energy intensity. We firstly conduct an index decomposition analysis to identify the key forces behind the increase. It is found that: (1) the high energy demand in industrial sectors is mainly attributed to expansion of production scale, especially in energy-intensive industries; (2) energy saving mainly comes from efficiency improvement, with energy-intensive sectors making the largest contribution; and (3) a heavier industrial structure also contributes to the increase. This study also makes the first attempt to bridge the quantitative decomposition analysis with qualitative policy analyses and fill the gap between decomposition results and policy relevance in previous work. We argue that: (1) energy efficiency improvement in energy-intensive sectors is mainly due to the industrial policies that have been implemented in the past few years; (2) low energy prices have directly contributed to high industrial energy consumption and indirectly to the heavy industrial structure. We provide policy suggestions in the end. (author)

  14. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    KAUST Repository

    Ghommem, Mehdi

    2013-11-01

    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  15. Decomposition of the Total Effect in the Presence of Multiple Mediators and Interactions.

    Science.gov (United States)

    Bellavia, Andrea; Valeri, Linda

    2018-06-01

    Mediation analysis allows decomposing a total effect into a direct effect of the exposure on the outcome and an indirect effect operating through a number of possible hypothesized pathways. Recent studies have provided formal definitions of direct and indirect effects when multiple mediators are of interest and have described parametric and semiparametric methods for their estimation. Investigating direct and indirect effects with multiple mediators, however, can be challenging in the presence of multiple exposure-mediator and mediator-mediator interactions. In this paper we derive a decomposition of the total effect that unifies mediation and interaction when multiple mediators are present. We illustrate the properties of the proposed framework in a secondary analysis of a pragmatic trial for the treatment of schizophrenia. The decomposition is employed to investigate the interplay of side effects and psychiatric symptoms in explaining the effect of antipsychotic medication on quality of life in schizophrenia patients. Our result offers a valuable tool to identify the proportions of total effect due to mediation and interaction when more than one mediator is present, providing the finest decomposition of the total effect that unifies multiple mediators and interactions.

  16. Airborne microorganisms associated with waste management and recovery: biomonitoring methodologies

    Directory of Open Access Journals (Sweden)

    Anna Maria Coccia

    2010-01-01

    Full Text Available This paper presents preliminary results from a year-long indoor bioaerosol monitoring performed in three working environments of a municipal composting facility treating green and organic waste. Composting, whereby organic matter is stabilized through aerobic decomposition, requires aeration, causing the dispersion of microbial particles (microorganisms and associated toxins. Waste can, therefore, become a potential source of biological hazard. Bioaerosol samples were collected on a monthly basis. Through a comparison of results obtained using two samplers - the Surface Air System DUO SAS 360 and the BioSampler - the study aimed at assessing the presence of biological pollutants, and at contributing to the definition of standard sampling methods for bioaerosols leading, eventually, to the establishment of exposure limits for these occupational pollutants.

  17. Airborne microorganisms associated with waste management and recovery: biomonitoring methodologies.

    Science.gov (United States)

    Coccia, Anna Maria; Gucci, Paola Margherita Bianca; Lacchetti, Ines; Paradiso, Rosa; Scaini, Federica

    2010-01-01

    This paper presents preliminary results from a year-long indoor bioaerosol monitoring performed in three working environments of a municipal composting facility treating green and organic waste. Composting, whereby organic matter is stabilized through aerobic decomposition, requires aeration, causing the dispersion of microbial particles (microorganisms and associated toxins). Waste can, therefore, become a potential source of biological hazard. Bioaerosol samples were collected on a monthly basis. Through a comparison of results obtained using two samplers - the Surface Air System DUO SAS 360 and the BioSampler - the study aimed at assessing the presence of biological pollutants, and at contributing to the definition of standard sampling methods for bioaerosols leading, eventually, to the establishment of exposure limits for these occupational pollutants.

  18. Preliminary studies of lignocellulosics and waste fuels for fixed bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, H [Marmara Research Center, Kocaeli (Turkey). Energy Systems and Environmental Research Institute; Dogru, M; Howarth, C R [University of Newcastle (United Kingdom). Dept. of Chemical and Process Engineering; Malik, A A [University of Northumbria, Newcastle (United Kingdom). Dept. of Chemical and Life Science

    2001-07-01

    This study was carried out to understand the decomposition behaviour of a range of biofuel and waste feedstock during gasification in a downdraft gasifier. A laboratory scale large sample thermogravimetric analyser (LSTA) is used which allows the data on burn-out characteristics of different fuel particles to be measured under agitated conditions. The conditions chosen simulate the combustion behaviour in a gasifier for a range of biofuels and wastes, namely hazelnut, pistachio, and peanut shells, wood chips and sewage sludge pellets. From this data the activation energy is calculated for a heating rate of 20{sup o}C/min. It was found that, as the weight loss increases, the activation energy decreases. In addition the influence of a range of gasification air/N{sub 2} levels on constituents of the gas released during hazelnut shell decomposition was observed. It was found that the composition of the product gases consisted of CH{sub 4}, H{sub 2}, CO, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}. This was analysed as function of time for hazelnut shells showing that the primary products are H{sub 2}, CO, CH{sub 4} and CO{sub 2}. (author)

  19. Nutrient Dynamics and Litter Decomposition in Leucaena ...

    African Journals Online (AJOL)

    Nutrient contents and rate of litter decomposition were investigated in Leucaena leucocephala plantation in the University of Agriculture, Abeokuta, Ogun State, Nigeria. Litter bag technique was used to study the pattern and rate of litter decomposition and nutrient release of Leucaena leucocephala. Fifty grams of oven-dried ...

  20. Climate fails to predict wood decomposition at regional scales

    Science.gov (United States)

    Mark A. Bradford; Robert J. Warren; Petr Baldrian; Thomas W. Crowther; Daniel S. Maynard; Emily E. Oldfield; William R. Wieder; Stephen A. Wood; Joshua R. King

    2014-01-01

    Decomposition of organic matter strongly influences ecosystem carbon storage1. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter2, 3, 4, 5. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on...

  1. The food waste hierarchy as a framework for the management of food surplus and food waste

    NARCIS (Netherlands)

    Papargyropoulou, Effie; Lozano, Rodrigo|info:eu-repo/dai/nl/36412380X; K. Steinberger, Julia; Wright, Nigel; Ujang, Zaini Bin

    2014-01-01

    The unprecedented scale of food waste in global food supply chains is attracting increasing attention due to its environmental, social and economic impacts. Drawing on interviews with food waste specialists, this study construes the boundaries between food surplus and food waste, avoidable and

  2. Comparison of decomposition characteristics between aromatic and aliphatic VOCs using electron beam

    International Nuclear Information System (INIS)

    Kim, Jo-Chun

    2011-01-01

    The removal efficiency of n-decane (C 10 H 22 ) by electron beam was the highest among aliphatic VOCs of concern, and that of n-hexane (C 6 H 14 ), n-butane (C 4 H 10 ), and methane (CH 4 ) followed. On the other hand, in terms of aromatic VOC decomposition efficiencies, benzene (C 6 H 6 ) decomposition was the lowest and that of toluene (C 7 H 8 ), ethylbenzene (C 8 H 10 ), and p-xylene (C 8 H 10 ) were similar. It was also found that there was increase in by-product (untreated VOC, CO, CO 2 , O 3 , and other compounds) formation as well as all VOC removal efficiencies. It was demonstrated that the removal efficiency of VOC increased as its concentration decreased and the irradiation dose increased. In addition, low removal efficiency was observed because helium was relatively stable compared to the other gases, and nothing but electrons produced by electron accelerator reacted with VOC. It was also found that relative humidity had some effects on the decomposition rates of VOC. The removal efficiency at the 100% RH condition was slightly higher than that at 7.4% RH (dry condition) due to OH radical formation. (author)

  3. Formation of volatile decomposition products by self-radiolysis of tritiated thymidine

    International Nuclear Information System (INIS)

    Shiba, Kazuhiro; Mori, Hirofumi

    1997-01-01

    In order to estimate the internal exposure dose in an experiment using tritiated thymidine, the rate of volatile 3 H-decomposition of several tritiated thymidine samples was measured. The decomposition rate of (methyl- 3 H)thymidine in water was over 80% in less than one year after initial analysis. (methyl- 3 H)thymidine was decomposed into volatile and non-volatile 3 H-decomposition products. The ratio of volatile 3 H-decomposition products increased with increasing the rate of the decomposition of (methyl- 3 H) thymidine. The volatile 3 H-decomposition products consisted of two components, of which the main component was tritiated water. Internal exposure dose caused by the inhalation of such volatile 3 H-decomposition products of (methyl- 3 H) thymidine was assumed to be several μSv. (author)

  4. Are litter decomposition and fire linked through plant species traits?

    Science.gov (United States)

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  6. South Africa's electricity consumption: A sectoral decomposition analysis

    International Nuclear Information System (INIS)

    Inglesi-Lotz, Roula; Blignaut, James N.

    2011-01-01

    Highlights: → We conduct a decomposition exercise of the South African electricity consumption. → The increase in electricity consumption was due to output and structural changes. → The increasing at a low rate electricity intensity was a decreasing factor to consumption. → Increases in production were proven to be part of the rising trend for all sectors. → Only 5 sectors' consumption were negatively affected by efficiency improvements. -- Abstract: South Africa's electricity consumption has shown a sharp increase since the early 1990s. Here we conduct a sectoral decomposition analysis of the electricity consumption for the period 1993-2006 to determine the main drivers responsible for this increase. The results show that the increase was mainly due to output or production related factors, with structural changes playing a secondary role. While there is some evidence of efficiency improvements, indicated here as a slowdown in the rate of increase of electricity intensity, it was not nearly sufficient to offset the combined production and structural effects that propelled electricity consumption forward. This general economy-wide statement, however, can be misleading since the results, in essence, are very sector specific and the inter-sectoral differences are substantial. Increases in production were proven to be part of the rising trend for all sectors. However, only five out of fourteen sectors were affected by efficiency improvements, while the structural changes affected the sectors' electricity consumption in different ways. These differences concerning the production, structural and efficiency effects on the sectors indicate the need for a sectoral approach in the energy policy-making of the country rather than a blanket or unilateral economy-wide approach.

