WorldWideScience

Sample records for waste cleanup activities

  1. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    International Nuclear Information System (INIS)

    Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

    2003-01-01

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist

  2. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

    2003-02-27

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

  3. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    Collard, G.

    2007-01-01

    The primary mission of the Radioactive Waste and Clean-up division is to propose, to develop and to evaluate solutions for a safe, acceptable and sustainable management of radioactive waste. The Radioactive Waste and Clean-up division programme consists in research, studies, development and demonstration aiming to realise the objective of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation on radioactively contaminated sites. Indeed, it participates in the realisation of an objective which is to ensure that radioactive wastes are safely managed, transported, stored and disposed of, with a view to protecting human health and the environment, within a wider framework of an interactive and integrated approach to radioactive waste management and safety. We believe that nuclear energy will be necessary for the sustainable development of mankind in the 21st century, but we well understand that it would not be maintained if it is not proven that within benefits of nuclear energy a better protection of the environment is included. Although the current waste management practices are both technically and from the environmental point of view adequate, efforts in relation of future power production and waste management technologies should be put on waste minimisation. Therefore, the new and innovative reactors, fuel cycle and waste management processes and installations should be designed so that the waste generation can be kept in minimum. In addition to the design, the installations should be operated so as to create less waste; consideration should be given e.g. to keeping water chemistry clean and other quality factors. SCK-CEN in general and the Radioactive Waste and Clean-up division in particular are present in international groups preparing the development of innovative nuclear reactors, as Generation 4 and INPRO. Because performance assessments are often black boxes for the public, demonstration is needed for the acceptation of

  4. Three Mile Island Cleanup: experiences, waste disposal, and environmental impact

    International Nuclear Information System (INIS)

    King, L.J.; Opelka, J.H.

    1982-01-01

    These papers were presented in a two-session symposium during the American Institute of Chemical Engineers 1981 Summer National meeting in Detroit, Michigan, August 16-19, 1981. The cleanup activities described included the venting of the gases, mostly krypton-85, from the reactor containment building and several entries of personnel into the containment building to determine the physical conditions and the levels of radiation and radioactive contamination. Results of the latest process development tests of the flowsheet for the submerged Demineralizer Water Treatment System for decontaminating the water in the containment building were presented. The status of existing knowledge of radiation effects on ion exchange materials used in radioactive waste management were reviewed. A program to demonstrate incorporation of the loaded zeolite into a glass as a final waste form was also described. The generation, classification, treatment, and disposal of solid waste forms resulting from the cleanup were discussed with special consideration of the ion exchange media used for cleanup of liquids with relatively high radionuclide concentrations. The radiological, socioeconomic, and psychological impacts of the cleanup were evaluated. This work formed the basis for the recent issuance by the NRC of a programmatic environmental impact statement relative to decontamination and disposal of the radioactive wastes resulting from the accidents

  5. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  6. Cleanup around an old waste site

    International Nuclear Information System (INIS)

    Vandergaast, G.; Moffett, D.; Lawrence, B.E.

    1988-01-01

    42,500 m 3 of contaminated soil were removed from off-site areas around an old, low-level radioactive waste site near Port Hope, Ontario. The cleanup was done by means of conventional excavation equipment to criteria developed by Eldorado specific to the land use around the company's waste management facility. These cleanup criteria were based on exposure analyses carried out for critical receptors in two different scenarios. The excavated soils, involving eight different landowners, were placed on the original burial area of the waste management facility. Measures were also undertaken to stabilize the soils brought on-site and to ensure that there would be no subsequent recontamination of the off-site areas

  7. Sectored Clean-up Work Plan for Housekeeping Category Waste Sites

    International Nuclear Information System (INIS)

    Nacht, S. J.

    2000-01-01

    The Sectored Clean-up Work Plan (SCWP) replaces the Housekeeping Category Corrective Action Unit Work Plan and provides a strategy to be used for conducting housekeeping activities using a sectored clean-up approach. This work plan provides a process by which one or more existing housekeeping category Corrective Action Sites (CASS) from the Federal Facility Agreement and Consent Order and/or non-FFACO designated waste site(s) are grouped into a sector for simultaneous remediation and cleanup. This increases effectiveness and efficiencies in labor, materials, equipment, cost, and time. This plan is an effort by the U.S. Department of Energy to expedite work in a more organized and efficient approach. The objectives of this plan are to: Group housekeeping FFACO CASS and non-FFACO housekeeping sites into sectors and remediate during the same field visit; Provide consistent documentation on FFACO CAS and non-FFACO clean-up activities; Perform similar activities under one approved document; Remediate areas inside the Deactivation and Decommissioning facilities and compounds in a campaign-style remediation; and Increase efficiencies and cost-effectiveness, accelerate cleanups, reduce mobilization, demobilization, and remediation costs

  8. Radioactive Waste and Clean-up Division

    International Nuclear Information System (INIS)

    Collard, G.

    2001-01-01

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  9. Buying time: Franchising hazardous and nuclear waste cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Hale, D.R. [Dept. of Energy, Washington, DC (United States)

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  10. U Plant Geographic Zone Cleanup Prototype

    International Nuclear Information System (INIS)

    Romine, L.D.; Leary, K.D.; Lackey, M.B.; Robertson, J.R.

    2006-01-01

    The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as 'cleanup items') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is available to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) [1] was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will

  11. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris

  12. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    International Nuclear Information System (INIS)

    Bergman, T.B.

    2011-01-01

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the ∼200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the

  13. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We

  14. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  15. Cleanup Verification Package for the 600-259 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste

  16. Cleanup Verification Package for the 300-18 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2005-01-01

    This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete

  17. Options for improving hazardous waste cleanups using risk-based criteria

    International Nuclear Information System (INIS)

    Elcock, D.

    1995-01-01

    This paper explores how risk- and technology-based criteria are currently used in the RCRA and CERCLA cleanup programs. It identifies ways in which risk could be further incorporated into RCRA and CERCLA cleanup requirements and the implications of risk-based approaches. The more universal use of risk assessment as embodied in the risk communication and risk improvement bills before Congress is not addressed. Incorporating risk into the laws and regulations governing hazardous waste cleanup, will allow the use of the best scientific information available to further the goal of environmental protection in the United States while containing costs. and may help set an example for other countries that may be developing cleanup programs, thereby contributing to enhanced global environmental management

  18. PROGRESS and CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    International Nuclear Information System (INIS)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-01

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m 3 (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m 3 (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to

  19. Development of cleanup criteria for historic low-level radioactive waste sites in Canada

    International Nuclear Information System (INIS)

    Pollock, R.W.; Chambers, D.B.; Lowe, L.M.

    1995-01-01

    This paper will describe recent work performed to develop cleanup criteria, and their current status, for historic low-level radioactive waste sites in Canada. These historic wastes date back to 1933, when a radium refinery began operation in Port Hope, Ontario. The problem of residual wastes and contaminated buildings and soils in Port Hope, resulting from the practices in the early years of radium and uranium production, was discovered in the mid-1970s, and a large scale cleanup program carried out. This work was concentrated on developed properties. As a result, substantial quantities of contaminated materials remained in a number of large undeveloped areas. A number of additional historic waste sites have subsequently been discovered at other locations in Canada, where buildings and/or soils were contaminated with uranium ores or concentrates spilled during transport, or with processing residues, or as a result of the use of radium containing materials. There has been substantial evolution of the criteria for cleanup of these sites over the almost 20 year period since work started at the first sites

  20. Risky business: Assessing cleanup plans for waste sites

    International Nuclear Information System (INIS)

    Blaylock, B.

    1995-01-01

    ORNL was chosen to perform human health and ecological risk assessments for DOE because of its risk assessment expertise. The U.S. Department of Energy's many production and research sites contain radioactive and hazardous wastes. These waste sites pose potential risks to the health and safety of remediation and waste management workers and the public. The risks, however, vary from site to site. Some sites undoubtedly present larger risks than others and should be cleaned up first. However, before the cleanup begins, DOE is required by law to prepare an environmental impact statement on any actions that may significantly affect the environment-even actions that would clean it up

  1. Hanford: A Conversation About Nuclear Waste and Cleanup

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2003-01-01

    The author takes us on a journey through a world of facts, values, conflicts, and choices facing the most complex environmental cleanup project in the United States, the U.S. Department of Energy's Hanford Site. Starting with the top-secret Manhattan Project, Hanford was used to create tons of plutonium for nuclear weapons. Hundreds of tons of waste remain. In an easy-to-read, illustrated text, Gephart crafts the story of Hanford becoming the world's first nuclear weapons site to release large amounts of contaminants into the environment. This was at a time when radiation biology was in its infancy, industry practiced unbridled waste dumping, and the public trusted what it was told. The plutonium market stalled with the end of the Cold War. Public accountability and environmental compliance ushered in a new cleanup mission. Today, Hanford is driven by remediation choices whose outcomes remain uncertain. It's a story whose epilogue will be written by future generations. This book is an information resource, written for the general reader as well as the technically trained person wanting an overview of Hanford and cleanup issues facing the nuclear weapons complex. Each chapter is a topical mini-series. It's an idea guide that encourages readers to be informed consumers of Hanford news, to recognize that knowledge, high ethical standards, and social values are at the heart of coping with Hanford's past and charting its future. Hanford history is a window into many environmental conflicts facing our nation; it's about building upon success and learning from failure. And therein lies a key lesson, when powerful interests are involved, no generation is above pretense. Roy E. Gephart is a geohydrologist and senior program manager at the Pacific Northwest National Laboratory, Richland, Washington. He has 30 years experience in environmental studies and the nuclear waste industry

  2. Regulatory and management requirements for investigation-derived waste generated during environmental investigations and cleanups

    International Nuclear Information System (INIS)

    Clary, M.B.

    1994-01-01

    Environmental cleanup efforts often result in the generation of waste materials, such as soil samples, drill cuttings, decontamination water, drilling muds, personal protective equipment, and disposable sampling equipment. The management of associated with site characterization and remediation issues is a complicated issue at many CERCLA/RCRA facilities throughout the country, primarily because of the federal hazardous waste regulations. The hazardous waste regulations were intended to apply to the active generation of hazardous waste at industrial facilities and do not often make sense when applied to sites con by poor disposal practices of the past. In order to manage investigation derived waste in a more rational, logical manner, EPA issued guidance on the management of investigation-derived waste (IDW) at Superfund sites in January, 1992. The basic intent of the EPA guidance is to provide Superfund Site Managers with options for handling, managing, and disposing of IDW. The second part of this paper provides a detailed analysis of current IDW practices at various Department of Energy (DOE) facilities and Superfund sites across the nation. Some sites, particularly the DOE facilities, with more complicated on-going cleanup efforts have developed site-specific written procedures for managing IDW, often incorporating risk assessment. In come cases, these site-specific policies are going farther than the current EPA and Colorado policies in terms of conservatively managing IDW

  3. Cleanup Verification Package for the 300 VTS Waste Site

    International Nuclear Information System (INIS)

    Clark, S.W.; Mitchell, T.H.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste

  4. Cleanup Verification Package for the 300 VTS Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Clark and T. H. Mitchell

    2006-03-13

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

  5. Cleanup Verification Package for the 118-F-2 Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.; Anselm, K.A.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities

  6. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  7. Management and disposal of radioactive waste from clean-up operations

    International Nuclear Information System (INIS)

    Lehto, J.

    1997-01-01

    Clean-up of large contaminated areas may create enormous amounts of radioactive waste which need to be safely disposed of. Disposal of the waste may include pre-treatment and transportation to a final repository. There is much experience of the removal and disposal of large amounts of radioactive contaminated material from uranium mill tailings sites. For example, in Salt Lake City, USA, two million tons of radium-containing waste was transported 140 km by rail to a disposal site. In Port Hope, Canada, 70,000 cubic meters of similar waste were moved by road to a disposal site 350 km away. The disposal of the uranium mill tailings can be pre-planned, but an accident situation is quite different. In an emergency, decisions on how to deal with the waste from the clean-up may have to be made rapidly and disposal options may be limited. After the Chernobyl accident, large amounts of contaminated material (mainly soil and trees) were disposed of in shallow pits and surface mounds. Overall, approximately 4x10 6 m 3 of waste were distributed between about 800 disposal sites. Because the amounts of waste after a major nuclear accident could be large, their final disposal may require large human and capital resources. Depending on the scale it is possible that the wastes will have to be placed in several final disposal sites. These are likely to be pits or surface mounds. Such repositories may need clay or concrete liners to prevent migration of the radionuclides from the disposal sites. (EG)

  8. Cleanup of contaminated areas

    International Nuclear Information System (INIS)

    Beone, G.; Carbone, A.I.; Zagaroli, M.

    1989-01-01

    The paper deals with the problem of contaminated areas cleanup, in order to eliminate every possible damage for man safety and environment and to site recovery for some utilization, The first step of cleanup operation is site characterization, that is followed by a pianificazion activity for a better definition of staff qualification, technology to be used, protection and prevention instruments for the risks due to contaminants handling. The second section describes the different remedial technologies for contaminated sites. Remedial technologies may be divided into on-site/off-site and in-situ treatments, according to whether materials (waste, soil, water) are moved to another location or not, respectively. Finally, it is outlined that contaminated areas cleanup is a typical multidisciplinary activity because very different competences are required. (author)

  9. Cleanup Verification Package for the 600-47 Waste Site

    International Nuclear Information System (INIS)

    Cutlip, M.J.

    2005-01-01

    This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris

  10. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  11. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.; Capron, J.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes

  12. Historical Waste Retrieval and Clean-up Operations at Nuclear facility no.56, at the Cadarache Nuclear Research Centre

    International Nuclear Information System (INIS)

    Santucci, C.

    2008-01-01

    Among the different activities of the CEA research centre in Cadarache, located in the south of France, one of the most important involves cleaning, cleansing dismantling, decommissioning, and recovery of legacy wastes. This presentation will give an overview of the waste retrieval project from the historical interim storage facility called INB 56. The project is divided into three different sub-projects: the historical unpacked waste retrieval, the historical canister retrieval and the draining and clean-up of the spent fuel pools. All the described operations are conducted in accordance with the ALARA principle and the optimization of the waste categorization. The overall project, including the complete clean-up of the facility and its de-licensing, is due to end by 2020. The aim of this document is to outline the general ongoing historical waste retrieval operations and future projects on the INB 56 at the Cadarache research centre. In the final analysis, it can be seen that most of the waste is to be sent to the new CEDRA facility. Nevertheless one major goal of this project is to optimize the waste categorization and therefore to send the canisters to the ANDRA LLW site whenever possible. Two means will allow us to reach this goal: - The sorting out of un-packed waste in order to constitute a LLW canister - A wide range of measurements (gamma spectrometry, neutron measurement, tomography) in order to assess the exact nature of the contents in the historical canisters. Taking waste treatment and conditioning into account well in advance is a factor of prime importance that must be managed early in the elaboration of the decommissioning scenario. Precise knowledge of the physical and radiological inventories is of the utmost importance in defining the best waste pathway. Overall operations on the facility are due to end by 2020 including complete clean-up of the facility and its de-licensing

  13. All hazardous waste politics is local: Grass-roots advocacy and public participation in siting and cleanup decisions

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, R.C.

    1998-12-31

    The combined effects of federalism and interest group pluralism pose particularly difficult problems for hazardous waste siting and cleanup decisions. Most national environmental groups have only limited involvement in local hazardous waste politics, while local grass-roots advocates have very different interests and sometimes are pitted against one another. Both the Environmental protection Agency and the Department of energy recently have begun to use site-specific citizen advisory boards at cleanup sites. This approach appears to improve communications at some sites, but does not address the issues of ``not in my back yard`` politics and alleged inequitable exposure to hazardous wastes.

  14. A program optimization system for the cleanup of DOE hazardous waste sites an application to FY 1990 funding decisions

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Jenni, K.E.; Cotton, T.A.; Lehr, J.C.; Longo, T.P.

    1989-01-01

    This paper describes a formal system used by the Department of Energy (DOE) as an aid for allocating funds for cleaning up hazardous waste sites. The system, called the Program Optimization System (POS), is based on multiattribute utility analysis and was developed for DOE's Hazardous Waste and Remedial Actions Division (HWRAD). HWRAD has responsibility for recommending environmental restoration (ER) activities to the Assistant Secretary of Energy. Recently, the POS was used to analyze and recommend funding levels for FY 1990 cleanup activities at DOE defense program facilities

  15. Modeling emissions and dispersion of contaminants from cleanup activities at a mixed waste site to estimate air impacts and risks

    International Nuclear Information System (INIS)

    Chang, Y.S.; Menlove, S.

    1993-09-01

    The transport and dispersion of contaminants via the air pathway is a major concern during cleanup of contaminated sites. Impacts to air quality and human health during cleanup were evaluated for the Weldon Spring site by using site-specific information for source areas, activities, and receptor locations. In order to ensure protection of human health and the environment, results are being used to focus on those cleanup activities for which release controls should be emphasized

  16. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F.

    1992-07-01

    Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study

  17. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F.

    1992-07-01

    Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study.

  18. An innovative approach to multimedia waste reduction: Measuring performance for environmental cleanup projects

    International Nuclear Information System (INIS)

    Phifer, B.E. Jr.; George, S.M.

    1993-04-01

    One of the greatest challenges we now face in environmental cleanup is measuring the progress of minimizing multimedia transfer releases and achieving waste reduction. Briefly, multimedia transfer refers to the air, land, and water where pollution is not controlled, concentrated, and moved from one medium to another. An example of multimedia transfer would be heavy metals in wastewater sludges moved from water to land disposal. Over $2 billion has been budgeted for environmental restoration site cleanups by the Department of Energy (DOE) for FY 1994. Unless we reduce the huge waste volumes projected to be generated in the near future, then we will devote more and more resources to the management and disposal of these wastes. To meet this challenge, the Martin Marietta Energy Systems, Inc., Oak Ridge Environmental Restoration (ER) Program has explored the value of a multimedia approach by designing an innovative Pollution Prevention Life-Cycle Model. The model consists of several fundamental elements (Fig. 1) and addresses the two major objectives of data gathering and establishing performance measures. Because the majority of projects are in the remedial investigation phase, the focus is on the prevention of unnecessary generation of investigation-derived waste and multimedia transfers at the source. A state-of-the-art tool developed to support the life-cycle model for meeting these objectives is the Numerical Scoring System (NSS), which is a computerized, user-friendly data base system for information management, designed to measure the effectiveness of pollution prevention activities in each phase of the ER Program. This report contains a discussion of the development of the Pollution Prevention Life-Cycle Model and the role the NSS will play in the pollution prevention programs in the remedial investigation phase of the ER Program at facilities managed by Energy Systems for DOE

  19. Consolidating federal facility cleanup: Some pros and cons

    International Nuclear Information System (INIS)

    Raynes, D.B.; Boss, G.R.

    1993-01-01

    It has been suggested that Congress establish a permanent, full-time, independent national commission for radioactive waste management activities at DOE's Nuclear Weapons Complex. DOE regulates certain aspects of its treatment, storage, and disposal of radioactive waste by orders that are not promulgated by ''notice and comment'' or other procedures in the Administration Procedures Act. Because many agencies are not legally and technologically structured to handle their own cleanup problems, these activities might be conducted by one entity that can share information and staff among these agencies. There are rational arguments for both sides of this issue. Some of the advantages of such an organization include: focusing Congress's attention on an integrated federal facility cleanup instead of a fragmented, agency by agency approach, and an ability to prioritize cleanup decisions among agencies. Some significant obstacles include: reluctance by Congress and the executive branch to create any new bureaucracy at a time of budget deficits, and a loss of momentum from the progress already being made by the agencies. Given that more than $9 billion was proposed for FY 93 alone for federal facilities' cleanup programs and that decades will pass before all problems are addressed, it is appropriate to consider new approaches to environmental cleanup. This paper begins the dialogue about new ways to improve decision-making and government spending

  20. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Proctor, M.L.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the 'metal line' of the P-10 Tritium Separation Project.

  1. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations

  2. NRC plan for cleanup operations at Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Lo, R.; Snyder, B.

    1982-02-01

    This NRC Plan, which defines NRC's functional role in cleanup operations at Three Mile Island Unit 2 and outlines NRC's regulatory responsibilities in fulfilling this role, is the first revision to the initial plan issued in July 1980 (NUREG-0698). Since 1980, a number of policy developments have occurred which will have an impact on the course of cleanup operations. This revision reflects these developments in the area of NRC's review and approval process with regard to cleanup operations as well as NRC's interface with the Department of Energy's involvement in the cleanup and waste disposal. This revision is also intended to update the cleanup schedule by presenting the cleanup progress that has taken place and NRC's role in ongoing and future cleanup activities

  3. High-level waste vitrification off-gas cleanup technology

    International Nuclear Information System (INIS)

    Hanson, M.S.

    1980-01-01

    This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements

  4. Regulatory Strategies To Minimize Generation Of Regulated Wastes From Cleanup, Continued Use Or Decommissioning Of Nuclear Facilities Contaminated With Polychlorinated Biphenyls (PCBS) - 11198

    International Nuclear Information System (INIS)

    Lowry, N.

    2010-01-01

    . Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

  5. Multimedia approach to estimating target cleanup levels for soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1990-04-01

    Contaminated soils at hazardous and nuclear waste sites pose a potential threat to human health via transport through environmental media and subsequent human intake. To minimize health risks, it is necessary to identify those risks and ensure that appropriate actions are taken to protect public health. The regulatory process may typically include identification of target cleanup levels and evaluation of the effectiveness of remedial alternatives and the corresponding reduction in risks at a site. The US Environmental Protection Agency (EPA) recommends that exposure assessments be combined with toxicity information to quantify the health risk posed by a specific site. This recommendation then forms the basis for establishing target cleanup levels. An exposure assessment must first identify the chemical concentration in a specific medium (soil, water, air, or food), estimate the exposure potential based on human intake from that media, and then combined with health criteria to estimate the upperbound health risks for noncarcinogens and carcinogens. Estimation of target cleanup levels involves the use of these same principles but can occur in reverse order. The procedure starts from establishing a permissible health effect level and ends with an estimated target cleanup level through an exposure assessment process. 17 refs

  6. An innovative approach to multimedia waste reduction measuring performance for environmental cleanup programs

    International Nuclear Information System (INIS)

    Phifer, B.E. Jr.

    1993-01-01

    One of the greatest challenges we now face in environmental clean up is measuring the progress of minimizing multimedia transfer releases and achieving waste reduction. Briefly, multimedia transfer refers to the air, land, and water where pollution is not just controlled, concentrated, and moved from one media to another. An example of multimedia transfer would be heavy metals in waste water sludges moved from water to land disposal. Over two billion dollars has been budgeted for environmental restoration site cleanups by the Department of Energy for fiscal year 1994. Unless we reduce the huge waste volumes projected to be generated in the near future, then we will devote more and more resources to manage and dispose of these wastes

  7. Waste Cleanup: Status and Implications of Compliance Agreements Between DOE and Its Regulators

    International Nuclear Information System (INIS)

    Jones, G. L.; Swick, W. R.; Perry, T. C.; Kintner-Meyer, N.K.; Abraham, C. R.; Pollack, I. M.

    2003-01-01

    This paper discusses compliance agreements that affect the Department of Energy's (DOE) cleanup program. Compliance agreements are legally enforceable documents between DOE and its regulators, specifying cleanup activities and milestones that DOE has agreed to achieve. Over the years, these compliance agreements have been used to implement much of the cleanup activity at DOE sites, which is carried our primarily under two federal laws - the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended (CERCLA) and the Resource Conservation and Recovery Act of 0f 1976, as amended (RCRA). Our objectives were to determine the types of compliance agreements in effect at DOE cleanup sites, DOE's progress in achieving the milestones contained in the agreements, whether the agreements allowed DOE to prioritize work across sites according to relative risk, and possible implications the agreements have on DOE's efforts to improve the cleanup program

  8. Utilizing the right mix of environmental cleanup technologies

    International Nuclear Information System (INIS)

    Whitaker, Wade; Bergren, Chris; Flora, Mary

    2007-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  9. Superfund at work: Hazardous waste cleanup efforts nationwide, spring 1993 (Radium Chemical Site profile, Queens, New York)

    International Nuclear Information System (INIS)

    1993-01-01

    The Radium Chemical hazardous waste site in Queens, New York was contaminated with radium, posing a grave potential threat to the community. The US Environmental Protection Agency (EPA) used the Superfund program to design a long-term cleanup for the site using input from citizens and the business community. Superfund staff: Mobilized a quick cleanup action to remove 10,000 small containers of radium; Developed a streamlined approach to long-term cleanup; Secured the site to reduce the possibility of radiation exposure to the local residents; Cooperated with the community to design a well-organized emergency response plan; and Educated local citizens about site hazards, incorporating community concerns into the cleanup process. The Radium Chemical site is a clear example of EPA's effective management and problem-solving strategies at Superfund sites

  10. Cleanup of contaminated areas; La bonifica di aree contaminate

    Energy Technology Data Exchange (ETDEWEB)

    Beone, G; Carbone, A I; Zagaroli, M [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia, Casaccia (Italy)

    1989-01-15

    The paper deals with the problem of contaminated areas cleanup, in order to eliminate every possible damage for man safety and environment and to site recovery for some utilization, The first step of cleanup operation is site characterization, that is followed by a pianificazion activity for a better definition of staff qualification, technology to be used, protection and prevention instruments for the risks due to contaminants handling. The second section describes the different remedial technologies for contaminated sites. Remedial technologies may be divided into on-site/off-site and in-situ treatments, according to whether materials (waste, soil, water) are moved to another location or not, respectively. Finally, it is outlined that contaminated areas cleanup is a typical multidisciplinary activity because very different competences are required. (author)

  11. Development and Implementation of the Waste Management Information System to Support Hanford's River Corridor Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, L M [Washington Closure Hanford, LLC, 3070 George Washington Way, Richland, WA 99354 (United States)

    2006-07-01

    This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generation to disposal. (authors)

  12. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    International Nuclear Information System (INIS)

    Bergren, C; Wade Whitaker, W; Mary Flora, M

    2007-01-01

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  13. Using Advanced Mixed Waste Treatment Technology To Meet Accelerated Cleanup Program Milestones

    International Nuclear Information System (INIS)

    Larsen, P.J.; Garcia, J.; Estes, C.H.; Palmer, C.R.; Meyers, G.S.

    2006-01-01

    Some DOE Complex facilities are entering the late stages of facility closure. As waste management operations are completed at these sites, remaining inventories of legacy mixed wastes must be finally disposed. These wastes have unique physical, chemical and radiological properties that have made their management troublesome, and hence why they have remained on site until this late stage of closure. Some of these wastes have had no approved or practical treatment alternative until just recently. Results are provided from using advanced mixed waste treatment technology to perform two treatment campaigns on these legacy wastes. Combinations of macro-encapsulation, vacuum thermal desorption (VTD), and chemical stabilization, with off-site incineration of the organic condensate, provided a complete solution to the problem wastes. One program included approximately 1,900 drums of material from the Fernald Environmental Management Project. Another included approximately 1,200 drums of material from the Accelerated Cleanup Program at the Oak Ridge Reservation. Both of these campaigns were conducted under tight time schedules and demanding specifications, and were performed in a matter of only a few months each. Coordinated rapid waste shipment, flexible permitting and waste acceptance criteria, adequate waste receiving and storage capacity, versatile feed preparation and sorting capability, robust treatment technology with a broad feed specification, and highly reliable operations were all valuable components to successful accomplishment of the project requirements. Descriptions of the waste are provided; material that was difficult or impossible to treat in earlier phases of site closure. These problem wastes included: 1) the combination of special nuclear materials mixed with high organic chemical content and/or mercury, 2) high toxic metal content mixed with high organic chemical content, and 3) very high organic chemical content mixed with debris, solids and sludge

  14. Answers to frequently asked questions about cleanup activities at Three Mile Island, Unit 2. Public information report

    International Nuclear Information System (INIS)

    1980-09-01

    The document presents answers to frequently asked questions about plans for cleanup and decontamination activities at Three Mile Island, Unit 2. Answers to the questions asked are based on information in the NRC 'Draft Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident, Three Mile Island Nuclear Station, Unit 2' NUREG-0683

  15. Hazardous waste: cleanup and prevention

    Science.gov (United States)

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  16. The cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites: Whose jurisdiction?

    International Nuclear Information System (INIS)

    Hartnett, C.

    1994-01-01

    There exists an overlap between the Comprehensive Environmental Response, Compensation and Recovery Act (open-quotes CERCLAclose quotes) and the Atomic Energy Act (open-quotes AEAclose quotes) regarding the cleanup of releases of radioactive materials from commercial low-level radioactive waste sites. The Nuclear Regulatory Commission (open-quotes NRCclose quotes) and Agreement States have jurisdiction under the AEA, and the Environmental Protection Agency (open-quotes EPAclose quotes) has jurisdiction pursuant to CERCLA. This overlapping jurisdiction has the effect of imposing CERCLA liability on parties who have complied with AEA regulations. However, CERCLA was not intended to preempt existing legislation. This is evidenced by the federally permitted release exemption, which explicitly exempts releases from CERCLA liability pursuant to an AEA license. With little guidance as to the applicability of this exemption, it is uncertain whether CERCLA's liability is broad enough to supersede the Atomic Energy Act. It is the purpose of this paper to discuss the overlapping jurisdiction for the cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites with particular emphasis on the cleanup at the Maxey Flats, West Valley and Sheffield sites

  17. R ampersand D activities at DOE applicable to mixed waste

    International Nuclear Information System (INIS)

    Erickson, M.D.; Devgun, J.S.; Brown, J.J.; Beskid, N.J.

    1991-01-01

    The Department of Energy (DOE) has established the Office of Environmental Restoration and Waste Management. Within the new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing and evaluation (RDDT ampersand E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Because of US governmental activities dating back to the Manhattan project, mixed radioactive and hazardous waste is an area of particular concern to DOE. The OTD is responsible for a number of R ampersand D activities aimed at improving capabilities to characterize, control, and properly dispose of mixed waste. These activities and their progress to date will be reviewed. In addition, needs for additional R ampersand D on managing mixed waste will be presented. 5 refs., 2 tabs

  18. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  19. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    International Nuclear Information System (INIS)

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region's existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs

  20. The Approach to Cleanup at West Cumbria's Nuclear Sites

    International Nuclear Information System (INIS)

    Price, T.

    2006-01-01

    The cleanup of West Cumbria's nuclear sites is one of the most important and demanding managerial, technical and environmental challenges facing the UK over the next century. Considerable progress has already been made in cleaning up the Sellafield, Calder Hall, and Low-level Waste Repository (LLWR) sites but there remains significant challenge ahead. There are more than 200 nuclear facilities at the sites including redundant fuel storage ponds, redundant chemical plants and silos of solid waste and sludge. These legacy buildings exist alongside commercially operating reprocessing and fuel fabrication facilities. They are all linked together by a complex network of services including gas supplies, water supplies, waste disposal routes, and chemical supply routes. Many of the buildings requiring cleanup are very old and date back to the early years of the British nuclear industry. They were not designed with decommissioning in mind, and some require substantial improvement to provide a safe foundation from which to retrieve waste and decommission. The cleanup of these legacy facilities must be carefully balanced with the ongoing operations that provide services to commercial customers. Cleanup must be carried out safely and efficiently, without impacting upon commercial operations whose revenue is vital to funding the Cleanup organizations scope of work. This paper will introduce the cleanup approach at West Cumbria's Sellafield nuclear site. It will provide an overview of what is being done in preparation to meet the formidable but rewarding challenge ahead. (authors)

  1. Assessment and cleanup of the Taxi Strip waste storage area at LLNL [Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Buerer, A.

    1983-01-01

    In September 1982 the Hazards Control Department of the Lawrence Livermore National Laboratory (LLNL) began a final radiological survey of a former low-level radioactive waste storage area called the Taxi Strip so that the area could be released for construction of an office building. Collection of soil samples at the location of a proposed sewer line led to the discovery of an old disposal pit containing soil contaminated with low-level radioactive waste and organic solvents. The Taxi Strip area was excavated leading to the discovery of three additional small pits. The clean-up of Pit No. 1 is considered to be complete for radioactive contamination. The results from the chlorinated solvent analysis of the borehole samples and the limited number of samples analyzed by gas chromatography/mass spectrometry indicate that solvent clean-up at this pit is complete. This is being verified by gas chromatography/mass spectrometry analysis of a few additional soil samples from the bottom sides and ends of the pit. As a precaution, samples are also being analyzed for metals to determine if further excavation is necessary. Clean-up of Pits No. 2 and No. 3 is considered to be complete for radioactive and solvent contamination. Results of analysis for metals will determine if excavation is complete. Excavation of Pit No. 4 which resulted from surface leakage of radioactive contamination from an evaporation tray is complete

  2. Helping with the clean-up

    International Nuclear Information System (INIS)

    Peelle, E.

    1990-01-01

    Successes in public involvement efforts for nuclear waste management are so few that they deserve careful documentation and analysis. This paper chronicles the goals, process, problems and outcomes of one such success, the Northwest Defense Waste Citizens Forum (CF), created by the DOE-Richland manager in 1986 to advise DOE on its plans for nuclear waste disposal and cleanup of the Hanford site n eastern Washington state. In the evolving, often-controversial, highly-visible area of agency-public interactions, citizen task forces (TFs) have been shown to be useful in developing public policy at the local level. Making them work at the state level is more problematic. This case shows that a diverse, two-state citizen group can make significant contributions to complex EIS evaluations with heavy technical components. The CFs principal contribution to public policy was communication of its findings to business and professional groups, to area political representatives and state agencies, thereby laying the ground work for refocusing the Northwest upon the need for action on DW cleanup at Hanford. In going well beyond NEPA requirements for public involvement in agency decision making, DOE-Richland demonstrated innovative ways of dealing with the difficult issues of public confidence and public trust by means of agency openness, responsiveness to citizen needs for information, and good faith two-way communication. The success of this pro-active DOE initiative was due to many factors including selecting the right issue (existing wastes), structuring the CF at a broad, regional level, and intensive implementation of trust-building strategies

  3. Cleanup at the Los Alamos National Laboratory - The Challenges

    International Nuclear Information System (INIS)

    Stiger, S.G.; Hargis, K.; Graham, M.; Rael, G.