  7. Revise of the law concerning prevention from radiation hazards due to radioisotopes, etc

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiaki; Sendo, Muneaki

    2004-01-01

    The Law Concerning Prevention from Radiation Hazards due to Radioisotopes, etc. was revised in 2004. The regulation about disposal of RI waste was fixed at this revise of the law. Regulation of an application about the disposal of the RI waste was added to former radioactive waste control business. And regulation of confirmation of waste disposal by a regulation body was added. By this law revision, a necessary system for the RI waste disposal is ready. Furthermore, the Basic Safety Standard (BSS) and the following rationalization of related to regulation were introduced into the Law Concerning Prevention from Radiation Hazards due to Radioisotopes, etc. by this law revision. The regulation for a handling of radionuclides will be changed a lot due to the introduction of the BSS. (author)

  8. Soil Decomposition of Added Organic C in an Organic Farming System

    Science.gov (United States)

    Kpomblekou-A, Kokoasse; Sissoko, Alassane; McElhenney, Wendell

    2015-04-01

    In the United States, large quantities of poultry waste are added every year to soil under organic management. Decomposition of the added organic C releases plant nutrients, promotes soil structure, and plays a vital role in the soil food web. In organic agriculture the added C serves as the only source of nutrients for plant growth. Thus understanding the decomposition rates of such C in organic farming systems are critical in making recommendations of organic inputs to organic producers. We investigated and compared relative accumulation and decomposition of organic C in an organic farming system trial at the George Washington Carver Agricultural Experiment Station at Tuskegee, Alabama on a Marvyn sandy loam (fine-loamy, kaolinitic, thermic, Typic Kanhapludults) soil. The experimental design was a randomized complete block with four replicates and four treatments. The main plot (54' × 20') was split into three equal subplots to plant three sweet potato cultivars. The treatments included a weed (control with no cover crop, no fertilizer), crimson clover alone (CC), crimson clover plus broiler litter (BL), and crimson clover plus NPK mineral fertilizers (NPK). For five years, late in fall, the field was planted with crimson clover (Trifolium incarnatum L) that was cut with a mower and incorporated into soil the following spring. Moreover, broiler litter (4.65 Mg ha-1) or ammonium nitrate (150 kg N ha-1), triple super phosphate (120 kg P2O5 ha-1), and potassium chloride (160 kg K2O ha-1) were applied to the BL or the NPK plot and planted with sweet potato. Just before harvest, six soil samples were collected within the two middle rows of each sweet potato plot with an auger at incremental depths of 0-1, 1-2, 2-3, 3-5, 5-10, and 10-15 cm. Samples from each subplot and depth were composited and mixed in a plastic bag. The samples were sieved moist through a

  9. Thermal decomposition of lanthanide and actinide tetrafluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1988-01-01

    The thermal stabilities of several lanthanide/actinide tetrafluorides have been studied using mass spectrometry to monitor the gaseous decomposition products, and powder X-ray diffraction (XRD) to identify solid products. The tetrafluorides, TbF 4 , CmF 4 , and AmF 4 , have been found to thermally decompose to their respective solid trifluorides with accompanying release of fluorine, while cerium tetrafluoride has been found to be significantly more thermally stable and to congruently sublime as CeF 4 prior to appreciable decomposition. The results of these studies are discussed in relation to other relevant experimental studies and the thermodynamics of the decomposition processes. 9 refs., 3 figs

  10. Thermal decomposition of UO3-2H20

    International Nuclear Information System (INIS)

    Flament, T.A.

    1998-01-01

    The first part of the report summarizes the literature data regarding the uranium trioxide water system. In the second part, the experimental aspects are presented. An experimental program has been set up to determine the steps and species involved in decomposition of uranium oxide di-hydrate. Particular attention has been paid to determine both loss of free water (moisture in the fuel) and loss of chemically bound water (decomposition of hydrates). The influence of water pressure on decomposition has been taken into account

  11. Vibrational Order, Structural Properties, and Optical Gap of ZnO Nanostructures Sintered through Thermal Decomposition

    Directory of Open Access Journals (Sweden)

    Alejandra Londono-Calderon

    2014-01-01

    Full Text Available The sintering of different ZnO nanostructures by the thermal decomposition of zinc acetate is reported. Morphological changes from nanorods to nanoparticles are exhibited with the increase of the decomposition temperature from 300 to 500°C. The material showed a loss in the crystalline order with the increase in the temperature, which is correlated to the loss of oxygen due to the low heating rate used. Nanoparticles have a greater vibrational freedom than nanorods which is demonstrated in the rise of the main Raman mode E 2(high during the transformation. The energy band gap of the nanostructured material is lower than the ZnO bulk material and decreases with the rise in the temperature.

  12. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    International Nuclear Information System (INIS)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia; Kim, J.; Rapko, Brian M.; Lumetta, Gregg J.

    2000-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10. Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste

  13. Development of volume reduction treatment techniques for low level radioactive wastes

    International Nuclear Information System (INIS)

    Nabatame, Yasuzi

    1984-01-01

    The solid wastes packed in drums are preserved in the stores of nuclear establishments in Japan, and the quantity of preservation has already reached about 60 % of the capacity. It has become an important subject to reduce the quantity of generation of radioactive wastes and how to reduce the volume of generated wastes. As the result of the research aiming at the development of the solidified bodies which are excellent in the effect of volume reduction and physical properties, it was confirmed that the plastic solidified bodies using thermosetting resin were superior to conventional cement or asphalt solidification. The plastic solidifying system can treat various radioactive wastes. After radioactive wastes are dried and powdered, they are solidified with plastics, therefore, the effect of volume reduction is excellent. The specific gravity, strength and the resistance to water, fire and radiation were confirmed to be satisfacotory. The plastic solidifying system comprises three subsystems, that is, drying system, powder storing and supplying system and plastic solidifying system. Also the granulation technique after drying and powdering, acid decomposition technique, the microwave melting and solidifying technique for incineration ash, plasma melting process and electrolytic polishing decontamination are described. (Kako, I.)

  14. Biosphere processes affecting environmnetal impacts of hazardous wastes

    International Nuclear Information System (INIS)

    Watkins, B.; Broderick, M.

    1991-01-01

    ANS Consultants Limited has reviewed and assessed a number of biosphere processes which affect the environmental impact of hazardous waste disposal. Processes examined have included the long-term effects of climate change on biosphere characteristics and the transport of toxic materials in food chains; the role of soil animals and plants roots in cycling elements from depth to the soil surface; volatisation mechanisms; the transport of elements in soil with particular reference to erosion and resuspension; mechanisms for foliar contamination via irrigation waters; and organic matter decomposition in varying environmental conditions. (au)

  15. Thermal decomposition of hydroiodic acid and hydrogen separation

    International Nuclear Information System (INIS)

    Yeheskel, J.; Leger, D.; Courvoisier, P.

    1978-01-01

    The reaction of decomposition of hydroiodic acid is included in a promising water splitting process (sulfur-iodine cycle). An experimental program is running in order to overcome some basic difficulties and data shortcomings which stand in the way of achieving that target. The core of the experimental system is the palladium silver (23% Ag) membrane tube reactor in which the feed gas entered the inner side of the tube. Four series of different kinds of experiments have been performed: 1) diffusion of hydrogen from a pure feed hydrogen stream through the membrane; the results are statistically analyzed due to the present correlations of the H 2 specific permeability as a function of temperature and pressure (up to 600 0 C and 20 bar); 2) separation of hydrogen from a binary feed mixture H 2 -He; a mathematical model is developed for this operation; 3) indication of the poisoning effect of a little amount of hydroiodic acid on the hydrogen pereability; this effect is partly reversible at high temperatures; 4) a performance of one continuous experiment of HI decomposition into the membrane tube at steady pressure and temperature of 8 bar and 500 0 C; the results prove the catalytic activity of the membrane surface

  16. Steganography based on pixel intensity value decomposition

    Science.gov (United States)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  17. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-12-01

    ..., including any sludge, spill residue, ash, emission control dust, or leachate, remains a hazardous waste... water for use as a cleaning agent. The slop oil waste is thereby diluted and hazardous constituents are... separation sludges that are listed as hazardous wastes due to benzene, benzo(a)pyrene, chrysene, lead and...

  18. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Ortuño, Nuria; Conesa, Juan A., E-mail: ja.conesa@ua.es; Moltó, Julia; Font, Rafael

    2014-11-15

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO{sub 2005}-TEQ/kg sample, corresponding to the sample with and without metals, respectively. - Highlights: • Thermal decomposition of printed circuit boards (with and without metals) is studied. • Important differences were found at the different experimental conditions. • Emission of brominated pollutants is much higher than that of chlorinated. • Metal enhances emission of halogenated compounds. • An increase in the temperature produces the destruction of pollutants.

  19. Wood decomposition as influenced by invertebrates.

    Science.gov (United States)

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Radiolytic decomposition of 4-bromodiphenyl ether

    International Nuclear Information System (INIS)

    Tang Liang; Xu Gang; Wu Wenjing; Shi Wenyan; Liu Ning; Bai Yulei; Wu Minghong

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) spread widely in the environment are mainly removed by photochemical and anaerobic microbial degradation. In this paper, the decomposition of 4-bromodiphenyl ether (BDE -3), the PBDEs homologues, is investigated by electron beam irradiation of its ethanol/water solution (reduction system) and acetonitrile/water solution (oxidation system). The radiolytic products were determined by GC coupled with electron capture detector, and the reaction rate constant of e sol - in the reduction system was measured at 2.7 x 10 10 L · mol -1 · s -1 by pulsed radiolysis. The results show that the BDE-3 concentration affects strongly the decomposition ratio in the alkali solution, and the reduction system has a higher BDE-3 decomposition rate than the oxidation system. This indicates that the BDE-3 was reduced by effectively capturing e sol - in radiolytic process. (authors)

  1. Optimization of methane gas recovery from waste material and possibilities for its utilization

    Energy Technology Data Exchange (ETDEWEB)

    Shim, K C

    1981-01-01

    Sewer gas (biogas) can be generated from anaerobic decomposition of different waste substances, e.g. from sludge obtained in sewage works, from household refuse and from agricultural waste. In order to run a sewage works economically the managers of the plants are now obliged to show more interest in the maximum usage of this gas. Even though in most of the municipal waste water treatment plants in the Federal Republic of Germany the digesters are available, one quarter of the annual gas production remains unused. In view of the so-called 'energy crisis', it seems foolish to burn off sewer gas, a valuable source of energy and one, moreover, produced at high cost. Laboratory tests were carried out with agricultural wastes and with sludge and household refuse to analyse the sludge digestion process and determine the optimum conditions required by the process. Finally, the situation in Korea, where there are 30,000 biogas plants, is summarized. (Refs. 5).

  2. Fungal Succession and Decomposition of Acacia mangium Leaf Litters in Health and Ganoderma Attacked Standings

    Directory of Open Access Journals (Sweden)

    SAMINGAN

    2009-09-01

    Full Text Available Leaf litters of Acacia mangium play an important functional role in ecosystem, producing sources of nutrients and giving diversity of microorganisms. Understanding the variation in fungal populations in A. mangium forest is important due to the roles of fungi in regulating populations of other organisms and ecosystem processes. For these purposes, the tests were conducted under two years old of health standing (2S and Ganoderma attacked standing (2G using litterbag method. Litter weight loss and lignin, cellulose, C, N contents were measured each month during eight months of decomposition, as well as fungal community involved was observed. Litter weight loss and lignin, cellulose, C, N contents were measured each month during eight months of decomposition, as well as fungal community involved was observed. After eight months of decomposition, litter weight losses were low up to 34.61% (k = 0.7/year in 2S and 30.64% (k = 0.51/year in 2G, as well as lignin weight losses were low up to 20.05% in 2S and 13.87% in 2G. However, cellulose weight losses were 16.34% in 2S and 14.71% in 2G. In both standings, the numbers of fungal species were 21 and 20 respectively, while the total of fungal populations tends to increase after one month of decomposition and tend to decrease in the last three months. In the first and second months of decomposition fungal species were dominated by genera of Penicillium and Aspergillus and the last three months by Trichoderma, Phialophora, and Pythium.

  3. Microwave-assisted versus conventional decomposition procedures applied to a ceramic potsherd standard reference material by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A

    2004-03-03

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is a powerful, sensitive analytical technique with numerous applications in chemical characterization including that of ancient pottery, mainly due to its multi-element character, and the relatively short time required for the analysis. A critical step in characterization studies of ancient pottery is the selection of a suitable decomposition procedure for the ceramic matrix. The current work presents the results of a comparative study of six decomposition procedures applied on a standard ceramic potsherd reference material, SARM 69. The investigated decomposition procedures included three microwave-assisted decomposition procedures, one wet decomposition (WD) procedure by conventional heating, one combined microwave-assisted and conventional heating WD procedure, and one fusion procedure. Chemical analysis was carried out by ICP-AES. Five major (Si, Al, Fe, Ca, Mg), three minor (Mn, Ba, Ti) and two trace (Cu, Co) elements were determined and compared with their certified values. Quantitation was performed at two different spectral lines for each element and multi-element matrix-matched calibration standards were used. The recovery values for the six decomposition procedures ranged between 75 and 110% with a few notable exceptions. Data were processed statistically in order to evaluate the investigated decomposition procedures in terms of recovery, accuracy and precision, and eventually select the most appropriate one for ancient pottery analysis.

  4. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects.

    Science.gov (United States)

    Cao, Leichang; Zhang, Cheng; Chen, Huihui; Tsang, Daniel C W; Luo, Gang; Zhang, Shicheng; Chen, Jianmin

    2017-12-01

    Hydrothermal liquefaction has been widely applied to obtain bioenergy and high-value chemicals from biomass in the presence of a solvent at moderate to high temperature (200-550°C) and pressure (5-25MPa). This article summarizes and discusses the conversion of agricultural and forestry wastes by hydrothermal liquefaction. The history and development of hydrothermal liquefaction technology for lignocellulosic biomass are briefly introduced. The research status in hydrothermal liquefaction of agricultural and forestry wastes is critically reviewed, particularly for the effects of liquefaction conditions on bio-oil yield and the decomposition mechanisms of main components in biomass. The limitations of hydrothermal liquefaction of agricultural and forestry wastes are discussed, and future research priorities are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tensor decompositions for the analysis of atomic resolution electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Spiegelberg, Jakob; Rusz, Ján [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Pelckmans, Kristiaan [Department of Information Technology, Uppsala University, Box 337, S-751 05 Uppsala (Sweden)

    2017-04-15

    A selection of tensor decomposition techniques is presented for the detection of weak signals in electron energy loss spectroscopy (EELS) data. The focus of the analysis lies on the correct representation of the simulated spatial structure. An analysis scheme for EEL spectra combining two-dimensional and n-way decomposition methods is proposed. In particular, the performance of robust principal component analysis (ROBPCA), Tucker Decompositions using orthogonality constraints (Multilinear Singular Value Decomposition (MLSVD)) and Tucker decomposition without imposed constraints, canonical polyadic decomposition (CPD) and block term decompositions (BTD) on synthetic as well as experimental data is examined. - Highlights: • A scheme for compression and analysis of EELS or EDX data is proposed. • Several tensor decomposition techniques are presented for BSS on hyperspectral data. • Robust PCA and MLSVD are discussed for denoising of raw data.

  6. Comparison of decomposition rates between autopsied and non-autopsied human remains.

    Science.gov (United States)

    Bates, Lennon N; Wescott, Daniel J

    2016-04-01

    Penetrating trauma has been cited as a significant factor in the rate of decomposition. Therefore, penetrating trauma may have an effect on estimations of time-since-death in medicolegal investigations and on research examining decomposition rates and processes when autopsied human bodies are used. The goal of this study was to determine if there are differences in the rate of decomposition between autopsied and non-autopsied human remains in the same environment. The purpose is to shed light on how large incisions, such as those from a thorocoabdominal autopsy, effect time-since-death estimations and research on the rate of decomposition that use both autopsied and non-autopsied human remains. In this study, 59 non-autopsied and 24 autopsied bodies were studied. The number of accumulated degree days required to reach each decomposition stage was then compared between autopsied and non-autopsied remains. Additionally, both types of bodies were examined for seasonal differences in decomposition rates. As temperature affects the rate of decomposition, this study also compared the internal body temperatures of autopsied and non-autopsied remains to see if differences between the two may be leading to differential decomposition. For this portion of this study, eight non-autopsied and five autopsied bodies were investigated. Internal temperature was collected once a day for two weeks. The results showed that differences in the decomposition rate between autopsied and non-autopsied remains was not statistically significant, though the average ADD needed to reach each stage of decomposition was slightly lower for autopsied bodies than non-autopsied bodies. There was also no significant difference between autopsied and non-autopsied bodies in the rate of decomposition by season or in internal temperature. Therefore, this study suggests that it is unnecessary to separate autopsied and non-autopsied remains when studying gross stages of human decomposition in Central Texas

  7. The platinum catalysed decomposition of hydrazine in acidic media

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.C.

    2000-01-01

    Kinetic study of the hydrazine decomposition in the solutions of HClO 4 , H 2 SO 4 and HNO 3 in the presence of Pt/SiO 2 catalyst has been undertaken. It was shown that the kinetics of the hydrazine catalytic decomposition in HClO 4 and H 2 SO 4 are identical. The process is determined by the heterogeneous catalytic auto-decomposition of N 2 H 4 on the catalyst's surface. The platinum catalysed hydrazine decomposition in the nitric acid solutions is a complex process, including heterogeneous catalytic auto-decomposition of N 2 H 4 , reaction of hydrazine with catalytically generated nitrous acid and the catalytic oxidation of hydrazine by nitric acid. The kinetic parameters of these reactions have been determined. The contribution of each reaction in the total process is determined by the liquid phase composition and by the temperature. (authors)

  8. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  9. Generalized decompositions of dynamic systems and vector Lyapunov functions

    Science.gov (United States)

    Ikeda, M.; Siljak, D. D.

    1981-10-01

    The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stability of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability of the new approach is demonstrated using the Lotka-Volterra equations.

  10. In situ XAS of the solvothermal decomposition of dithiocarbamate complexes

    NARCIS (Netherlands)

    Islam, H.-U.; Roffey, A.; Hollingsworth, N.; Catlow, R.; Wolthers, M.; de Leeuw, N.H.; Bras, W.; Sankar, G.; Hogarth, G.

    2012-01-01

    An in situ XAS study of the solvothermal decomposition of iron and nickel dithiocarbamate complexes was performed in order to gain understanding of the decomposition mechanisms. This work has given insight into the steps involved in the decomposition, showing variation in reaction pathways between

  11. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.; Ltaief, Hatem; Keyes, David E.

    2016-01-01

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former

  12. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene.

    Science.gov (United States)

    Kiran Ciliz, Nilgun; Ekinci, Ekrem; Snape, Colin E

    2004-01-01

    A comparison of waste and virgin polypropylene (PP) plastics under slow pyrolysis conditions is presented. Moreover, mixtures of waste PP with wastes of polyethylene (PE) and polystyrene (PS) were pyrolyzed under the same operating conditions. Not only the impact of waste on degradation products but also impacts of the variations in the mixing ratio were investigated. The thermogravimetric weight loss curves and their derivatives of virgin and waste PP showed differences due to the impurities which are dirt and food residues. The liquid yield distribution concerning the aliphatic, mono-aromatic and poly-aromatic compounds varies as the ratio of PP waste increases in the waste plastic mixtures. In addition to this, the alkene/alkane ratio of gas products shows variations depending on the mixing ratio of wastes.

  13. Climate history shapes contemporary leaf litter decomposition

    Science.gov (United States)

    Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford

    2015-01-01

    Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...