    2009-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup - the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: - Plans to retrieve buried waste at Material Disposal Area B, across the street from one of Los Alamos' commercial districts and the local newspaper; - Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; - Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; - Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; - A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and - A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL. (authors)

  4. Cleanup criteria for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Parrott, J.D.

    1999-01-01

    The US Nuclear Regulatory Commission (NRC) is prescribing decontamination and decommissioning (cleanup) criteria for the West Valley Demonstration Project and the West Valley, New York, site. The site is contaminated with various forms of residual radioactive contamination and contains a wide variety of radioactive waste. The NRC is planning to issue cleanup criteria for public comment in Fall 1999. Due to the complexity of the site, and the newness of NRC's cleanup criteria policy, applying NRC's cleanup criteria to this site will be an original regulatory undertaking. (author)

  5. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP AT SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Bergren, C.

    2009-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  6. Disposal of waste from the cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1992-01-01

    The report provides an overview of the methodology and technology available to load, transport and dispose of large volumes of contaminated material arising from the cleanup of areas after a nuclear accident and includes data on the planning, implementation, management and costing of such activities. To demonstrate the use of this information, three cleanup and disposal scenarios are examined, ranging from disposal in many small mounds or trenches within the contaminated area to disposal in a large facility away from the plant. As in the two companion reports, it is assumed that the population has been evacuated from the affected area. The report reviews the generic types of low level radioactive waste which are likely to arise from such a cleanup. The report does not deal with the recovery and disposal of intermediate and high level radioactive material on or near the plant site. This material will have to be recovered, packaged, transported and stored on-site or disposed of at an appropriate facility. These operations should be done by specialist teams using shielded or remotely operated equipment. Also not included are methods of in situ stabilization of contamination, for example ploughing to bury the top contaminated layer at a suitable depth. These techniques, which are likely to be widely used in part of the evacuated are, are discussed in IAEA Technical Reports Series No. 300, Vienna, 1989. 50 refs, 18 figs, 4 tabs

  7. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an

  8. Learning the ABCs: Activity based costing in waste operations

    International Nuclear Information System (INIS)

    Zocher, Marc A.

    1992-01-01

    The United States Department of Energy (DOE) is facing a challenging new national role based on current world events, changing public perception and awareness, and a legacy of wastes generated in the past. Clearly, the DOE must put mechanisms in place to comply with environmental rules, regulations, and good management practices so that public health risk is minimized while programmatic costs are controlled. DOE has begun this process and has developed a Five-Year Plan to describe the activities necessary to comply with both cleanup, or environmental restoration, and waste management of existing waste streams. The focus of this paper is how to best manage the treatment, storage, disposal, and transportation of waste throughout the DOE weapons complex by using Activity Based Costing (ABC) to both plan and control expenditures in DOE Waste Management (WM). The basics of ABC, along with an example, will be detailed. (author)

  9. A systematic assessment of the state of hazardous waste clean-up technologies

    International Nuclear Information System (INIS)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ''Decontamination Systems Information and Research Programs.'' Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming

  10. Rocky Flats cleanup receives new deadline

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Rocky Flats nuclear weapon plant near Denver narrowly missed a court-ordered shutdown of virtually all cleanup activities when it failed to meet an Aug. 22 deadline for a state permit to store mixed radioactive and hazardous wastes on site. US District Court Judge Lewis Babcock granted a 90-day stay of contempt charges against the US Dept. of Energy, but left open the possibility of civil penalties under the Resource Conservation and Recovery Act. DOE's problems stem from a lawsuit the Sierra Club won two years ago in which Babcock gave Rocky Flats until Aug. 22 to obtain a RCRA permit or interim status from Colorado to store 600 cu yd of mixed wastes. If DOE failed to do so, the court said it could not generate further hazardous wastes at the site

  11. Cleanup at Los Alamos National Laboratory - the challenges - 9493

    Energy Technology Data Exchange (ETDEWEB)

    Stiger, Susan G [Los Alamos National Laboratory; Hargis, Kenneth M [Los Alamos National Laboratory; Graham, Michael J [Los Alamos National Laboratory; Rael, George J [NNSL/LASO

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  12. Radioactive waste spill and cleanup on storage tank at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boore, W.G.; McNatt, F.G.; Ryland, R.K.; Scaggs, R.A.; Strother, E.D.; Wilson, R.W.

    1986-03-01

    This report was prepared for historical purpose to document events associated with a radioactive spill and subsequent cleanup efforts at the Savannah River Plant. On December 29, 1983, approximately 100 gallons of liquid radioactive waste, containing an estimated 200-600 curies of cesium-137, leaked from a flushwater line onto the top of the Savannah River Plant's Tank 13 in H-area. The highest measured radiation rate was 100 R/hr at 12 inches from the evaporator feed pump riser. The leak was caused by a series of events involving inadequate heat tracing on a flushwater line, failure of a gasket in 7 0 F weather, failure of personnel to follow a procedure, and leakage across a gate valve seat. Some of the leaked solution migrated into storm water ditches during rain, and a total of 237 millicuries migrated to a nearby stream over several months. However, no significant increase in the cesium-137 concentration occurred in the Savannah River or in the groundwater under the impacted area. Cleanup, costing 3.7 million dollars, took place over the following eighteen months. Cleanup involved water flushing, chemical flushing and mechanical removal of a portion of the concrete tank-top surface, followed by excavation of 1383 cubic yards of soil surrounding the tank. Stringent and effective radiological controls, including development of remote decontamination methods, allowed the cleanup to be accomplished with a total radiation dose to personnel of 58 rems. New safeguards were built into the system to protect against spills and to provide greater assurance of spill containment. Lead sheeting and a 4- to 6-inch-thick concrete overpour were bonded over the remaining contaminated concrete to reduce the radiation levels to less than 20 mR/hr at 3 feet. The Tank 13 evaporator feed system resumed operation in June 1985. 3 refs., 42 figs., 2 tabs

  13. Cleanup at the Los Alamos National Laboratory - the challenges - 9493

    International Nuclear Information System (INIS)

    Stiger, Susan G.; Hargis, Kenneth M.; Graham, Michael J.; Rael, George J.

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  14. Initial Selection of Supplemental Treatment Technologies for Hanford's Low-Activity Tank Waste

    International Nuclear Information System (INIS)

    Raymond, Richard E.; Powell, Roger W.; Hamilton, Dennis W.; Kitchen, William A.; Mauss, Billie M.; Brouns, Thomas M.

    2004-01-01

    In 2002, the U.S. Department of Energy (DOE) documented a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years (DOE 2002). A key element of the accelerated cleanup plan was a strategic initiative for acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (ETP) and using supplemental technologies for waste treatment and immobilization''. The plan identified specific technologies to be evaluated for supplemental treatment of as much as 70% of the low-activity waste (LAW). The objective was to complete required testing and evaluation that would ''...bring an appropriate combination of the above technologies to deployment to supplement LAW treatment and immobilization in the WTP to achieve the completion of tank waste treatment by 2028''. In concert with this acceleration plan, DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology have proposed to accelerate from 2012 to 2005 the Hanford Federal Facility Compliance Agreement (Tri-Party Agreement) milestone (M-62-08) associated with a final decision on treatment of the balance of tank waste that is beyond the capacity of the currently designed WTP

  15. The Use of the Hanford Onsite Packaging and Transportation Safety Program to Meet Cleanup Milestones Under the Hanford Site Cleanup 2015 Vision and the American Recovery and Reinvestment Act of 2009 - 12403

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, John C. [CH2M HILL Plateau Remediation Company, Richland, WA 99354 (United States); Edwards, W. Scott [Areva Federal Services, Richland, WA 99354 (United States); Macbeth, Paul J.; Self, Richard J. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); West, Lori D. [Materials and Energy Corporation, Richland, WA 99354 (United States)

    2012-07-01

    The Hanford Site presents unique challenges in meeting the U.S. Department of Energy Richland Operations Office (DOE-RL) 2015 Cleanup Vision. CH2M Hill Plateau Remediation Company (CHPRC), its subcontractors, and DOE-RL were challenged to retrieve, transport and remediate a wide range of waste materials. Through a collaborative effort by all Hanford Onsite Central Plateau Cleanup Team Members, disposition pathways for diverse and seemingly impossible to ship wastes were developed under a DOE Order 460.1C-compliant Hanford Onsite Transportation Safety Program. The team determined an effective method for transporting oversized compliant waste payloads to processing and disposition facilities. The use of the onsite TSD packaging authorizations proved to be vital to safely transporting these materials for processing and eventual final disposition. The American Recovery and Reinvestment Act of 2009 (ARRA) provided additional resources to expedite planning and execution of these important cleanup milestones. Through the innovative and creative use of the TSD, the Hanford Onsite Central Plateau Cleanup Team Members have developed and are executing an integrated project plan that enables the safe and compliant transport of a wide variety of difficult-to-transport waste items, accelerating previous cleanup schedules to meet cleanup milestones. (authors)

  16. Air pathway analysis for cleanup at the chemical plant area of the Weldon Spring site

    International Nuclear Information System (INIS)

    Chang, Y.S.

    1994-01-01

    The Weldon Spring site is a mixed waste site located in St. Charles County, Missouri. Cleanup of the site is in the planning and design stage, and various engineering activities were considered for remedial action, including excavating soils, dredging sludge, treating various contaminated media in temporary facilities, transporting and staging supplies and contaminated material, and placing waste in an engineered disposal cell. Both contaminated and uncontaminated emissions from these activities were evaluated to assess air quality impacts and potential health effects for workers and the general public during the cleanup period. A site-specific air quality modeling approach was developed to address several complex issues, such as a variety of emission sources, an array of source/receptor configurations, and complicated sequencing/scheduling. This approach can be readily adapted to reflect changes in the expected activities as engineering plans are finalized

  17. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford

  18. From Cleanup to Stewardship. A companion report to Accelerating Cleanup: Paths to Closure and background information to support the scoping process required for the 1998 PEIS Settlement Study

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-10-01

    Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closure report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.

  19. US nuclear cleanup shows signs of progress

    International Nuclear Information System (INIS)

    Renner, R.

    1997-01-01

    The U.S. Department of Energy's program for dealing with the radioactive and hazardous wastes at its former nuclear weapons production sites and at the national laboratories has been criticized for its expense and slow pace of cleanup. The largest environmental restoration and waste management program in the world faces formidable technical and scientific problems and these, according to numerous investigative committees and commissions, have been compounded by poor management, misuse of technology, and failure to appreciate the need for new basic scientific knowledge to solve many of the cleanup problems. In the past three years, DOE's Office of Environmental Management (EM), often spurred by congressional action, has begun to trim costs and accomplish more. New measures have been introduced to improve contract efficiency, better utilize existing remediation technologies, renegotiate compliance agreements, and begin basic research. Environmental Management Assistant Undersecretary Alvin Alm, appointed in May 1996, is seeking to solidify these changes into an ambitious plan to clean up most of DOE's 130 sites by 2006. But there are widespread doubts that EM has the money, skill, and will to turn itself around. There are also concerns that, in the name of efficiency and economy, EM may be negotiating lower cleanup standards and postponing some difficult cleanup tasks. This article discusses these issues. 7 refs

  20. Active-to-Passive Environmental Cleanup Transition Strategies - 13220

    International Nuclear Information System (INIS)

    Gaughan, Thomas F.; Aylward, Robert S.; Denham, Miles E.; Looney, Brian B.; Whitaker, Wade C.; Mills, Gary L.

    2013-01-01

    The Savannah River Site uses a graded approach to environmental cleanup. The selection of groundwater and vadose zone remediation technologies for a specific contamination area is based on the size, contaminant type, contaminant concentration, and configuration of the plume. These attributes are the result of the nature and mass of the source of contamination and the subsurface characteristics in the area of the plume. Many large plumes consist of several zones that are most efficiently addressed with separate complementary corrective action/remedial technologies. The highest concentrations of contaminants are found in the source zone. The most robust, high mass removal technologies are often best suited for remediation of the source zone. In the primary plume zone, active remedies, such as pump-and-treat, may be necessary to remove contaminants and exert hydraulic control of the plume. In the dilute fringe zone, contaminants are generally lower in concentration and can often be treated with passive techniques. A key determination in achieving an acceptable and cost-effective end state for a given waste unit is when to transition from an active treatment system to a more passive or natural approach (e.g., monitored natural attenuation or enhanced attenuation). This paper will discuss the considerations for such a transition as well as provide examples of successful transitions at the Savannah River Site. (authors)

  1. Rocky Flats Cleanup Agreement implementation successes and challenges

    International Nuclear Information System (INIS)

    Shelton, D.C.

    1997-01-01

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations

  2. Managing previously disposed waste to today's standards

    International Nuclear Information System (INIS)

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determine extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs

  3. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Kawamura, Fumio; Funabashi, Kiyomi; Matsuda, Masami.

    1984-01-01

    Purpose: To improve the performance of removing metal ions in ion exchange resins for use in clean-up of service water or waste water in BWR type reactors. Method: A column filled with activated carbon is disposed at the pre- or post-stage of a clean-up system using ion exchange resins disposed for the clean-up of service water or waste water of a nuclear reactor so that organics contained in water may be removed through adsorption. Since the organic materials are thus adsorbed and eliminated, various types of radioactive ions contained in radioactive liquid are no more masked and the performance of removing ions in the ion exchanger resins of the clean-up device can be improved. (Moriyama, K.)

  4. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  5. Cleanup Verification Package for the 618-2 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  6. Cleanup Verification Package for the 618-2 Burial Ground

    International Nuclear Information System (INIS)

    Thompson, W.S.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities

  7. A systematic approach for future solid waste cleanup activities at the Hanford Site

    International Nuclear Information System (INIS)

    Dirks, L.L.; Konynenbelt, H.S.; Hladek, K.L.

    1995-02-01

    This paper describes the systematic approach to the treatment, storage, and disposal system (TSD) planning and management that has been developed and implemented by Hanford's Solid Waste Program. The systematic approach includes: collecting the forecast and waste inventory data; defining Hanford's TSD system; studying and refining the TSD system by using analysis tools; and documenting analysis results. The customers responsible for planning, funding, and managing future solid waste activities have driven the evolution of the solid waste system. Currently, all treatment facilities are several years from operating. As these facilities become closer to reality, more detailed systems analysis and modeling will be necessary to successfully remediate solid waste at the Site. The tools will continue to be developed in detail to address the complexities of the system as they become better defined. The tools will help determine which facility lay-outs are most optimal, will help determine what types of equipment should be used to optimize the transport of materials to and from each TSD facility, and will be used for performing life-cycle analysis. It is envisioned that in addition to developing the tools to be adapted to the more specific facility design issues, this approach will also be used as an example for other waste installations across the DOE complex

  8. Answers to frequently asked questions about cleanup activities at Three Mile Island, Unit 2

    International Nuclear Information System (INIS)

    1984-03-01

    This question-and-answer report provides answers in nontechnical language to frequently asked questions about the status of cleanup activities at Three Mile Island, Unit 2. The answers update information first prepared in 1981, shortly after the cleanup got under way. Since then, a variety of important developments in the cleanup has occurred. The information in the report should be read in conjunction with NUREG 1060, a discussion of increased occupational exposure estimates for the cleanup. The questions and answers in this report cover purpose and community involvement, decontamination of water and reactor, fuel removal, radwaste transport, environmental impact, social and economic effects, worker exposures and safety, radiation monitoring, potential for accidents, and schedule and funding

  9. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, P.; Wood, J.; Snyder, E. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Boe, T. [Oak Ridge Inst. for Science and Education, Research Triangle Park, NC (United States); Schulthiesz, D.; Peake, T.; Ierardi, M. [U.S. Environmental Protection Agency, Washington, DC (United States); Hayes, C.; Rodgers, M. [Eastern Research Group, Inc., Morrisville, NC (United States)

    2011-07-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  10. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    International Nuclear Information System (INIS)

    Lemieux, P.; Wood, J.; Snyder, E.; Boe, T.; Schulthiesz, D.; Peake, T.; Ierardi, M.; Hayes, C.; Rodgers, M.

    2011-01-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  11. Investing in International Information Exchange Activities to Improve the Safety, Cost Effectiveness and Schedule of Cleanup - 13281

    International Nuclear Information System (INIS)

    Seed, Ian; James, Paula; Mathieson, John; Judd, Laurie; Elmetti-Ramirez, Rosa; Han, Ana

    2013-01-01

    With decreasing budgets and increasing pressure on completing cleanup missions as quickly, safely and cost-effectively as possible, there is significant benefit to be gained from collaboration and joint efforts between organizations facing similar issues. With this in mind, the US Department of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) have formally agreed to share information on lessons learned on the development and application of new technologies and approaches to improve the safety, cost effectiveness and schedule of the cleanup legacy wastes. To facilitate information exchange a range of tools and methodologies were established. These included tacit knowledge exchange through facilitated meetings, conference calls and Site visits as well as explicit knowledge exchange through document sharing and newsletters. A DOE web-based portal has been established to capture these exchanges and add to them via discussion boards. The information exchange is operating at the Government-to-Government strategic level as well as at the Site Contractor level to address both technical and managerial topic areas. This effort has resulted in opening a dialogue and building working relationships. In some areas joint programs of work have been initiated thus saving resource and enabling the parties to leverage off one another activities. The potential benefits of high quality information exchange are significant, ranging from cost avoidance through identification of an approach to a problem that has been proven elsewhere to cost sharing and joint development of a new technology to address a common problem. The benefits in outcomes significantly outweigh the costs of the process. The applicability of the tools and methods along with the lessons learned regarding some key issues is of use to any organization that wants to improve value for money. In the waste management marketplace, there are a multitude of challenges being addressed by multiple organizations and

  12. Investing in International Information Exchange Activities to Improve the Safety, Cost Effectiveness and Schedule of Cleanup - 13281

    Energy Technology Data Exchange (ETDEWEB)

    Seed, Ian; James, Paula [Cogentus Consulting (United States); Mathieson, John [NDA United Kingdom (United Kingdom); Judd, Laurie [NuVision Engineering, Inc. (United States); Elmetti-Ramirez, Rosa; Han, Ana [US DOE (United States)

    2013-07-01

    With decreasing budgets and increasing pressure on completing cleanup missions as quickly, safely and cost-effectively as possible, there is significant benefit to be gained from collaboration and joint efforts between organizations facing similar issues. With this in mind, the US Department of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) have formally agreed to share information on lessons learned on the development and application of new technologies and approaches to improve the safety, cost effectiveness and schedule of the cleanup legacy wastes. To facilitate information exchange a range of tools and methodologies were established. These included tacit knowledge exchange through facilitated meetings, conference calls and Site visits as well as explicit knowledge exchange through document sharing and newsletters. A DOE web-based portal has been established to capture these exchanges and add to them via discussion boards. The information exchange is operating at the Government-to-Government strategic level as well as at the Site Contractor level to address both technical and managerial topic areas. This effort has resulted in opening a dialogue and building working relationships. In some areas joint programs of work have been initiated thus saving resource and enabling the parties to leverage off one another activities. The potential benefits of high quality information exchange are significant, ranging from cost avoidance through identification of an approach to a problem that has been proven elsewhere to cost sharing and joint development of a new technology to address a common problem. The benefits in outcomes significantly outweigh the costs of the process. The applicability of the tools and methods along with the lessons learned regarding some key issues is of use to any organization that wants to improve value for money. In the waste management marketplace, there are a multitude of challenges being addressed by multiple organizations and

  13. Houdini: Site and locomotion analysis-driven design of an in-tank mobile cleanup robot

    International Nuclear Information System (INIS)

    Schempf, H.

    1995-10-01

    This paper describes design and locomotion analysis efforts to develop a new reconfigurable and collapsible working machine, dubbed Houdini, to remotely clean up hazardous-waste and petroleum storage tanks. The tethered robot system is designed to allow remote entry through man-way openings as small as 0.61 m in diameter, after which it expands its locomotors and opens up its collapsible backhoe/manipulator and plow to subsequently perform waste or material handling operations. The design is optimized to meet stringent site and safety requirements, and represents a viable alternative to (1) the long-reach manipulation systems proposed for hazardous storage tank cleanup, and (2) confined-entry manual cleanup approaches. The system development has been funded to provide waste mobilization and removal solutions for the hazardous waste storage tanks in the Department of Energy (DoE) Fernald and Oak Ridge complexes. Other potential applications areas are the cleanup of heavy-crude petroleum storage tanks. The author has developed a fully operational prototype which is currently undergoing testing

  14. RCRA and CERCLA requirements affecting cleanup activities at a federal facility superfund site

    International Nuclear Information System (INIS)

    Walsh, T.J.

    1994-01-01

    The Fernald Environmental Management Project (FEMP) achieved success on an integrated groundwater monitoring program which addressed both RCRA and CERCLA requirements. The integrated plan resulted in a cost savings of approximately $2.6 million. At present, the FEMP is also working on an integrated closure process to address Hazardous Waste Management Units (HWMUs) at the site. To date, Ohio EPA seems willing to discuss an integrated program with some stipulations. If an integrated program is implemented, a cost savings of several million dollars will be realized since the CERCLA documents can be used in place of a RCRA closure plan. The success of an integrated program at the FEMP is impossible without the support of DOE and the regulators. Since DOE is an owner/operator of the facility and Ohio EPA regulates hazardous waste management activities at the FEMP, both parties must be satisfied with the proposed integration activities. Similarly, US EPA retains CERCLA authority over the site along with a signed consent agreement with DOE, which dictates the schedule of the CERCLA activities. Another federal facility used RCRA closure plans to satisfy CERCLA activities. This federal facility was in a different US EPA Region than the FEMP. While this approach was successful for this site, an integrated approach was required at the FEMP because of the signed Consent Agreement and Consent Decree. For federal facilities which have a large number of HWMUs along with OUs, an integrated approach may result in a timely and cost-effective cleanup

  15. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    International Nuclear Information System (INIS)

    Swafford, A.M.; Keller, J.M.

    1993-01-01

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences is necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU·Spec trademark column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable

  16. Defining the framework for environmentally compliant cleanup: The Hanford site tri-party agreement

    International Nuclear Information System (INIS)

    Austin, B.A.; Wisness, S.H.

    1994-01-01

    The Hanford Federal Facility Agreement and Consent Order, commonly called the Tri-Party Agreement, was signed by the U.S. Environmental Protection Agency (EPA), the State of Washington Department of Ecology (Ecology), and the U.S. Department of Energy (DOE) in May of 1989. It was the first three-party agreement of its magnitude in the country and was touted as a landmark agreement. It was one of the most significant actions that has been taken to define the framework for environmentally compliant cleanup actions at the Hanford Site. Accomplishments thus far represent a lot of planning, permitting, and development activities either required by regulation or necessary to ensure an adequate infrastructure to support cleanup activities. Actual cleanup work and construction of new facilities are beginning to accelerate as the Hanford Site moves out of study and development phases into actual cleanup activities. Significant changes to the Hanford Tri-Party Agreement were negotiated between May 1993 and January 1994. These negotiations were precipitated by the completion of a 15-month rebaselining study of the Hanford Site's Tank Waste Remediation System. The revised agreement is based on comments and values the three agencies heard from people of the region during the negotiation process. The recent renegotiation reflected an ability of the agencies and the agreement to change commensurate with technical, economic, and political realities of today. Hanford has moved into a new era of public participation which will continue to watch and guide cleanup efforts in manners satisfactory to regional concerns and values

  17. Cleanup Verification Package for the 618-8 Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building

  18. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  19. Rethinking the Hanford Tank Waste Program

    International Nuclear Information System (INIS)

    Parker, F. L.; Clark, D. E.; Morcos, N.

    2002-01-01

    The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms

  20. Accelerating cleanup: Paths to closure

    International Nuclear Information System (INIS)

    1998-06-01

    This report describes the status of Environmental Management's (EM's) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE's 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM's accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document

  1. Environmental Assessment and Finding of No Significant Impact: Waste Remediation Activities at Elk Hills (Former Naval petroleum Reserve No. 1), Kern County, California

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-12-17

    DOE proposes to conduct a variety of post-sale site remediation activities, such as characterization, assessment, clean-up, and formal closure, at a number of inactive waste sites located at Elk Hills. The proposed post-sale site remediation activities, which would be conducted primarily in developed portions of the oil field, currently are expected to include clean-up of three basic categories of waste sites: (1) nonhazardous solid waste surface trash scatters, (2) produced wastewater sumps, and (3) small solid waste landfills. Additionally, a limited number of other inactive waste sites, which cannot be typified under any of these three categories, have been identified as requiring remediation. Table 2.1-1 presents a summary, organized by waste site category, of the inactive waste sites that require remediation per the PSA, the ASA, and/or the UPCTA. The majority of these sites are known to contain no hazardous waste. However, one of the surface scatter sites (2G) contains an area of burn ash with hazardous levels of lead and zinc, another surface scatter site (25S) contains an area with hazardous levels of lead, a produced wastewater sump site (23S) and a landfill (42-36S) are known to contain hazardous levels of arsenic, and some sites have not yet been characterized. Furthermore, additional types of sites could be discovered. For example, given the nature of oil field operations, sites resulting from either spills or leaks of hazardous materials could be discovered. Given the nature of the agreements entered into by DOE regarding the required post-sale clean-up of the inactive waste sites at Elk Hills, the Proposed Action is the primary course of action considered in this EA. The obligatory remediation activities included in the Proposed Action are standard procedures such that possible variations of the Proposed Action would not vary substantially enough to require designation as a separate, reasonable alternative. Thus, the No Action Alternative is the only

  2. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  3. Investigation and feasibility study of a former manufactured gas plant site in Tuttlingen (Germany), based on individually determined clean-up criteria

    Energy Technology Data Exchange (ETDEWEB)

    Heinecker, C.; Pickel, H.-J.; Duffek, J. [HPC Harress Pickel Consult GmbH, Fuldatal (Germany)

    1995-12-31

    At the request of the former plant operator, a manufactured gas plant site in Tuttlingen, Germany, was investigated from 1988 through 1992 for subsurface soil contamination resulting from former activities. In 1991, the contents of the former tar pits and parts of the adjacent soil contaminations were removed in the course of clean-up activities by means of excavation and disposed at a special waste site. Following an initial risk assessment, a remedial investigation was carried out in order to further delineate the contaminated areas as well as to create a reliable database for a feasibility study of remedial alternatives. The feasibility study followed applicable Baden-Wurttemberg state guidelines, including the following elements: Determination of the clean-up goals for soils; pre-selection of the clean-up procedure; cost estimate; cost-effectiveness study; Non-monetary evaluation; and total evaluation/clean-up proposal. The following general alternatives were available for the definition of clean-up goals: background values (`H-values`); general guidelines values (`SZ-values`); and clean-up goals based on contaminant fate and transport as well as site use (`SZA-values`).

  4. The concepts of the 'factory of the future' applied to cleanup and dismantling works

    International Nuclear Information System (INIS)

    Ghiban, A.; Girones, P.; Moitrier, C.; Gouhier, E.; Torreblanca, L.

    2016-01-01

    The 'factory of the future' relies on the implementation of new concepts and technologies like: connected robots, data analysis, virtual reality or enhanced reality in the fabrication processes. The article describes how these concepts can be used in cleanup or dismantling works. Both activities can be considered as the fabrication of a waste package and the processing plant as a factory. (A.C.)

  5. Environmental Cleanup of the East Tennessee Technology Park Year One - Execution with Certainty SM - 13120

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, A.L. [URS - CH2M Oak Ridge LLC, P.O. Box 4699, Oak Ridge, TN 37831-7294 (United States)

    2013-07-01

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began its five-year, $1.4 billion cleanup of the East Tennessee Technology Park (ETTP), located on the U.S. Department of Energy's (DOE) Oak Ridge Reservation in Tennessee. UCOR will close out cleanup operations that began in 1998 under a previous contract. When the Contract Base scope of work [1] is completed in 2016, the K-25 gaseous diffusion building will have been demolished and all waste dispositioned, demolition will have started on the K-27 gaseous diffusion building, all contact-handled and remote-handled transuranic waste in inventory (approximately 500 cubic meters) will have been transferred to the Transuranic Waste Processing Center, previously designated 'No-Path-To-Disposition Waste' will have been dispositioned to the extent possible, and UCOR will have managed DOE Office of Environmental Management (EM)- owned facilities at ETTP, Oak Ridge National Laboratory (ORNL), and the Y-12 National Security Complex in a safe and cost-effective manner. Since assuming its responsibilities as the ETTP cleanup contractor, UCOR has completed its life-cycle Performance Measurement Baseline; received its Earned Value Management System (EVMS) certification; advanced the deactivation and demolition (D and D) of the K-25 gaseous diffusion building; recovered and completed the Tank W-1A and K-1070-B Burial Ground remediation projects; characterized, packaged, and shipped contact-handled transuranic waste to the Transuranic Waste Processing Center; disposed of more than 90,000 cubic yards of cleanup waste while managing the Environmental Management Waste Management Facility (EMWMF); and provided operations, surveillance, and maintenance activities at DOE EM facilities at ETTP, ORNL, and the Y-12 National Security Complex. Project performance as of December 31, 2012 has been excellent: - Cost Performance Index - 1.06; - Schedule Performance Index - 1.02. At the same time, since safety is the foundation of

  6. Non-woven Textile Materials from Waste Fibers for Cleanup of Waters Polluted with Petroleum and Oil Products

    Science.gov (United States)

    Neznakomova, Margarita; Boteva, Silvena; Tzankov, Luben; Elhag, Mohamed

    2018-04-01

    The aim of this work was to investigate the possibility of using non-woven materials (NWM) from waste fibers for oil spill cleanup and their subsequent recovery. Manufacture of textile and readymade products generates a significant amount of solid waste. A major part of it is deposited in landfills or disposed of uncontrollably. This slowly degradable waste causes environmental problems. In the present study are used two types of NWM obtained by methods where waste fibers are utilized. Thus, real textile products are produced (blankets) with which spills are covered and removed by adsorption. These products are produced by two methods: the strengthening of the covering from recovered fibers is made by entanglement when needles of special design pass through layers (needle-punching) or by stitching with thread (technology Maliwatt). Regardless of the random nature of the fiber mixture, the investigated products are good adsorbents of petroleum products. The nature of their structure (a significant void volume and developed surface) leads to a rapid recovery of the spilled petroleum products without sinking of the fiber layer for the sampled times. The used NWM can be burned under special conditions.

  7. An overview of the hazardous waste remedial actions program: hazardous and mixed waste activities for the U.S. Departments of energy and defense

    International Nuclear Information System (INIS)

    Craig, Robert B.; Rothermich, Nancy E.

    1991-01-01

    In May 1987 all mixed waste generated at the U.S. Department of Energy (DOE) facilities became jointly regulated by the U.S. Environmental Protection Agency (EPA) and DOE. The Department of Defense (DOD) generates hazardous wastes and is also regulated by the EPA. To maintain or attain compliance, both DOE and DOD have initiated compliance activities on all hazardous and mixed waste streams. This compliance includes the development of innovative technologies and processes to avoid the generation of hazardous and mixed wastes, development of technologies to treat the process wastes that are unavoidably generated, development of technologies to restore the environment where wastes have been released to the environment, the cleanup of asbestos and the monitoring of radon in federal facilities, the completion of remedial investigation/feasibility studies, and development of the data systems that are necessary to compile this information. This paper will describe each of these activities as they relate to compliance with the Resource Conservation and Recovery Act and/or CERCLA and their implementing regulations

  8. Restoration principles and criteria: Superfund programme policy for cleanup at radiation contaminated sites

    International Nuclear Information System (INIS)

    Shapiro, M.

    2000-01-01

    The Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response is responsible for implementing two key US laws regulating waste management and cleanup: the Resource Conservation and Recovery Act, and the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed ''Superfund''. The purpose of the Superfund programme is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on Superfund, including how radiation is addressed by the Superfund programme. This paper provides a brief overview of the approach used by EPA to conduct Superfund cleanups at contaminated sites, including those that are contaminated with radionuclides, to ensure protection of human health and the environment. The paper addresses how EPA Superfund determines if a site poses a risk to human health and the framework used to determine cleanup levels. The theme emphasized throughout the paper is that within the Superfund remediation framework, radioactive contamination is dealt with in the identical way as chemical contamination. (author)

  9. S. 1030: A bill to authorize private sector participation in providing products and services to support Department of Energy defense waste cleanup and modernization missions, introduced in the US Senate, One Hundred Second Congress, First Session, May 9, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This bill was introduced into the US Senate on May 9, 1991 to authorize private sector participation in providing products and services to support Department of Energy defense waste cleanup and modernization. Congress finds that the management and cleanup of nuclear and hazardous waste and the modernization of Department of Energy facilities must be pursued expeditiously in order to protect the health and safety of the public and workers

  10. Cleanup Verification Package for the 116-K-2 Effluent Trench

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities

  11. Cleanup Verification Package for the 618-3 Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings

  12. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  13. CERCLA and RCRA requirements affecting cleanup of a hazardous waste management unit at a Superfund site: A case study

    International Nuclear Information System (INIS)

    Walsh, T.J.