  14. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Lamoolphak, Wiwat [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Goto, Motonobu [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Sasaki, Mitsuru [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Suphantharika, Manop [Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Muangnapoh, Chirakarn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Prommuag, Chattip [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Shotipruk, Artiwan [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand)]. E-mail: artiwan.s@chula.ac.th

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  15. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    International Nuclear Information System (INIS)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-01-01

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products

  16. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    Science.gov (United States)

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  17. Decomposition of dioxin analogues and ablation study for carbon nanotube

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko

    2002-01-01

    Two application studies associated with the free electron laser are presented separately, which are the titles of 'Decomposition of Dioxin Analogues' and 'Ablation Study for Carbon Nanotube'. The decomposition of dioxin analogues by infrared (IR) laser irradiation includes the thermal destruction and multiple-photon dissociation. It is important for us to choose the highly absorbable laser wavelength for the decomposition. The thermal decomposition takes place by the irradiation of the low IR laser power. Considering the model of thermal decomposition, it is proposed that adjacent water molecules assist the decomposition of dioxin analogues in addition to the thermal decomposition by the direct laser absorption. The laser ablation study is performed for the aim of a carbon nanotube synthesis. The vapor by the ablation is weakly ionized in the power of several-hundred megawatts. The plasma internal energy is kept over an 8.5 times longer than the vacuum. The cluster was produced from the weakly ionized gas in the enclosed gas, which is composed of the rough particles in the low power laser more than the high power which is composed of the fine particles. (J.P.N.)

  18. Abstract decomposition theorem and applications

    CERN Document Server

    Grossberg, R; Grossberg, Rami; Lessmann, Olivier

    2005-01-01

    Let K be an Abstract Elementary Class. Under the asusmptions that K has a nicely behaved forking-like notion, regular types and existence of some prime models we establish a decomposition theorem for such classes. The decomposition implies a main gap result for the class K. The setting is general enough to cover \\aleph_0-stable first-order theories (proved by Shelah in 1982), Excellent Classes of atomic models of a first order tehory (proved Grossberg and Hart 1987) and the class of submodels of a large sequentially homogenuus \\aleph_0-stable model (which is new).

  19. Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis

    International Nuclear Information System (INIS)

    Liu, Nan; Ma, Zujun; Kang, Jidong

    2015-01-01

    The industrial sector accounts for 70% of the total energy-related CO_2 emissions in China. To gain a better understanding of the changes in carbon intensity in China's industrial sector, this study first utilized logarithmic mean Divisia index (LMDI) decomposition analysis to disentangle the carbon intensity into three influencing factors, including the emission coefficient effect, the energy intensity effect, and the structure effect. Then, the analysis was furthered to explore the contributions of individual industrial sub-sectors to each factor by using an extension of the decomposition method proposed in Choi and Ang (2012). The results indicate that from 1996 to 2012, the energy intensity effect was the dominant factor in reducing carbon intensity, of which chemicals, iron and steel, metal and machinery, and cement and ceramics were the most representative sub-sectors. The structure effect did not show a strong impact on carbon intensity. The emission coefficient effect gradually increased the carbon intensity, mainly due to the expansion of electricity consumption, particularly in the metal and machinery and chemicals sub-sectors. The findings suggest that differentiated policies and measures should be considered for various industrial sub-sectors to maximize the energy efficiency potential. Moreover, readjusting the industrial structure and promoting clean and renewable energy is also urgently required to further reduce carbon intensity in China's industrial sector. - Highlights: • The study analyzed the changes in carbon intensity in China's industrial sector. • An extension of the Divisia index decomposition methodology was utilized. • Energy efficiency improvement was the dominant factor reducing carbon intensity. • The sub-sector contributions to the energy efficiency improvement varied markedly. • Emission coefficient growth can be mainly due to the expansion of electricity.

  20. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  1. Radioactive waste equivalence

    International Nuclear Information System (INIS)

    Orlowski, S.; Schaller, K.H.

    1990-01-01

    The report reviews, for the Member States of the European Community, possible situations in which an equivalence concept for radioactive waste may be used, analyses the various factors involved, and suggests guidelines for the implementation of such a concept. Only safety and technical aspects are covered. Other aspects such as commercial ones are excluded. Situations where the need for an equivalence concept has been identified are processes where impurities are added as a consequence of the treatment and conditioning process, the substitution of wastes from similar waste streams due to the treatment process, and exchange of waste belonging to different waste categories. The analysis of factors involved and possible ways for equivalence evaluation, taking into account in particular the chemical, physical and radiological characteristics of the waste package, and the potential risks of the waste form, shows that no simple all-encompassing equivalence formula may be derived. Consequently, a step-by-step approach is suggested, which avoids complex evaluations in the case of simple exchanges

  2. Wastes in space

    International Nuclear Information System (INIS)

    2011-01-01

    As human space activities have created more wastes on low and high Earth orbits over the past 50 years than the solar system injected meteorites over billions of years, this report gives an overview of this problem. It identifies the origins of these space debris and wastes (launchers, combustion residues, exploitation wastes, out-of-use satellites, accidental explosions, accidental collisions, voluntary destructions, space erosion), and proposes a stock list of space wastes. Then, it distinguishes the situation for the different orbits: low Earth orbit or LEO (traffic, presence of the International Space Station), medium Earth orbits or MEO (traffic, operating satellites, wastes), geostationary Earth orbit or GEO (traffic, operating satellites, wastes). It also discusses wastes and bacteria present on the moon (due to Apollo missions or to crash tests). It evokes how space and nuclear industry is concerned, and discusses the re-entry issue (radioactive boomerang, metallic boomerang). It also indicates elements of international law

  3. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    Science.gov (United States)

    van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2010-12-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.

  4. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    International Nuclear Information System (INIS)

    Eloussifi, H.; Farjas, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.; Dammak, M.

    2013-01-01

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF 3 appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films

  5. An Improved Algorithm to Delineate Urban Targets with Model-Based Decomposition of PolSAR Data

    Directory of Open Access Journals (Sweden)

    Dingfeng Duan

    2017-10-01

    Full Text Available In model-based decomposition algorithms using polarimetric synthetic aperture radar (PolSAR data, urban targets are typically identified based on the existence of strong double-bounced scattering. However, urban targets with large azimuth orientation angles (AOAs produce strong volumetric scattering that appears similar to scattering characteristics from tree canopies. Due to scattering ambiguity, urban targets can be classified into the vegetation category if the same classification scheme of the model-based PolSAR decomposition algorithms is followed. To resolve the ambiguity and to reduce the misclassification eventually, we introduced a correlation coefficient that characterized scattering mechanisms of urban targets with variable AOAs. Then, an existing volumetric scattering model was modified, and a PolSAR decomposition algorithm developed. The validity and effectiveness of the algorithm were examined using four PolSAR datasets. The algorithm was valid and effective to delineate urban targets with a wide range of AOAs, and applicable to a broad range of ground targets from urban areas, and from upland and flooded forest stands.

  6. Controlled composting of waste wood contaminated with PAH; Untersuchungen zur gesteuerten Rotte von mit polyzyklischen aromatischen Kohlenwasserstoffen (PAK) kontaminiertem Altholz

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, H.

    2002-07-01

    The author investigated the potential and limits of microbial pollutant degradation in PAH-polluted waste wood by composting. The conditions in which autochthonic micro-organisms are able to decomposite the PAH contained in wood by solid phase fermentation were investigated. The focus was on phenanthrene, anthracene and pyrene, all of which are used as protective materials (disinfestants) for wood. The results were verified on contaminated waste wood, including an analytical investigations of decomposition of PAH of the EPA catalogue. Boundary conditions for achieving high rates of PAH decomposition were investigated. [German] Generelles Ziel der Arbeit war die Untersuchung der Moeglichkeiten und Grenzen des mikrobiellen Schadstoffabbaus in PAK-belastetem Altholz durch Kompostierung und die Pruefung auf Anwendbarkeit der Erkenntnisse in technischen Verfahren. In der vorliegenden Arbeit wurde untersucht, unter welchen Bedingungen die autochthonen Mikroorganismen in der Lage sind, an das Holz gebundene PAK durch Feststofffermentation abzubauen. Als Schwerpunkt wurde zunaechst der Abbau der im zum Holzschutz verwendetem Teeroel vorkommenden PAK Phenanthren, Anthracen und Pyren untersucht. Eine Verifizierung der Ergebnisse erfolgte mit real kontaminiertem Altholz, dabei wurde der Abbau der PAK der EPA-Liste analytisch verfolgt. Es sollten geeignete Randbedingungen gefunden werden, um im Festphasensystem hohe Abbauraten der PAK zu erreichen. (orig.)

  7. Joint Matrices Decompositions and Blind Source Separation

    Czech Academy of Sciences Publication Activity Database

    Chabriel, G.; Kleinsteuber, M.; Moreau, E.; Shen, H.; Tichavský, Petr; Yeredor, A.

    2014-01-01

    Roč. 31, č. 3 (2014), s. 34-43 ISSN 1053-5888 R&D Projects: GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : joint matrices decomposition * tensor decomposition * blind source separation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 5.852, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/tichavsky-0427607.pdf

  8. Decomposition sludge and decomposition gas for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    Poepel, F

    1954-01-01

    Agricultural gas containing CH/sub 4/ and CO/sub 2/ is produced by anaerobic fermentation of wastes. The decomposed material is a valuable fertilizer which, by means of aerobic composting with refuse or peat, can be converted into a true humus substance. The operation of small-scale plant for processing agricultural wastes is described.

  9. Waste as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, T. M.; Lorimer, A. D.

    1979-07-01

    The methods of using the energy available in wastes to reduce the energy costs in processes are discussed. Special reference is made to the need for careful evaluation of the potential of the waste to reduce energy costs, before significant investment is made. Problems generally arise due to the effective balancing of the cost of the waste pretreatment with the disposal fee and prime fuel saving. Special reference is made to use of waste as a fuel in the cement industry. Municipal refuse is discussed as a typical successful application.

  10. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Hoon, E-mail: mrchoijh@kaeri.re.kr; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-15

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO{sub 2}−Al{sub 2}O{sub 3}−B{sub 2}O{sub 3} glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  11. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  12. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  13. Microbial Signatures of Cadaver Gravesoil During Decomposition.