    1995-03-01

    The Fernald Environmental Management Project (FEMP) attempted to address both RCRA and CERCLA requirements at the fire training facility (FTF) by integrating a CERCLA removal action work plan with a RCRA closure plan. While the regulatory agencies involved with the FTF cleanup agreed the integrated document was a good idea, implementation proved complicated, owing to disposition of clean debris from a Superfund site, treatment of contaminated media, duration of cleanup activities, and cleanup certification. While all the complications have not been resolved, solutions to all have been proposed to Ohio EPA and U.S. EPA. Both agencies have worked closely with FEMP to find the most effective fulfillment of RCRA and CERCLA requirements

  14. Waste minimization - Hanford's strategy for sustainability

    International Nuclear Information System (INIS)

    Merry, D.S.

    1998-01-01

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy's waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results

  15. Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup.

    Science.gov (United States)

    Nguyen, Duc Dung; Hsieh, Ping-Yen; Tsai, Meng-Ting; Lee, Chi-Young; Tai, Nyan-Hwa; To, Bao Dong; Vu, Duc Tu; Hsu, Chia Chen

    2017-11-22

    We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

  16. Cleanup Verification Package for the 118-F-1 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  17. Production of activated char from Illinois coal for flue gas cleanup

    Science.gov (United States)

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  18. Hebei Spirit Oil Spill Exposure and Subjective Symptoms in Residents Participating in Clean-Up Activities

    OpenAIRE

    Cheong, Hae-Kwan; Ha, Mina; Lee, Jong Seong; Kwon, Hojang; Ha, Eun-Hee; Hong, Yun-Chul; Choi, Yeyong; Jeong, Woo-Chul; Hur, Jongil; Lee, Seung-Min; Kim, Eun-Jung; Im, Hosub

    2011-01-01

    Objectives This study was conducted to examine the relationship between crude oil exposure and physical symptoms among residents participating in clean-up work associated with the Hebei Spirit oil spill, 2007 in Korea. Methods A total of 288 residents responded to a questionnaire regarding subjective physical symptoms, sociodemographic characteristics and clean-up activities that occurred between two and eight weeks after the accident. Additionally, the urine of 154 of the respondents was ana...

  19. Cleanup Verification Package for the 118-F-6 Burial Ground

    International Nuclear Information System (INIS)

    Sulloway, H.M.

    2008-01-01

    This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car

  20. ANDRA - National Radioactive Waste Management Agency. Activity report 2015. Financial report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2015

  1. ANDRA - National Radioactive Waste Management Agency. Activity report 2016. Financial report 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2016

  2. TMI-2: Unique waste management technology

    International Nuclear Information System (INIS)

    Bixby, W.W.; Young, W.R.; Grant, P.J.

    1987-01-01

    The 1979 accident at TMI-2 severely damaged the reactor core and contaminated more than a million gallons of water. Subsequent activities created another million gallons of water. The damaged reactor core represented a new waste form and cleanup of the contaminated water and system components created other new waste forms requiring creative approaches to waste management. This paper focuses on technologies that were developed specific to fuel waste management, core debris shipping, processing accident generated water, and disposal of the resultant waste forms

  3. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  4. Cleanup Verification Package for the 100-F-20, Pacific Northwest Laboratory Parallel Pits

    International Nuclear Information System (INIS)

    Appel, M.J.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 100-F-20, Pacific Northwest Laboratory Parallel Pits waste site. This waste site consisted of two earthen trenches thought to have received both radioactive and nonradioactive material related to the 100-F Experimental Animal Farm

  5. Waste minimization -- Hanford`s strategy for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Merry, D.S.

    1998-01-30

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy`s waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results.

  6. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work

  7. Firms vie to offer DOE a prize-winning recipe for cleanup

    International Nuclear Information System (INIS)

    Powers, M.B.

    1994-01-01

    Eager to get the most bang for its waste cleanup bucks, the US Department of Energy is conducting its own version of the Pillsbury bake-off. DOE is pitting two environmental contractors, Rust International Corp. and Lockheed Environmental Systems and Technologies Co., against each other to come up with the prize-winning recipe for cleaning up some nasty waste problems

  8. Sorters for soil cleanup

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Johnson, N.R.; Tomicich, M.J.

    1991-01-01

    A soil sorter is a system with conveyor, radiation detectors, and a gate. The system activates the gate based on radiation measurements to sort soil to either clean or contaminated paths. Automatic soil sorters have been perfected for use in the cleanup of plutonium contaminated soil at Johnston Atoll. The cleanup processes soil through a plant which mines plutonium to make soil clean. Sorters at various locations in the plant effectively reduce the volume of soil for mining and they aid in assuring clean soil meets guidelines

  9. Summary of Model Toxics Control Act (MTCA) Potential Impacts Related to Hanford Cleanup and the Tri-Party Agreement (TPA)

    Energy Technology Data Exchange (ETDEWEB)

    IWATATE, D.F.

    2000-07-14

    This white paper provides an initial assessment of the potential impacts of the Model Toxics Control Act (MTCA) regulations (and proposed revisions) on the Hanford site cleanup and addresses concerns that MTCA might impose inappropriate or unachievable clean-up levels and drive clean-up costs higher. The white paper and supporting documentation (Appendices A and B) provide DOE with a concise and up-to-date review of potential MTCA impacts to cost and schedule for the Hanford site activities. MTCA, Chapter 70.105D RCW, is the State of Washington's risk based law governing clean-up of contaminated sites and is implemented by The Washington Department of Ecology (Ecology) under the MTCA Clean-up Regulations, Chapter 173-340 WAC. Hanford cleanup is subject to the MTCA requirements as Applicable, Relevant and Appropriate Requirements (ARARs) for those areas of Hanford being managed under the authority of the Federal Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the state Dangerous Waste Regulations. MTCA provides Ecology with authority to implement site clean-up actions under both the federal RCRA and CERCLA regulations as well as the state regulations. Most of the Hanford clean-up actions are being implemented under the CERCLA program, however, there is a trend is toward increased use of MTCA procedures and standards. The application of MTCA to the Hanford clean-up has been an evolving process with some of the Hanford clean-up actions considering MTCA standards as an ARAR and using MTCA procedures for remedy selection. The increased use and application of MTCA standards and procedures could potentially impact both cost and schedule for the Hanford cleanup.

  10. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  11. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  12. Superfund at work: Hazardous waste cleanup efforts nationwide, fall 1992. (Wide Beach section of Brant, New York)

    International Nuclear Information System (INIS)

    1992-01-01

    Wide-spread contamination of polychlorinated biphenyls (PCBs) threatened the Wide Beach section of Brant, New York, a popular vacation resort. EPA's Superfund program effectively completed a permanent cleanup of Wide Beach in the span of one year. Other highlights included: a new and innovative technology to remove PCB contamination; reduction of PCBs to one-fifth of acceptable levels; temporary relocation of residents who were concerned for their health while cleanup activities took place; newly paved roads and driveways, re-landscaped yards, and a new storm sewer system; and restoration of ecologically sensitive wetlands. EPA's achievements significantly reduced PCB risks at Wide Beach, and left a satisfied community in Brant

  13. Post-accident cleanup and decommissioning of a reference pressurized-water reactor

    International Nuclear Information System (INIS)

    Murphy, E.S.; Holter, G.M.

    1982-10-01

    This paper summarizes the results of a conceptual study to evaluate the technical requirements, costs, and safety impacts of the cleanup and decommissioning of a large pressurized water reactor (PWR) involved in an accident. The costs and occupational doses for post-accident cleanup and dcommissioning are estimated to be substantially higher than those for decommissioning following the orderly shutdown of a reactor. A major factor in these cost and occupational dose increases is the high radiation environment that exists in the containment building following an accident which restricts worker access and increases the difficulty of performing certain tasks. Other factors which influence accident cleanup and decommissioning costs are requirements for the design and construction of special tools and equipment, increased requirements for regulatory approvals, and special waste management needs. Radiation doses to the public from routine accident cleanup and decommissioning operations are estimated to be below permissible radiation dose levels in unrestricted areas and within the range of annual doses from normal background

  14. Waste is a Terrible Thing to Mind: Perspectives on the Cleanup of the United States Nuclear Weapons Complex

    Science.gov (United States)

    Bodde, David

    1997-03-01

    For the 50 years of the Cold War, the United States nuclear arsenal was the cornerstone of our national security. These weapons were designed, manufactured, and armed with fissionable materials in an industrial complex that, at its peak, included about 16 major facilities and vast tracts of land in Nevada, Idaho, Washington, and South Carolina. Included among these are such well-known sites as the Savannah River Plant, the Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. The Cold War, that "long twilight struggle" in the evocative phrase of John Kennedy, left little time and few resources for understanding and managing the environmental consequences of nuclear weapons production. At the same time, perceptions of the special nature of the atom led to a concentration of governance in the Atomic Energy Commission and the Joint Committee on Atomic Energy. Thus, external feedback for the managers of the complex was heavily filtered. But the imperatives of the Cold War have waned, and our understanding of the implications for the environment and the health and safety of workers has grown. By 1995 the Department of Energy (DoE) had spent about 23 billion in identifying and characterizing its waste, managing it, and assessing the actions needed to clean up the 120 sites in 36 states. Yet the majority of the task appeared ahead. Estimates made in 1995 suggested a total cost ranging from 200-350 billion and a time to complete of 75 years. If these were true, the cleanup of the weapons complex would become the largest civil works project in the history of humankind. Over the past year or so, the DoE program has shifted its focus from studies to actual cleanup. A strategic plan has been proposed that would accomplish most of the needed work over ten years at a cost of about $85 billion. At the same time, the Department is proposing to transfer oversight to the Nuclear Regulatory Commission, the Environmental Protection Agency, and the states. This Invited

  15. Regulatory and institutional issues impending cleanup at US Department of Energy sites: Perspectives gained from an office of environmental restoration workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, W E; Gephart, J M; Gephart, R E; Quinn, R D; Stevenson, L A

    1991-05-01

    The US Department of Energy's (DOE) nuclear weapons and energy operations are conducted across a nation-wide industrial complex engaged in a variety of manufacturing, processing, testing, and research and development activities. The overall mission of DOE Office of Environmental Restoration and Waste Management (EM) is to protect workers, the public, and the environment from waste materials generated by past, current, and future DOE activities and to bring the DOE complex into compliance with all applicable laws, regulations, and agreements related to health, safety, and the environment. EM addresses this broad mandate through related and interdependent programs that include corrective actions, waste operations, environmental restoration, and technology development. The EM Office of Environmental Restoration (EM-40) recognizes the importance of implementing a complex-wide process to identify and resolve those issues that may impede progress towards site cleanup. As a first step in this process, FM-40 sponsored an exercise to identify and characterize major regulatory and institutional issues and to formulate integrated action steps towards their resolution. This report is the first product of that exercise. It is intended that the exercise described here will mark the beginning of an ongoing process of issue identification, tracking, and resolution that will benefit cleanup activities across the DOE complex.

  16. Statistical aspects of the cleanup of Enewetak Atoll

    International Nuclear Information System (INIS)

    Giacomini, J.J.; Miller, F.L. Jr.

    1981-01-01

    The Desert Research Institute participated in the Enewetak Atoll Radiological Cleanup by providing data-base management and statistical analysis support for the Department of Energy team. The data-base management responsibilities included both design and implementation of a system for recording (in machine-retrievable form) all radiological measurements made during the cleanup, excluding personnel dosimetry. Statistical analyses were performed throughout the cleanup and were used to guide excavation activities

  17. Method for assay of radioactivity in waste soil

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Willhoite, S.B.

    1991-01-01

    Contaminated soil is a result of many nuclear operations. During facility decommissioning or site cleanup, it may be packaged for disposal. The waste soil must be assayed for contaminants to follow transport regulations and waste handling facility requirements. Methods used for assay include the following: (1) sampling the ground before excavation and assuming ground data apply to soil when packaged; (2) analyzing samples taken from the soil added to a package; (3) counting radiation at the exterior of the package; and (4) measuring neutron absorption by packaged waste soil. The Defense Nuclear Agency (DNA) worked with Eberline Instruments Corporation (EIC) to develop an automated assay method for the waste stream in a plutonium-contaminated soil cleanup at Johnston Atoll in the North Pacific Ocean. The perfected method uses a personal computer, an electronic weighing scale, and a programmable radiation counter. Computer programs get weight and radiation counts at frequent intervals as packages fill, calculate activity in the waste, and produce reports. The automated assay method is an efficient one-person routine that steadfastly collects data and produces a comprehensive record on packaged waste

  18. Post-accident cleanup and decommissioning of a reference pressurized water reactor

    International Nuclear Information System (INIS)

    Murphy, E.S.; Holter, G.M.

    1982-01-01

    This paper summarizes the results of a conceptual study to evaluate the technical requirements, costs, and safety impacts of the cleanup and decommissioning of a large pressurized water reactor (PWR) involved in an accident. The costs and occupational doses for post-accident cleanup and decommissioning are estimated to be substantially higher than those for decommissioning following the orderly shutdown of a reactor. A major factor in these cost and occupational dose increases is the high radiation environment that exists in the containment building following an accident which restricts worker access and increases the difficulty of performing certain tasks. Other factors which influence accident cleanup and decommissioning costs are requirements for the design and construction of special tools and equipment, increased requirements for regulatory approvals, and special waste management needs. Radiation doses to the public from routine accident cleanup and decommissioning operations are estimated to be below permissible radiation dose levels in unrestricted areas and within the range of annual doses from normal background. 6 references, 1 figure, 7 tables

  19. ANDRA - National Radioactive Waste Management Agency. Activity report 2006. Management report - Financial statements 2006

    International Nuclear Information System (INIS)

    2007-06-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report with the management and financial statements report of the Andra for the year 2006

  20. A systematic look at Tank Waste Remediation System privatization

    International Nuclear Information System (INIS)

    Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

    1996-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction

  1. Cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1989-01-01

    The purposes of the report are to provide an overview of the methodology and technology available to clean up contaminated areas and to give preliminary guidance on matters related to the planning, implementation and management of such cleanups. This report provides an integrated overview of important aspects related to the cleanup of very large areas contaminated as a result of a serious nuclear accident, including information on methods and equipment available to: characterize the affected area and the radioactive fallout; stabilize or isolate the contamination; and clean up contaminated urban, rural and forested areas. The report also includes brief sections on planning and management considerations and the transport and disposal of the large volumes of wastes arising from such cleanups. For the purposes of this report, nuclear accidents which could result in the deposition of decontamination over large areas if the outer containment fails badly include: 1) An accident with a nuclear weapon involving detonation of the chemical high explosive but little, if any, nuclear fission. 2) A major loss of medium/high level liquid waste (HLLW) due to an explosion/fire at a storage site for such waste. 3) An accident at a nuclear power plant (NPP), for example a loss of coolant accident, which results in some core disruption and fuel melting. 4) An accident at an NPP involving an uncontrolled reactivity excursion resulting in the violent ejection of a reactor core material and rupture of the containment building. 117 refs, 32 figs, 12 tabs

  2. Privatization considerations of environmental remediation of DOE wastes

    International Nuclear Information System (INIS)

    Zocher, M.A.; Paananen, O.H.; Kost, K.

    1997-01-01

    The US Department of Energy (DOE) is in the process of privatizing the application of environmental cleanup technologies to remediate nuclear waste within the DOE complex. These wastes are the legacy of the production of nuclear materials during the cold war era. It is anticipated that the privatization strategy will result in more efficient and less expensive approaches to the cleanup of DOE wastes. Similar privatization initiatives have the potential to achieve increased efficiency and cost savings at sites under the Department of Defense (DOD) and other Federal agencies. The DOE is privatizing a major, complex portion of the Tank Waste Remediation System (TWRS) Program at the Hanford nuclear reservation located in eastern Washington State. This effort will involve private companies that will design, permit, construct, operate, and finally deactivate waste treatment facilities that will be owned entirely by the private sector. The DOE will purchase treated waste products on a unit cost basis from the facilities after supplying the vendors with waste from the tank farm at Hanford. The privatization of selected United States and international Government functions involve decisions that are based on accurate and valid cost information. Private firms are beginning to privatize certain corporate activities so that they may concentrate business activities along main product or mission lines. In either the public or private sector, many aspects of cost engineering are utilized to make prioritization a success

  3. Hebei Spirit Oil Spill Exposure and Subjective Symptoms in Residents Participating in Clean-Up Activities

    Science.gov (United States)

    Cheong, Hae-Kwan; Lee, Jong Seong; Kwon, Hojang; Ha, Eun-Hee; Hong, Yun-Chul; Choi, Yeyong; Jeong, Woo-Chul; Hur, Jongil; Lee, Seung-Min; Kim, Eun-Jung; Im, Hosub

    2011-01-01

    Objectives This study was conducted to examine the relationship between crude oil exposure and physical symptoms among residents participating in clean-up work associated with the Hebei Spirit oil spill, 2007 in Korea. Methods A total of 288 residents responded to a questionnaire regarding subjective physical symptoms, sociodemographic characteristics and clean-up activities that occurred between two and eight weeks after the accident. Additionally, the urine of 154 of the respondents was analyzed for metabolites of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) and heavy metals. To compare the urinary levels of exposure biomarkers, the urine of 39 inland residents who were not directly exposed to the oil spill were analyzed. Results Residents exposed to oil remnants through clean-up work showed associations between physical symptoms and the exposure levels defined in various ways, including days of work, degree of skin contamination, and levels of some urinary exposure biomarkers of VOCs, metabolites and metals, although no major abnormalities in urinary exposure biomarkers were observed. Conclusions This study provides evidence of a relationship between crude oil exposure and acute human health effects and suggests the need for follow-up to evaluate the exposure status and long-term health effects of clean-up participants. PMID:22125768

  4. Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1: Maximum possible fire loss (MPFL) decontamination and cleanup estimates. Revision 1

    International Nuclear Information System (INIS)

    Hinkle, A.W.; Jacobsen, P.H.; Lucas, D.R.

    1994-01-01

    Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1, a 1991 Line Item, is planned for completion and start of operations in the spring of 1997. WRAP Module 1 will have the capability to characterize and repackage newly generated, retrieved and stored transuranic (TRU), TRU mixed, and suspect TRU waste for shipment to the Waste isolation Pilot Plant (WIPP). In addition, the WRAP Facility Module 1 will have the capability to characterize low-level mixed waste for treatment in WRAP Module 2A. This report documents the assumptions and cost estimates for decontamination and clean-up of a maximum possible fire loss (MPFL) as defined by DOE Order 5480.7A, FIRE PROTECTION. The Order defines MPFL as the value of property, excluding land, within a fire area, unless a fire hazards analysis demonstrates a lesser (or greater) loss potential. This assumes failure of both automatic fire suppression systems and manual fire fighting efforts. Estimates were developed for demolition, disposal, decontamination, and rebuilding. Total costs were estimated to be approximately $98M

  5. Shoreline oil cleanup, recovery and treatment evaluation system (SOCRATES)

    International Nuclear Information System (INIS)

    Rusin, J.; Lunel, T.; Sommerville, M.; Tyler, A.; Marshall, I.

    1996-01-01

    A beach cleanup computer system was developed to mitigate the impact of shoreline oiling. The program, entitled SOCRATES, was meant to determine the most suitable cleanup methodologies for a range of different spill scenarios. The development, operation and capabilities of SOCRATES was described, with recent examples of successful use during the Sea Empress spill. The factors which influenced decision making and which were central to the numerical solution were: (1) the volumetric removal rate of oil, (2) area removal rate of oil, (3) length of oil slick removed per hour, (4) volumetric removal rate of oily waste, (5) area of the oil slick, (6) length of the oil slick, (7) volume of liquid emulsion, and (8) length of beach. 14 figs

  6. Media analysis of radioactive wastes

    International Nuclear Information System (INIS)

    Janowski, M.J.

    1989-01-01

    The radioactive waste cleanup community has not effectively utilized its most powerful communications tool to inform the general public; the print and broadcast media. Environmental interest groups have known of the value of accessing the media for their message for years and have used it effectively. The radioactive waste cleanup community's efforts to date have not been focused on education of the media so that they in turn can inform the public of our cleanup mission. Their focus must be to learn of the importance of the media, develop training programs that train technical people in how to know and respond to the media's needs for information, and then incorporate that training into a comprehensive program of public information in which access to the media is a key communications tool. This paper discusses how media education and access is a cost-effective means of accomplishing community relations goals of public information and public participation in radioactive waste cleanup and has been effectively utilized at the Weldon Spring Site Remedial Action Project

  7. Bioremediation case study: Fuel-contaminated soil cleanup in the Marshall Islands

    International Nuclear Information System (INIS)

    Machanoff, R.

    1992-01-01

    Using microbes to degrade fuels in contaminated soils is becoming increasingly more attractive as an approach to environmental restoration. Removing contamination by traditional methods is costly, does not always eliminate the problem, and often just moves it somewhere else. Biodegradation of contaminants can often be accomplished in situ, resulting in the actual destruction of the contaminants by microbial conversion to harmless by-products. Bioremediation is not applicable to all forms of environmental contamination but has been demonstrated to be particularly effective on petroleum hydrocarbon based fuels. Bioremediation can offer a cost-effective means for site cleanup, particularly where challenging logistical considerations have to be factored into cleanup projects. Logistical considerations have made bioremediation the method of choice for the decontamination of fuel-containing soils on Kwajalein Island, Republic of the Marshall Islands. Kwajalein is located more than 2,100 miles west of Hawaii in the southernmost part of the North Pacific. The site of a major missile range of the Strategic Defense Command (SDC), Kwajalein has been the center of US defense activities for almost 50 years. The island is part of a typical coral atoll and is only 2.5 miles long and 0.5 miles wide. Mission-related activities over the past 5 decades have resulted in about 10% of the island being contaminated with diesel, gasoline, and jet fuels. SDC has executed an agreement with the Department of Energy for the Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Martin Marietta Energy Systems, Inc., to assist the US Army Kwajalein Atoll (USAKA) in the management of the Base restoration activities on Kwajalein Atoll. HAZWRAP initiated sampling and feasibility studies to determine whether bioremediation was a viable choice for site cleanup at USAKA

  8. Clean-up of liquid radiation wastes with elevated mineralization from cesium and cobalt radionuclides by the modified clinoptilolite of the Chankanaj deposit

    International Nuclear Information System (INIS)

    Plotnikov, V.I.; Tuleushev, A.Zh.; Zhabykbaev, G.T.; Kostsov, S.V.; Medvedeva, Z.V.; Plotnikova, O.M.; Chakrova, E.T.; Idrisova, U.R.; Idrisova, D.Zh.

    2003-01-01

    On the base of laboratory studies and semi-industrial testing the possibility of liquid radioactive wastes clean-up from cesium and cobalt radionuclides in elevated mineralization conditions with help of modified clinoptilolite is shown. In the work the synthesized thin-layer inorganic sorbent (TIS) with conventional name MC-2 (modified clinoptilolite) was used. The Chankanaj deposit's zeolite in the crushed form was base for the TIS production. The copper ferrocyanides serves as the modifier. This sorbent is selective one in relationship to cesium and cobalt radionuclides

  9. Mold: Cleanup and Remediation

    Science.gov (United States)

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  10. Superfund at work: Hazardous waste cleanup efforts nationwide, fall 1992. (CIBA-GEIGY Corporation, McIntosh, Alabama)

    International Nuclear Information System (INIS)

    1992-01-01

    On March 31, 1992, the U.S. Environmental Protection Agency (EPA) reached an agreement with Ciba-Geigy Corporation in McIntosh, Alabama to clean up soil and ground water contaminated by DDT, herbicides, and chemicals. The agreement is one of the largest private party settlements in Superfund history, valued at approximately $120 million. EPA activities at the site included: conducting preliminary contamination investigations jointly with the Alabama Environmental Health Administration, beginning in 1979; designing a multi-phased cleanup that is responsive to the complex nature of the contamination and reduces potential risk to the local population and environment; and awarding a grant to a community group to help them participate in cleanup decisions. Ciba-Geigy, like EPA, has made consistent efforts to build and maintain good relations with the community. These efforts demonstrate the increasing trend toward cooperation between industries, local communities, and EPA at Superfund sites

  11. Management of Hazardous Waste and Contaminated Land

    OpenAIRE

    Hilary Sigman; Sarah Stafford

    2010-01-01

    Regulation of hazardous waste and cleanup of contaminated sites are two major components of modern public policy for environmental protection. We review the literature on these related areas, with emphasis on empirical analyses. Researchers have identified many behavioral responses to regulation of hazardous waste, including changes in the location of economic activity. However, the drivers behind compliance with these costly regulations remain a puzzle, as most research suggests a limited ro...

  12. ANDRA - National Radioactive Waste Management Agency. 2014 Activity report - Responsibility in action. Financial report 2014

    International Nuclear Information System (INIS)

    2015-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2014

  13. ANDRA - National Radioactive Waste Management Agency. Activity report and sustainable development 2013. Financial report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the financial report, of the Andra for the year 2013

  14. Remediation of uranium contaminated sites: clean-up activities in Serbia

    International Nuclear Information System (INIS)

    Raicevic, S.; Raicevic, J. . E-mail address of corresponding author: raich@beotel.yu; Raicevic, S.)

    2005-01-01

    One of the serious environmental problems in Serbia represent sites contaminated with depleted uranium (DU) during past war activities. According to UNEP reports and our findings there are two types of contamination: (i) localized points of high, concentrated contamination where DU penetrators enter the soil, and (ii) low level of widespread DU contamination, which indicates that during the conflict DU dust was dispersed into the environment. Remediation of these sites is an urgent need because they represent a permanent threat to the population living in this area. Here we give a brief description of approaches commonly used in remediation of DU contaminated sites, and an overview of current clean-up activities performed in Serbia. (author)

  15. NRC plan for cleanup operations at Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Lo, R.; Snyder, B.J.

    1980-07-01

    The NRC plan defines the functional role of the NRC in cleanup operations at Three Mile Island Unit 2 to assure that agency regulatory responsibilities and objectives will be fulfilled. The plan outlines NRC functions in TMI-2 cleanup operations in the following areas: (1) the functional relationship of NRC to other government agencies, the public, and the licensee to coordinate activities, (2) the functional roles of these organizations in cleanup operations, (3) the NRC review and decision-making procedure for the licensee's proposed cleanup operation, (4) the NRC/licensee estimated schedule of major actions, and (5) NRC's functional role in overseeing implementation of approved licensee activities

  16. Development of a risk-based approach to Hanford Site cleanup

    International Nuclear Information System (INIS)

    Hesser, W.A.; Daling, P.M.; Baynes, P.A.

    1995-06-01

    In response to a request from Mr. Thomas Grumbly, Assistant Secretary of Energy for Environmental Management, the Hanford Site contractors developed a conceptual set of risk-based cleanup strategies that (1) protect the public, workers, and environment from unacceptable risks; (2) are executable technically; and (3) fit within an expected annual funding profile of 1.05 billion dollars. These strategies were developed because (1) the US Department of Energy and Hanford Site budgets are being reduced, (2) stakeholders are dissatisfied with the perceived rate of cleanup, (3) the US Congress and the US Department of Energy are increasingly focusing on risk and riskreduction activities, (4) the present strategy is not integrated across the Site and is inconsistent in its treatment of similar hazards, (5) the present cleanup strategy is not cost-effective from a risk-reduction or future land use perspective, and (6) the milestones and activities in the Tri-Party Agreement cannot be achieved with an anticipated funding of 1.05 billion dollars annually. The risk-based strategies described herein were developed through a systems analysis approach that (1) analyzed the cleanup mission; (2) identified cleanup objectives, including risk reduction, land use, and mortgage reduction; (3) analyzed the existing baseline cleanup strategy from a cost and risk perspective; (4) developed alternatives for accomplishing the cleanup mission; (5) compared those alternatives against cleanup objectives; and (6) produced conclusions and recommendations regarding the current strategy and potential risk-based strategies

  17. Hanford Cleanup... Restore the Columbia River Corridor Transition the Central Plateau Prepare and Plan for the End State

    International Nuclear Information System (INIS)

    Klein, Keith A.

    2006-01-01

    The U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington State was established during World War II to produce plutonium for nuclear weapons as part of the top-secret Manhattan Project. In 1989, Hanford's mission changed to cleanup and closure; today the site is engaged in one of the world's largest and most aggressive programs to clean up radioactive and hazardous wastes. The size and complexity of Hanford's environmental problems are made even more challenging by the overlapping technical, political, regulatory, financial and cultural issues associated with the cleanup. The physical challenges at the Hanford Site are daunting. More than 50 million gallons of liquid radioactive waste in 177 underground storage tanks; 2,300 tons of spent nuclear fuel;12 tons of plutonium in various forms; 25 million cubic feet of buried or stored solid waste; 270 billion gallons of groundwater contaminated above drinking-water standards spread out over about 80 square miles; more than 1,700 waste sites; and approximately 500 contaminated facilities. With a workforce of approximately 7,000 and a budget of about $1.8 billion dollars this fiscal year, Hanford cleanup operations are expected to be complete by 2035, at a cost of $60 billion dollars. (authors)

  18. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  19. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  20. ''How clean is clean'' in the United States federal and Washington State cleanup regulations

    International Nuclear Information System (INIS)

    Landau, H.G.

    1993-01-01

    The enactment of legislation and promulgation of implementing regulations generally involves the resolution of conflicting goals. Defining ''How Clean is Clean?'' in federal and state cleanup laws, regulations, and policies is no exception. Answering the ''How Clean is Clean?'' question has resulted in the identification of some important and sometimes conflicting goals. Continuing resolution of the following conflicting goals is the key to effect cleanup of hazardous waste sites: Expediency vs. Fairness; Flexibility vs. Consistency; Risk Reduction vs. Risk Causation; and Permanence vs. Cost Effectiveness

  1. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  2. Solid waste and materials systems alternatives study summary

    International Nuclear Information System (INIS)

    Kasper, J.R.; Smith, S.T.

    1996-01-01

    The Hanford Site is a 560-sq.-mi. area in southeastern Washington State owned and operated by the U.S. Department of Energy (DOE). Previous weapons program activities and recent environmental cleanup activities at the Hanford Site have resulted in an accumulation of large quantities of solid wastes and materials. Future Decontamination and Decommissioning (D ampersand D) and Environmental Remediation activities will generate additional wastes. This paper provides a summary of a recently completed analysis of the Hanford Site Solid Wastes and Materials. The analysis involved development and compilation of waste stream and material information including type, classification. location current and project volumes, and curie content. Current program plans for treatment, storage, and disposal/disposition (TSD) have also been included in this analysis

  3. Waste Management Policy Framework to Mitigate Terrorist Intrusion Activities

    International Nuclear Information System (INIS)

    Redus, Kenneth S.

    2003-01-01

    A policy-directed framework is developed to support US Department of Energy (DOE) counterterrorism efforts, specifically terrorist intrusion activities that affect of Environmental Management (EM) programs. The framework is called the Security Effectiveness and Resource Allocation Definition Forecasting and Control System (SERAD-FACS). Use of SERAD-FACS allows trade-offs between resources, technologies, risk, and Research and Development (R and D) efforts to mitigate such intrusion attempts. Core to SERAD-FACS is (1) the understanding the perspectives and time horizons of key decisionmakers and organizations, (2) a determination of site vulnerabilities and accessibilities, and (3) quantifying the measures that describe the risk associated with a compromise of EM assets. The innovative utility of SERAD-FACS is illustrated for three integrated waste management and security strategies. EM program risks, time delays, and security for effectiveness are examined to demonstrate the significant cost and schedule impact terrorist activities can have on cleanup efforts in the DOE complex

  4. Report on DOE labs takes aim at cleanup

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This article is a review of the Galvin report on the environmental restoration activities at DOE nuclear facilities. The report is highly critical of DOE efforts, calling for a management overhaul and partial privitization of some facilities. Urging that the facilities be more integrated into the environmental management program, the report asserts that the low quality of science and technology in field cleanup work is the most important reason for the limited pace of cleanup activities. Excessive administrative costs were also cited

  5. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  6. A decision-making process on cleanup of contaminated surface soil

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    1996-01-01

    This study presents principles for determining derived intervention levels (DILs) for surface soil cleanup. The people concerned were divided into major three groups: residents, responsible parties, and cleanup workers; it was considered that each group has different interests. The DILs for soil cleanup were determined from the viewpoints of these three groups: safety of residence, advantages of the countermeasures, and safety of cleanup activities, respectively. An example process for determination of the DILs in accordance with the principles was also presented for a site contaminated by 137 Cs. This decision-making frame is expected to be applicable to other contaminants. (author)

  7. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    International Nuclear Information System (INIS)

    West, L.D.

    2011-01-01

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W and FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m 3 of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% (∼8,000 m 3 ) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  8. Robotics for mixed waste operations, demonstration description

    International Nuclear Information System (INIS)

    Ward, C.R.

    1993-01-01

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper

  9. FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration

    International Nuclear Information System (INIS)

    Kriikku, E.M.

    1994-01-01

    The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control

  10. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Henckel, George [Los Alamos Site Office, MS-A316, Los Alamos, NM 87544 (United States)

    2012-07-01

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and

  11. Methods for separating actinides from reprocessing and refabrication plant wastes

    International Nuclear Information System (INIS)

    Tedder, D.W.; Finney, B.C.; Blomeke, J.O.

    1979-01-01

    Chemical processing flowsheets have been developed to partition actinides from all actinide-bearing LWR fuel reprocessing and refabrication plant wastes. These wastes include high-activity-level liquids, scrap recovery liquors, HEPA filters and incinerator ashes, and chemical salt wastes such as sodium carbonate scrub solutions, detergent cleanup streams, and alkaline off-gas scrubber liquors. The separations processes that were adopted for this study are based on solvent extraction, cation exchange chromatography, and leaching with Ce 4+ -HNO 3 solution

  12. TMI abnormal wastes disposal options

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.