    Science.gov (United States)

    Finley, Sheree J; Pechal, Jennifer L; Benbow, M Eric; Robertson, B K; Javan, Gulnaz T

    2016-04-01

    Genomic studies have estimated there are approximately 10(3)-10(6) bacterial species per gram of soil. The microbial species found in soil associated with decomposing human remains (gravesoil) have been investigated and recognized as potential molecular determinants for estimates of time since death. The nascent era of high-throughput amplicon sequencing of the conserved 16S ribosomal RNA (rRNA) gene region of gravesoil microbes is allowing research to expand beyond more subjective empirical methods used in forensic microbiology. The goal of the present study was to evaluate microbial communities and identify taxonomic signatures associated with the gravesoil human cadavers. Using 16S rRNA gene amplicon-based sequencing, soil microbial communities were surveyed from 18 cadavers placed on the surface or buried that were allowed to decompose over a range of decomposition time periods (3-303 days). Surface soil microbial communities showed a decreasing trend in taxon richness, diversity, and evenness over decomposition, while buried cadaver-soil microbial communities demonstrated increasing taxon richness, consistent diversity, and decreasing evenness. The results show that ubiquitous Proteobacteria was confirmed as the most abundant phylum in all gravesoil samples. Surface cadaver-soil communities demonstrated a decrease in Acidobacteria and an increase in Firmicutes relative abundance over decomposition, while buried soil communities were consistent in their community composition throughout decomposition. Better understanding of microbial community structure and its shifts over time may be important for advancing general knowledge of decomposition soil ecology and its potential use during forensic investigations.

  14. Role of Reactive Mn Complexes in a Litter Decomposition Model System

    Science.gov (United States)

    Nico, P. S.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Summering, J. A.; Maynard, J. J.; Johnson, M.; Pett-Ridge, J.

    2012-12-01

    The search for controls on litter decomposition rates and pathways has yet to return definitive characteristics that are both statistically robust and can be understood as part of a mechanistic or numerical model. Herein we focus on Mn, an element present in all litter that is likely an active chemical agent of decomposition. Berg and co-workers (2010) found a strong correlation between Mn concentration in litter and the magnitude of litter degradation in boreal forests, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. Although there is much circumstantial evidence for the potential role of Mn in lignin decomposition, few reports exist on mechanistic details of this process. For the current work, we are guided by the hypothesis that the dependence of decomposition on Mn is due to Mn (III)-oxalate complexes act as a 'pretreatment' for structurally intact ligno-carbohydrate complexes (LCC) in fresh plant cell walls (e.g. in litter, root and wood). Manganese (III)-ligand complexes such as Mn (III)-oxalate are known to be potent oxidizers of many different organic and inorganic compounds. In the litter system, the unique property of these complexes may be that they are much smaller than exo-enzymes and therefore more easily able to penetrate LCC complexes in plant cell walls. By acting as 'diffusible oxidizers' and reacting with the organic matrix of the cell wall, these compounds can increase the porosity of fresh litter thereby facilitating access of more specific lignin- and cellulose decomposing enzymes. This possibility was investigated by reacting cell walls of single Zinnia elegans tracheary elements with Mn (III)-oxalate complexes in a continuous flow reactor. The uniformity of these individual plant cells allowed us to examine Mn (III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as IR and X-ray spectromicroscopy. This presentation will

  15. Decomposition of 1,4-dioxane by advanced oxidation and biochemical process.

    Science.gov (United States)

    Kim, Chang-Gyun; Seo, Hyung-Joon; Lee, Byung-Ryul

    2006-01-01

    This study was undertaken to determine the optimal decomposition conditions when 1,4-dioxane was degraded using either the AOPs (Advanced Oxidation Processes) or the BAC-TERRA microbial complex. The advanced oxidation was operated with H2O2, in the range 4.7 to 51 mM, under 254 nm (25 W lamp) illumination, while varying the reaction parameters, such as the air flow rate and reaction time. The greatest oxidation rate (96%) of 1,4-dioxane was achieved with H2O2 concentration of 17 mM after a 2-hr reaction. As a result of this reaction, organic acid intermediates were formed, such as acetic, propionic and butyric acids. Furthermore, the study revealed that suspended particles, i.e., bio-flocs, kaolin and pozzolan, in the reaction were able to have an impact on the extent of 1,4-dioxane decomposition. The decomposition of 1,4-dioxane in the presence of bio-flocs was significantly declined due to hindered UV penetration through the solution as a result of the consistent dispersion of bio-particles. In contrast, dosing with pozzolan decomposed up to 98.8% of the 1,4-dioxane after 2 hr of reaction. Two actual wastewaters, from polyester manufacturing, containing 1,4-dioxane in the range 370 to 450 mg/L were able to be oxidized by as high as 100% within 15 min with the introduction of 100:200 (mg/L) Fe(II):H202 under UV illumination. Aerobic biological decomposition, employing BAC-TERRA, was able to remove up to 90% of 1,4-dioxane after 15 days of incubation. In the meantime, the by-products (i.e., acetic, propionic and valeric acid) generated were similar to those formed during the AOPs investigation. According to kinetic studies, both photo-decomposition and biodegradation of 1,4-dioxane followed pseudo first-order reaction kinetics, with k = 5 x 10(-4) s(-1) and 2.38 x 10(-6) s(-1), respectively. It was concluded that 1,4-dioxane could be readily degraded by both AOPs and BAC-TERRA, and that the actual polyester wastewater containing 1,4-dioxane could be successfully

  16. Degradation characteristics of waste polyurethane by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seok; Ahn, Sung Jun; Gwon Hui Jeong; Jeong, Sung In; Nho, Young Chang; Lim, Youn Mook [Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-06-15

    Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, waste PU recycling has received significant attention due to environmental issues. The aim of this work was to investigate the degradation characteristics of waste PU to recycle. Degradation of waste PU was carried out using a radiation techniques. Waste PUs were exposed to a gamma {sup 60}Co sources. To verify degradation, the irradiated PUs were characterized using FT-IR, gel permeation chromatography (GPC), and their thermal/mechanical properties are reported. When the radiation dose was 500 kGy, the molecular weight of the waste PU drastically decreased. Also, the mechanical properties of waste PU were approximately 4 times lower than those of non-irradiated PU. This study has confirmed the possibility of making fine particle of waste PU for recycling through radiation degradation techniques.

  17. Evolution in radioactive waste countermeasures

    International Nuclear Information System (INIS)

    Moriguchi, Yasutaka

    1984-01-01

    The establishment of radioactive waste management measures is important to proceed further with nuclear power development. While the storage facility projects by utilities are in progress, large quantity of low level wastes are expected to arise in the future due to the decommissioning of nuclear reactors, etc. An interim report made by the committee on radioactive waste countermeasures to the Atomic Energy Commission is described as follows: the land disposal measures of ultra-low level and low level radioactive wastes, that is, the concept of level partitioning, waste management, the possible practice of handling wastes, etc.; the treatment and disposal measures of high level radioactive wastes and transuranium wastes, including task sharing among respective research institutions, the solidification/storage and the geological formation disposal of high level wastes, etc. (Mori, K.)

  18. PREPARATION OF CALCIUM OXIDE FROM Achatina fulica AS CATALYST FOR PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL

    Directory of Open Access Journals (Sweden)

    Aldes Lesbani

    2013-08-01

    Full Text Available Preparation of calcium oxide from Achatina fulica shell has been carried out systematically by decomposition for 3 h at various temperatures i.e. 600, 700, 800 and 900 °C. Formation of calcium oxide was characterized using XR diffractometer. The calcium oxide obtained with the optimum temperature decomposition was characterized using FTIR spectroscopy to indicate the functional group in the calcium oxide. The results showed that XRD pattern of materials obtained from decomposition of Achatina fulica shell at 700 °C is similar with XRD pattern of calcium oxide standard from Joint Committee on Powder Diffraction Standards (JCPDS. The IR spectra of calcium oxide appear at wavenumber 362 cm-1 which is characteristic of CaO vibration. Application of calcium oxide from Achatina fulica shell for synthesis of biodiesel from waste cooking oil results in biodiesel with density are in the range of ASTM standard.

  19. Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials

    International Nuclear Information System (INIS)

    Cui, Zixiang; Duan, Huijuan; Li, Wenjiao; Xue, Yongqiang

    2015-01-01

    In the processes of preparation and application of nanomaterials, the decomposition reactions of nanomaterials are often involved. However, there is a dramatic difference in decomposition thermodynamics between nanomaterials and the bulk counterparts, and the difference depends on the size of the particles that compose the nanomaterials. In this paper, the decomposition model of a nanoparticle was built, the theory of decomposition thermodynamics of nanomaterials was proposed, and the relations of the size dependence of thermodynamic quantities for the decomposition reactions were deduced. In experiment, taking the thermal decomposition of nano-Cu 2 (OH) 2 CO 3 with different particle sizes (the range of radius is at 8.95–27.4 nm) as a system, the reaction thermodynamic quantities were determined, and the regularities of size dependence of the quantities were summarized. These experimental regularities consist with the above thermodynamic relations. The results show that there is a significant effect of the size of particles composing a nanomaterial on the decomposition thermodynamics. When all the decomposition products are gases, the differences in thermodynamic quantities of reaction between the nanomaterials and the bulk counterparts depend on the particle size; while when one of the decomposition products is a solid, the differences depend on both the initial particle size of the nanoparticle and the decomposition ratio. When the decomposition ratio is very small, these differences are only related to the initial particle size; and when the radius of the nanoparticles approaches or exceeds 10 nm, the reaction thermodynamic functions and the logarithm of the equilibrium constant are linearly associated with the reciprocal of radius, respectively. The thermodynamic theory can quantificationally describe the regularities of the size dependence of thermodynamic quantities for decomposition reactions of nanomaterials, and contribute to the researches and the

  20. Bioremediation of cooking oil waste using lipases from wastes.

    Directory of Open Access Journals (Sweden)

    Clarissa Hamaio Okino-Delgado

    Full Text Available Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  1. Study on closed pressure vessel test. Effect of heat rate, sample weight and vessel size on pressure rise due to thermal decomposition; Mippeigata atsuryoku yoki shiken ni kansuru kenkyu. Atsuryoku hassei kyodo ni oyobosu kanetsusokudo, shiryoryo oyobi youki saizu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Kenji.; Akutsu, Yoshiaki.; Arai, Mitsuru.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering

    1999-02-28

    We have attempted to devise a new closed pressure vessel test apparatus in order to evaluate the violence of thermal decomposition of self-reactive materials and have examined some influencing factors, such as heat rate, sample weight, filling factor (sample weight/vessel size) and vessel size on Pmax (maximum pressure rise) and dP/dt (rate of pressure rise) due to their thermal decomposition. As a result, the following decreasing orders of Pmax and dP/dt were shown. Pmax: ADCA>BPZ>AIBN>TCP dP/dt: AIBN>BPZ>ADCA>TCP Moreover, Pmax was not almost influenced by heat rate, while dP/dt increased with an increase in heat rate in the case of BPZ. Pmax and dP/dt increased with an increase in sample weight and the degree of increase depended on the kinds of materials. In addition, it was shown that Pmax and dP/dt increased with an increase in vessel size at a constant filling factor. (author)

  2. Two Notes on Discrimination and Decomposition

    DEFF Research Database (Denmark)

    Nielsen, Helena Skyt

    1998-01-01

    1. It turns out that the Oaxaca-Blinder wage decomposition is inadequate when it comes to calculation of separate contributions for indicator variables. The contributions are not robust against a change of reference group. I extend the Oaxaca-Blinder decomposition to handle this problem. 2. The p....... The paper suggests how to use the logit model to decompose the gender difference in the probability of an occurrence. The technique is illustrated by an analysis of discrimination in child labor in rural Zambia....

  3. An evaluation of soil chemistry in human cadaver decomposition islands: Potential for estimating postmortem interval (PMI).

    Science.gov (United States)

    Fancher, J P; Aitkenhead-Peterson, J A; Farris, T; Mix, K; Schwab, A P; Wescott, D J; Hamilton, M D

    2017-10-01

    Soil samples from the Forensic Anthropology Research Facility (FARF) at Texas State University, San Marcos, TX, were analyzed for multiple soil characteristics from cadaver decomposition islands to a depth of 5centimeters (cm) from 63 human decomposition sites, as well as depths up to 15cm in a subset of 11 of the cadaver decomposition islands plus control soils. Postmortem interval (PMI) of the cadaver decomposition islands ranged from 6 to 1752 days. Some soil chemistry, including nitrate-N (NO 3 -N), ammonium-N (NH 4 -N), and dissolved inorganic carbon (DIC), peaked at early PMI values and their concentrations at 0-5cm returned to near control values over time likely due to translocation down the soil profile. Other soil chemistry, including dissolved organic carbon (DOC), dissolved organic nitrogen (DON), orthophosphate-P (PO 4 -P), sodium (Na + ), and potassium (K + ), remained higher than the control soil up to a PMI of 1752days postmortem. The body mass index (BMI) of the cadaver appeared to have some effect on the cadaver decomposition island chemistry. To estimate PMI using soil chemistry, backward, stepwise multiple regression analysis was used with PMI as the dependent variable and soil chemistry, body mass index (BMI) and physical soil characteristics such as saturated hydraulic conductivity as independent variables. Measures of soil parameters derived from predator and microbial mediated decomposition of human remains shows promise in estimating PMI to within 365days for a period up to nearly five years. This persistent change in soil chemistry extends the ability to estimate PMI beyond the traditionally utilized methods of entomology and taphonomy in support of medical-legal investigations, humanitarian recovery efforts, and criminal and civil cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preliminary observation on the effect of baking soda volume on controlling odour from discarded organic waste

    International Nuclear Information System (INIS)

    Qamaruz-Zaman, N.; Kun, Y.; Rosli, R.-N.

    2015-01-01

    Highlights: • Approximately 50 g baking soda reduced odour concentration by 70%. • Reducing volatile acid concentration reduces odour concentration. • Ammonia has less effect on odour concentration. - Abstract: Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100 g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8 l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100 g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue

  5. Preliminary observation on the effect of baking soda volume on controlling odour from discarded organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Qamaruz-Zaman, N., E-mail: cenastaein@usm.my; Kun, Y.; Rosli, R.-N.

    2015-01-15

    Highlights: • Approximately 50 g baking soda reduced odour concentration by 70%. • Reducing volatile acid concentration reduces odour concentration. • Ammonia has less effect on odour concentration. - Abstract: Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100 g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8 l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100 g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue.

  6. Quantifying the effect of plant growth on litter decomposition using a novel, triple-isotope label approach

    Science.gov (United States)

    Ernakovich, J. G.; Baldock, J.; Carter, T.; Davis, R. A.; Kalbitz, K.; Sanderman, J.; Farrell, M.

    2017-12-01

    Microbial degradation of plant detritus is now accepted as a major stabilizing process of organic matter in soils. Most of our understanding of the dynamics of decomposition come from laboratory litter decay studies in the absence of plants, despite the fact that litter decays in the presence of plants in many native and managed systems. There is growing evidence that living plants significantly impact the degradation and stabilization of litter carbon (C) due to changes in the chemical and physical nature of soils in the rhizosphere. For example, mechanistic studies have observed stimulatory effects of root exudates on litter decomposition, and greenhouse studies have shown that living plants accelerate detrital decay. Despite this, we lack a quantitative understanding of the contribution of living plants to litter decomposition and how interactions of these two sources of C build soil organic matter (SOM). We used a novel triple-isotope approach to determine the effect of living plants on litter decomposition and C cycling. In the first stage of the experiment, we grew a temperate grass commonly used for forage, Poa labillardieri, in a continuously-labelled atmosphere of 14CO2 fertilized with K15NO3, such that the grass biomass was uniformly labelled with 14C and 15N. In the second stage, we constructed litter decomposition mescososms with and without a living plant to test for the effect of a growing plant on litter decomposition. The 14C/15N litter was decomposed in a sandy clay loam while a temperate forage grass, Lolium perenne, grew in an atmosphere of enriched 13CO2. The fate of the litter-14C/15N and plant-13C was traced into soil mineral fractions and dissolved organic matter (DOM) over the course of nine weeks using four destructive harvests of the mesocosms. Our preliminary results suggest that living plants play a major role in the degradation of plant litter, as litter decomposition was greater, both in rate and absolute amount, for soil mesocosms

  7. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  8. Preliminary assessment of nine waste-form products/processes for immobilizing transuranic wastes

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1980-09-01

    Nine waste-form processes for reduction of the present and projected Transuranic (TRU) waste inventory to an immobilized product have been evaluated. Product formulations, selected properties, preparation methods, technology status, problem areas needing resolution and location of current research development being pursued in the United States are discussed for each process. No definitive utility ranking is attempted due to the early stage of product/process development for TRU waste containing products and the uncertainties in the state of current knowledge of TRU waste feed compositional and quantitative makeup. Of the nine waste form products/processes included in this discussion, bitumen and cements (encapsulation agents) demonstrate the degree of flexibility necessary to immobilize the wide composition range present in the TRU waste inventory. A demonstrated process called Slagging Pyrolysis Incineration converts a varied compositional feed (municipal wastes) to a ''basalt'' like product. This process/product appears to have potential for TRU waste immobilization. The remaining waste forms (borosilicate glass, high-silica glass, glass ceramics, ''SYNROC B'' and cermets) have potential for immobilizing a smaller fraction of the TRU waste inventory than the above discussed waste forms

  9. Comparison of decomposition characteristics between aromatic and aliphatic VOCs using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jo-Chun [Department of Environmental Engineering, Konkuk University, Seoul (Korea, Republic of)

    2011-07-01

    The removal efficiency of n-decane (C{sub 10}H{sub 22}) by electron beam was the highest among aliphatic VOCs of concern, and that of n-hexane (C{sub 6}H{sub 14}), n-butane (C{sub 4}H{sub 10}), and methane (CH{sub 4}) followed. On the other hand, in terms of aromatic VOC decomposition efficiencies, benzene (C{sub 6}H{sub 6}) decomposition was the lowest and that of toluene (C{sub 7}H{sub 8}), ethylbenzene (C{sub 8}H{sub 10}), and p-xylene (C{sub 8}H{sub 10}) were similar. It was also found that there was increase in by-product (untreated VOC, CO, CO{sub 2}, O{sub 3}, and other compounds) formation as well as all VOC removal efficiencies. It was demonstrated that the removal efficiency of VOC increased as its concentration decreased and the irradiation dose increased. In addition, low removal efficiency was observed because helium was relatively stable compared to the other gases, and nothing but electrons produced by electron accelerator reacted with VOC. It was also found that relative humidity had some effects on the decomposition rates of VOC. The removal efficiency at the 100% RH condition was slightly higher than that at 7.4% RH (dry condition) due to OH radical formation. (author)

  10. Kinetics of the decomposition reaction of phosphorite concentrate

    Directory of Open Access Journals (Sweden)

    Huang Run

    2014-01-01

    Full Text Available Apatite is the raw material, which is mainly used in phosphate fertilizer, and part are used in yellow phosphorus, red phosphorus, and phosphoric acid in the industry. With the decrease of the high grade phosphorite lump, the agglomeration process is necessary for the phosphorite concentrate after beneficiation process. The decomposition behavior and the phase transformation are of vital importance for the agglomeration process of phosphorite. In this study, the thermal kinetic analysis method was used to study the kinetics of the decomposition of phosphorite concentrate. The phosphorite concentrate was heated under various heating rate, and the phases in the sample heated were examined by the X-ray diffraction method. It was found that the main phases in the phosphorite are fluorapatiteCa5(PO43F, quartz SiO2,and dolomite CaMg(CO32.The endothermic DSC peak corresponding to the mass loss caused by the decomposition of dolomite covers from 600°C to 850°C. The activation energy of the decomposition of dolomite, which increases with the increase in the extent of conversion, is about 71.6~123.6kJ/mol. The mechanism equation for the decomposition of dolomite agrees with the Valensi equation and G-B equation.