    1984-03-01

    A substantial quantity of high beta-gamma/high-TRU contaminated wastes are expected from cleanup activities of Unit 2 of the Three Mile Island Nuclear Power Station. Those wastes are not disposable because of present regulatory constraints. Therefore, they must be stored temporarily. This paper discusses three options for storage of those wastes at the Idaho National Engineering Laboratory: (1) storage in temporary storage casks; (2) underground storage in vaults; and (3) storage in silos at a hot shop. Each option is analyzed and evaluated. Also included is a discussion of future disposal strategies, which might be pursued when a suitable federal or commercial repository is built

  13. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1997 annual progress report

    International Nuclear Information System (INIS)

    Bull, R.J.

    1997-01-01

    'The Pacific Northwest National Lab. was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This section gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas-Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.'

  14. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bull, R.J.

    1997-06-01

    'The Pacific Northwest National Lab. was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This section gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas-Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.'

  15. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)

  16. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Ditmars, J. D.

    2002-01-01

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  17. ANDRA - National Radioactive Waste Management Agency. Activity report 2007. Management report - Financial statements at December 31, 2007

    International Nuclear Information System (INIS)

    2008-09-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report with the management and financial statements report of the Andra for the year 2007

  18. Review of recent ORNL studies in solvent cleanup and diluent degradation. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1982-01-01

    Testing of solvent cleanup methods to replace the use of sodium carbonate in the Purex process has been ongoing for several years in order to reduce the quantity of waste sodium nitrate generated and to improve phase separation. Alternate solvent cleanup methods include the use of packed columns of base-treated silica gel or solvent scrubbing with hydrazine oxalate. Degradation of the diluent was shown to generate long-chain organic acids which appear to be the major culprits in the phase separation problems encountered in sodium carbonate scrubbers. Solvent scrubbing with hydrazine oxalate gives improved phase separations. Solvent cleanup in columns packed with base-treated silica gel avoids the phase separation problem since a dispersable aqueous phase is not present. Removals of TBP degradation products and metal-ion complexes by sodium carbonate, hydrazine salts, or by packed beds of base-treated silica gel are all satisfactory. Solvent scrubbing by hydrazine oxalate solutions is the prime candidate for solvent cleanup in fuel reprocessing plants

  19. Combining innovative technology demonstrations with dense nonaqueous phase liquids cleanup

    International Nuclear Information System (INIS)

    Hagood, M.C.; Koegler, K.J.; Rohay, V.J.; Trent, S.J.; Stein, S.L.; Brouns, T.M.; McCabe, G.H.; Tomich, S.

    1993-05-01

    Radioactively contaminated acidic aqueous wastes and organic liquids were discharged to the soil column at three disposal sites within the 200 West Area of the Hanford Site, Washington. As a result, a portion of the underlying groundwater is contaminated with carbon tetrachloride several orders of magnitude above the maximum contaminant level accepted for a drinking water supply. Treatability testing and cleanup actions have been initiated to remove the contamination from both the unsaturated soils to minimize further groundwater contamination and the groundwater itself. To expedite cleanup, innovative technologies for (1) drilling, (2) site characterization, (3) monitoring, (4) well field development, and (5) contaminant treatment are being demonstrated and subsequently used where possible to improve the rates and cost savings associated with the removal of carbon tetrachloride from the soils and groundwater

  20. Ten-year cleanup of U.S. Department of Energy weapon sites: The changing roles for technology development in an era of privatization

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.H. [Dept. of Energy, Washington, DC (United States)

    1996-12-31

    In its beginning, the U.S. Department of Energy (DOE) Office of Environmental Management (EM) viewed private industry as lacking adequate technology know-how to meet demands of hazardous and radioactive waste problems at the DOE`s laboratories and nuclear weapons production facilities. In November 1989, EM`s Office of Technology Development (recently renamed the Office of Science and Technology) embarked on a bold program of developing and demonstrating {open_quotes}innovative{close_quotes} waste cleanup technologies that would be safer, faster, more effective, and less expensive than the {open_quotes}baseline{close_quotes} commercial methods. This program has engaged DOE sites, national laboratories, and universities to produce preferred solutions to the problems of handling and treating DOE wastes. More recently, much of this work has shifted to joint efforts with private industry partners to accelerate the use of newly developed technologies and to enhance existing commercial methods. To date, the total funding allocation to the Office of Science and Technology program has been about $2.8 billion. If the technology applications` projects of the EM Offices of Environmental Restoration and Waste Management are included, the total funding is closer to $4 billion. Yet, the environmental industry generally has not been very receptive to EM`s innovative technology offerings. And, essentially the same can be said for DOE sites. According to the U.S. General Accounting Office in an August 1994 report, {open_quotes}Although DOE has spent a substantial amount to develop waste cleanup technologies, little new technology finds its way into the agency`s cleanup actions{close_quotes}. The DOE Baseline Environmental Management Report estimated cleanups of DOE`s Cold War legacy of wastes to require the considerable cost of $226 billion over a period of 75 years. 1 tab.

  1. Low-risk alternative waste forms for problematic high-level and long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Stewart, M.W.A.; Begg, B.D.; Moricca, S.; Day, R.A.

    2006-01-01

    Full text: The highest cost component the nuclear waste clean up challenge centres on high-level waste (HLW) and consequently the greatest opportunity for cost and schedule savings lies with optimising the approach to HLW cleanup. The waste form is the key component of the immobilisation process. To achieve maximum cost savings and optimum performance the selection of the waste form should be driven by the characteristics of the specific nuclear waste to be immobilised, rather than adopting a single baseline approach. This is particularly true for problematic nuclear wastes that are often not amenable to a single baseline approach. The use of tailored, high-performance, alternative waste forms that include ceramics and glass-ceramics, coupled with mature process technologies offer significant performance improvements and efficiency savings for a nuclear waste cleanup program. It is the waste form that determines how well the waste is locked up (chemical durability), and the number of repository disposal canisters required (waste loading efficiency). The use of alternative waste forms for problematic wastes also lowers the overall risk by providing high performance HLW treatment alternatives. The benefits tailored alternative waste forms bring to the HLW cleanup program will be briefly reviewed with reference to work carried out on the following: The HLW calcines at the Idaho National Laboratory; SYNROC ANSTO has developed a process utilising a glass-ceramic combined with mature hot-isostatic pressing (HIP) technology and has demonstrated this at a waste loading of 80 % and at a 30 kg HIP scale. The use of this technology has recently been estimated to result in a 70 % reduction in waste canisters, compared to the baseline borosilicate glass technology; Actinide-rich waste streams, particularly the work being done by SYNROC ANSTO with Nexia Solutions on the Plutonium-residues wastes at Sellafield in the UK, which if implemented is forecast to result in substantial

  2. The cleanup of Three Mile Island Unit 2: A technical history, 1979--1990

    International Nuclear Information System (INIS)

    Holton, W.C.; Negin, C.A.; Owrutsky, S.L.

    1990-09-01

    The Electric Power Research Institute has sponsored a technical history project to ensure that the logic and consequences of decisions made during the Three Mile Island Unit 2 (TMI-2) cleanup are available for recovery from an accident involving damaged fuel and fission product release. The objectives of the history project are to identify the major questions and challenges facing management; describe the influencing factors and the options available; and present the final decisions and their consequences. This history of decision-making is intended to assist a project manager who must respond to a fuel damage accident, even if the scale is much smaller than TMI-2. The history has focused on decisions related to seven major aspects of the cleanup: cleanup management, postaccident stabilization, personnel protection, data acquisition, radioactive waste management, decontamination, and defueling. A detailed chronology and extensive bibliography accompany the text

  3. Environmental compliance and cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed.

  4. Environmental compliance and cleanup

    International Nuclear Information System (INIS)

    Black, D.G.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed

  5. Review of decontamination and clean-up techniques for use in the UK following accidental releases of radioactivity to the environment

    International Nuclear Information System (INIS)

    Brown, J.; Cooper, J.R.; Jones, J.A.; Flaws, L.; McGeary, R.; Spooner, J.

    1996-10-01

    This review examines decontamination and clean-up methodologies that may be applied following an accidental release of radionuclides to the atmosphere in the UK. An accidental release of radionuclides to the environment could cause contamination of land and property, and may necessitate movement of the resident population to reduce their exposure. Decontamination procedures may reduce the level of contamination and, in determining whether to implement such procedures in an affected area, it is necessary to weigh the effectiveness of the techniques against the associated economic costs and other disadvantages. The report gives a review of available methods of decontamination and clean-up in terms of the effectiveness of the various methods to remove activity from building or land surfaces and dose saved. It also considers associated disadvantages, costs, clean-up rates for land and buildings, waste disposal implications, and personnel and resource requirements. On the basis of these factors, the techniques are prioritised and overall strategies for decontamination following releases of both fission products and alpha emitters are presented. (author)

  6. Approach and plan for cleanup actions in the 100-FR-2 operable unit of the Hanford Site, Revision 0

    International Nuclear Information System (INIS)

    1995-06-01

    A new administrative approach is being used to reach a cleanup decision for the 100-FR-2 Operable Unit. The unit, located at the 100-F Area, contains solid waste sites and is one of the remaining operable units scheduled for characterization and cleanup in the 100 Area. This Focus Package (1) describes the new approach and activities needed to reach a decision on cleanup actions for the 100-FR-2 Operable Unit and (2) invites public participation into the planning process. The previous approach included the production of a Work Plan, a Limited Field Investigation Report, a Qualitative Risk Assessment, a Focused Feasibility Study, and a Proposed Plan, all culminating in an interim action Record of Decision. Information gathered to date on other operable units allows the analgous site approach to be used on the 100-FR-2 Operable Unit, and therefore, a reduction in documentation preparation. The U.S. Environmental Protection Agency, Washington State Department of Ecology, and the U.S. Department of Energy (Tri-Party Agreement) believe that the new approach will save time and funding. In the new approach, the Work Plan has been condensed into this 12 page Focus Package. The Focus Package includes a summary of 100-F Area information, a list of waste sites in the 100-FR-2 Operable Unit, a summary of proposed work, and a schedule. The new approach will also combine the Limited Field Investigation and Qualitative Risk Assessment reports into the Focused Feasibility Study. The Focused Feasibility Study will analyze methods and costs to clean up waste sites. Consolidating the documents should reduce the time to complete the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process by 16 months, compared to the previous approach

  7. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  8. Cleanup Verification Package for the 107-D5 Trench

    International Nuclear Information System (INIS)

    Corpuz, F.M.; Fancher, J.D.; Blumenkranz, D.B.

    1998-03-01

    This document presents the results of remedial action objectives performed at the 107-D5 Sludge Trench, located at the 100-DR-1 Operable Unit in the 100 Area of the Hanford Site in southeastern Washington State. The 107-D5 Sludge Trench is also identified in the Hanford Waste Information Data System as Waste Site 100-D-4 (site code). The selected remedial action was (1) excavation of the site to the extent required to meet specified soil cleanup levels, (2) disposal of contaminated excavation materials at the Environmental Restoration and Disposal Facility at the 200 Area of the Hanford Site, and (3) backfilling the site with clean soil to adjacent grade elevations

  9. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  10. Planning for cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1991-01-01

    The cleanup of large areas of contaminated as a result of an accident at a nuclear facility could cost hundreds of millions of dollars and cause inconvenience to the public. Such a cleanup programme would be undertaken only if the detriment to health and social life resulting from cleanup activities would be less than that resulting from further exposures. All reasonable means should, however, be used to minimize the costs and detriment to humans of such a cleanup. For such a cleanup to be carried out safely, efficiently and as quickly as possible under adverse conditions requires: Good preliminary and final planning; A cleanup team having a well defined management structure and well trained personnel; and Suitable cleanup methods and equipment and cleanup criteria. 35 refs, 8 figs, 5 tabs

  11. Clean-up progress at the SNL/NM Classified Waste Landfill

    International Nuclear Information System (INIS)

    Slavin, P.J.; Galloway, R.B.

    1999-01-01

    The Sandia National Laboratories/New Mexico (SNL/NM)Environmental Restoration Project is currently excavating the Classified Waste Landfill in Technical Area II, a disposal area for weapon components for approximately 40 years until it closed in 1987. Many different types of classified parts were disposed in unlined trenches and pits throughout the course of the landfill's history. A percentage of the parts contain explosives and/or radioactive components or contamination. The excavation has progressed backward chronologically from the last trenches filled through to the earlier pits. Excavation commenced in March 1998, and approximately 75 percent of the site (as defined by geophysical anomalies) has been completed as of November 1999. The material excavated consists primarily of classified weapon assemblies and related components, so disposition must include demilitarization and sanitization. This has resulted in substantial waste minimization and cost avoidance for the project as upwards of 90 percent of the classified materials are being demilitarized and recycled. The project is using field screening and lab analysis in conjunction with preliminary and in-process risk assessments to characterize soil and make waste determinations in a timely a fashion as possible. Challenges in waste management have prompted the adoption of innovative solutions. The hand-picked crew (both management and field staff) and the ability to quickly adapt to changing conditions has ensured the success of the project. The current schedule is to complete excavation in July 2000, with follow-on verification sampling, demilitarization, and waste management activities following

  12. Environmental Restoration Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Dronen, V.R.

    1998-06-01

    The Hanford Site is operated by the U. S. Department of Energy (DOE) with a primary mission of environmental cleanup and restoration. The Environmental Restoration Disposal Facility (ERDF) is an integral part of the DOE environmental restoration effort at the Hanford Site. The purpose of this document is to establish the ERDF waste acceptance criteria for disposal of materials resulting from Hanford Site cleanup activities. Definition of and compliance with the requirements of this document will enable implementation of appropriate measures to protect human health and the environment, ensure the integrity of the ERDF liner system, facilitate efficient use of the available space in the ERDF, and comply with applicable environmental regulations and DOE orders. To serve this purpose, the document defines responsibilities, identifies the waste acceptance process, and provides the primary acceptance criteria and regulatory citations to guide ERDF users. The information contained in this document is not intended to repeat or summarize the contents of all applicable regulations

  13. Monitoring and inspection techniques for long term storage of higher activity waste packages

    International Nuclear Information System (INIS)

    Bolton, Gary

    2013-01-01

    In 2009, following recent changes in United Kingdom (UK) Government Policy, the Nuclear Decommissioning Authority (NDA) identified a knowledge gap in the area of long term interim storage of waste packages. A cross-industry Integrated Project Team (IPT) for Interim Storage was created with responsibility for delivering Industry Guidance on the storage of packaged Higher Activity Waste (HAW) for the current UK civil decommissioning and clean-up programmes. This included a remit to direct research and development projects via the NDA's Direct Research Portfolio (DRP) to fill the knowledge gap. The IPT for Interim Storage published Industry Guidance in 2012 which established a method to define generic package performance criteria and made recommendations on monitoring and inspection. The package performance method consists of the following steps; identification of the package safety function, identification of evolutionary processes that may affect safety function performance, determination of measurable indicators of these evolutionary processes and calibration of the indicators into package performance zones. This article provides an overview of three projects funded by the NDA's DRP that the UK National Nuclear Laboratory (NNL) have completed to address monitoring and inspection needs of waste packages in interim storage. (orig.)

  14. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-02-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

  15. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-01-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford

  16. ANDRA - National Radioactive Waste Management Agency. Annual sustainable development and activity report 2011. Management report and financial statements 2011

    International Nuclear Information System (INIS)

    2012-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2011

  17. ANDRA - National Radioactive Waste Management Agency. Annual sustainable development and activity report 2012. Management report and financial statements 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2012

  18. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  19. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL's Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed

  20. A two-state citizen task force responds to Dept. of Energy on defense waste

    International Nuclear Information System (INIS)

    Peelle, E.

    1990-01-01

    Successes in public involvement efforts for nuclear waste management are so few that they deserve careful documentation and analysis. This paper chronicles the goals, process, problems and outcomes of one such success, the Northwest Defense Waste Citizens Forum (CF), created by the DOE-Richland manager in 1986 to advise DOE on its plans for nuclear waste disposal and cleanup of the Hanford site in eastern Washington state. DOE under-took an extensive multi-facted public involvement program to gain advice, understanding and support on heretofore neglected defense waste (DW) cleanup problems. DOE sought broad public input for a draft environmental impact statement (DEIS) at an early stage before all characterization data were complete and before a recommended alternative was formulated. In the evolving, often-controversial, highly-visible area of agency-public interactions, citizen task forces (TFs) have been shown to be useful in developing public policy at the local level. For DOE-Richland, the high-risk gamble in undertaking a public involvement program involving reversals of long-term DOE policies of secrecy and unresponsiveness to its host area paid off handsomely in an improved EIS, better relationships with state agencies and regional businesses, and unexpected political support for DW cleanup funding. The Hanford citizen forum was highly successful in both DOE's and participant views, with significant achievements, unusual process and technical findings of its own. By the authors' criteria discussed earlier for public participation efforts, the CF effort was successful in all 3 areas. The success of this approach suggests its use as a model for other federal cleanup activities

  1. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  2. Increased leukemia risk in Chernobyl cleanup workers

    Science.gov (United States)

    A new study found a significantly elevated risk for chronic lymphocytic leukemia among workers who were engaged in recovery and clean-up activities following the Chernobyl power plant accident in 1986.

  3. Hazardous waste market and technology trends

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    What forces are currently driving the growth of the hazardous waste remediation market? Which factors will control the development of cleanup technologies during the next decade? At what types of sites are various technologies being applied? In an effort to answer these questions, EPA has produced an overview of trends in the demand for remedial technologies at CERCLA, RCRA corrective action, underground storage tank (UST), and other cleanup sites across the United States. The 160-page document, entitled Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, was developed by EPA's Office of Solid Waste and Emergency Response. Highlights from the report are presented below. 1 ref., 2 figs., 1 tab

  4. Special Analysis: 2016-001 Analysis of the Potential Under-Reporting of Am-241 Inventory for Nitrate Salt Waste at Area G

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veilleux, John Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.

  5. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    International Nuclear Information System (INIS)

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel

  6. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    International Nuclear Information System (INIS)

    Clark, S.W.; Sulloway, H.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion

  7. Architecture synthesis basis for the Hanford Cleanup system: First issue

    International Nuclear Information System (INIS)

    Holmes, J.J.

    1994-06-01

    This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need

  8. Cleanup Verification Package for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault

    International Nuclear Information System (INIS)

    Appel, M.J.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault. The site consisted of an inactive solid waste storage vault used for temporary storage of slightly contaminated reactor parts that could be recovered and reused for the 100-F Area reactor operations

  9. Cleanup Verification Package for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel

    2006-11-02

    This cleanup verification package documents completion of remedial action for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault. The site consisted of an inactive solid waste storage vault used for temporary storage of slightly contaminated reactor parts that could be recovered and reused for the 100-F Area reactor operations.

  10. Development of closure criteria for inactive radioactive waste disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, specifies that cleanup of inactive waste disposal sites at Department of Energy (DOE) facilities shall at least attain legally applicable or relevant and appropriate requirements (ARARs) for cleanup or control of environmental contamination. This paper discusses potential ARARs for cleanup of inactive radioactive waste disposal sites and proposes a set of closure criteria for such sites at Oak Ridge National Laboratory (ORNL). The most important potential ARARs include Federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. On the basis of these standards, we propose that cleanup and closure of inactive radioactive waste disposal sites at ORNL shall achieve (1) limits on annual effective dose equivalent for off-site individuals and inadvertent intruders that conform to the DOE's performance objectives for new low-level waste disposal facilities and (2) to the extent reasonably achievable, limits on radionuclide concentrations in ground water and surface waters in accordance with Federal drinking water standards and ground-water protection requirements

  11. Plasma technology for treatment of waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center

    1997-12-31

    Meeting goals for waste cleanup will require new technology with improved environmental attractiveness and reduced cost. Plasma technology appears promising because of the high degree of controllability; capability to process waste without the adverse effects of combustion; and a very wide temperature range of operation. At the Plasma Fusion Center at the Massachusetts Institute of Technology, a range of plasma technologies are being investigated. `Hot` thermal plasmas produced by DC arc technology are being examined for treatment of solid waste. In conjunction with this activity, new diagnostics are being developed for monitoring arc furnace operating parameters and gaseous emissions. Electron-beam generated plasma technology is being investigated as a means of producing non-thermal `cold` plasmas for selective processing of dilute concentrations of gaseous waste. (author). 4 figs., 5 refs.

  12. Waste to Want: Polymer nanocomposites using nanoclays extracted from Oil based drilling mud waste

    International Nuclear Information System (INIS)

    Adegbotolu, Urenna V; Njuguna, James; Pollard, Pat; Yates, Kyari

    2014-01-01

    Due to the European Union (EU) waste frame work directive (WFD), legislations have been endorsed in EU member states such as UK for the Recycling of wastes with a vision to prevent and reduce landfilling of waste. Spent oil based drilling mud (drilling fluid) is a waste from the Oil and Gas industry with great potentials for recycling after appropriate clean-up and treatment processes. This research is the novel application of nanoclays extracted from spent oil based drilling mud (drilling fluid) clean-up as nanofiller in the manufacture of nanocomposite materials. Research and initial experiments have been undertaken which investigate the suitability of Polyamide 6 (PA6) as potential polymer of interest. SEM and EDAX were used to ascertain morphological and elemental characteristics of the nanofiller. ICPOES has been used to ascertain the metal concentration of the untreated nanofiller to be treated (by oil and heavy metal extraction) before the production of nanocomposite materials. The challenges faced and future works are also discussed

  13. Determination of hexachlorobutadiene, pentachlorobenzene, and hexachlorobenzene in waste incineration fly ash using ultrasonic extraction followed by column cleanup and GC-MS analysis.

    Science.gov (United States)

    Zhang, Haiyan; Jiang, Lei; Zhou, Xin; Zeng, Tao; He, Zhiqiao; Huang, Xinwen; Chen, Jianmeng; Song, Shuang

    2018-03-01

    Hexachlorobutadiene (HCBD) was listed as a new controlling persistent organic pollutant in the Stockholm Convention because of its wide industrial applications and potential genotoxicity and carcinogenicity. However, only limited information exists on the release of HCBD from unintentional sources, such as waste incineration. Identification and quantification of HCBD in fly ash, one of the major outputs of waste incineration, is imperative. This work presents a simple method for determining HCBD in waste incineration fly ash based on ultrasonic extraction coupled with a silica gel-Florisil column cleanup followed by gas chromatography-mass spectrometry detection. Two typical persistent organic pollutants, pentachlorobenzene (PeCB) and hexachlorobenzene (HCB), were measured simultaneously. The parameters that influence the extraction efficiency and the quality of instrument detection were studied. Under the optimum experimental conditions, high sensitivity (detection limit 0.25-0.53 ng g -1 ), acceptable recoveries (64.0-71.4%) at spiking levels of 5-500 ng g -1 , and good repeatability [relative standard deviation (n = 3) of 14% or less] were achieved for all target analytes. The validation of this method was performed by analysis of six real fly ash samples from different waste incinerators in eastern China. The concentrations of HCBD detected in these samples (1.39-97.6 ng g -1 ) were comparable to those of PeCB (1.22-150 ng g -1 ) and HCB (0.82-120 ng g -1 ), indicating that the residual HCBD as well as PeCB and HCB in waste incineration fly ash should not be ignored. The results confirm for the first time that waste incineration is an unintentional source of HCBD in China. Graphical abstract An analytical method for hexachlorobutadiene, pentachlorobenzene, and hexachlorobenzene in fly ash from waste incineration. GC-MS gas chromatography-mass spectrometry, Ph-d10 phenanthrene-d 10 .

  14. Investigation of the feasibility of an international integrated demonstration: Joint demonstration of environmental cleanup technologies in Eastern Europe/former Soviet Union

    International Nuclear Information System (INIS)

    Hagood, M.C.; Stein, S.L.; Brouns, T.M.; McCabe, G.H.

    1993-01-01

    Eastern Europe (EE) and the former Soviet Union (FSU) republics have areas that are contaminated with radioactive and hazardous constituents. The Westinghouse Hanford Company is exploring the feasibility of establishing a collaborative effort with various US agencies to establish an International Integrated Demonstration (IID). Westinghouse manages the waste management and cleanup programs at the US Department of Energy's (DOE) Hanford Site. The purpose of the IID would be to (1) facilitate assistance to EE/FSU cleanup efforts, (2) provide hands-on management and operational assistance to EE/FSU countries, (3) provide a basis for evaluating opportunities for and establishing future collaborations, and (4) evaluate the applicability of US technologies to both US and EE/FSU cleanup efforts. The DOE's Integrated Demonstration Programs are currently providing the conduit for development and demonstration and transfer and deployment of innovative technologies to meet DOE's cleanup need for hazardous and radioactive wastes. The Integrated Demonstrations are focused on all facets of environmental restoration including characterization, remediation, monitoring, site closure, regulatory compliance, and regulatory and public acceptance. Innovative technologies are being tested and demonstrated at host sites across the country to provide the necessary performance data needed to deploy these technologies. The IID concept would be to conduct an Integrated Demonstration at one or more EE/FSU host sites

  15. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  16. Reagan's TMI cleanup: a smoke and mirror trick

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Little federal money will actually be sent to help relieve the cleanup burden of General Public Utilities despite the administration's public support of a cost/share plan. The $100 million was not new money, but existing DOE research and development money already in hand and earmarked for Three Mile Island-related research. Pennsylvania congressmen and officials were quick to point out the deceptive nature of Reagan's approval of the plan to share the costs. The administration feels that federal participation should not be open-ended, but should be limited to research on safe nuclear waste disposal of general benefit

  17. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  18. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  19. Innovative technologies for soil cleanup

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for soil cleanup. In this context, soil cleanup technologies include site remediation methods that deal primarily with the vadose zone and with relatively shallow, near-surface contamination of soil or rock materials. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in soil cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the sits-specific technical challenges presented by each sold contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After cataloging a representative selection of these technologies, one of the new technologies, Dynamic Underground Stripping, is discussed in more detail to highlight a promising soil cleanup technology that is now being field tested

  20. Cleanup Verification Package for the 118-F-5 PNL Sawdust Pit

    International Nuclear Information System (INIS)

    Habel, L.D.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-5 Burial Ground, the PNL (Pacific Northwest Laboratory) Sawdust Pit. The 118-F-5 Burial Ground was an unlined trench that received radioactive sawdust from the floors of animal pens in the 100-F Experimental Animal Farm

  1. Educational understanding of pollution prevention in decontamination and decommissioning/environmental restoration activities

    International Nuclear Information System (INIS)

    Betsch, M.D.; Lewis, R.A.

    1995-05-01

    Demolishing outdated structures from the US Department of Energy Hanford Site in Washington, generates large quantities of waste which can be minimized. The Hanford cleanup is one of the world's largest and most complex environmental restoration efforts. Approximately 280 square miles of ground water and soil are contaminated; there are more than 80 surplus facilities, including nine shut-down nuclear reactors in various stages of decay; and there are 177 underground waste storage tanks containing highly radioactive waste. In all, 1,500 cleanup sites have been identified and the Environmental Restoration Contractor (ERC) is currently responsible for surveillance and maintenance of 170 structures. A two hour orientation training in pollution prevention was developed by the Westinghouse Hanford Company to provide all Decontamination and Decommissioning/Environmental Restoration (D ampersand D/ER) personnel with the knowledge to apply waste minimization principles during their cleanup activities. The ERC Team Pollution Prevention Workshop serves to communicate pollution prevention philosophies and influences the way D ampersand D/ER projects are conducted at the Hanford Site

  2. Waste Information Management System with 2012-13 Waste Streams - 13095

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D.

    2013-01-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  3. Waste Information Management System with 2012-13 Waste Streams - 13095

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  4. Coolant cleanup system for a nuclear reactor

    International Nuclear Information System (INIS)

    Shiina, Atsushi; Usui, Naoshi; Yamamoto, Michiyoshi; Osumi, Katsumi.

    1983-01-01

    Purpose: To maintain the electric conductivity of reactor water lower and to minimize the heat loss in the cleanup system by providing a low temperature cleanup system and a high temperature cleanup system together. Constitution: A low temperature cleanup system using ion exchange resins as filter aids and a high temperature cleanup system using inorganic ion exchange materials as filter aids are provided in combination. A part of the reactor water in a reactor pressure vessel is passed through a conductivity meter, one portion of which flows into the high temperature cleanup system having no heat exchanger and filled with inorganic ion exchange materials by way of a first flow rate control valve and the other portion of which flows into the low temperature cleanup system having heat exchangers and filled with the ion exchange materials by way of a second control valve. The first control valve is adjusted so as to flow, for example, about more than 15% of the feedwater flow rate to the high temperature cleanup system and the second control valve is adjusted with its valve opening degree depending on the indication of the conductivity meter so as to flow about 2 - 7 % of the feedwater flow rate into the low temperature cleanup system, to thereby control the electric conductivity to between 0.055 - 0.3 μS/cm. (Moriyama, K.)

  5. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO 3 , dibutyl phosphate (DBP), UO 2 2+ , Pu 4+ , various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO 3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  6. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Segall, P.

    1998-01-01

    Hanford's missions are to safely clean up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  7. Restoration principles and criteria: superfund program policy for cleanup at radiation contaminated sites

    International Nuclear Information System (INIS)

    Walker, Stuart

    2006-01-01

    The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) is responsible for implementing the long-term (non-emergency) portion of a key U.S. law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed 'Superfund'. The purpose of the Superfund program is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on Superfund, including how radiation is addressed by the Superfund program. This paper provides a brief overview of the approach used by EPA to conduct Superfund cleanups at contaminated sites, including those that are contaminated with radionuclides, to ensure protection of human health and the environment. The paper addresses how EPA Superfund determines if a site poses a risk to human health and the framework used to determine cleanup levels. The theme emphasized throughout the paper is that within the Superfund remediation framework, radioactive contamination is dealt with in a consistent manner as with chemical contamination, except to account for the technical differences between radionuclides and chemicals. This consistency is important since at every radioactively contaminated site being addressed under Superfund's primary program for long-term cleanup, the National Priorities List (NPL), chemical contamination is also present. (author)

  8. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste

  9. 40 CFR 761.61 - PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section... PROHIBITIONS Storage and Disposal § 761.61 PCB remediation waste. This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section...

  10. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  11. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  12. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  13. Development of a risk-based approach to Hanford site cleanup

    International Nuclear Information System (INIS)

    Hesser, W.A.

    1996-01-01

    In response to a request from Mr. Thomas Grumbly, Assistant Secretary of Energy for Environmental Management, the Hanford Site contractors developed a set of risk-based cleanup strategies that (1) protect the public, workers, and environment from unacceptable risks; (2) are executable technically; and (3) fit within currently expected annual funding profiles. These strategies were developed because (1) the U.S. Department of Energy and Hanford Site budgets are being reduced, (2) stakeholders are dissatisfied with the perceived rate of cleanup, (3) the U.S. Congress and the U.S. Department of Energy are increasingly focusing on risk and risk-reduction activities, (4) the present strategy is not integrated across the Site and is inconsistent in its treatment of similar hazards, (5) the present cleanup strategy is not cost-effective from a risk-reduction or future land use perspective, and (6) the milestones and activities in the Tri-Party Agreement cannot be achieved with an anticipated funding of 1.05 billion dollars, or less, annually. This analysis produced a framework and a set of tools that are available for dealing with changes to anticipated funding levels, changes in risk cleanup standards, and Congressional initiatives and inquiries. The tools include land-supply curves, cost profiles, risk profiles, mortgage reduction curves, and minimum operations costs. This paper describes the methodology used to develop mortgage-based, risk-based, and land-based cleanup strategies and how those strategies differ in terms of the work to be performed, its sequence, and the resulting end states

  14. Simulation of the cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Ludowise, J.D.; Allen, G.K.

    1992-12-01

    The Hanford Site is a 1,450-km 2 (560-mi 2 ) tract of semiarid land in southeastern Washington State. Nuclear materials for the nation's defense programs were manufactured at the Hanford Site for more than 40 years. The waste generated by these activities has been treated, stored, or disposed of in a variety of ways. The Hanford Site strategic analysis provides a general comparison analysis tool to guide selection and future modification of the integrated Site cleanup plan. A key element of the Hanford strategic analysis is a material flow model that tracks 80 individual feed elements containing 60 componentsof interest through 50 functional processing blocks in 12 different configurations. The material flow model was developed for parametric analyses using separation factors and parameters specific to individual feeds. The model was constructed so that the effects of individual feed streams can be traced through a flowsheet, and the performance parameters of each functional block can be varied independently. The material flow model has five major elements: input database, process flow diagrams, sequential modular process simulation, output database, and output summing program

  15. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement

  16. Solid waste programs Fiscal Year 1995 multi-year program plan/fiscal year work plan WBS 1.2.1

    International Nuclear Information System (INIS)

    McCarthy, M.M.

    1994-09-01

    The Hanford Mission Plan, Volume 1, Site Guidance identifies the need for the Solid Waste Program to treat, store, and dispose of a wide variety of solid material types consisting of multiple radioactive and hazardous waste classes. This includes future Hanford Site activities which will generate new wastes that must be handled as cleanup activities are completed. Solid wastes are typically categorized as transuranic waste, low level waste, low level mixed waste, and hazardous waste. To meet this need the Solid Waste Program has defined its mission as the following - receive, store, treat, decontaminate, and dispose of solid radioactive and nonradioactive dangerous wastes in a safe, cost effective and environmentally compliant manner. This workbook contains the program overview, program baselines and fiscal year work plan for the Solid Waste Program

  17. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  18. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  19. Cleanup Verification Package for the 118-F-3, Minor Construction Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 118-F-3, Minor Construction Burial Ground waste site. This site was an open field covered with cobbles, with no vegetation growing on the surface. The site received irradiated reactor parts that were removed during conversion of the 105-F Reactor from the Liquid 3X to the Ball 3X Project safety systems and received mostly vertical safety rod thimbles and step plugs

  20. US DoE clean-up programme: an update

    International Nuclear Information System (INIS)

    Whitfield, R.P.

    1993-01-01

    The Office of Environmental Restoration and Waste Management (EM) was established in 1989, when the US DoE's priority changed from nuclear weapons production to environmental clean-up. Both the decreased need for nuclear weapons due to global changes and decreasing threats from the Cold War, and the increased emphasis on environmental stewardship contributed to this change. The Environmental Restoration (ER) programme within EM was tasked to ensure that risks to human health and the environment posed by the DoE's past operations at its nuclear facilities and sites are eliminated or reduced to prescribed, safe levels. This article is a progress report on the programme. (author)

  1. A comparative study of stakeholder participation in the cleanup of radioactive wastes in the US, Japan and UK

    International Nuclear Information System (INIS)

    Lawless, W.F.; Angjellari-Dajci, Fjorentina; Mito, Akiyoshi; Whitton, John

    2011-01-01

    We review case studies of stakeholder participation in the environmental cleanup of radioactive wastes in the United States, Japan and United Kingdom (e.g., [21,26,27,66,78]). Citizen participation programs in these three countries are at different stages: mature in the US, starting in Japan, and becoming operational in the UK. The US issue at the US Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina (SC) had been focused on citizens encouraging Federal (DOE; US Environmental Protection Agency, or EPA; and the US Nuclear Regulatory Commission, or NRC) and State (SC's Department of Health and Environmental Compliance, or DHEC) agencies to pursue 'Plug-in-RODs' at SRS to simplify the regulations to accelerate closing seepage basins at SRS. In Japan, the Reprocessing of spent fuel and deep geological disposal of vitrified high-level waste have been among Japan's priorities. A reprocessing plant in Rokkasho, Aomori Prefecture is expected to commence operations in October 2010. The search of a site for a deep geological disposal facility has been ongoing since 2002. But the direct engagement of stakeholders has not occurred in Japan. Indirectly, stakeholders attempt to exert influence on decision-making with social movements, local elections, and litigation. In the UK, the issue is gaining effective citizen participation with the UK's Nuclear Decommissioning Authority (NDA). We hope that the case studies from these countries may improve citizen participation. (author)

  2. 1999 Annual Report on Waste Generation and Pollution Prevention Progress as Required by DOE Order 5400.1

    International Nuclear Information System (INIS)

    SEGALL, P.

    2000-01-01

    Hanford's missions are to safely clean-up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or clean-up mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infrastructure, and site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The clean-up activity is an immense and challenging undertaking. Including characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  3. Cleanup of radioactivity contamination in environment

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    1994-01-01

    Environmental radioactivity cleanup is needed under a large scale accident in a reactor or in an RI irradiation facility which associates big disperse of radioactivities. Here, the fundamental concept including a radiation protection target, a period classification, planning, an information data base, etc. Then, the methods and measuring instruments on radioactivity contamination and the cleanup procedure are explained. Finally, the real site examples of accidental cleanup are presented for a future discussion. (author)

  4. Health and safety training for hazardous waste site activities at Oak Ridge National Laboratory: Implementation of OSHA 29 CFR 1910.120(e)

    International Nuclear Information System (INIS)

    White, D.A.

    1988-01-01

    Among the requirements set forth by the interim final rule, 29 CFR Part 1910.120, promulgated by the Occupational Safety and Health Administration (OSHA) in response to the Superfund Amendments and Reauthorization Act of 1986 (SARA), are specific provisions for health and safety training of employees involved in hazardous waste operations. These training provisions require a minimum of 40 hours of initial instruction off the site for employees involved in corrective operations and cleanup activities at hazardous waste sites. A less detailed training requirement of 24 hours is specified for employees working in more routine treatment, storage, and disposal activities. Managers and supervisors who are directly responsible for or who supervise employees engaged in hazardous waste operations must complete 8 additional hours of training related to management of hazardous waste site activities. Consistent with the intent of 29 CFR 1910.120, a training program has been developed at Oak Ridge National Laboratory (ORNL) to comply with the need to protect the safety and health of hazardous waste workers. All hourly requirements specified in the interim final rule are met by a comprehensive program structure involving three stages of training. This paper will outline and discuss the content of each of these stages of the program. The involvement of various ORNL organizations in facilitating the training will be highlighted. Implementation strategies will be discussed as well as progress made to date

  5. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  6. Estimating and understanding DOE waste management costs'

    International Nuclear Information System (INIS)

    Kang, J.S.; Sherick, M.J.

    1995-01-01

    This paper examines costs associated with cleaning up the US Department of Energy's (DOE's) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties

  7. Operational waste volume projection

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995

  8. Operational Waste Volume Projection

    Energy Technology Data Exchange (ETDEWEB)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  9. Operational Waste Volume Projection

    International Nuclear Information System (INIS)

    STRODE, J.N.

    2000-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000

  10. Consumption and production waste: another externality of tobacco use.

    Science.gov (United States)

    Novotny, T E; Zhao, F

    1999-01-01

    To describe the waste produced by and environmental implications of individual cigarette consumption (filter tips, packages, and cartons) and tobacco manufacturing. All available articles and reports published since 1970 related to cigarette consumption and production waste were reviewed. Global cigarette consumption data were used to estimate cigarette butt and packaging waste quantities. Data from the Center for Marine Conservation's International Coastal Cleanup Project were used to describe some environmental impacts of tobacco-related trash. Data from the United States Environmental Protection Agency's (EPA's) Toxics Release Inventory and reported global cigarette consumption totals were used to estimate waste production from cigarette manufacturing. In 1995, an estimated 5.535 trillion cigarettes (27,675 million cartons and 276,753 million packages) were sold by the tobacco industry globally. Some of the wastes from these products were properly deposited, but a large amount of tobacco consumption waste ends up in the environment. Some is recovered during environmental clean-up days. For the past eight years (1990-1997), cigarette butts have been the leading item found during the International Coastal Cleanup Project; they accounted for 19.1% of all items collected in 1997. The tobacco manufacturing process produces liquid, solid, and airborne waste. Among those wastes, some materials, including nicotine, are designated by the EPA as Toxics Release Inventory (TRI) chemicals. These are possible environmental health hazards. In 1995, the global tobacco industry produced an estimated 2262 million kilograms of manufacturing waste and 209 million kilograms of chemical waste. In addition, total nicotine waste produced in the manufacture of reduced nicotine cigarettes was estimated at 300 million kilograms. Laws against littering relative to cigarette butts could be better enforced. Additional taxes might be levied on cigarette products that would then be directed to

  11. USA - Paper provided by the US delegation to the RWMC. Site Decontamination and Clean-up Under the U.S. EPA 'Superfund'

    International Nuclear Information System (INIS)

    2003-01-01

    Contaminated and hazardous waste sites, including nuclear facilities, may be subject to clean-up under the U.S. Environmental Protection Agency (EPA). The Comprehensive Environmental Response, Compensation, and Liabilities Act (CERCLA), commonly known as 'Superfund', authorises EPA to respond to releases or threatened releases of hazardous substances, pollutants, or contaminants that may endanger public health or the environment. The legislation defines hazardous substances to include radiation. Entry into Superfund: The EPA may be notified of a site potentially requiring clean up from any source. Potential sites are evaluated under a numerical hazard ranking system, and are then included on the clean-up list ('National Priorities List') if they meet an established threshold. Nuclear Facilities and Radioactively Contaminated Sites under Superfund: Any site may be subject to CERCLA action if EPA determines that it poses a hazard. There are three major types of sites that have been or are subject to action under this program: Federal nuclear facilities, Decommissioned facilities, Privately-owned, unlicensed sites Liabilities Under Superfund: The authorising legislation specifically provided for liability of persons responsible for releases of hazardous waste at uncontrolled sites. Liability under CERCLA is 'strict,' 'retroactive,' and 'joint and several'. Thus, the burden of proof for disproving liability is quite high, and that the extent of the liability is not limited to the share of the waste or hazardous substance contributed by a party. The EPA may pursue liable parties to recover past and future costs associated with clean-up, including direct costs and indirect costs incurred by both EPA and its contractors. Clean-Up Levels: Clean-up goals and technologies are established on a site-specific basis. In general, clean-up goals must meet risk requirements and be consistent with applicable standards. Other factors such as community acceptance, volume reduction

  12. HANFORD CANYON DISPOSITION INITIATIVE (CDI). A BETTER SOLUTION TO AN EXPENSIVE WASTE DISPOSAL PROBLEM

    International Nuclear Information System (INIS)

    McGuire, J.J.; MacFarlan, G.M.; Jacques, I.D.; Goodenough, James D.

    2003-01-01

    Environmental cleanup that is occurring at most U.S. Department of Energy (DOE) sites is going to be long and expensive. How expensive can really only be answered when cleanup paths forward have been identified, agreed to, and planned. In addition, all the major issues must have been identified. This also means being able to answer the question ''What about the waste?'' Where the waste goes and how it will be handled greatly affects the cost. However, within the mandatory safety and legal envelope, ingenuity can play a huge role in keeping the cost down, getting necessary decisions made earlier in the process, and being protective of the worker, public, and the environment. This paper examines how ingenuity addressed a cleanup action that had no agreed to and identified path forward and resulted in a decision made early that has spurred thinking on what to do with the other similar waste cleanup situations. The Canyon Disposition Initiative (CDI) is an example of finding a better way to address a specific problem, getting agreement on a path forward, opening the options for waste disposal, and reducing the time line for final disposition. For the CDI, the challenge was whether an old inactive building designed for reprocessing and used for multiple missions during its lifetime could be economically and sufficiently characterized to satisfy and bring consensus among groups with vastly different view points. The CDI has actively involved members of various DOE offices (i.e., Waste Management, Science and Technology, Environmental Restoration, and Facility Transition), the U.S. Environmental Protection Agency (EPA), Washington State Department of Ecology (Ecology), Hanford Advisory Board (HAB), and the three affected Tribal Nations. The ability to partner between these diverse groups has allowed the CDI to go from a concept, to a funded priority project, to a complete review of various alternatives, and finally to a proposed plan to demonstrate the wisdom of finding a

  13. Waste retrieval machine for the Harwell ILW tube store

    International Nuclear Information System (INIS)

    Manning, R.; Sherliker, St.; Blanc, B.

    2008-01-01

    Harwell was established as a centre for UK atomic energy development in 1946 and ceased operation in the early 1990. During the period of its operation, intermediate level radioactive waste (ILW) that was generated by the site research activities was stored on site in purpose-built stores. UKAEA, under contract to the Nuclear Decommissioning Authority (NDA) are now committed to retrieval of this historic waste, and repackaging it to modern standards in stainless steel drums. The contents are then to be encapsulated in grout and transferred for safe, long-term storage. A key objective of the site clean-up programme is to complete retrieval and encapsulation of all the ILW waste by 2015. (authors)

  14. An automated online turboflow cleanup LC/MS/MS method for the determination of 11 plasticizers in beverages and milk.

    Science.gov (United States)

    Ates, Ebru; Mittendorf, Klaus; Senyuva, Hamide

    2013-01-01

    An automated sample preparation technique involving cleanup and analytical separation in a single operation using an online coupled TurboFlow (RP-LC system) is reported. This method eliminates time-consuming sample preparation steps that can be potential sources for cross-contamination in the analysis of plasticizers. Using TurboFlow chromatography, liquid samples were injected directly into the automated system without previous extraction or cleanup. Special cleanup columns enabled specific binding of target compounds; higher MW compounds, i.e., fats and proteins, and other matrix interferences with different chemical properties were removed to waste, prior to LC/MS/MS. Systematic stepwise method development using this new technology in the food safety area is described. Selection of optimum columns and mobile phases for loading onto the cleanup column followed by transfer onto the analytical column and MS detection are critical method parameters. The method was optimized for the assay of 10 phthalates (dimethyl, diethyl, dipropyl, butyl benzyl, diisobutyl, dicyclohexyl, dihexyl, diethylhexyl, diisononyl, and diisododecyl) and one adipate (diethylhexyl) in beverages and milk.

  15. Effectiveness of cleanup criteria relative to an accidental nuclear release

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    In the event of an accidental nuclear release, the associated long-term radiological risks would result primarily from ground contamination pathways. Cleanup of the contaminated ground surfaces is a necessary step toward reducing the radiological risk to the general population. Ideally, the radiological risk decreases as the level of cleanup effort increases; however, as the cleanup criterion (i.e., the required contaminant concentration after cleanup) becomes more stringent, the cleanup effort may become prohibitively costly. This study examines several factors that are important in determining the effectiveness of the cleanup criteria for selected radionuclides: (a) annual individual dose commitment (mrem/yr), (b) total population environmental dose commitment (person-rem), and (c) total area (km 2 ) requiring cleanup following an accident. To effectively protect the general population, the benefits of cleanup should be weighed against the potentially large increase in cleanup area (and the associated costs) as the cleanup criterion becomes more stringent. The effectiveness of cleanup will vary, depending largely on site-specific parameters such as population density and agricultural productivity as well as on the amount and type of radionuclide released. Determination of an optimum cleanup criterion should account for all factors, including a comprehensive cost/benefit analysis

  16. Cleanup standards and pathways analysis methods

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1993-01-01

    Remediation of a radioactively contaminated site requires that certain regulatory criteria be met before the site can be released for unrestricted future use. Since the ultimate objective of remediation is to protect the public health and safety, residual radioactivity levels remaining at a site after cleanup must be below certain preset limits or meet acceptable dose or risk criteria. Release of a decontaminated site requires proof that the radiological data obtained from the site meet the regulatory criteria for such a release. Typically release criteria consist of a composite of acceptance limits that depend on the radionuclides, the media in which they are present, and federal and local regulations. In recent years, the US Department of Energy (DOE) has developed a pathways analysis model to determine site-specific soil activity concentration guidelines for radionuclides that do not have established generic acceptance limits. The DOE pathways analysis computer code (developed by Argonne National Laboratory for the DOE) is called RESRAD (Gilbert et al. 1989). Similar efforts have been initiated by the US Nuclear Regulatory Commission (NRC) to develop and use dose-related criteria based on genetic pathways analyses rather than simplistic numerical limits on residual radioactivity. The focus of this paper is radionuclide contaminated soil. Cleanup standards are reviewed, pathways analysis methods are described, and an example is presented in which RESRAD was used to derive cleanup guidelines

  17. Master Safety Analysis Report (SAR) approach for solid waste treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Bonner, A.L.; Estrellado, J.P. Jr.

    1993-06-01

    In 1989, the Hanford Site took on a new mission of waste remediation and environmental cleanup. The Hanford Site vision is to become the leader in environmental cleanup technology while bringing the site back to its environmental pristine condition. This technology drive to launch the Hanford site as the flagship of environmental restoration has been divided into several mission areas. This paper focuses on the solid waste management (SWM) mission

  18. Green Remediation Best Management Practices: Overview of EPA's Methodology to Address the Environmental Footprint of Site Cleanup

    Science.gov (United States)

    Contaminated site cleanups involving complex activities may benefit from a detailed environmental footprint analysis to inform decision-making about application of suitable best management practices for greener cleanups.

  19. Innovative environmental restoration and waste management technologies at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Helt, J.E.

    1993-01-01

    Cleanup of contaminated sites and management of wastes have become major efforts of the US Department of Energy. Argonne National Laboratory (ANL) is developing several new technologies to meet the needs of this national effort. Some of these efforts are being done in collaboration with private sector firms. An overview of the ANL and private sector efforts will be presented. The following four specific technologies will be discussed in detail: (1) a minimum additive waste stabilization (MAWS) system for treating actinide-contaminated soil and groundwater; (2) a magnetic separation system, also for cleanup of actinide-contaminated soil and groundwater; (3) a mobile evaporator/concentrator system for processing aqueous radioactive and mixed waste; and (4) a continuous emission monitor for ensuring that waste incineration meets environmental goals

  20. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  1. Evaluation of concepts for a NET plasma exhaust clean-up system

    International Nuclear Information System (INIS)

    Glugla, M.; Penzhorn, R.D.; Rodriguez, R.; Herbrechter, D.; Dinner, P.; Murdoch, D.

    1990-07-01

    The process steps for the off-gas clean-up and direct recovery of the unburned fuel gases deuterium and tritium are, together with the isotope separation and the fuel preparation, the major subsystems within the fuel cycle of a fusion reactor. A comparison between process concepts largely based on experimental work at KfK and other process alternatives discussed in the literature is carried out and the various options are evaluated on the basis of the process requirements for NET I. The recovery of most of the unburned hydrogen with a palladium/silver permeator is selected as a first step, common to all seven concepts. The remaining impurity stream is processed either catalytically, with the help of getters, or by oxidation followed by reduction of the produced water. The physicochemical basis of each process alternative is discussed and the corresponding chemical flow sheets (flow diagrams and material flow tables) are presented. Concepts employing getters are unattractive because the produce untolerably high amounts of solid waste. Main drawbacks of process options involving an oxidation step are the non-discriminative oxidation of hydrogen and impurities as well as the non-trivial reduction of the produced highly tritiated water at the required elevated throughput. Advantages of the catalytic process are the production of little solid waste, the low steady state inventory and the comparatively easy scale-up. The catalytic process is therefore considered the most promising option for the development of a fuel clean-up process. (orig./HK) [de

  2. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophonoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  3. Credibility and trust in federal facility cleanups

    International Nuclear Information System (INIS)

    Raynes, D.B.

    1995-01-01

    The most important indicator of a well-managed site cleanup effort may no longer be funding or scientific expertise. While support for federal facility cleanup has included appropriations of more than $10 billion annually, these expenditures alone are unlikely to assure progress toward environmental remediation. open-quotes Trustclose quotes is now overwhelmingly mentioned as a prerequisite for progress with site cleanup in DOE's weapons complex. In part, federal budget deficits are forcing participants to focus on factors that build consensus and lead to cost-effective cleanup actions. In some cases, the stakeholders at cleanup sites are making efforts to work cooperatively with federal agencies. A report by 40 representatives of federal agencies, tribal and state governments, associations, and others developed recommendations to create a open-quotes new era of trust and consensus-building that allows all parties to get on with the job of cleaning up federal facilities in a manner that reflects the priorities and concerns of all stakeholders.close quotes Changes are underway affecting how federal agencies work with federal and state regulators reflecting this concept of shared responsibility for conducting cleanup. This paper addresses these changes and provides examples of the successes and failures underway

  4. Fast-Track Cleanup at Closing DoD Installations

    Science.gov (United States)

    The Fast-Track Cleanup program strives to make parcels available for reuse as quickly as possible by the transfer of uncontaminated or remediated parcels, the lease of contaminated parcels where cleanup is underway, or the 'early transfer' of contaminated property undergoing cleanup.

  5. Engineering evaluation/cost analysis for 100-N area waste

    International Nuclear Information System (INIS)

    Mihalik, L.A.

    1996-08-01

    The 100 Area of the Hanford Site was placed on the U.S. Environmental Protection Agency's National Priorities List (NPL) in November 1989 under the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980.' The 100 Area NPL site includes the 100-N Area, which is in the early stages of the cleanup process. To facilitate the disposal of wastes generated in preparation for cleanup, the U.S. Department of Energy, Richland Operations Office in cooperation with the Washington State Department of Ecology and the U.S. Environmental Protection Agency, has prepared this Engineering Evaluation/Cost Analysis (EE/CA). The scope of this EE/CA includes wastes from cleanout of the EDB and deactivation facilities. Volumes and costs for disposal of investigation-derived waste are also included

  6. From Pushing Paper to Pushing Dirt - Canada's Largest LLRW Cleanup Gets Underway - 13111

    International Nuclear Information System (INIS)

    Veen, Walter van; Lawrence, Dave

    2013-01-01

    The Port Hope Project is the larger of the two projects in the Port Hope Area Initiative (PHAI), Canada's largest low level radioactive waste (LLRW) cleanup. With a budget of approximately $1 billion, the Port Hope Project includes a broad and complex range of remedial elements from a state of the art water treatment plant, an engineered waste management facility, municipal solid waste removal, remediation of 18 major sites within the Municipality of Port Hope (MPH), sediment dredging and dewatering, an investigation of 4,800 properties (many of these homes) to identify LLRW and remediation of approximately 450 of these properties. This paper discusses the status of the Port Hope Project in terms of designs completed and regulatory approvals received, and sets out the scope and schedule for the remaining studies, engineering designs and remediation contracts. (authors)

  7. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase...

  8. Waste management programmatic environmental impact statement methodology for estimating human health risks

    International Nuclear Information System (INIS)

    Bergenback, B.; Blaylock, B.P.; Legg, J.L.

    1995-05-01

    The US Department of Energy (DOE) has produced large quantities of radioactive and hazardous waste during years of nuclear weapons production. As a result, a large number of sites across the DOE Complex have become chemically and/or radiologically contaminated. In 1990, the Secretary of Energy charged the DOE Office of Environmental Restoration and Waste management (EM) with the task of preparing a Programmatic Environmental Impact Statement (PEIS). The PEIS should identify and assess the potential environmental impacts of implementing several integrated Environmental Restoration (ER) and Waste Management (WM) alternatives. The determination and integration of appropriate remediation activities and sound waste management practices is vital for ensuring the diminution of adverse human health impacts during site cleanup and waste management programs. This report documents the PEIS risk assessment methodology used to evaluate human health risks posed by WM activities. The methodology presents a programmatic cradle to grave risk assessment for EM program activities. A unit dose approach is used to estimate risks posed by WM activities and is the subject of this document

  9. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  10. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  11. Development of teleoperated cleanup system

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, J. J.; Yang, M. S.; Kwon, H. J.

    2005-01-01

    This report describes the development of a teleoperated cleanup system for use in a highly radioactive environment of DFDF(DUPIC Fuel Demonstration Facility) at KAERI where direct human access to the in-cell is strictly limited. The teleoperated cleanup system was designed to remotely remove contaminants placed or fixed on the floor surface of the hot-cell by mopping them with wet cloth. This cleanup system consists of a mopping slave, a mopping master and a control console. The mopping slave located at the in-cell comprises a mopping tool with a mopping cloth and a mobile platform, which were constructed in modules to facilitate maintenance. The mopping master that is an input device to control the mopping slave has kinematic dissimilarity with the mopping slave. The control console provides a means of bilateral control flows and communications between the mopping master and the mopping slave. In operation, the human operator from the out-of-cell performs a series of decontamination tasks remotely by manipulating the mopping slave located in-cell via a mopping master, having a sense of real mopping. The environmental and mechanical design considerations, and control systems of the developed teleoperated cleanup system are also described

  12. Impact of Federal R and D funding on Three Mile Island cleanup costs

    International Nuclear Information System (INIS)

    1982-01-01

    The Chairman and the Ranking Minority Member of the House Committee on Interior and Insular Affairs requested that GAO respond to several questions concerning the administration's proposed $123 million in Federal funding for data acquisition and research and development activities during the cleanup of the Three Mile Island nuclear reactor Unit 2. GAO found that: adequate legislative authority exists to support DOE's proposed data acquisition and research and development activities during the cleanup process; adherence to the estimated timetable for cleanup completion will allow DOE to meet its program objectives within the proposed budget, but slippages would probably make additional funding necessary; and the DOE program will reduce the utility company's financial needs by an estimated $66 to $69 million, about one-third of the Federal share proposed by the Governor of Pennsylvania on July 9, 1981

  13. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  14. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1997, mid-year progress report

    International Nuclear Information System (INIS)

    1997-06-01

    The Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas--Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects

  15. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1997 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas--Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.

  16. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. EEI will begin funding TMI-2 cleanup activities by January 1

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Edison Electric Institute (EEI) will make the first of six annual payments to the Three Mile Island cleanup trust fund by January 1, 1985 even though individual utility pledges are $19 million short of the preset condition of $100 million. The EEI board also learned that surveys of customer opinions show an improvement in public relations during the year and that future energy needs will require the increase use of nuclear power. Various speakers at the board meeting challenged member utilities to improve their entrepreneurial approach, spoke on the need for better government support of industry's economic growth programs by fostering a climate that encourages research and development, estimated that 75% of US goods will be actively competing with foreign-made goods for sale, and noted the need to replace traditional utility high-growth strategies with efforts to help customers become more efficient in their use of energy

  18. Disposal of TRU Waste from the PFP in pipe overpack containers to WIPP Including New Security Requirements

    International Nuclear Information System (INIS)

    HOPKINS, A.M.

    2003-01-01

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site, or a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, hanford incinerator ash and Sand, Slag and Crucible (SS and C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP

  19. Sampling and analysis plan for remediation of Operable Unit 100-IU-3 waste site 600-104. Revision 1

    International Nuclear Information System (INIS)

    1997-08-01

    This sampling and analysis plan presents the rationale and strategy for the sampling and analysis activities to support remediation of 100-IU-3 Operable Unit waste site 600-104. The purpose of the proposed sampling and analysis activities is to demonstrate that time-critical remediation of the waste site for soil containing 2,4-Dichlorophenoxyacetic acid salts and esters (2,4-D) and dioxin/furan isomers at concentrations that exceed cleanup levels has been effective. This shall be accomplished by sampling various locations of the waste site before and after remediation, analyzing the samples, and comparing the results to action levels set by the Washington State Department of Ecology

  20. Methodology and data used for estimating the complex-wide impacts of alternative environmental restoration clean-up goals

    International Nuclear Information System (INIS)

    Shay, M.R.; Short, S.M.; Stiles, D.L.

    1994-03-01

    This paper describes the methodologies and data used for estimating the complex-wide impacts of alternative strategies for conducting remediation of all DOE sites and facilities, but does not address issues relating to Waste Management capabilities. Clean-up strategies and their corresponding goals for contaminated media may be driven by concentration-based regulatory standards, land-use standards (e.g., residential, industrial, wild life reserve, or totally restricted), risk-based standards, or other standards determined through stakeholder input. Strategies implemented to achieve these goals usually require the deployment of (a) clean-up technologies to destroy, remove, or contain the contaminants of concern; (b) institutional controls to prevent potential receptors from coming into contact with the contaminants; or (c) a combination of the above

  1. Fernald restoration: ecologists and engineers integrate restoration and cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Eric; Homer, John

    2002-07-15

    As cleanup workers excavate pits and tear down buildings at the Fernald site in southwest Ohio, site ecologists are working side-by-side to create thriving wetlands and develop the early stages of forest, prairie, and savanna ecosystems to restore natural resources that were impacted by years of site operations. In 1998, the U.S. Department of Energy-Fernald Office (DOE-FN) and its cleanup contractor, Fluor Fernald, Inc., initiated several ecological restoration projects in perimeter areas of the site (e.g., areas not used for or impacted by uranium processing or waste management). The projects are part of Fernald's final land use plan to restore natural resources over 904 acres of the 1,050-acre site. Pete Yerace, the DOE-FN Natural Resource Trustee representative is working with the Fernald Natural Resource Trustees in an oversight role to resolve the state of Ohio's 1986 claim against DOE for injuries to natural resources. Fluor Fernald, Inc., and DOE-FN developed the ''Natural Resource Restoration Plan'', which outlines 15 major restoration projects for the site and will restore injured natural resources at the site. In general, Fernald's plan includes grading to maximize the formation of wetlands or expanded floodplain, amending soil where topsoil has been removed during excavation, and establishing native vegetation throughout the site. Today, with cleanup over 35 percent complete and site closure targeted for 2006, Fernald is entering a new phase of restoration that involves heavily remediated areas. By working closely with engineers and cleanup crews, site ecologists can take advantage of remediation fieldwork (e.g., convert an excavated depression into a wetland) and avoid unnecessary costs and duplication. This collaboration has also created opportunities for relatively simple and inexpensive restoration of areas that were discovered during ongoing remediation. To ensure the survival of the plant material in heavily

  2. Treatment of solid non-active wastes

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2008-01-01

    In this part of the text-book treatment of solid non-active wastes is described. This part consist of following chapters: (1) Law on wastes; (2) Present situation in waste management; (3) Strategic tendencies of waste management; (4) Incineration (disposal of solid wastes); (5) Disposal; (6) Composting; (7) Treatment of sludge from sewage clarification plant; (8) Biodegradation; (9) Recycling of wastes (assessing of secondary raw materials). Legal aspects of treatment of solid non-active wastes is presented

  3. Moderator clean-up system in a heavy water reactor

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Hamamura, Kenji.

    1983-01-01

    Purpose: To decrease the fluctuation of the poison concentration in heavy water moderator due to a heavy water clean-up system. Constitution: To a calandria tank filled with heavy water as poison-containing moderators, are connected both end of a pipeway through which heavy water flows and to which a clean-up device is provided. Strongly basic resin is filled within the clean-up device and a cooler is disposed to a pipeway at the upstream of the clean-up device. In this structure, the temperature of heavy water at the inlet of the clean-up device at a constant level between the temperature at the exit of the cooler and the lowest temperature for the moderator to thereby decrease the fluctuation in the poison concentration in the heavy water moderator due to the heavy water clean-up device. (Moriyama, K.)

  4. Improving Sampling, Analysis, and Data Management for Site Investigation and Cleanup

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA) supports the adoption of streamlined approaches to sampling, analysis, and data management activities conducted during site assessment, characterization, and cleanup.

  5. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL's ER and WM programs as managed by DOE's Idaho Field Office (DOE-ID)

  6. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL`s ER and WM programs as managed by DOE`s Idaho Field Office (DOE-ID).

  7. Resting-state FMRI confounds and cleanup

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  8. Operational waste volume projection. Revision 20

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1994-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of July 1994

  9. San Diego perspective on UST clean-ups

    International Nuclear Information System (INIS)

    Anderson, J.P.

    1996-01-01

    In June 1994, CalEPA State Water Resources Control Board (State Board) contracted with the Lawrence Livermore National Laboratory/University of California (LLNL/UC) to review the current UST regulatory framework and cleanup process. As a result of their review, LLNL/UC recommended changes to expedite the cleanup process at leaking UST sites. The LLNL/UC report concludes that natural attenuation of petroleum is an important factor in stabilizing plumes and may be the only remedial activity necessary in the absence of the source. After a review of existing literature and a study of selected leaking UST cases primarily from Coastal Range sedimentary or valley alluvium hydrogeochemical provinces, the LLNL/UC report found that petroleum plumes tend to stabilize close to the source, generally occur in shallow groundwater, and rarely impact drinking water wells in the state. The study and report recommendations focused solely on fuel petroleum hydrocarbon constituents

  10. Electrochemical destruction of organics and nitrates in simulated and actual radioactive Hanford tank waste

    International Nuclear Information System (INIS)

    Elmore, M.R.; Lawrence, W.E.

    1996-09-01

    Pacific Northwest National Laboratory has conducted an evaluation of electrochemical processing for use in radioactive tank waste cleanup activities. An electrochemical organic destruction (ECOD) process was evaluated, with the main focus being the destruction of organic compounds (especially organic complexants of radionuclides) in simulated and actual radioactive Hanford tank wastes. A primary reason for destroying the organic species in the complexant concentrate tank waste is to decomplex/defunctionalize species that chelate radionuclides. the separations processes required to remove the radionuclides are much less efficient when chelators are present. A second objective, the destruction of nitrates and nitrites in the wastes, was also assessed. Organic compounds, nitrates, and nitrites may affect waste management and safety considerations, not only at Hanford but at other US Department of Energy sites that maintain high- level waste storage tanks

  11. Hanford Site annual dangerous waste report, calendar year 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report is a compilation of data on the disposition of hazardous wastes generated on the Hanford Reservation. This information is on EPA requirement every two years. Wastes include: tank simulant waste; alkaline batteries; lead-based paints; organic solvents; light bulbs containing lead and/or mercury; monitoring well drilling wastes; soils contaminated with trace metals, halogenated organics, or other pollutants; Ni-Cd batteries; pesticides; waste oils and greases; wastes from the cleanup of fuel/gasoline spills; filters; metals; and other

  12. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially...

  13. Plasma technology for waste treatment

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1995-01-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing (∼10,000 degrees C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300 degrees C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams

  14. Eye pathologies of Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Eglite, A.; Ozola, G.; Curbakova, E.

    1998-01-01

    Diseases of the nervous system and sense organs have become the most significant pathologies of Chernobyl clean-up workers during the last four years. The aim of this work was to evaluate the incidence of eye disorders among Chernobyl clean-up workers to provide more information for health specialists. During the last 10 years, the most common eye pathology has been angiopathia retinae, followed by myopia and cataracta. Statistical analyses showed that the clean-up workers have higher risk to develop angiopathia retinae than the control group. (author)

  15. Impact of oil spill and posterior clean-up activities on wrack-living talitrid amphipods on estuarine beaches

    Directory of Open Access Journals (Sweden)

    Carlos A. Borzone

    2009-12-01

    Full Text Available A geomorphological and faunistic seasonal study of six estuarine beaches on Paranaguá Bay, Brazil, was abruptly interrupted when the Chilean ship "Vicuña" exploded and sank, spilling 291 tons of bunker fuel oil. The beaches sampled twice before the accident were affected by the oil spill deposition and the posterior clean-up activities. Neither drastic reduction in abundances nor occurrences of oil-covered individuals were registered. Significant variation in both amount of debris and talitrid amphipod densities was directly related to beach clean-up activities. A short (1-3 month manual clean-up of polluted wrack resulted in an increase in talitrid abundances, with the local distribution expansion of one species, Platorchestia monodi, from three to six of the beaches sampled. The active migration and concentration of organisms at sites without wrack during cleaning activities and a massive and continuous recovery of new debris, characteristic of estuarine beaches, may contribute to the findings.Um estudo sazonal da geomorfologia e fauna de seis praias estuarinas na baia de Paranaguá, Brasil, foi interrompido bruscamente pela explosão e posterior afundamento do navio chileno Vicuña, que derramou 291 toneladas de óleo bunker. As praias que foram afetadas pela deposição de óleo e pelas posteriores atividades de limpeza, tinham sido amostradas duas vezes antes do acidente. Nas coletas posteriores ao acidente não foram registradas nem reduções drásticas das abundâncias nem indivíduos impregnados por óleo. As significativas variações tanto da quantidade de detrito quanto nas densidades de anfipodes talitrídeos foram relacionadas às atividades de limpeza. Uma limpeza manual e de curta duração (1 a 3 meses resultou num aumento das abundâncias dos talitrídeos, juntamente com o aumento da distribuição de uma das espécies, Platorchestia monodi, que de três passou a ser encontrada em seis praias amostradas.Os fatores que

  16. Radioactive waste and contamination in the former Soviet Union

    International Nuclear Information System (INIS)

    Suokko, K.; Reicher, D.