  11. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes

    Energy Technology Data Exchange (ETDEWEB)

    Brandstätter, Christian, E-mail: bran.chri@gmail.com; Laner, David, E-mail: david.laner@tuwien.ac.at; Fellner, Johann, E-mail: johann.fellner@tuwien.ac.at

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • 40 year old waste from an old MSW landfill was incubated in LSR experiments. • Carbon balances for anaerobic and aerobic waste degradation were established. • The transformation of carbon pools during waste degradation was investigated. • Waste aeration resulted in the formation of a new, stable organic carbon pool. • Water addition did not have a significant effect on aerobic waste degradation. - Abstract: Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO{sub 2} and CH{sub 4}) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg{sup −1} dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg{sup −1} dry waste). Compared to that, aeration led to threefold decrease in TOC (32–36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances

  12. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    Science.gov (United States)

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-09-01

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation. © 2017 American Academy of Forensic Sciences.

  13. Randomized interpolative decomposition of separated representations

    Science.gov (United States)

    Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory

    2015-01-01

    We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.

  14. Radioactive wastes storage and disposal. Chapter 8

    International Nuclear Information System (INIS)

    2002-01-01

    The Chapter 8 is essentially dedicated to radioactive waste management - storage and disposal. The management safety is being provided due to packages and facilities of waste disposal and storage. It is noted that at selection of sites for waste disposal it is necessary account rock properties and ways of the wastes delivery pathways

  15. Detailed Chemical Kinetic Modeling of Hydrazine Decomposition

    Science.gov (United States)

    Meagher, Nancy E.; Bates, Kami R.

    2000-01-01

    The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.

  16. Some aspects of the technology improvement for heat reprocessing of the combustible radioactive wastes and ash residue conditioning

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Lifanov, F.A.; Knyazev, I.A.; Buravchenko, N.N.; Sobolev, I.A.; Mamaev, L.A.; Alekseev, A.N.; Simagina, O.S.

    1991-01-01

    The results of studies devoted to increasing the efficiency of thermal reprocessing (combustion) of organic low- and intermediate-level radioactive wastes are given. The new most efficient three-stage process including: 1) gasification and pyrolysis of an organic material with volatile product release, 2) coke residual combustion, ash and noncombustible materials melting, 3) combustion of volatile products of thermal decomposition is developed on the basis of the analysis of solid radioactive waste combustion schemes, mathematical simulation and laboratory studies. Experimental bed, in which these processes are realized, is created. The results obtained in it have allowed one to begin designing of the pilot-commercial plant with shaft furnace having the capacity up to 200 kg/h for solid wastes

  17. Primary decomposition of zero-dimensional ideals over finite fields

    Science.gov (United States)

    Gao, Shuhong; Wan, Daqing; Wang, Mingsheng

    2009-03-01

    A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.

  18. Radiological impact assessment to the environment due to waste from disposal of porcelain.

    Science.gov (United States)

    Morsi, Tarek; Hegazy, Rehab; Badawy, Wael

    2017-06-01

    The present study aimed to assess the radiological parameters from gamma rays due to the uncontrolled disposal of porcelain waste to the environment. Qualitative and quantitative identification of radionuclides in the investigated samples was carried out by means of a high-purity germanium (HPGe) detector. The average activity concentrations of the local porcelain samples were measured as 208.28 Bq/kg for 226 Ra, 125.73 Bq/kg for 238 U, 84.94 Bq/kg for 232 Th and 1033.61 Bq/kg for 40 K, respectively. The imported samples had an average activity of 240.57 Bq/kg for 226 Ra, 135.56 Bq/kg for 238 U, 115.74 Bq/kg for 232 Th and 1312.49 Bq/kg for 40 K, respectively. Radiological parameters and the radium equivalent Ra eq for the investigated samples were calculated. The external and internal hazard indices, representative level index (I γ ), alpha index (I α ), and the exemption level (I x ), were estimated to be higher than the recommended value (unity), while the average activity concentrations for the studied samples were higher than recommended levels. In conclusion, we are concerned that disposal of porcelain in the environment might be a significant hazard.

  19. The successful demonstration of aerobic landfilling. The potential for a more sustainable solid waste management approach?

    Energy Technology Data Exchange (ETDEWEB)

    Read, A.D. [School of Earth Science and Geography, Center for Environmental and Earth Science Research, Kingston University, Penrhyn Road, Surrey, KT1 2EE Kingston upon Thames (United Kingdom); Hudgins, M. [Environmental Control Systems Inc., Atlanta, GA (United States); Harper, S. [US Environmental Protection Agency, Region IV, Atlanta, GA (United States); Phillips, P. [School of Environmental Science, University College Northampton, Northampton (United Kingdom); Morris, J. [School of Law and Accountancy, University College Northampton, Northampton (United Kingdom)

    2001-06-01

    Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential, economic and environmental impacts to worldwide solid waste management practices.

  20. Thermogravimetric analysis and kinetic study of bamboo waste treated by Echinodontium taxodii using a modified three-parallel-reactions model.

    Science.gov (United States)

    Yu, Hongbo; Liu, Fang; Ke, Ming; Zhang, Xiaoyu

    2015-06-01

    In this study, the effect of pretreatment with Echinodontium taxodii on thermal decomposition characteristics and kinetics of bamboo wastes was investigated by thermogravimetric analysis. The results showed fungal pretreatment can enhance the thermal degradation of bamboo. The negative effect of extractives in bamboo on the thermal decomposition can be decreased by the pretreatment. A modified three-parallel-reactions model based on isolated lignin was firstly proposed to study pyrolysis kinetics of bamboo lignocellulose. Kinetic analysis showed that with increasing pretreatment time fungal delignification was enhanced to transform the lignin component with high activation energy into that with low activation energy and raise the cellulose content in bamboo, making the thermal decomposition easier. These results demonstrated fungal pretreatment provided a potential way to improve thermal conversion efficiency of bamboo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Challenges when Performing Economic Optimization of Waste Treatment

    DEFF Research Database (Denmark)

    Juul, Nina; Münster, Marie; Ravn, Hans

    2011-01-01

    New investments in waste treatment facilities are needed due to a number of factors including continuously increasing waste amounts, political demands for efficient utilization of the waste resources in terms of recycling or energy production, and decommissioning of existing waste treatment...... facilities due to age and stricter environmental regulation. Optimization models can assist in ensuring that these investment strategies will be economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing...... in multi criteria analysis have been developed. A thorough updated review of the existing models is presented and the main challenges and the crucial parameters to take into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both...

  2. The decomposition of methyltrichlorosilane: Studies in a high-temperature flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Osterheld, T.H.; Melius, C.F.

    1994-01-01

    Experimental measurements of the decomposition of methyltrichlorosilane (MTS), a common silicon carbide precursor, in a high-temperature flow reactor are presented. The results indicate that methane and hydrogen chloride are major products of the decomposition. No chlorinated silane products were observed. Hydrogen carrier gas was found to increase the rate of MTS decomposition. The observations suggest a radical-chain mechanism for the decomposition. The implications for silicon carbide chemical vapor deposition are discussed.

  3. Sensitivity analysis of six soil organic matter models applied to the decomposition of animal manures and crop residues

    Directory of Open Access Journals (Sweden)

    Daniele Cavalli

    2016-09-01

    polysaccharides pool decomposed slowly; therefore model outputs were not sensitive to a variation of its decay constant. Six-month organic matter decomposition was generally higher for models implementing classical Monod kinetics, followed by models with first-order and reverse Monod kinetics, due to the effect of soil microbial biomass growth on decomposition rates. Moreover, models implementing Monod kinetics predicted positive priming effects of native organic matter after soil amendment, according to co-metabolism theory. Thus, priming was proportional to the increase of the microbial biomass and in turn to the decomposability of applied organic matter. We conclude that model calibration should focus only on the few important parameters.

  4. Thermal decomposition of zirconium compounds with some aromatic hydroxycarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Koshel, A V; Malinko, L A; Karlysheva, K F; Sheka, I A; Shchepak, N I [AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii

    1980-02-01

    By the thermogravimetry method investigated are processes of thermal decomposition of different zirconium compounds with mandelic, parabromomandelic, salicylic and sulphosalicylic acids. For identification of decomposition products the specimens have been kept at the temperature of effects up to the constant weight. Taken are IR-spectra, rentgenoarams, carried out is elementary analysis of decomposition products. It is stated that thermal decomposition of the investigated compounds passes in stages; the final product of thermolysis is ZrO/sub 2/. Nonhydrolized compounds are stable at heating in the air up to 200-265 deg. Hydroxy compounds begin to decompose at lower temperature (80-100 deg).

  5. Analysing the production and treatment of solid waste using a national accounting framework.

    Science.gov (United States)

    Delahaye, Roel; Hoekstra, Rutger; Nootenboom, Leslie

    2011-07-01

    Our knowledge of the relationship between the economy and the environment has increased significantly over recent decades. One of the areas in which this is most apparent is the area of environmental accounting, where environmental data is presented according to national accounting principles. These accounts provide consistent, complete and detailed information for understanding environmental-economic interdependencies. One of the modules of these accounts is the waste accounts which record the origin and destination of waste materials. The first part of this paper discusses the Dutch waste accounts and their relation with economic indicators. In the second part a number of applications, which are based on the input-output model, are applied to these accounts. This section includes a novel structural decomposition analysis which quantifies the underlying driving forces of changes in total waste and landfilled waste between 1995 and 2004. The results show that the total amount of waste is mainly driven by economic growth (positive effect) and the direct export of waste (negative effect). The models also show that the construction sector has played a very important part in the reduction of waste. Furthermore, the decrease in the amount of landfilled waste, which is caused by Dutch regulations, has led to a large shift towards recycling and to a lesser degree incineration. Finally, the calculations for the 'environmental trade balance' for waste show that the waste-contents of exports exceed that of imports. This paper shows that the waste accounts have many analytical and policy-relevant applications.