    1993-01-01

    Decades of disregard for the hazards of radioactive waste have created contamination problems throughout the former Soviet Union rivaled only by the Chernobyl disaster. Although many civilian activities have contributed to radioactive waste problems, the nuclear weapons program has been by far the greatest culprit. For decades, three major weapons production facilities located east of the Ural Mountains operated in complete secrecy and outside of environmental controls. Referred to until recently only by their postal abbreviations, the cities of Chelyabinsk-65, Tomsk-7, and Krasnoyarsk-26 were open only to people who worked in them. The mismanagement of waste at these sites has led to catastrophic accidents and serious releases of radioactive materials. Lack of public disclosure, meanwhile, has often prevented proper medical treatment and caused delays in cleanup and containment. 5 refs

  17. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  18. An analysis of the CERCLA response program and the RCRA corrective action program in determining cleanup strategies for federal facilities which have been proposed for listing on the National Priorities List

    International Nuclear Information System (INIS)

    Baker, P.; Vinson, R.

    1994-01-01

    This document was prepared as an issue paper for the Department of Energy to serve in the decision-making process for environmental restoration activities. The paper compares cleanup requirements under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and those currently proposed under Subpart S of the Resource Conservation and Recovery Act (RCRA). The history and regulatory framework for both laws is discussed, and the process for environmental restoration actions under both regulatory programs is compared and contrasted. Contaminants regulated under CERCLA and RCRA differ significantly in that radioactive contaminants are subject to Environmental Protection Agency jurisdiction only under CERCLA. The DOE has the jurisdiction to implement radioactive waste management and cleanup levels under the Atomic Energy Act (AEA) at nuclear weapons facilities. For sites with significant amounts of contaminants which are radioactive only, cleanup under RCRA can present significant advantages, since the DOE can then manage restoration activities under its own authority. There are, conversely several significant advantages for a remedial action being conducted at a CERCLA site recognized on the National Priorities List (NPL). Other provisions in the CERCLA remediation and the RCRA corrective action process offer both advantages and disadvantages related to DOE environmental restoration programs. This paper presents a discussion of significant issues which should be considered in such negotiations

  19. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms

    KAUST Repository

    Mapelli, Francesca; Scoma, Alberto; Michoud, Gregoire; Aulenta, Federico; Boon, Nico; Borin, Sara; Kalogerakis, Nicolas; Daffonchio, Daniele

    2017-01-01

    The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.

  20. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms

    KAUST Repository

    Mapelli, Francesca

    2017-05-13

    The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.

  1. Lessons learned at TMI: cleanup for respiratory protection

    International Nuclear Information System (INIS)

    Parfitt, B.A.; Gee, E.F.

    1987-01-01

    The March 28, 1979, accident at Three Mile Island Unit 2 (TMI-2) presented GPU Nuclear with technical challenges unprecedented in the nuclear power industry. Among these challenges were a myriad of health physics problems that had to be solved to ensure a radiologically safe environment for workers performing cleanup activities. The application of the as-low-as-reasonably-achievable (ALARA) philosophy has been a fundamental aspects in protecting cleanup workers. The unique conditions produced by the accident, however, have necessitated novel and innovative approaches in making this philosophy effective. The option to use respirators is based on which method will result in the lowest radiation dose to the worker. Inherent to this program has been the training of workers to overcome the perception that any internal contamination is of foremost concern and is orders of magnitude greater in biological effect than an identical external dose. It is, of course, the total dose (internal dose plus external dose) that must be minimized to implement a true ALARA philosophy. The need for considering the total radiation dose when making decisions to use respirators has been clear during the TMI-2 cleanup. Prescribing respirators is not always good for the ALARA concept

  2. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    International Nuclear Information System (INIS)

    JOHNSTON GA

    2008-01-01

    ' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D and D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion

  3. Green Remediation Best Management Practices: Integrating Renewable Energy into Site Cleanup

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Principles for Greener Cleanups outline the Agency's policy for evaluating and minimizing the environmental 'footprint' of activities undertaken when cleaning up a contaminated site.

  4. Environmental Management Integration Project/Mixed Waste Focus Area Partnership

    International Nuclear Information System (INIS)

    Gombert, D.; Kristofferson, K.; Cole, L.

    1999-01-01

    On January 16, 1998, the Assistant Secretary for the Environmental Management (EM) Program at the Department of Energy, issued DOE-Idaho the Program Integration and Systems Engineering Guidance for Fiscal Year 1998, herein called Guidance, which directed that program integration tasks be performed for all EM program areas. This guidance directed the EM Integration team, as part of the Task 1, to develop baseline waste and material disposition maps which are owned by the site Project Baseline Summary (PBS) manager. With these baselines in place Task 2 gave direction to link Science and Technology activities to the waste and material stream supported by that technology. This linkage of EM Program needs with the OST activities supports the DOE goal of maximizing cleanup at DOE sites by 2006 and provides a defensible science and technology program. Additionally, this linkage is a valuable tool in the integration of the waste and material disposition efforts for the DOE complex

  5. A life-cycle model approach to multimedia waste reduction measuring performance for environmental cleanup projects

    International Nuclear Information System (INIS)

    Phifer, B.E. Jr.; George, S.M.

    1993-01-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program's mission is to minimize waste and prevent pollution in remedial investigations (RIs), feasibility studies, decontamination and decommissioning, and surveillance and maintenance site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. The ER Program waste generation rates are projected to steadily increase through the year 2005 for all waste categories. Standard production units utilized to measure waste minimization apply to production/manufacturing facilities. Since ER inherited contaminated waste from previous production processes, no historical production data can be applied. Therefore, a more accurate measure for pollution prevention was identified as a need for the ER Program. The Energy Systems ER Program adopted a life-cycle model approach and implemented the concept of numerically scoring their waste generators to measure the effectiveness of pollution prevention/waste minimization programs and elected to develop a numerical scoring system (NSS) to accomplish these measurements. The prototype NSS, a computerized, user-friendly information management database system, was designed to be utilized in each phase of the ER Program. The NSS was designed to measure a generator's success in incorporating pollution prevention in their work plans and reducing investigation-derived waste (IDW) during RIs. Energy Systems is producing a fully developed NSS and actually scoring the generators of IDW at six ER Program sites. Once RI waste generators are scored utilizing the NSS, the numerical scores are distributed into six performance categories: training, self-assessment, field implementation, documentation, technology transfer, and planning

  6. Cleanups In My Community (CIMC) - Recovery Act Funded Cleanups, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Recovery Act Funded Cleanup sites as part of the CIMC web service. The American Recovery and Reinvestment Act was signed into law...

  7. Low and intermediate radioactive waste characterization using MICROSHIELD 5 code

    International Nuclear Information System (INIS)

    Mateescu, Silvia; Pantazi, Doina; Stanciu, Marcela

    2002-01-01

    Low and intermediate radioactive gaseous, liquid and solid waste produced at Cernavoda Nuclear Power Plant must be known from the point of view of contained radionuclide activity, during all steps of their processing, storage and transport, to ensure the nuclear safety of radioactive waste management. As the waste activity changes by radioactive decay and nuclear transmutation, the evolution in time of these sources is necessary to be assess, for the purpose of biological shielding determination at any time. On the other hand, during the transport of waste package at the repository, the external dose rates must meet the national and international requirements concerning radioactive materials transportation on public roads. In this paper, a calculation methodology for waste characterization based on external exposure rate measurement and on sample analysis results is presented. The time evolution of waste activity, as well as the corresponding shielding at different moments of management process, has been performed using MICROSHIELD-5 code. The spent resins proceeded from systems for clean-up and purification of cooling water and moderator, water from spent fuel storage bays, etc. have been analyzed. In this paper an example of spent ionic resins characterization, using the MICROSHIELD 5 code, is presented. (authors)

  8. Aviation safely management, Valdez oil spill clean-up

    International Nuclear Information System (INIS)

    Friesenhahn, M.J.; McKeown, W.L.; Williams, R.G.

    1993-01-01

    The March 24, 1989 Exxon Valdez oil spill in Alaska's Prince William Sound (PWS) resulted in an unprecedented mobilization of personnel and oil spill clean-up equipment. This paper describes the comprehensive safety management system implemented for aviation operations supporting the clean-up response in PWS and the Gulf of Alaska (GOA). Aviation support operations quickly expanded to over 100 aircraft obtained from numerous sources. Beginning with early surveillance flights, aviation operations were subject to comprehensive safety management programs, including safety assessments, minimum flight weather criteria, operational standards and procedures, air carrier qualifications, equipment and procedure audits, and emergency response. Communication networks and flight following procedures were established, arctic survival training was conducted, and a full complement of survival equipment was required. These programs were largely responsible for safety performance of the spill response effort-during the 1989-92 response activities, over 56,000 flight hours, 159,000 equivalent passengers, and 20,000 tons of cargo were handled without an aviation related injury. The programs are applicable to offshore development and operational activities, particularly those located in more remote, severe environments

  9. The Fernald Waste Recycling Program

    International Nuclear Information System (INIS)

    Motl, G.P.

    1993-01-01

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald's current recycling initiatives

  10. ANDRA - National Radioactive Waste Management Agency. Activity and sustainable development report 2010 - a year with Andra. Management report and financial statements 2010 - Managing today to prepare for tomorrow

    International Nuclear Information System (INIS)

    2011-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2010

  11. DOE pursuing accelerated cleanup at Fernald

    International Nuclear Information System (INIS)

    Borgman, T.

    1996-01-01

    The timing is right, and officials at Fernald are ready to initiate final cleanup actions-at an accelerated pace. open-quotes We have a viable, aggressive plan in place that will reduce the risks associated with the site by accelerating the cleanup schedule, and save a lot of time and money in the process,close quotes said Don Ofte, president of the Fernald Environmental Restoration management Corporation (FERMCO). Ofte is referring to the accelerated cleanup plan that the U.S. Department of Energy has approved to complete the remediation of Fernald in approximately 10 years-instead of 25-30 years-at a cost savings to taxpayers of almost $3 billion. This article describes the scenario at Fernald and politically which has lead to this decision

  12. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  13. Hazards ahead: Managing cleanup worker health and safety at the nuclear weapons complex. Background paper

    International Nuclear Information System (INIS)

    1993-02-01

    Cold War nuclear weapons production has left a legacy of environmental contamination that is unprecented in scope and complexity. The Department of Energy has begun cleaning up pollution at the Nuclear Weapons Complex (NWC)--an expensive, decades-long task that will require a workforce numbering tens of thousands of scientists, technicians, and laborers. Protecting their health and safety must be a major goal of the cleanup effort. Achieving the goal will require DOE to successfully confront significant technical and managerial challenges, but it also poses a unique opportunity to advance state-of-the-art occupational health and safety technologies and practices. The report provides an evaluation of environmental restoration and waste management at the DOE Nuclear Weapons Complex. It examines risks workers might face in cleaning up contamination at the complex and evaluates the effectiveness of DOE's occupational safety and health programs for cleanup workers

  14. An ultrasonic instrument for measuring density and viscosity of tank waste

    International Nuclear Information System (INIS)

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.

    1997-01-01

    An estimated 381,000 m 3 /1.1 x 10 9 Ci of radioactive waste are stored in high-level waste tanks at the Hanford Savannah River, Idaho Nuclear Engineering and Environmental Laboratory, and West Valley facilities. This nuclear waste has created one of the most complex waste management and cleanup problems that face the United States. Release of radioactive materials into the environment from underground waste tanks requires immediate cleanup and waste retrieval. Hydraulic mobilization with mixer pumps will be used to retrieve waste slurries and salt cakes from storage tanks. To ensure that transport lines in the hydraulic system will not become plugged, the physical properties of the slurries must be monitored. Characterization of a slurry flow requires reliable measurement of slurry density, mass flow, viscosity, and volume percent of solids. Such measurements are preferably made with on-line nonintrusive sensors that can provide continuous real-time monitoring. With the support of the U.S. Department of Energy (DOE) Office of Environmental Management (EM-50), Argonne National Laboratory (ANL) is developing an ultrasonic instrument for in-line monitoring of physical properties of radioactive tank waste

  15. Reliability of reactor plant water cleanup pumps

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1979-01-01

    Carolina Power and Light Company's Brunswick 2 nuclear plant experienced a high reactor water cleanup pump-failure rate until inlet temperature and flow were reduced and mechanical modifications were implemented. Failures have been zero for about one year, and water cleanup efficiency has increased

  16. INEL waste cleanup

    International Nuclear Information System (INIS)

    Chapin, J.A.

    1979-01-01

    Decommissioning and decontamination activities at the Idaho National Engineering Laboratory are discussed. The projects planned and completed are presented. Problems encountered on these projects are discussed. A developmental program is recommended. Contaminated areas consist of test reactors, reactor support facilities, a fuel reprocessing facility and various soil areas. One D and D project in 1960 occurred as a result of an accident at a low-power reactor in which 3 persons were killed, the reactor and containment building were destroyed, and large areas of land were contaminated

  17. Approaching Environmental Cleanup Costs Liability Through Insurance Principles

    National Research Council Canada - National Science Library

    Corbin, Michael A

    1994-01-01

    .... Applying insurance industry principles to environmental cleanup costs liability will provide a firm foundation to reduce the risk of loss to the taxpayer, reduce cleanup costs, and stimulate private...

  18. Acid fractionation for low level liquid waste cleanup and recycle

    International Nuclear Information System (INIS)

    Gombert, D. II; McIntyre, C.V.; Mizia, R.E.; Schindler, R.E.

    1990-01-01

    At the Idaho Chemical Processing Plant, low level liquid wastes containing small amounts of radionuclides are concentrated via a thermosyphon evaporator for calcination with high level waste, and the evaporator condensates are discharged with other plant wastewater to a percolation pond. Although all existing discharge guidelines are currently met, work has been done to reduce all waste water discharges to an absolute minimum. In this regard, a 15-tray acid fractionation column will be used to distill the mildly acidic evaporator condensates into concentrated nitric acid for recycle in the plant. The innocuous overheads from the fractionator having a pH greater than 2, are superheated and HEPA filtered for atmospheric discharge. Nonvolatile radionuclides are below detection limits. Recycle of the acid not only displaces fresh reagent, but reduces nitrate burden to the environment, and completely eliminates routine discharge of low level liquid wastes to the environment

  19. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m 3 of the 2,600 m 3 of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to ∼5,400 m 3 . This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) 238 Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with 238 Pu activity which exceeds allowable shipping limits by 10--100X. (2) 241 Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by ∼3X. (3) 239 Pu-contaminated combustible waste, mainly organic waste materials contaminated with 239 Pu and 241 Am, is estimated to exceed thermal load requirements by a factor of ∼2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum

  20. MINERALIZING, STEAM REFORMING TREATMENT OF HANFORD LOW-ACTIVITY WASTE (a.k.a. INEEL/EXT-05-02526)

    International Nuclear Information System (INIS)

    A. L. Olson; N. R. Soelberg; D. W. Marshall; G. L. Anderson

    2005-01-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization''. The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2-5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.4 hours of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved

  1. Technical area status report for waste destruction and stabilization

    International Nuclear Information System (INIS)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office of Technology Development (OTD) is to develop treatment technologies for DOE's operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities

  2. The very-low activity waste storage facility. A new waste management system

    International Nuclear Information System (INIS)

    2006-01-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  3. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  4. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    International Nuclear Information System (INIS)

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects

  5. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects.

  6. The public visits a nuclear waste site: Survey results from the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1987-01-01

    This paper discusses the results of the 1986 survey taken at the West Valley Demonstration Project Open House where a major nuclear waste cleanup is in progress. Over 1400 people were polled on what they think is most effective in educating the public on nuclear waste. A demographic analysis describes the population attending the event and their major interests in the project. Responses to attitudinal questions are examined to evaluate the importance of radioactive waste cleanup as an environmental issue and a fiscal responsibility. Additionally, nuclear power is evaluated on its public perception as an energy resource. The purpose of the study is to find out who visits a nuclear waste site and why, and to measure their attitudes on nuclear issues

  7. Bioavailability: implications for science/cleanup policy

    Energy Technology Data Exchange (ETDEWEB)

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  8. Approach and plan for cleanup actions in the 100-IU-2 and 100-IU-6 Operable Units of the Hanford Site

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of this document is to summarize waste site information gathered to date relating to the 100-IU-2 and 100-IU-6 Operable Units (located at the Hanford Site in Richland, Washington), and to plan the extent of evaluation necessary to make cleanup decisions for identified waste sites under the Comprehensive Environmental Response, Compensation, and Liability Act of 1981. This is a streamlined approach to the decision-making process, reducing the time and costs for document preparation and review

  9. SIGNIFICANT PROGRESS IN THE DEPLOYMENT OF NEW TECHNOLOGIES FOR THE RETRIEVAL OF HANFORD RADIOACTIVE WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    RAYMOND RE; DODD RA; CARPENTER KE; STURGES MH

    2008-01-01

    Significant enhancements in the development and deployment of new technologies for removing waste from storage tanks at the Hanford Site have resulted in accelerated progress and reduced costs for tank cleanup. CH2M HILL Hanford Group, Inc. is the U.S. Department of Energy, Office of River Protection's prime contractor responsible for safely storing and retrieving approximately 53 million gallons of highly-radioactive and hazardous waste stored in 177 underground tanks. The waste is stored in 149 older single-shell tanks (SST) and 28 newer double-shell tanks (DST) that are grouped in 18 so-called farms near the center of the Hanford Site, located in southeastern Washington State. Tank contents include materials from years of World-War II and post-war weapons production, which account for 60 percent by volume of the nation's high-level radioactive waste. A key strategy for improved cleanup is the development and deployment of innovative technologies, which enhance worker safety, resolve technical challenges, streamline retrieval processes, and cut project costs and durations. During the past seven years of tank cleanout projects we have encountered conditions and waste chemistry that defy conventional approaches, requiring a variety of new tools and techniques. Through the deployment of advanced technology and the creative application of resources, we are finding ways to accomplish the retrieval process safely, swiftly, and economically. To date, retrieval operations have been completed in seven tanks, including a record six tanks in a two-year period. Retrieval operations are in progress for another three tanks. This paper describes the following tank cleanup technologies deployed at Hanford in the past few years: Modified waste sluicing, High pressure water lance, Mobile retrieval tools, Saltcake dissolution, Vacuum retrieval, Sparging of wastes, Selective dissolution for waste treatment, Oxalic acid dissolution, High-pressure water mixers, Variable height pumps

  10. Planning for and managing environmental restoration waste

    International Nuclear Information System (INIS)

    Miller, J.Q.

    1993-01-01

    This paper describes the approach used to support the management of environmental restoration (ER) waste. A general description is provided of the tools and techniques that have been developed and applied to produce waste generation forecast data and treatment, storage, and disposal capacity needs. The ER Program can now consistently manage ER waste streams from initial generation through ultimate disposal. Utilizing the valuable information that results from application of strategically planned systems and techniques demonstrates the ability to provide the necessary waste management support for the ER cleanup process

  11. ANDRA - National Radioactive Waste Management Agency. Activity report 2009 - Managing today to prepare for tomorrow. Management report and financial statements at December 31, 2009. Annual Sustainable Development Report 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report, with the management and financial statements report, and the Sustainable Development Report of the Andra for the year 2009

  12. Solid Waste Activity Packet for Teachers.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  13. Oil spills and their cleanup

    International Nuclear Information System (INIS)

    Fingas, M.

    1995-01-01

    Oil spills are an unfortunately common occurrence in the world's seas and can have extensive damaging environmental consequences. This article examines various methods of cleaning up oil spills, evaluates their effectiveness in various situations, and identifies areas where, current methods being inadequate, further research is needed. Containment, mechanical removal, shoreline cleanup, chemical treating agents, in situ burning, natural recovery and enhanced bioremediation are all assessed. The cleanup method must be selected to match environmental conditions. Results are good in quiet, sheltered waters, but need extensive development in open waters and high seas. (UK)

  14. Biodegradation of oil refinery wastes under OPA and CERCLA

    International Nuclear Information System (INIS)

    Banipal, B.S.; Myers, J.M.; Fisher, C.W.

    1995-01-01

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the full-scale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach in the evaluation of using biodegradation as a treatment method to achieve site-specific clean-up including pilot scale biodegradation operations is included in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that the site-specific cleanup criteria can be attained within a proposed project time. Also presented are degradation rates and half-lives for PAHs for which cleanup criteria has been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other investigators (API 1987)

  15. Biodegradation of oil refinery wastes under OPA and CERCLA

    Energy Technology Data Exchange (ETDEWEB)

    Gamblin, W.W.; Banipal, B.S.; Myers, J.M. [Ecology and Environment, Inc., Dallas, TX (United States)] [and others

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).

  16. Project Management Approach to Transition of the Miamisburg Closure Project From Environmental Cleanup to Post-Closure Operations

    International Nuclear Information System (INIS)

    Carpenter, C.P.; Marks, M.L.; Smiley, S.L.; Gallaher, D.M.; Williams, K.D.

    2006-01-01

    The U.S. Department of Energy (DOE) used a project management approach to transition the Miamisburg Closure Project from cleanup by the Office of Environmental Management (EM) to post-closure operations by the Office of Legacy Management (LM). Two primary DOE orders were used to guide the site transition: DOE Order 430.1B, Real Property Asset Management, for assessment and disposition of real property assets and DOE Order 413.3, Program and Project Management for Acquisition of Capital Assets, for project closeout of environmental cleanup activities and project transition of post-closure activities. To effectively manage these multiple policy requirements, DOE chose to manage the Miamisburg Closure Project as a project under a cross-member transitional team using representatives from four principal organizations: DOE-LM, the LM contractor S.M. Stoller Corporation, DOE-EM, and the EM contractor CH2M Hill Mound Inc. The mission of LM is to manage the Department's post-transition responsibilities and long-term care of legacy liabilities and to ensure the future protection of human health and the environment for cleanup sites after the EM has completed its cleanup activities. (authors)

  17. Research and development activities on Three Mile Island Unit Two. Annual report for 1985

    International Nuclear Information System (INIS)

    1986-04-01

    The year 1985 was significant in the cleanup of Three Mile Island Unit 2 (TMI-2). Major milestones in the project included lifting the plenum assembly from the reactor vessel and the start of operations to remove the damaged fuel from the reactor. This report summarizes these milestones and other TMI-2 related cleanup, research, and development activities. Other major topics include the following: waste immobilization and management; fuel shipping cask delivery and testing; sample acquisition and evaluation; and decontamination and dose reduction. 26 figs.

  18. Treatability studies for polyethylene encapsulation of INEL low-level mixed wastes. Final report

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Patel, B.R.; Kalb, P.D.; Adams, J.W.

    1995-10-01

    Treatability studies for polyethylene encapsulation of Idaho National Engineering Laboratory (INEL) low-level mixed wastes were conducted at Brookhaven National Laboratory. The treatability work, which included thermal screening and/or processibility testing, was performed on priority candidate wastes identified by INEL to determine the applicability of polyethylene encapsulation for the solidification and stabilization of these mixed wastes. The candidate wastes selected for this preliminary study were Eutectic Salts, Ion Exchange Resins, Activated Carbons, Freon Contaminated Rags, TAN TURCO Decon 4502, ICPP Sodium Bearing Liquid Waste, and HTRE-3 Acid Spill Clean-up. Thermal screening was conducted for some of these wastes to determine the thermal stability of the wastes under expected pretreatment and processing conditions. Processibility testing to determine whether the wastes were amenable to extrusion processing included monitoring feed consistency, extruder output consistency, waste production homogeneity, and waste form performance. Processing parameters were not optimized within the scope of this study. However, based on the treatability results, polyethylene encapsulation does appear applicable as a primary or secondary treatment for most of these wastes

  19. Technical approach to finalizing sensible soil cleanup levels at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Carr, D.; Hertel, B.; Jewett, M.; Janke, R.; Conner, B.

    1996-01-01

    The remedial strategy for addressing contaminated environmental media was recently finalized for the US Department of Energy's (DOE) Fernald Environmental Management Project (FEMP) following almost 10 years of detailed technical analysis. The FEMP represents one of the first major nuclear facilities to successfully complete the Remedial Investigation/Feasibility Study (RI/FS) phase of the environmental restoration process. A critical element of this success was the establishment of sensible cleanup levels for contaminated soil and groundwater both on and off the FEMP property. These cleanup levels were derived based upon a strict application of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations and guidance, coupled with positive input from the regulatory agencies and the local community regarding projected future land uses for the site. The approach for establishing the cleanup levels was based upon a Feasibility Study (FS) strategy that examined a bounding range of viable future land uses for the site. Within each land use, the cost and technical implications of a range of health-protective cleanup levels for the environmental media were analyzed. Technical considerations in driving these cleanup levels included: direct exposure routes to viable human receptors; cross- media impacts to air, surface water, and groundwater; technical practicality of attaining the levels; volume of affected media; impact to sensitive environmental receptors or ecosystems; and cost. This paper will discuss the technical approach used to support the finalization of the cleanup levels for the site. The final cleanup levels provide the last remaining significant piece to the puzzle of establishing a final site-wide remedial strategy for the FEMP, and positions the facility for the expedient completion of site-wide remedial activities

  20. Design and operational experience with a portable tritium cleanup system

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Wilson, S.W.; Garcia, F.

    1991-06-01

    We built a portable tritium cleanup system to scavenge tritium from contaminated gases in any tritium-containing system in the LLNL Tritium Facility. The cleanup system uses standard catalytic oxidation of tritium to water followed by water removal with a molecular sieve dryer. The cleanup unit, complete with instrumentation, is contained in a portable cart that is rolled into place and connected to the apparatus to be cleaned. The cleanup systems is effective, low-tech, simple, and reliable. The nominal flow rate of the system is 30 liters/minute, and the decontamination factor is > 1000. In this paper we will show design information on our portable cleanup system, and will discuss our operational experience with it over the past several years

  1. Louisiana's statewide beach cleanup

    Science.gov (United States)

    Lindstedt, Dianne M.; Holmes, Joseph C.

    1989-01-01

    Litter along Lousiana's beaches has become a well-recognized problem. In September 1987, Louisiana's first statewide beach cleanup attracted about 3300 volunteers who filled 16,000 bags with trash collected along 15 beaches. An estimated 800,173 items were gathered. Forty percent of the items were made of plastic and 11% were of polystyrene. Of all the litter collected, 37% was beverage-related. Litter from the oil and gas, commercial fishing, and maritime shipping industries was found, as well as that left by recreational users. Although beach cleanups temporarily rid Louisiana beaches of litter, the real value of the effort is in public participation and education. Civic groups, school children, and individuals have benefited by increasing their awareness of the problems of trash disposal.

  2. Time depending assessment of low and intermediate radioactive waste characteristics from Cernavoda NPP

    International Nuclear Information System (INIS)

    Mateescu, S.; Pantazi, D.; Stanciu, M.

    2002-01-01

    Low and intermediate radioactive gaseous, liquid and solid waste produced at Cernavoda Nuclear Power Plant must be well known from the point of view of contained radionuclide activity, during all steps of their processing, storage and transport, to ensure the nuclear safety of radioactive waste management. As in intermediate storage stage, the waste activity changes by radioactive decay and nuclear transmutation, the evolution in time of these sources is necessary to be assessed, for the purpose of biological shielding determination at any time. On the other hand, during the transport of waste package at the repository, the external dose rates must meet the national and international requirements concerning radioactive materials transportation on public roads. In this paper, a calculation methodology for waste characterization based on external exposure rate measurement and on sample analysis results is presented. The time evolution of waste activity, as well as the corresponding shielding at different moments of management process, have been performed using MICROSHIELD-5 code. The spent resins proceeded from clean-up and purification systems and solutions from decontamination have been analyzed. The proposed methodology helps us to assess radiation protection during the handling of low and intermediate - level radioactive waste drums, ensuring safety conditions for the public and environment.(author)

  3. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  4. Cleanups in My Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Cleanups in My Community (CIMC) is a public web application that enables integrated access through maps, lists and search filtering to site-specific information EPA...

  5. Diabetes mellitus morbidity in Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Tolstaya, E.V.; Ermakova, D.P.; Glinskaya, T.N.

    2016-01-01

    Acute and total diabetes mellitus morbidity in Chernobyl clean-up workers was examined during 1995-2014 period. During all the period of investigations levels of acute and total morbidity were higher in clean-up workers, than in total Belarusian population. (authors)

  6. Waste Information Management System with Integrated Transportation Forecast Data

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.

    2009-01-01

    The Waste Information Management System with Integrated Transportation Forecast Data was developed to support the Department of Energy (DOE) mandated accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of waste that would be generated by the DOE sites over the next 40 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste and shipment information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. The Waste Information Management System with Integrated Transportation Forecast Data allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has deployed the web-based forecast and transportation system and is responsible for updating the waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  7. Attitudes toward managing hazardous waste: What should be cleaned up and who should pay for it?

    International Nuclear Information System (INIS)

    Baron, J.; Kunreuther, H.; Gowda, R.

    1993-01-01

    Hazardous waste policy in the United States uses a liability-based approach, including strict, retroactive, and joint and several liability. To assess attitudes toward these basic principles of liability, and toward priorities for clean-up of wastes, a questionnaire was mailed to legislators, judges, executives of oil and chemical companies, environmentalists, and economists. The questionnaire consisted of abstract, simplified cases, which contrasted basic principles rather than dealing with real-world scenarios. Subjects were asked how they would allocate clean-up costs between companies and government as a function of such factors as adherence to standards, adoption of best available technology (BAT), and influence of penalties on future behavior. Most subjects felt that, if the company followed government standards or used the best available technology (BAT), it should pay for only a portion of the clean-up cost, with the government paying the rest. In general, responses did not support the principles underlying current law - strict, retroactive, and joint-and-several liability. Most subjects were more interested in polluters paying for damages than in deterrence or future benefit - even to the extent that they would have 'harmless' waste sites cleaned up. A bias was found toward complete clean-up of some sites, or 'zero risk.' Different groups of subjects gave similar answers, although more committed environmentalists were more willing to make companies pay and to clean up waste regardless of the cost. 21 refs., 3 tabs

  8. Cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites including representative costs of cleanup and treatment of contaminated areas

    International Nuclear Information System (INIS)

    Talmage, S.S.; Chilton, B.D.

    1987-09-01

    This review summarizes available information on cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites. Radionuclide distribution and inventory, size of the contaminated areas, equipment, and cleanup procedures and results are included. Information about the cost of cleanup and treatment for contaminated land is presented. Selected measures that could be useful in estimating the costs of cleaning up radioactively contaminated areas are described. 76 refs., 16 tabs

  9. Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations

    International Nuclear Information System (INIS)

    Capron, J.M.

    2005-01-01

    This cleanup verification package documents completion of remedial action for the 100-K-55:1 and 100-K-56:1 reactor cooling effluent underground pipelines and for the 116-KW-4 and 116-KE-5 heat recovery stations. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors. This cleanup verification package documents completion of remedial action for the 100-K-55: 1 and 100-K-56: 1 reactor cooling effluent underground pipelines, referred to herein as the 100-K-55:1 and 100-K-56:l sites, as well as for the 116-KW-4 and 116-KE-5 heat recovery stations, referred to herein as the 116-KW-4 and 116-KE-5 sites. The 116-KW-4 and 116-KE-5 heat recovery stations were co-located and remediated with the 100-K-55:1 and 100-K-56:1 pipelines, respectively. These sites are located in the 100-KR-2 Operable Unit in the 100-K Area of the Hanford Site in southeastern Washington State. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors, respectively. Both of these sites have been administratively divided into subunits based on the current extent of remediation. Portions of the pipelines remaining within the reactor security fencing and in proximity to active utility features have been delineated as the 100-K-55:2 and 100-K-56:2 pipelines, with the portions of the pipelines excluded from these boundaries identified as the 100-K-55:1 and 100-K-56:1 pipelines. This cleanup verification package addresses only the 100-K-55:1 and 100-K-56:I subunits; the 100-K-55:2 and 100-K-56:2 subunits will be addressed within a separate cleanup verification package. Site excavation and waste disposal are complete, and the exposed surfaces have been sampled and analyzed to verify attainment of the remedial action goals. Results of the sampling, laboratory analyses, and data evaluations for the 100-K-55:1, 100-K-56:1, 116-KW-4, and 116-KE-5 sites indicate that all remedial

  10. The need for mixed waste treatment options within the US Department of Energy

    International Nuclear Information System (INIS)

    McCulla, W.H.; French, D.M.

    1992-01-01

    The United States Department of Energy (DOE) has generated and stored significant amounts of low-level mixed wastes consisting of radioactive materials mixed with hazardous chemical substances in various forms. The DOE is in the process of beginning a cleanup of these mixed wastes at many of its facilities. Many of these waste streams had been previously disposed of by methods acceptable at the time but with the passage of very stringent laws affecting migration of hazardous components, now the disposal areas constitute remediation sites. Disposal of low level radioactive waste potentially containing hazardous materials have also fallen under land disposal restrictions and currently no mixed waste is going to low level disposal facilities. The paper will address why the DOE is just now starting to comply with environmental laws, why there is a need to find more effective and less expensive means of cleaning up wastes, how the DOE is organizing to accomplish this cleanup, and several plasma technology development efforts in the DOE Complex that show promise of meeting these needs

  11. The need for mixed waste treatment options within the US Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    McCulla, W.H.; French, D.M.