  6. Decomposition of continuum {gamma}-ray spectra using synthesized response matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Morhac, M.; Kliman, J.; Krupa, L.; Matousek, V. E-mail: vladislav.matousek@savba.sk; Hamilton, J.H.; Ramayya, A.V

    2004-01-01

    The efficient methods of decomposition of {gamma}-ray spectra, based on the Gold algorithm, are presented. They use a response matrix of Gammasphere, which was obtained by synthesis of simulated and interpolated response functions using a new developed interpolation algorithm. The decomposition method has been applied to the measured spectra of {sup 152}Eu and {sup 56}Co. The results show a very effective removal of the background counts and their concentration into the corresponding photopeaks. The peak-to-total ratio in the spectra achieved after applying the decomposition method is in the interval 0.95-0.99. In addition, a new advanced algorithm of the 'boosted' decomposition has been proposed. In the spectra obtained after applying the boosted decomposition to the measured spectra, very narrow photopeaks are observed with the counts concentrated to several channels.

  7. Inverse scale space decomposition

    DEFF Research Database (Denmark)

    Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane

    2018-01-01

    We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...

  8. Automated polyp measurement based on colon structure decomposition for CT colonography

    Science.gov (United States)

    Wang, Huafeng; Li, Lihong C.; Han, Hao; Peng, Hao; Song, Bowen; Wei, Xinzhou; Liang, Zhengrong

    2014-03-01

    Accurate assessment of colorectal polyp size is of great significance for early diagnosis and management of colorectal cancers. Due to the complexity of colon structure, polyps with diverse geometric characteristics grow from different landform surfaces. In this paper, we present a new colon decomposition approach for polyp measurement. We first apply an efficient maximum a posteriori expectation-maximization (MAP-EM) partial volume segmentation algorithm to achieve an effective electronic cleansing on colon. The global colon structure is then decomposed into different kinds of morphological shapes, e.g. haustral folds or haustral wall. Meanwhile, the polyp location is identified by an automatic computer aided detection algorithm. By integrating the colon structure decomposition with the computer aided detection system, a patch volume of colon polyps is extracted. Thus, polyp size assessment can be achieved by finding abnormal protrusion on a relative uniform morphological surface from the decomposed colon landform. We evaluated our method via physical phantom and clinical datasets. Experiment results demonstrate the feasibility of our method in consistently quantifying the size of polyp volume and, therefore, facilitating characterizing for clinical management.

  9. Radioactive waste management / NORM wastes; Gerenciamento de residuos / rejeitos NORM

    Energy Technology Data Exchange (ETDEWEB)

    Schenato, Flavia; Ruperti Junior, Nerbe Jose Ruperti

    2016-07-01

    The chapter 8 presents the waste management of the mineral industries as the main problem pointed out by the inspections, due to the the inadequate deposition with consequences to the human populations and the environment. The concepts about the criteria of exemption and the related legislation are also presented. Several different technical solutions for de NORM waste deposition are mentioned. Finally, the reutilization and recycling of NORM are covered.

  10. Decomposition of the Gender Wage Gap Using Matching: An Application for Switzerland

    OpenAIRE

    Dragana Djurdjevic; Sergiy Radyakin

    2007-01-01

    In this paper, we investigate the gender wage differentials for Switzerland. Using micro data from the Swiss Labour Force Survey, we apply a matching method to decompose the wage gap in Switzerland. Compared to the traditional Oaxaca-Blinder decomposition, this nonparametric technique does not require any estimation of wage equations and accounts for wage differences that can be due to differences in the support. Our estimation results show that the problem of gender differences in the suppor...

  11. Mode decomposition methods for flows in high-contrast porous media. A global approach

    KAUST Repository

    Ghommem, Mehdi; Calo, Victor M.; Efendiev, Yalchin R.

    2014-01-01

    We apply dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) methods to flows in highly-heterogeneous porous media to extract the dominant coherent structures and derive reduced-order models via Galerkin projection. Permeability fields with high contrast are considered to investigate the capability of these techniques to capture the main flow features and forecast the flow evolution within a certain accuracy. A DMD-based approach shows a better predictive capability due to its ability to accurately extract the information relevant to long-time dynamics, in particular, the slowly-decaying eigenmodes corresponding to largest eigenvalues. Our study enables a better understanding of the strengths and weaknesses of the applicability of these techniques for flows in high-contrast porous media. Furthermore, we discuss the robustness of DMD- and POD-based reduced-order models with respect to variations in initial conditions, permeability fields, and forcing terms. © 2013 Elsevier Inc.

  12. Decomposition of benzidine, α-naphthylamine, and p-toluidine in soils

    International Nuclear Information System (INIS)

    Graveel, J.G.; Sommers, L.E.; Nelson, D.W.

    1986-01-01

    Decomposition of 14 C-labeled benzidine, α-naphthylamine, and p-toluidine in soil was studied in laboratory experiments by monitoring CO 2 production during a 308- to 365-d incubation period. The importance of microbial activity in decomposition of all three aromatic amines was shown by decreased 14 CO 2 evolution in 60 Co treated soils. After 365 d of incubation, 8.4 to 12% of added benzidine (54.3 μmol kg -1 ) was evolved as CO 2 while 17 to 31% of added α-naphthylamine (69.8 μmol kg -1 ) and 19 to 35% of added p-toluidine (93.3 μmol kg -1 ) were evolved as CO 2 in 308 d. Decomposition was enhanced by increasing the temperature from 12 to 30 0 C. For benzidine, both the amount and proportion decomposed increased with an increase in application rate. Decomposition of aromatic amines was not enhanced by the addition of decomposable substrates. Differences in decomposition of aromatic amines occurred among soils, but consistent relationships between decomposition of amines and soil properties were not observed. In batch equilibration studies, the Freundlich equation described aromatic amine sorption. Isotherms were nonlinear for benzidine and 1 -naphthylamine and linear for p-toluidine. Desorption of sorbed amines followed the order: benzidine < p-toluidine < α-naphthylamine and was inversely related to the extent of decomposition

  13. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  14. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    Science.gov (United States)

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  15. Multilevel domain decomposition for electronic structure calculations

    International Nuclear Information System (INIS)

    Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.

    2007-01-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure

  16. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    Science.gov (United States)

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  17. Microbial community functional change during vertebrate carrion decomposition.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pechal

    Full Text Available Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects. Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  18. Ensemble empirical model decomposition and neuro-fuzzy conjunction model for middle and long-term runoff forecast

    Science.gov (United States)

    Tan, Q.

    2017-12-01

    Forecasting the runoff over longer periods, such as months and years, is one of the important tasks for hydrologists and water resource managers to maximize the potential of the limited water. However, due to the nonlinear and nonstationary characteristic of the natural runoff, it is hard to forecast the middle and long-term runoff with a satisfactory accuracy. It has been proven that the forecast performance can be improved by using signal decomposition techniques to product more cleaner signals as model inputs. In this study, a new conjunction model (EEMD-neuro-fuzzy) with adaptive ability is proposed. The ensemble empirical model decomposition (EEMD) is used to decompose the runoff time series into several components, which are with different frequencies and more cleaner than the original time series. Then the neuro-fuzzy model is developed for each component. The final forecast results can be obtained by summing the outputs of all neuro-fuzzy models. Unlike the conventional forecast model, the decomposition and forecast models in this study are adjusted adaptively as long as new runoff information is added. The proposed models are applied to forecast the monthly runoff of Yichang station, located in Yangtze River of China. The results show that the performance of adaptive forecast model we proposed outperforms than the conventional forecast model, the Nash-Sutcliffe efficiency coefficient can reach to 0.9392. Due to its ability to process the nonstationary data, the forecast accuracy, especially in flood season, is improved significantly.

  19. Mechanism and kinetics of thermal decomposition of ammoniacal complex of copper oxalate

    International Nuclear Information System (INIS)

    Prasad, R.

    2003-01-01

    A complex precursor has been synthesized by dissolving copper oxalate in liquor ammonia followed by drying. The thermal decomposition of the precursor has been studied in different atmospheres, air/nitrogen. The mechanism of decomposition of the precursor in air is not as simple one as in nitrogen. In nitrogen, it involves endothermic deammoniation followed by decomposition to finely divided elemental particles of copper. Whereas in air, decomposition and simultaneous oxidation of the residual products (oxidative decomposition), make the process complex and relatively bigger particle of cupric oxide are obtained as final product. The products of decomposition in different atmospheres have been characterized by X-ray diffraction and particle size analysis. The stoichiometric formula, Cu(NH 3 ) 2 C 2 O 4 of the precursor is established from elemental analysis and TG measurements, and it is designated as copper amino oxalate (CAO). In nitrogen atmosphere, the deammoniation and decomposition have been found to be zero and first order, respectively. The values of activation energy have been found to be 102.52 and 95.38 kJ/mol for deammoniation and decomposition, respectively

  20. Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei; Zhao, Hui; Liu, Gao; Ross, Philip N.; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2014-01-01

    The formation of passive films on electrodes due to electrolyte decomposition significantly affects the reversibility of Li-ion batteries (LIBs); however, understanding of the electrolyte decomposition process is still lacking. The decomposition products of ethylene carbonate (EC)-based electrolytes on Sn and Ni electrodes are investigated in this study by Fourier transform infrared (FTIR) spectroscopy. The reference compounds, diethyl 2,5-dioxahexane dicarboxylate (DEDOHC) and polyethylene carbonate (poly-EC), were synthesized, and their chemical structures were characterized by FTIR spectroscopy and nuclear magnetic resonance (NMR). Assignment of the vibration frequencies of these compounds was assisted by quantum chemical (Hartree-Fock) calculations. The effect of Li-ion solvation on the FTIR spectra was studied by introducing the synthesized reference compounds into the electrolyte. EC decomposition products formed on Sn and Ni electrodes were identified as DEDOHC and poly-EC by matching the features of surface species formed on the electrodes with reference spectra. The results of this study demonstrate the importance of accounting for the solvation effect in FTIR analysis of the decomposition products forming on LIB electrodes. © 2014 American Chemical Society.