    1992-12-31

    The United States Department of Energy (DOE) has generated and stored significant amounts of low-level mixed wastes consisting of radioactive materials mixed with hazardous chemical substances in various forms. The DOE is in the process of beginning a cleanup of these mixed wastes at many of its facilities. Many of these waste streams had been previously disposed of by methods acceptable at the time but with the passage of very stringent laws affecting migration of hazardous components, now the disposal areas constitute remediation sites. Disposal of low level radioactive waste potentially containing hazardous materials have also fallen under land disposal restrictions and currently no mixed waste is going to low level disposal facilities. The paper will address why the DOE is just now starting to comply with environmental laws, why there is a need to find more effective and less expensive means of cleaning up wastes, how the DOE is organizing to accomplish this cleanup, and several plasma technology development efforts in the DOE Complex that show promise of meeting these needs.

  12. Hazardous Waste Cleanup: Chemical Waste Management of NJ in Newark, New Jersey

    Science.gov (United States)

    Chemical Waste Management of NJ is located at 100 Lister Avenue in Newark, New Jersey. This section of Newark has been industrial since the late 1800s when the marshlands of the Passaic River were filled in with a mixture of coal ash, construction debris

  13. Characterization of plutonium contamination at Maralinga: Dosimetry and cleanup criteria

    International Nuclear Information System (INIS)

    Cooper, M.B.; Martin, L.J.; Williams, G.A.; Harries, J.R.

    2000-01-01

    An area of South Australia remained contaminated following British atomic tests at Maralinga during 1955-1963. Of importance is the long lived 239 Pu of which some 24 kg was explosively dispersed in several 'minor trials'. The extent, quantities and physical characteristics of the plutonium have been assessed and estimates of dose, dominated by the inhalation pathway in the critical group of Aborigines living a semi-traditional lifestyle, have been made for potential occupants. Dosimetry, together with social and economic factors, underpins the setting of cleanup criteria in terms of activity concentrations averaged over large areas and permissible concentrations of contaminated particles. The possibility of intentional behaviour such as fragment scavenging has also influenced limits on particulate contamination. Rehabilitation of the most contaminated areas is underway, with scraping of surface soil and burial on site completed. Vehicular-mounted radiation detector systems for wide area and particle monitoring have been developed, and procedures established for determining cleanup boundaries and for the verification monitoring to ensure that the cleanup process has met the specified criteria. Data are being obtained for a final dose and health risk assessment of the cleaned up site. (author)

  14. EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON

    International Nuclear Information System (INIS)

    AMBALAM, T.

    2004-01-01

    , sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project

  15. The U.S. Department of Energy Environmental Restoration and Waste Management Five-Year Plan

    International Nuclear Information System (INIS)

    Grimm, P.

    1990-01-01

    Within the first month after being confirmed as this country's sixth secretary of energy, Admiral James D. Watkins (US Navy, Retired) promised Congress that he would deliver a comprehensive plan that outlines specific actions to undertake over the next 5 yr to achieve compliance with US environmental laws and to begin to clean up and restore those sites that we have contaminated over the past 40 yr. The Environmental Restoration and Waste Management Five-Year Plan was published in August 1989. As the admiral committed, the plan established and documented an agenda for compliance and cleanup against which progress in the area of environmental restoration and waste management would be measured and specifically identified actions and commitments to achieve this progress. In November 1989, an additional chapter identifying the applied research, development, demonstration, testing, and evaluation (RDDT and E) activities that would support the implementation of the plan was published. Last June, the US Department of Energy (DOE) issued the first annual update of the 5-yr plan. This update covers the years 1992-1996, notes the progress achieved during the past year, and incorporates the scope of both the original plan and the RDDT and E plan. The plan is divided into five sections: corrective activities, environmental restoration, waste operations, technology development, and transportation. Each section explains DOE's overall policies and plans for achieving compliance and cleanup at DOE's nuclear-related facilities

  16. Assessment of radiological properties of wastes from urban decontamination procedures

    International Nuclear Information System (INIS)

    Da Silva, D.N.G.; Guimarães, J.R.D.; Rochedo, E.R.R.; Rochedo, P.R.R.; De Luca, C.

    2015-01-01

    One important activity associated to urban areas contaminated from accidental releases to the atmosphere of nuclear power plants is the management of radioactive wastes generated from decontamination procedures. This include the collection, conditioning, packing, transport and temporary/final disposition. The final destination is defined usually through a political decision. Thus, transport of packed radioactive wastes shall depend on decisions not just under the scope of radiological protection issues. However, the simulations performed to assess doses for the public and decontamination workers allows the estimate of radiological aspects related to the waste generated and these characteristics may be included in a multi-criteria decision tool aiming to support, under the radiological protection point of view, the decision-making process on post-emergency procedures. Important information to decision makers are the type, amount and activity concentration of wastes. This work describes the procedures to be included in the urban area model to account for the assessment of qualitative and quantitative description of wastes. The results will allow the classification of different procedures according to predefined criteria that shall then feed the multi-criteria assessment tool, currently under development, considering basic radiological protection aspects of wastes generated by the different available cleanup procedures on typical tropical urban environments. (authors)

  17. Development of international criteria for the cleanup of contaminated areas

    International Nuclear Information System (INIS)

    Hedemann-Jensen, P.; Barraclough, I.; Meck, R.; Gnugnoli, G.; Stegnar, P.

    1999-01-01

    IAEA TECDOC-987, Application of radiation protection principles to the cleanup of contaminated areas, provides a coherent framework and consistent guidance needed for approaches to cleanup that encompass the entire range of contamination situations. A major goal of cleanup is usually to re-establish that the environment can acceptably support habitation and use. Difficult situations include chronic exposures due to radioactivity associated with the discovery of contamination from a previously discontinued practice and post-accident situations. and post-accident situations. The concepts of justification, optimization, and limitation can be applied to cleanup from 'trivial' to 'intolerable' situations by taking into account not only radiological risk, but the entire range of social values including the ability of the society to feed and shelter itself and to sustain a productive economy. TECDOC-987 proposes six ranges, or bands, of doses that correspond to trivial, acceptable, tolerable - clean-up unlikely (unless constrained), tolerable - clean-up likely, unacceptable, and intolerable risks. Remedial actions may vary from 'none' to elaborate decontamination or restricted or prohibited use. (author)

  18. High-level waste tank remediation technology integration summary. Revision 1

    International Nuclear Information System (INIS)

    DeLannoy, C.R.; Susiene, C.; Fowler, K.M.; Robson, W.M.; Cruse, J.M.

    1994-07-01

    The U.S. Department of Energy's Environmental Restoration and Waste Management and Technology Development Programs are engaged in a number of projects to develop, demonstrate, test, and evaluate new technologies to support the cleanup and site remediation of more than 300 underground storage tanks containing over 381,000 m 3 (100 million gal) of liquid radioactive mixed waste at the Hanford Reservation. Significant development is needed within primary functions and in determining an overall bounding strategy. This document is an update of continuing work to summarize the overall strategy and to provide data regarding technology development activities within the strategy. It is intended to serve as an information resource to support understanding, decision making, and integration of multiple program technology development activities. Recipients are encouraged to provide comments and input to the authors for incorporation in future revisions

  19. Methods for assessing environmental impacts of a FUSRAP property-cleanup/interim-storage remedial action

    International Nuclear Information System (INIS)

    Wyman, D.J.

    1982-12-01

    This document provides a description of a property-cleanup/interim-storage action, explanation of how environmental impacts might occur, comprehensive treatment of most potential impacts that might occur as a result of this type of action, discussion of existing methodologies for estimating and assessing impacts, justification of the choice of specific methodologies for use in FUSRAP environmental reviews, assessments of representative impacts (or expected ranges of impacts where possible), suggested mitigation measures, and some key sources of information. The major topical areas covered are physical and biological impacts, radiological impacts, and socioeconomic impacts. Some project-related issues were beyond the scope of this document, including dollar costs, specific accident scenarios, project funding and changes in Congressional mandates, and project management (contracts, labor relations, quality assurance, liability, emergency preparedness, etc.). These issues will be covered in other documents supporting the decision-making process. Although the scope of this document covers property-cleanup and interim-storage actions, it is applicable to other similar remedial actions. For example, the analyses discussed herein for cleanup activities are applicable to any FUSRAP action that includes site cleanup

  20. Radioactive Demonstrations Of Fluidized Bed Steam Reforming As A Supplementary Treatment For Hanford's Low Activity Waste And Secondary Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  1. Characteristic of the immunological state of Chernobyl accident clean-up workers in a late period after the accident

    International Nuclear Information System (INIS)

    Kurjane, N.; Zvagule, T.; Curbakova, E.; Bruvere, R.; Romanova, T.; Sitova, O; Hagina, E.; Socnevs, A.

    2001-01-01

    No differences in the number of immunologically competent cells and other immunological variables were found among the clean-up workers, depending on the time they were in Chernobyl. However, a statistically significant reduction in the number of CD3+, CD4+, CD16+ and CD19+, decrease in the levels of IgG and suppression of APH and the phagocytic activity of neutrophils with a simultaneous increase in the levels of IgA and C3d was found in all clean-up workers when compared to controls. In a small group of clean-up workers, the levels of some plasma cytokines were detected. A statistically significant increase in IL-6 levels was found in the clean-up workers when compared to controls. The irradiation received by the Chernobyl accident clean-up workers was large enough to cause disturbances in the function of cells and organ systems through immune system disorders with a resultant weakening of the body response and adaptation mechanisms. (authors)

  2. Modification and expansion of X-7725A Waste Accountability Facility for storage of polychlorinated biphenyl wastes at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    1995-11-01

    The US Department of Energy (DOE) must manage wastes containing polychlorinated biphenyls (PCBs) in accordance with Toxic Substances Control Act (TSCA) requirements and as prescribed in a Federal Facilities Compliance Agreement (FFCA) between DOE and the U.S. Environmental Protection Agency (EPA). PCB-containing wastes are currently stored in the PORTS process buildings where they are generated. DOE proposes to modify and expand the Waste Accountability facility (X-7725A) at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide a central storage location for these wastes. The proposed action is needed to eliminate the fire and safety hazards presented by the wastes. In this EA, DOE considers four alternatives: (1) no action, which requires storing wastes in limited storage areas in existing facilities; (2) modifying and expanding the X-7725A waste accountability facility; (3) constructing a new PCB waste storage building; and (4) shipping PCB wastes to the K-25 TSCA incinerator. If no action is taken, PCB-contaminated would continue to be stored in Bldgs X-326, X-330, and X-333. As TSCA cleanup activities continue, the quantity of stored waste would increase, which would subsequently cause congestion in the three process buildings and increase fire and safety hazards. The preferred alternative is to modify and expand Bldg. X-7725A to store wastes generated by TSCA compliance activities. Construction, which could begin as early as April 1996, would last approximately five to seven months, with a total peak work force of 70

  3. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile

  4. Packaging development needs to support environmental restoration

    International Nuclear Information System (INIS)

    Hummer, J.H.; Kuklinski, J.L.

    1993-01-01

    The U.S. Department of Energy is bringing its facilities into compliance with present environmental protection regulations. At the Hanford Site, this includes cleanup of its vast nuclear and chemical wastes. Cleanup will involve extensive collecting, consolidating, and processing of radioactive and other hazardous wastes. The Hanford Site was established by the Federal government in 1943 to produce plutonium. Natural uranium was fabricated into fuel slugs, inserted into nuclear reactors, and converted into plutonium. The irradiated slugs were then sent through plutonium extraction facilities. Process waste was discharged to the ground, stored on-site, or shipped off-site for disposal. Activities grew to include nine production reactors, five coal-fired power plants, nuclear fuel fabrication, other support facilities including underground waste storage tanks, and numerous chemical and waste processing plants. Cleanup activities will require extensive transport of radioactive and other hazardous materials. Packaging developments and research are required in the following areas to enhance environmental cleanup; (1) Packaging for Large Contaminated and Activated Components. (2) Bulk Packaging for Contaminated Solids. (3) Bulk Packaging for Contaminated Liquids. (4) Environmental Samples. (J.P.N.)

  5. Evaluation of contaminated groundwater cleanup objectives

    International Nuclear Information System (INIS)

    Arquiett, C.; Gerke, M.; Datskou, I.

    1996-01-01

    The US Department of Energy's (DOE's) Environmental Restoration Program will be responsible for remediating the approximately 230 contaminated groundwater sites across the DOE Complex. A major concern for remediation is choosing the appropriate cleanup objective. The cleanup objective chosen will influence the risk to the nearby public during and after remediation; risk to remedial and non-involved workers during remediation; and the cost of remediation. This paper discusses the trends shown in analyses currently being performed at Oak Ridge National Laboratories' (ORNL's) Center for Risk Management (CRM). To evaluate these trends, CRM is developing a database of contaminated sites. This paper examines several contaminated groundwater sites selected for assessment from CRM's data base. The sites in this sample represent potential types of contaminated groundwater sites commonly found at an installation within DOE. The baseline risk from these sites to various receptors is presented. Residual risk and risk during remediation is reported for different cleanup objectives. The cost associated with remediating to each of these objectives is also estimated for each of the representative sites. Finally, the general trends of impacts as a function of cleanup objective will be summarized. The sites examined include the Savannah River site, where there was substantial ground pollution from radionuclides, oil, coal stockpiles, and other forms of groundwater contamination. The effects of various types of groundwater contamination on various types of future user is described. 4 refs., 3 figs., 2 tabs

  6. Strategy and field implementation for determining a dangerous waste mixture in Washington State

    International Nuclear Information System (INIS)

    Cowan, Steve; Foster, Rick; Wright, Jamie

    1992-01-01

    Under the Resource Conservation and Recovery Act (RCRA), states rather than the Environmental Protection Agency (EPA) maybe authorized to implement RCRA regulations. Under RCRA, environmental regulations implemented by an authorized state must be at least as stringent as those contained in RCRA. Compared to RCRA, the corresponding regulations of the State of Washington regarding the determination of characteristic wastes are more stringent and complex. This paper discusses the complexities of the regulations and presents a strategy for successfully managing diverse waste streams. This strategy was used during the cleanup of contaminated areas and equipment at the Albany Research Center (ARC) in Albany, Oregon, which processed uranium and thorium for the Manhattan Engineer District and the Atomic Energy Commission during the early days of the nation's atomic energy program. Wastes from the cleanup of ARC were shipped to the Department of Energy (DOE) Hanford Reservation. Because the DOE Hanford Reservation is located in Washington, this paper should be of interest to DOE waste generators. (author)

  7. Nordic study on reactor waste. Technical part 1 and 2

    International Nuclear Information System (INIS)

    1981-08-01

    An important part of the Nordic studies on system- and safety analysis of the management of low and medium level radioactive waste from nuclear power plants, is the safety analysis of a Reference System. This reference system was established within the study and is described in this Technical Part 1. The reference system covers waste management Schemes that are potential possibilities in either one of the four participating Nordic countries. The reference system is based on: a power reactor system consisting of 6 BWR's of 500 MWe each, operated simultaneously over the same 30 year period, and deep bed granular ion exchange resin wastes from the Reactor Water Clean-Up System (RWCS and powdered ion exchange resin from the Spent Fuel Pool Cleanup System (SFPCS)). Both waste types are supposed to be solidified by mixing with cement and bitumen. Two basic types of containers are considered. Standard 200 liter steel drums and specially made cubicreinforced concrete moulds with a net volume of 1 m 3 . The Nordic study assumes temporary storage of the solidified waste for a maximum of 50 years before the waste is transferred to the disposal site. Transportation of the waste from the storage facilitiy to the disposal site will be by road or sea. Three different disposal facilities are considered: Shallow land burial, near surface concrete bunker, and rock cavern with about 30 m granite cover. (EG)

  8. Tritium research laboratory cleanup and transition project final report

    International Nuclear Information System (INIS)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project's multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition

  9. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  10. Historic low-level radioactive waste federal policies, programs and oversight

    International Nuclear Information System (INIS)

    Blanchette, M.; Kenney, J.; Zelmer, B.

    2011-01-01

    uranium mine and mill tailings. Natural Resources Canada's (NRCan's) Uranium and Radioactive Waste Management Division (URWD) provides policy direction and funding to two specific Offices within Atomic Energy of Canada (AECL), which operate on a cost recovery basis as NRCan's proponents for the management of historic waste: the Low-Level Radioactive Waste Management Office (LLRWMO), and the Port Hope Area Initiative Management Office (PHAI MO). For policy purposes historic waste is defined as low-level radioactive waste that was managed in the past in a manner no longer considered acceptable but for which the owner cannot reasonably be held responsible and for which the federal government has accepted responsibility for its long-term management. The LLRWMO was established in 1982 as Canada's agent for the management of historic LLRW. Its ongoing mandate also includes the provision of public information on low-level radioactive waste management generally. It provides services such as characterization, identification, management, remediation, and removal of LLRW soils, artefacts and structures as well as radiological, planning, and technical expertise in the field. Through oversight of these activities NRCan ensures the proper management of LLRW for which the federal government has accepted responsibility. The LLRWMO also operates community co-existence programs which facilitate safe occupancy and use of land and structures awaiting final remediation at various locations in Canada. Regulatory requirements are met in accordance with the requirements of the Canadian Nuclear Safety Commission (CNSC). From time to time new sources of contamination are identified, although this is now less frequent than when the LLRWMO was first established. LLRWMO activities are carried out under three programs: historic waste, ongoing waste, and information. Under the Historic Waste program, the LLRWMO carries out cleanup and long-term management of this waste on behalf of

  11. Cleanup Progress on High Hazard Legacy Facilities at Sellafield: Pile Fuel Cladding Silo

    International Nuclear Information System (INIS)

    Skilbeck, D.

    2006-01-01

    This facility was constructed in the 1940's as the original dry storage silo for Intermediate Level Waste (ILW) arising from the Windscale Pile Reactors. Subsequently it was used as the main storage facility for all ILW arising from the Sellafield operation. It was operated until it became full and the Magnox Swarf Storage Silos were constructed in the mid 1960's. A systematic and As Low As Reasonably Practicable (ALARP) risk reduction approach has been adopted at Sellafield to address issues in order of risk magnitude. Prior to being in a position to retrieve stored wastes it has been necessary to improve the overall safety performance of the silo. This has involved installing new fire prevention systems, improving structural integrity, clearing waste from the Transfer Tunnel, and improving overall seismic performance. A major step towards reducing the overall risk profile of this facility has been to seal the six charge holes in the Transfer Tunnel, that were used for tipping the waste into the silo compartments during operations. This also enabled the silo Transfer Tunnel to be removed. Overall this work has proved that significant cleanup can be performed safely and successfully, in one of the most hazardous environments at Sellafield. (authors)

  12. The mixed waste landfill integrated demonstration

    International Nuclear Information System (INIS)

    Burford, T.D.; Williams, C.V.

    1994-01-01

    The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ''in-situ'' characterization, monitoring, remediation, and containment of landfills in arid environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies and systems. The comparison will include the cost, efficiency, risk, and feasibility of using these innovative technologies at other sites

  13. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards -- Fiscal Year 2002 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bredt, Paul R.; Ainsworth, Calvin C.; Brockman, Fred J.; Camaioni, Donald M.; Egorov, Oleg B.; Felmy, Andrew R.; Gorby, Yuri A.; Grate, Jay W.; Greenwood, Margaret S.; Hay, Benjamin P.; Hess, Nancy J.; Hubler, Timothy L.; Icenhower, Jonathan P.; Mattigod, Shas V.; McGrail, B. Peter; Meyer, Philip D.; Murray, Christopher J.; Panetta, Paul D.; Pfund, David M.; Rai, Dhanpat; Su, Yali; Sundaram, S. K.; Weber, William J.; Zachara, John M.

    2002-06-11

    Pacific Northwest National Laboratory has been awarded a total of 80 Environmental Management Science Program (EMSP) research grants since the inception of the program in 1996. The Laboratory has collaborated on an additional 14 EMSP awards with funding received through other institution. This report describes how each of the projects awarded in 1999, 2000, and 2001 addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in the individual project reports included in this document. Projects are under way in three main areas: Tank Waste Remediation, Decontamination and Decommissioning, and Soil and Groundwater Cleanup.

  14. Assessing Technical and Programmatic Viability of Nuclear Waste and Material Stream Disposition Plans

    International Nuclear Information System (INIS)

    R. S. Hill; B. Griebenow

    1999-01-01

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) has responsibility for cleanup and disposition of nuclear wastes and excess materials that are a legacy of the nuclear arms race. In fulfilling this responsibility, EM applies a systems engineering approach to identify baseline disposition plans for the wastes and materials (storage, stabilization, treatment, and disposal), assess the path viability, and develop integration opportunities to improve the disposition viability or to combine, eliminate, and/or simplify activities, technologies, and facilities across the DOE Complex, evaluate the baseline and alternatives to make informed decisions, and implement and track selected opportunities. This paper focuses on processes used to assess the disposition path viability - the likelihood that current planning for disposition of nuclear waste and materials can be implemented

  15. Conducting five-year plan and tri-party agreement community outreach activities at the U. S. Department Of Energy Richland Field Office

    International Nuclear Information System (INIS)

    Peterson, James M.; Brown, Madeleine C.

    1992-01-01

    For cleanup to succeed, the public must be informed and involved. Both the Tri-Party Agreement and the Five-Year Plan require significant public interactions. The Tri-Party Agreement has a community relations plan, and the Five-Year Plan has a rigorous community outreach agenda. Both recognize that the public must get every reasonable opportunity to learn about and to voice opinions about DOE's cleanup activities. Beginning this year, our Five-Year Plan public participation action plan will fold in all DOE Environmental Restoration and Waste Management outreach activities at Hanford. This supports the need we recognize to coordinate public involvement activities sitewide. (author)

  16. Tritium waste control: April-September 1982

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Rogers, M.L.

    1983-01-01

    The pilot-scale, water feed cleanup system was used to successfully remove organic and inorganic impurities from Effluent Removal System (ERS) water. Tests with activated carbon traps removed organic impurities to as low as 2.5 ppM total carbon. Traps containing Amberlite resins for removing organic impurities were not successful and actually contaminated the water with higher levels (>2000 ppM) of organics. Gas generation rates caused by radiolysis of tritiated waste materials were determined for polymer and nonpolymer-impregnated tritiated concrete and fixated and nonfixated tritiated waste vacuum pump oil. In addition, the pressure change of hydrogen cover gas over tritiated water on cement-plaster was determined. The test program to measure and compare the release of tritium from tritiated concrete with and without styrene impregnation continued. Tritium permeation data from small test blocks are given. The drum study monitoring the release of tritium from actual burial packages continued. The maximum fractional release rate for the three types of high activity, tritiated liquid waste generated is 2.97 x 10 -5 , and the maximum total permeation is 158 mCi after 8 yr. These two values represent a 13% increase for the past 6 months. Tritium release from the polymer-impregnated, tritiated concrete (PITC) and from the control (non-PITC) remains very low

  17. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.

  18. Management of radioactive waste from nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    Even thought risk assessment is an essential consideration in all projects involving radioactive or hazardous waste, its public role is often unclear, and it is not fully utilized in the decision-making process for public acceptance of such facilities. Risk assessment should be an integral part of such projects and should play an important role from beginning to end, i.e., from planning stages to the closing of a disposal facility. A conceptual model that incorporates all potential pathways of exposure and is based on site-specific conditions is key to a successful risk assessment. A baseline comparison with existing standards determines, along with other factors, whether the disposal site is safe. Risk assessment also plays a role in setting priorities between sites during cleanup actions and in setting cleanup standards for certain contaminants at a site. The applicable technologies and waste disposal designs can be screened through risk assessment

  19. A breakthrough in flue gas cleanup, CO2 mitigation and H2S removal

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolf; Wasas, James; Stenger, Raymond; Howell, Evan

    2010-09-15

    SWAPSOL Corp. is developing commercial processes around a newly discovered reaction that reduces H2S below detectable levels while reacting with CO2 to form water, sulfur and carsuls, a carbon-sulfur polymer. The Stenger-Wasas Process (SWAP) stands to simplify sulfur removal technology as it consumes CO2 in an exothermic reaction. The SWAP has applications in landfill, sour, flue and Claus tail gas cleanup and may replace Claus technology. Destruction of waste hydrocarbons provides a source of H2S. The primary reactions and variants have been independently verified and the chemical kinetics determined by a third party laboratory.

  20. Science To Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards; FINAL

    International Nuclear Information System (INIS)

    Bredt, Paul R; Brockman, Fred J; Grate, Jay W; Hess, Nancy J; Meyer, Philip D; Murray, Christopher J; Pfund, David M; Su, Yali; Thornton, Edward C; Weber, William J; Zachara, John M

    2001-01-01

    Pacific Northwest National Laboratory (PNNL) was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, nine in fiscal year 1998, seven in fiscal year 1999, and five in fiscal year 2000. All of the fiscal year 1996 award projects have published final reports. The 1997 and 1998 award projects have been completed or are nearing completion. Final reports for these awards will be published, so their annual updates will not be included in this document. This section summarizes how each of the 1999 and 2000 grants address significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. The 1999 and 2000 EMSP awards at PNNL are focused primarily in two areas: Tank Waste Remediation, and Soil and Groundwater Cleanup

  1. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  2. The electrochemical oxidation of organic waste and activated graphite by Ag2+ in nitric acid: a literature study

    International Nuclear Information System (INIS)

    Van Alsenoy, V.; Rahier, A.

    1996-08-01

    Organic wastes and activated moderator graphite can be processed by means of combustion, but the incineration of organic waste poses emission problems. The Belgian Nuclear Research Centre SCK-CEN has experience with the treatment of organic wastes. Moreover, the treatment of radioactive graphite will be required since the BR-1 reactor is moderated with 492 tons of graphite. The strong oxidising properties of Ag 2+ are already used in the chemical and nuclear industry to destroy organic waste. We aim to apply the process on radioactive graphite, organic resins and effluents. The reaction mechanisms will be studied, taking into account the thermodynamic and kinetic properties of the different reactions involved. As a first step, this document gives a literature study of the electrochemical oxidation using Ag 2+ . This document presents a thorough literature study, and shows that the oxidative properties of the Ag 2+ ion, which can easily be formed in nitric acid by means of electrolysis, make it an ideal candidate to oxidize organic molecules into carbon dioxide and water on a perfectly well controlled manner. The process has already been used to destroy explosives and toxic organic waste in the nuclear and chemical industry. Chemical, thermodynamic and kinetic aspects of some of the reactions involved are already known and described, other reaction mechanisms are still unknown. On the basis of the information collected so far, the Research and Development group of the Radioactive Waste and Cleanup unit has proposed to start a research programme to define, test, demonstrate and finally apply a safe process for the treatment of radioactive organic material and graphite by electrochemical oxidation using Ag 2+ . Available data confirm that the oxidation of organic material can be carried out safely, leading to the formation of water and carbon dioxide

  3. A simple cleanup method for the isolation of nitrate from natural water samples for O isotopes analysis

    International Nuclear Information System (INIS)

    Haberhauer, G.; Blochberger, K.

    1999-09-01

    The analysis of O-isotopic composition of nitrate has many potential applications in studies of environmental processes. O-isotope nitrate analysis require sample free of other oxygen-containing compounds. More than 100 % of non-NO 3 - oxygen relative to NO 3 - oxygen can still be found in forest soil water samples after cleanup if improper cleanup strategies, e.g., adsorption onto activated carbon, are used. Such non-NO 3 - oxygen compounds will bias O-isotropic data. Therefore, an efficient cleanup method was developed to isolate nitrate from natural water samples. In a multistep cleanup procedure using adsorption onto water-insoluble poly(vinylpyrrolidone), removal of almost all other oxygen-containing compounds, such as fulvic acids, and isolation of nitrate was achieved. The method supplied samples free of non-NO 3 - oxygen which can be directly combusted to CO 2 for subsequent O-isotope analysis. (author)

  4. Avoiding the Hazards of Hazardous Waste.

    Science.gov (United States)

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  5. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    International Nuclear Information System (INIS)

    Berry, J.; Gallaher, B.N.

    2011-01-01

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  6. Regulation of higher-activity NARM wastes by EPA

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the disposal of low-level radioactive waste (LLW). As part of this Standard, EPA is including regulations for the disposal of naturally occurring and accelerator-produced radioactive material (NARM) wastes not covered under the Atomic Energy Act (AEA). The regulations will cover only higher-activity NARM wastes, defined as NARM waste with specific activity exceeding two nanocuries per gram. The proposed regulations will specify that NARM wastes exceeding the above limits, except for specific exempted items, must be disposed of in regulated radioactive waste disposal facilities. The proposed EPA regulations for NARM wastes will be discussed, as well as the costs and benefits of the regulation, how it will be implemented by EPA, and the rationale for covering only higher-activity NARM wastes exceeding two nanocuries per gram

  7. Robotics in hazardous waste management

    International Nuclear Information System (INIS)

    Mahalingam, R.J.; Jayaraman, K.M.; Cunningham, A.J.; Meieran, H.B.; Zafrir, H.; Kroitoru, L.

    1994-01-01

    This paper addresses the advent of mobile robotic systems into the earth sciences and environmental studies. It presents issues surrounding the rationale for employing stationary and mobile robots to assist in waste chemical site remediation and cleanup activities, missions that could be conducted, and the current availability status for these devices. This rationale is an extension of that being promoted by the US Department of Energy (DOE) to assist in resolving environmental restoration and waste management (ER and WM) issues associated with several DOE national laboratories, facilities, and other sites. DOE has also committed to restore the environment surrounding the existing storage facilities and sites to a safe state. Technologies that are expected to play a major role in these activities are stationary and mobile robotic devices, and in particular, mobile robots. Specific topics discussed in this article include: introduction to robotics: motivations for considering robots in HWM: incorporation of robotics into HWM methods--this subsection includes a rationale for performing a ''screening test'' to determine the advantages of using a robot; safety and performance factors; illustrations for robots in action and current and future trends

  8. Standard data report. 1997 annual report on waste generation and waste minimization progress

    International Nuclear Information System (INIS)

    Wilburn, D.

    1998-01-01

    The Laboratory's central mission of Reducing the Global Nuclear Danger supports core competencies that enable the Laboratory to contribute to defense, civilian, and industrial needs. In turn, the intellectual challenges of civilian and industrial problems strengthen and help support the core competencies required for the national security mission. The ability to do great science underpins all of the applied work. There are five core competencies which support this mission: (1) Stockpile Stewardship ensures the US has safe, secure and reliable nuclear weapons; (2) Stockpile Management provides capabilities ranging from dismantling to remanufacturing of the enduring stockpile; (3) Nuclear Materials Management ensures the availability and safe disposition of plutonium, highly enriched uranium, and tritium; (4) Nonproliferation and Counterproliferation help to deter, detect, and respond to the proliferation of weapons of mass destruction; and (5) Environmental Stewardship provides for the remediation and reduction of wastes from the nuclear weapons complex. This report contains data on volumes of waste generated as part of routine and cleanup/stabilization activities of the lab

  9. Recent activity on disposal of uranium waste

    International Nuclear Information System (INIS)

    Fujiwara, Noboru

    1999-01-01

    The concept on the disposal of uranium waste has not been discussed in the Atomic Energy Commission of Japan, but the research and development of it are carried out in the company and agency which are related to uranium waste. In this paper, the present condition and problems on disposal of uranium waste were shown in aspect of the nuclear fuel manufacturing companies' activity. As main contents, the past circumstances on the disposal of uranium waste, the past activity of nuclear fuel manufacturing companies, outline and properties of uranium waste were shown, and ideas of nuclear fuel manufacturing companies on the disposal of uranium waste were reported with disposal idea in the long-term program for development and utilization of nuclear energy. (author)

  10. Development of closure criteria for inactive radioactive waste-disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) specifies that the U.S. Department of Energy shall comply with the procedural and substantive requirements of CERCLA regarding cleanup of inactive waste-disposal sites. Remedial actions require a level of control for hazardous substances that at least attains legally applicable or relevant and appropriate requirements (ARAR). This requirement may be waived if compliance with ARAR results in greater risk to human health and the environment than alternatives or is technically impractical. It will review potential ARAR for cleanup of inactive radioactive waste-disposal sites and propose a set of closure criteria for such sites at Oak Ridge National Laboratory. Important potential ARAR include federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. Proposed criteria for cleanup of inactive radioactive waste-disposal sites are: (1) a limit of 0.25 mSv on annual effective dose equivalent for offsite individuals; (2) limits of 1 mSv for continuous exposures and 5 mSv for occasional exposures on annual effective dose equivalent for inadvertent intruders, following loss of institutional controls over disposal sites; and (3) limits on concentrations of radionuclides in potable ground and surface waters in accordance with federal drinking-water standards, to the extent reasonably achievable

  11. Nuclear cleanup and decontamination for dismantling operations

    International Nuclear Information System (INIS)

    Bargues, S.; Solignac, Y.; Lapierre, Y.

    2003-01-01

    In the May 2003 issue of the review 'Controle', the French Nuclear Safety Authority (Autorite de Surete Nucleaire or ASN) reviewed the radiation protection and waste management principles applicable to dismantling operations carried out on nuclear installations, i.e. reactors, research laboratories, fuel cycle installations and nuclear power reactors. Estelle Chapelain, of the DGSNR (French General Directorate for Nuclear Safety and Radiation Protection), pointed out that dismantling work does not involve the same radioactive risks as operating an installation. For instance, 'the risk of disseminating radioactive material is generally greater because the dismantling process supposes the removal of one or more containment barriers'. In addition to this risk of internal exposure, the possibility of external irradiation of personnel must be taken into account due to the nature of the work carried out by the operators. The probability of conventional hazards is also accentuated, these hazards varying as work progresses (fire hazards during cutting operations, hazards associated with handling tasks, etc). Other risks must also be considered: hazards due to the ageing of installations, to loss of traceability, and finally the risks associated with waste management. Waste management falls within a strict regulatory framework specified by the decree dated December 31, 1999, which makes it compulsory to carry out a 'waste survey' with the aim of producing an inventory of waste and improving waste management. These surveys include 'waste zoning' to identify those areas liable to have been contaminated. These requirements lead operators to adapt their cleanup methodology in order to distinguish suspect rooms or equipment from those that can be deemed with certainty to be conventional. In its conclusion, the safety authority recalls the importance of 'the safety and radiation protection of dismantling operations being effectively managed and optimised, without imposing

  12. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  13. Compaction and packaging of dry active municipal wastes

    International Nuclear Information System (INIS)

    Chen Zongming; Xi Xinmin

    1994-01-01

    The authors present the feature of a compaction system for active municipal wastes and the radiological monitoring results of workplace and environment. A variety of dry active municipal wastes could be compacted by this system. Volume reduction factor attained to 5 to 7 for soft wastes and 8 to 13 for hard wastes. No evident radiological impact was found on workplace and environment

  14. Environmental Management Waste Management Facility Proxy Waste Lot Profile 6.999 for Building K-25 West Wing, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby V.P.

    2009-02-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement

  15. The electrochemical oxidation of organic waste and activated graphite by Ag{sup 2+} in nitric acid: a literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Alsenoy, V.; Rahier, A.

    1996-08-01

    Organic wastes and activated moderator graphite can be processed by means of combustion, but the incineration of organic waste poses emission problems. The Belgian Nuclear Research Centre SCK-CEN has experience with the treatment of organic wastes. Moreover, the treatment of radioactive graphite will be required since the BR-1 reactor is moderated with 492 tons of graphite. The strong oxidising properties of Ag{sup 2+} are already used in the chemical and nuclear industry to destroy organic waste. We aim to apply the process on radioactive graphite, organic resins and effluents. The reaction mechanisms will be studied, taking into account the thermodynamic and kinetic properties of the different reactions involved. As a first step, this document gives a literature study of the electrochemical oxidation using Ag{sup 2+}. This document presents a thorough literature study, and shows that the oxidative properties of the Ag{sup 2+} ion, which can easily be formed in nitric acid by means of electrolysis, make it an ideal candidate to oxidize organic molecules into carbon dioxide and water on a perfectly well controlled manner. The process has already been used to destroy explosives and toxic organic waste in the nuclear and chemical industry. Chemical, thermodynamic and kinetic aspects of some of the reactions involved are already known and described, other reaction mechanisms are still unknown. On the basis of the information collected so far, the Research and Development group of the Radioactive Waste and Cleanup unit has proposed to start a research programme to define, test, demonstrate and finally apply a safe process for the treatment of radioactive organic material and graphite by electrochemical oxidation using Ag{sup 2+}. Available data confirm that the oxidation of organic material can be carried out safely, leading to the formation of water and carbon dioxide.

  16. ANDRA - National Radioactive Waste Management Agency. Activity report 2008 - Fostering dialogue and outreach. Management report - Financial statements at December 31, 2008. Annual Sustainable Development Report 2008 - From strategy to initial actions: Andra's sustained commitment

    International Nuclear Information System (INIS)

    2009-06-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report, with the management and financial statements report, and the Sustainable Development Report of the Andra for the year 2008

  17. Solidification of highly active wastes

    International Nuclear Information System (INIS)

    Morris, J.B.

    1986-07-01

    This document contains the annual reports for the contracts: (A) Glass Technology; (B) Calcination of Highly Active Waste Liquors; (C) Formation and Trapping of Volatile Ruthenium; (D) Deposition of Ruthenium; (E) Enhancement of Off-Gas Aerosol Collection; (F) Volatilisation of Cs, Tc and Te in High Level Waste Vitrification. (author)

  18. Design and operation of a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Becker, G.W. Jr.; Makohon, P.A.

    1981-01-01

    A full-scale test incinerator has been built at the Savannah River Laboratory to provide a design basis for a radioactive facility that will burn low-level beta-gamma contaminated waste. The processing steps include waste feed loading, incineration, ash residue packaging, and off-gas cleanup. Both solid and liquid waste will be incinerated during the test program. The components of the solid waste are cellulose, latex, polyethylene, and PVC; the solvent is composed of n-paraffin and TBP. A research program will confirm the feasibility of the design and determine the operating parameters

  19. Worldwide analysis of marine oil spill cleanup cost factors

    International Nuclear Information System (INIS)

    Etkin, D.S.

    2000-01-01

    The many factors that influence oil spill response costs were discussed with particular emphasis on how spill responses differ around the world because of differing cultural values, socio-economic factors and labor costs. This paper presented an analysis of marine oil spill cleanup costs based on the country, proximity to shoreline, spill size, oil type, degree of shoreline oiling and cleanup methodology. The objective was to determine how each factor impacts per-unit cleanup costs. Near-shore spills and in-port spills were found to be 4-5 times more expensive to clean than offshore spills. Responses to spills of heavy fuels also cost 10 times more than for lighter crudes and diesel. Spill responses for spills under 30 tonnes are 10 times more costly than on a per-unit basis, for spills of 300 tonnes. A newly developed modelling technique that can be used on different types of marine spills was described. It is based on updated cost data acquired from case studies of more than 300 spills in 40 countries. The model determines a per-unit cleanup cost estimation by taking into consideration oil type, location, spill size, cleanup methodology, and shoreline oiling. It was concluded that the actual spill costs are totally dependent on the actual circumstances of the spill. 13 refs., 10 tabs., 3 figs

  20. Evaluation of the persistence of functional and biological respiratory health effects in clean-up workers 6 years after the Prestige oil spill.

    NARCIS (Netherlands)

    Zock, J.P.; Rodríguez-Trigo, G.; Rodríguez-Rodríguez, E.; Souto-Alonso, A.; Espinosa, A.; Pozo-Rodríguez, F.; Gómez, F.P.; Fuster, C.; Castaño-Vinyals, G.; Antó, J.M.; Barberà, J.A.

    2014-01-01

    Fishermen who had participated in clean-up activities of the Prestige oil spill showed increased bronchial responsiveness and higher levels of respiratory biomarkers 2years later. We aimed to evaluate the persistence of these functional and biological respiratory health effects 6years after clean-up

  1. Environmental Restoration and Waste Management (EM) program: An introduction

    International Nuclear Information System (INIS)

    1990-12-01

    This booklet introduces the reader to the mission and functions of a major new unit within the US Department of Energy (DOE): the Office of Environmental Restoration and Waste Management (EM). The Secretary of Energy established EM in November 1989, implementing a central purpose of DOE's first annual Environmental Restoration and Waste Management Five-Year Plan, which had appeared three months earlier. The contents of this booklet, and their arrangement, reflect the annual update of the Five-Year Plan. The Five-Year Plan supports DOE's strategy for meeting its 30-year compliance and cleanup goal. This strategy involves: focusing DOE's activities on eliminating or reducing known or recognized potential risks to worker and public health and the environment, containing or isolating, removing, or detoxifying onsite and offsite contamination, and developing technology to achieve DOE's environmental goals

  2. Providing an integrated waste management strategy and operation focused on project end states at the Hanford site

    International Nuclear Information System (INIS)

    Blackford, L.

    2009-01-01

    CH2M HILL Plateau Remediation Company (CHPRC) is the U.S. Department of Energy's (DOE) contractor responsible for the safe, environmental cleanup of the Central Plateau of the Hanford Site. The 586-square-mile Hanford Site is located along the Columbia River in southeastern Washington State. A plutonium production complex with nine nuclear reactors and associated processing facilities, Hanford played a pivotal role in the nation's defense for more than 40 years, beginning in the 1940's with the Manhattan Project. Today, under the direction of the DOE, Hanford is engaged in the world's largest environmental cleanup project. The Plateau Remediation Contract (PRC) is a 10-year project paving the way for closure of the Hanford Site through demolition of the Plutonium Finishing Plant; remediation of six burial grounds and 11 groundwater systems; treatment of 43.8 meters of sludge; and disposition of 8,200 meters of transuranic waste, 800 spent nuclear material containers, 2,100 metric tons of spent nuclear fuel, and two reactors. The $4.5 billion project, funded through the U.S. DOE Office of Environmental Management, focuses equally on reducing risks to workers, the public, and the environment and on protecting the Columbia River. The DOE, which operates the Hanford Site, the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology) signed a comprehensive cleanup and compliance agreement on May 15, 1989. The Hanford Federal Facility Agreement and Consent Order, or Tri-Party Agreement (TPA), is an agreement for achieving compliance with the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) remedial action provisions and with the Resource Conservation and Recovery Act (RCRA) treatment, storage, and disposal (TSD) unit regulations and corrective action provisions . More specifically, the Tri-Party Agreement does the following: 1) defines and ranks CERCLA and RCRA cleanup commitments; 2) establishes

  3. Segregation of low-level dry active waste

    International Nuclear Information System (INIS)

    Kornblith, L. Jr.; Naughton, M.D.; Welsh, L.

    1984-01-01

    A program has been carried out to characterize the Dry Active Waste (DAW) stream from a typical PWR power plant in order to determine the usefulness of large-volume DAW monitors for segregating such waste in order to dispose of it in appropriate facilities. A waste monitor using plastic scintillation counters was used for measuring the waste. The monitor had a volume of about 300 liters and an overall efficiency of about 12% for a typical fission product mixture. It provides automatic compensation for background radioactivity and can measure a bag of waste in less than a minute, including background measurements. Six hundred consecutively generated bags of DAW were measured. These had a total activity of about one millicurie and an average specific activity of about 540 nanocuries per kilogram. About half of the bags contained less than 1000 nanocuries and had specific activities of less than 100 nanocuries per kilogram. Based on simplified preliminary calculations, it appears that an evaluation of the risks of disposal of bags such as these in a landfill other than a low-level waste disposal facility could be carried out that would demonstrate that such disposal of half or more of these bags would not result in any substantial hazard, either short or long term

  4. Early phase clean-up actions after nuclear accidents. Guidelines for the planner. Final report

    International Nuclear Information System (INIS)

    Ulvsand, T.

    1997-06-01

    The work reported has been performed with the purpose of working out a guide for planners of early clean-up actions in nuclear fallout situations and for decision makers in the Nordic countries. The actions considered are hosing of roofs, walls and paved areas, lawn mowing, removal of snow, pruning of trees and bushes and vacuum cleaning of streets. The expected effects, mainly as life time dose reduction, and consequences regarding practicability, waste produced, staffing and protection are presented for urban, suburban and rural living environments. The work has been performed within the fram work of the Nordic Nuclear Safety Research Program 1994-97 (Statens Raeddningsverk). (au)

  5. Status of the Japan's regulatory policy on radioactive waste management. Cleanup and recycling issues

    International Nuclear Information System (INIS)

    Takeuchi, Daiji

    1995-01-01

    Wastes from nuclear facilities are very diversified concerning that have different levels of radioactivity and include different kinds of radioactive materials. Besides some of those waste is not assumed as radioactive waste. The basic policy of the radioactive waste management is taking that diversity into full account for appropriate separate management of different types of radioactive waste and treatment and disposal of each type in a rational manner, including recycling. From the point, the disposal methods are considered or under consideration to that waste, (1) from nuclear reactor facility, (2) from nuclear fuel cycle facility--HLW, waste contaminated TRU nuclides, or contaminated uranium, (3) from RI utilization or research institute, and (4) from decommissioning of nuclear facility. Now in Japan, regulation framework for some kind of LLW from reactor facility, including waste from decommissioning of reactor is established. (J.P.N.)

  6. Containment and stabilization technologies for mixed hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1993-05-01

    A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications

  7. Development of a new chemical technology for cleanup of VVER steam generators

    International Nuclear Information System (INIS)

    Smykov, V.B.; Yermolaev, N.P.; Ivanov, V.N.

    2002-01-01

    As shows the maintenance experience of SG's, the long-time maintenance them without chemical cleanup on secondary-side results in accumulation of considerable amounts of depositions of oxides of iron with a high content of copper on outside of tubes. The deposit accumulation creates conditions for concentrating of salts which promote corrosion and, then, the loosing of inter-contour tightness. Therefore the experts do not have any doubts in necessity of chemical cleanups and the chemical cleanups were carried out at some NPP's with VVER during last years. However it is possible to say, that these cleanups were carried out not by the best mode - the same main reagents had been used in order to dissolve the copper and iron oxides. For example, all cleanups at Balakovo NPP in 1996-1997 years had the common deficiency - even during 5. final stage of process the copper prolongs to be washed. By our opinion, the reasons of it are the poor scientific and technical justification of this process. Therefore at various NPP's with VVER cleanups realize by various techniques. The process of chemical cleanup, close to offered in the present work, was repeated many times utilized at BN-600 Belojarsk NPP and at BN-350 Shevtchenko NPP. The purposes of the present work are: 1. Research the behaviours of physicochemical processes during dissolution of components of depositions and their mixtures with use of the various formulas; 2. Analysis of the carried out chemical cleanups of PGV-1000M at an example of Balakovo NPP; 3. Development of a new process of SG's cleanup on the base of experimental researches and analysis; 4. Check of this process on the samples of full-scale depositions from SG Balakovo NPP. (authors)

  8. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    International Nuclear Information System (INIS)

    Zhu, Ming; Moorer, Richard

    2013-01-01

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in integrated

  9. Clean-up and dismantling, Dismantling - legacy of the past, prospects for the future: CEA, a pioneer in the dismantling process, nuclear dismantling, research and innovation dedicated to dismantling

    International Nuclear Information System (INIS)

    Lorec, Amelie

    2016-01-01

    France - a world leader in the whole nuclear power cycle - is also responsible for the clean-up and dismantling of its end-of-life nuclear facilities. Here, the CEA is considered to be a pioneer both in the project ownership of work sites and in the R and D for optimising the timescales, costs and safety of those work sites. Its responsibilities range from defining the most appropriate scenario, characterising the radiological state of equipment and decontaminating premises, carrying out dismantling and optimising the resulting waste. With this wide range of skills and the diversity of its facilities, the CEA Nuclear Energy Division is developing innovative solutions which are already the subject of industrial transfers. Two-thirds of France's end-of-life nuclear facilities belong to the CEA - a situation connected with its history. This implies setting up clean-up and dismantling work sites which have unprecedented scientific, human and financial challenges. Every regulated nuclear installation (INB) (nuclear reactors, laboratories, etc.) has a limited operating life. When it stops being used, it is first cleaned up (removal of radioactive substances), then dismantled (disassembly of components) in accordance with the baseline safety requirements, and finally decommissioned so that it can be used for other purposes or be demolished. Cleanup and dismantling operations concern all the facility's components, such as hot (shielded) cells which can be found in some laboratories. As the owner of its clean-up and dismantling projects, the CEA also devotes a significant amount of R and D to reducing the timescales, costs and waste from current and future programmes, while improving their safety. The resulting innovations often lead to industrial transfers. (authors)

  10. Portable sensor for hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Fraser, M.E.; Davis, S.J. [Physical Sciences Inc., Andover, MA (United States)

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  11. Experimentation with a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Lewandowski, K.E.; Becker, G.W.

    1982-01-01

    A test facility for the incineration of suspect and low-level beta-gamma waste has been built and operated at the Savannah River Laboratory. The processing steps include waste feeding, incineration, ash residue packaging, and off-gas cleanup. Demonstration of the full-scale (180 kg/hr) facility with nonradioactive, simulated waste is currently in progress. At the present time, over nine metric tons of material including rubber, polyethylene, and cellulose have been incinerated during three burning campaigns. A comprehensive test program of solid and liquid waste incineration is being implemented. The data from the research program is providing the technical basis for a phase of testing with low-level beta-gamma waste generated at the Savannah River Plant

  12. Results of field testing of radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W., Jr.; Rogers, R.D.; Jastrow, J.D.; Wickliff, D.S.

    1992-01-01

    The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining informaiton on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first six years of sampling are presented and discussed. Application of lysimeter data to use in performance assessment models is presented. Initial results from use of data in a performance assessment model are discussed

  13. Clean-up of the sea bed in the North Sea 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The petroleum activities in the North Sea have inadvertently caused some conflict with fishermen getting their trawls etc. into trash from littering of the sea bed. In the present report, the Norwegian Petroleum Directorate describes a clean-up operation undertaken in 1996 and paid by the State. A clean-up area of 1000 km 2 off Karmoey was selected. This area was mapped by side scan sonar along survey lines 300 m equidistant and a sonar range of 200 m. The sonar data were continuously interpreted by a geophysicist. Selected targets were then identified by ROV and eventually removed. Of the 59 targets examined, 11 were removed and dumped onshore. The largest part elevated was a chain cable of 9 tons. There is also a brief discussion of the compensation agreement with Norwegian fishermen. 4 figs

  14. Environmental Restoration/Waste Management - applied technology. Semiannual report, July 1992--June 1993, Volume 1, Number 2, and Volume 2, Number 1

    International Nuclear Information System (INIS)

    Murphy, P.W.; Bruner, J.M.; Price, M.E.; Talaber, C.J.

    1993-01-01

    The Environmental Restoration/Waste Management-Applied Technology (ER/WM-AT) Program is developing restoration and waste treatment technologies needed for the ongoing environmental cleanup of the Department of Energy (DOE) complex and treatment technologies for wastes generated in the nuclear weapons production complex. These technologies can find application to similar problems nationally and even worldwide. They can be demonstrated at the Livermore site, which mirrors (on a small scale) many of the environmental and waste management problems of the rest of the DOE complex. Their commercialization should speed cleanup, and the scope of the task should make it attractive to US industry. The articles in this semi-annual report cover the following areas: ceramic final forms for residues of mixed waste treatment; treatment of wastes containing sodium nitrate; actinide volatility in thermal oxidation processes; in situ microbial filters for remediating contaminated soils; collaboration with scientists in the former Soviet Union on new ER/WM technologies; and fiber-optic sensors for chlorinated organic solvents

  15. 40 CFR 312.25 - Searches for recorded environmental cleanup liens.

    Science.gov (United States)

    2010-07-01

    ... cleanup liens. 312.25 Section 312.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS INNOCENT LANDOWNERS, STANDARDS FOR... cleanup liens. (a) All appropriate inquiries must include a search for the existence of environmental...

  16. Review of State Soil Cleanup Levels for Dioxin (December 2009)

    Science.gov (United States)

    This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...

  17. INNOVATIVE TECHNIQUES AND TECHNOLOGY APPLICATION IN MANAGEMENT OF REMOTE HANDLED AND LARGE SIZED MIXED WASTE FORMS

    International Nuclear Information System (INIS)

    BLACKFORD LT

    2008-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) plays a critical role in Hanford Site cleanup for the U. S. Department of Energy, Office of River Protection (ORP). CH2M HILL is responsible for the management of 177 tanks containing 53 million gallons of highly radioactive wastes generated from weapons production activities from 1943 through 1990. In that time, 149 single-shell tanks, ranging in capacity from 50,000 gallons to 500,000 gallons, and 28 double-shell tanks with a capacity of 1 million gallons each, were constructed and filled with toxic liquid wastes and sludges. The cleanup mission includes removing these radioactive waste solids from the single-shell tanks to double-shell tanks for staging as feed to the Waste Treatment Plant (WTP) on the Hanford Site for vitrification of the wastes and disposal on the Hanford Site and Yucca Mountain repository. Concentrated efforts in retrieving residual solid and sludges from the single-shell tanks began in 2003; the first tank retrieved was C-106 in the 200 East Area of the site. The process for retrieval requires installation of modified sluicing systems, vacuum systems, and pumping systems into existing tank risers. Inherent with this process is the removal of existing pumps, thermo-couples, and agitating and monitoring equipment from the tank to be retrieved. Historically, these types of equipment have been extremely difficult to manage from the aspect of radiological dose, size, and weight of the equipment, as well as their attendant operating and support systems such as electrical distribution and control panels, filter systems, and mobile retrieval systems. Significant effort and expense were required to manage this new waste stream and resulted in several events over time that were both determined to be unsafe for workers and potentially unsound for protection of the environment. Over the last four years, processes and systems have been developed that reduce worker exposures to these hazards, eliminate violations

  18. Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    Science.gov (United States)

    The purpose of this issue paper is to provide a concise discussion of the processes associated with the use of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is ...

  19. Systems engineering functions and requirements for the Hanford cleanup mission. First issue, Addendum 2

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, J.J.

    1994-01-01

    This addendum provides the technical detail of a systems engineering functional analysis for the Hanford cleanup mission. Details of the mission analysis including mission statement, scope, problem statement, initial state definition, and final state definition are provided in the parent document. The functional analysis consists of Input Computer Automated Manufacturing Definition (IDEFO) diagrams an definitions, which will be understood by systems engineers, but which may be difficult for others to comprehend. For a more complete explanation of this work, refer to the parent document. The analysis covers the total Hanford cleanup mission including the decomposition levels at which the various Hanford programs or integrated activities are encountered.

  20. Accelerating cleanup. Paths to closure Hanford Site

    International Nuclear Information System (INIS)

    Edwards, C.

    1998-01-01

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE's national strategy, the Richland Operations Office's Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established

  1. Prioritization of environmental cleanup problems at Hanford

    International Nuclear Information System (INIS)

    Fassbender, L.L.

    1994-01-01

    New technologies and scientific research are needed to clean up the Hanford Site. However, there is insufficient funding to develop every technology that is identified or to undertake every scientific research project that is proposed. Thus, the Department of Energy (DOE) must focus its resources on science and technology (S ampersand T) that will have the most significant impacts on the overall cleanup effort. Hanford has recognized the importance of identifying and prioritizing its most critical problems and the most promising solutions to them. Hanford cleanup will require numerous decisions about technology development and implementation, which will be complicated because there are substantial uncertainties about the risks and the costs of new technologies. Further, the choice of a specific technology for a specific application must be evaluated with respect to multiple (and often conflicting) objectives (e.g., risk reduction, increasing effectiveness, cost reduction, increasing public acceptability, regulatory compliance). This paper provides an overview of the decision analysis methodology that was used to prioritize S ampersand T needs for Hanford cleanup

  2. Providing support for day-to-day monitoring of shoreline cleanup operations

    International Nuclear Information System (INIS)

    Lamarche, A.; Tarpley, J.

    1997-01-01

    Experiences gained during the 'Cape Mohican' incident in October 1996, in San Francisco Bay, were recounted and proposed as a potential example of day-to-day monitoring, evaluation and reporting of shoreline cleanup effort. During this cleanup a set of communications procedures, progress reports and maps were developed which should be equally useful in other similar situations. The cartographic representations were specially highlighted as they focused on ways to provide a clear picture of the short term modifications in oiling conditions of the affected shoreline. The most important lesson learned from this oil spill was the importance of having personnel and equipment sufficiently matched to the task in order to evaluate oil conditions, produce cleanup recommendations, execute and communicate the status of the cleanup effort as fast, and as efficiently and effectively as possible. It was clearly demonstrated that unless the decision process is streamlined and supported with the best, most up-to-date information, the efforts of the cleanup team would be seriously undermined. 8 refs., 2 tabs., 6 figs

  3. Activities in department of energy hazardous and mixed waste defense waste management

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1988-01-01

    In January 1986, the U.S. Department of Energy (DOE) Office of Assistant Secretary for Defense Programs (DP) created the Hazardous Waste and Remedial Actions Division within the Office of Defense Waste and Transportation Management. The Oak Ridge Operations Office (ORO) was assigned the responsibility for supporting DOE Headquarters (HQ) in planning nationally integrated activities for Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act (RCRA/CERCLA/SARA) compliance. In turn, ORO created the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAPSCO) to assist with the expanded lead assignment. The HAZWRAPSCO activities are currently supported by three distinct DOE-HQ funding elements: the Environmental Restoration Program, the Hazardous Waste Compliance Technology Program, and the Hazardous Waste Research and Development R and D Program. The Environmental Restoration Program is discussed in the paper, entitled The DOE Defense Program for Environmental Restoration

  4. Strategical Approaches and Regulatory Infrastructure for Radioactive Waste Management in the Republic of Belarus

    International Nuclear Information System (INIS)

    Rozdyalouskaya, L.

    2016-01-01

    Three major types of RW, each requiring special consideration: • Institutional RW buried and disposed for long-term storage at the national centralized RW management facility Ekores; • Waste generated in the process of clean-up activity in the Chernobyl contaminated areas; and • RW to be generated during operation of the first Belorussian NPP after its commissioning in 2018. The paper presents strategic approaches exercised for managing the RW in past and expected developments and options for RW management in Belarus in future

  5. Inexpensive, effective novel activated carbon fibers for sample cleanup: application to multipesticide residue analysis in food commodities using a QuEChERS method.

    Science.gov (United States)

    Singh, Shiv; Srivastava, Anshuman; Singh, Sheelendra Pratap

    2018-03-01

    Phenolic resin based activated carbon fibers (ACFs) were applied for the first time as a reversed-dispersive solid-phase extraction (r-DSPE) sorbent. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied to determine 26 pesticides (organophosphates, organochlorines, synthetic pyrethroids, and herbicides) in different complex matrices, including cauliflower, cucumber, banana, apple, wheat, and black gram. Different physicochemical characterization techniques were used to investigate the engineering and structural properties of the r-DSPE sorbent. All the chromatographic analyses were performed with a gas chromatograph equipped with an electron capture detector. The recoveries of all 26 pesticides were acceptable (70-120%), with relative standard deviations of less than 15%. The limit of detection and the limit of quantification were 1.13-5.48 ng/g and 3.42-16.60 ng/g, respectively. In the original QuEChERS method, primary secondary amine is extensively used as the r-DSPE sorbent in the cleanup process, but it is eightfold more expensive than the ACFs used in this study. Therefore, the modified QuEChERS method using ACFs during the cleanup process is more efficient, cheaper, and more robust to determine pesticides from different types of matrices, including vegetables, grains, and fruits, and ACFs could be used as a cost-effective alternative to primary secondary amine. Graphical Abstract Sample clean-up using PSA and ACF as r-DSPE sorbent in QuEChERS method.

  6. Hanford immobilized low-activity tank waste performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  7. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  8. DWTF [decontamination and waste treatment facilities] assessment

    International Nuclear Information System (INIS)

    Maimoni, A.

    1986-01-01

    The purpose of this study has been to evaluate the adequacy of present and proposed decontamination and waste treatment facilities (DWTF) at LLNL, to determine the cost effectiveness for proposed improvements, and possible alternatives for accomplishing these improvements. To the extent possible, we have also looked at some of the proposed environmental compliance and cleanup (ECC) projects

  9. Wastes Characterisation from Foundry Activities on European Level

    International Nuclear Information System (INIS)

    Andres, I.; Ruiz, C.; Ibanez, R.; Viguri, J.; Irabien, A.

    1999-01-01

    This work presents The results of the eco toxicological characterisation of 22 defined wastes from steel foundry activities. The wastes have been selected from three processes, steel mill (smelting). sand casting and cleaning and finishing of steel products,with the common characteristics of represent an important industrial activity in the area and generated the wastes considered in this study. The eco toxicological characterisation obtained applying the Spanish regulations on hazardous waste is compared to the hazardous attributions considered by the European Union in order to characterise a waste as hazardous (non hazardous). The results allow to conclude that a acceptable concordance between both methodologies is reached and remark the need to split the broad generic types of wastes given by the Spanish regulation (Eco toxic / non eco toxic) into clearly identifiable specific types of waste

  10. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-10-01

    On January 3, 1991, a report on the Department of Energy's (DOE) efforts to clean up the solar evaporation ponds at its Rocky Flats Plant in Colorado was issued. DOE's cleanup activities, which began in 1985, involve excavating ponds used for storing and evaporating low-level radioactive and hazardous waste and solidifying the material in a waste form known as pondcrete. This report is a follow up on DOE's solar pond cleanup activities. Specifically, this report provides updated information on the estimated costs of the project, the status of the detailed plans for conducting and monitoring the program, the status of cleanup activities, and the specific milestones the DOE has met or missed in conducting pondcrete activities

  11. Permitting plan for the immobilized low-activity waste project

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ''the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.'' It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site's low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste

  12. Transforming Argonne's waste management organization - the road to energy quality

    International Nuclear Information System (INIS)

    Torres, T.A.; Sodaro, M.A.; Thuot, J.R.

    1996-01-01

    Argonne National Laboratory's (ANL's) Waste Management Department began its journey to excellence in 1990. The department was organized to provide for waste cleanup, waste handling, decontamination, and other services. The staff was principally workers and foremen with few professional staff. The department has transitioned into a highly effective organization that has competed for the President's Energy Quality Award. The department is currently staffed by 58 people, including professional staff and waste mechanics. The department began by recognizing and addressing the problems that existed: There was no formal waste safety program or waste reduction culture. Formal procedures did not cover all aspects of waste operations, waste handling procedures and acceptance criteria were out of date, and the Waste Management Department did not have a customer-centered culture. The department began a step by step program to improve the waste management organization

  13. Method to determine the activity concentration and total activity of radioactive waste

    International Nuclear Information System (INIS)

    Angeles C, A.

    2001-02-01

    A characteristic system of radioactive waste is described to determine the concentration of radionuclides activity and the total activity of bundles of radioactive waste. The system this integrated by three subsystems: - Elevator of drums. - Electromechanics. - Gamma spectroscopy. In the system it is analyzed waste of issuing gamma specifically, and this designed for materials of relative low density and it analyzes materials of cylindrical recipients

  14. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  15. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  16. Environmental Restoration and Waste Management (EM) program: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This booklet introduces the reader to the mission and functions of a major new unit within the US Department of Energy (DOE): the Office of Environmental Restoration and Waste Management (EM). The Secretary of Energy established EM in November 1989, implementing a central purpose of DOE's first annual Environmental Restoration and Waste Management Five-Year Plan, which had appeared three months earlier. The contents of this booklet, and their arrangement, reflect the annual update of the Five-Year Plan. The Five-Year Plan supports DOE's strategy for meeting its 30-year compliance and cleanup goal. This strategy involves: focusing DOE's activities on eliminating or reducing known or recognized potential risks to worker and public health and the environment, containing or isolating, removing, or detoxifying onsite and offsite contamination, and developing technology to achieve DOE's environmental goals.

  17. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ming; Moorer, Richard [U.S. Department of Energy, Washington, DC 20585 (United States)

    2013-07-01

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in

  18. PHYTOREMEDIATION OF CONTAMINATED SOIL AND GROUND WATER AT HAZARDOUS WASTE SITES

    Science.gov (United States)

    The purpose of this issue paper is to provide a concise discussion of the processes associated with the use of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is provided. The different fo...

  19. Novel Activated Carbons from Agricultural Wastes and their Characterization

    Directory of Open Access Journals (Sweden)

    S. Karthikeyan

    2008-01-01

    Full Text Available Solid waste disposal has become a major problem in India, Either it has to be disposed safely or used for the recovery of valuable materials as agricultural wastes like turmeric waste, ferronia shell waste, jatropha curcus seed shell waste, delonix shell waste and ipomea carnia stem. Therefore these wastes have been explored for the preparation of activated carbon employing various techniques. Activated carbons prepared from agricultural solid wastes by chemical activation processes shows excellent improvement in the surface characteristics. Their characterization studies such as bulk density, moisture content, ash content, fixed carbon content, matter soluble in water, matter soluble in acid, pH, decolourising power, phenol number, ion exchange capacity, ion content and surface area have been carried out to assess the suitability of these carbons as absorbents in the water and wastewater. For anionic dyes (reactive, direct, acid a close relationship between the surface area and surface chemical groups of the modified activated carbon and percentage of dye removal by adsorption can be observed. Cationic dyes large amount of surface chemical groups present in the sample (mainly carboxylic, anhydrides, lactones and phenols etc. are good anchoring sites for adsorption. The present study reveals the recovery of valuable adsorbents from readily and cheaply available agriculture wastes.

  20. Impact of hazardous waste risks and liabilities on the contracting process

    International Nuclear Information System (INIS)

    Gleason, G.L.

    1991-01-01

    Hazardous waste risks include the following: (1) An emerging environmental cleanup industry that differs significantly from traditional engineering; (2) The inability to predict and control the subsurface environment; (3) The implementation of new and often untested technologies; (4) The statutory imposition of strict, joint and several, as well as retroactive, liability; (5) The lack of insurance and other risk-transfer mechanisms to protect against losses; (6) Costly and time consuming litigation to determine liability; and (7) Others. The liabilities associated with the risks inherent in hazardous waste cleanup directly impact hazardous waste contracting. Contract negotiations become onerous during discussions of liability, indemnification, and issues surrounding scope of work and other clauses. Other impacts include (1) Defensive engineering; (2) Lack of incentive to implement innovative technologies; (3) Increased costs to cover risks. Required client indemnification is a necessary and responsible risks management practice, regardless of whether the client is a federal or private client. Federal government indemnification authorities, as well as private contract indemnification mechanisms, will be explained and analyzed. Conflict of interest concerns are also of critical importance in the hazardous waste market, particularly due to concerns over the complexity of the litigation surrounding hazardous waste sites and the need to ensure unbiased results. Other examples of hazardous waste risk management impacts on contracting in the following market sectors will also be provided: (1) U.S. Environmental Protection Agency; (2) Department of Defense; (3) Department of Energy; and (4) Private sector contracts

  1. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  2. Myelodysplastic syndromes in Chernobyl clean-up workers.

    Science.gov (United States)

    Gluzman, Daniil F; Sklyarenko, Lilia M; Koval, Stella V; Rodionova, Nataliia K; Zavelevich, Michael P; Ivanivskaya, Tetiana S; Poludnenko, Liudmyla Yu; Ukrainskaya, Nataliia I

    2015-10-01

    The studies of the recent decades posed the question of the association between radiation exposure and myelodysplastic syndromes (MDS). This association has been proved in secondary MDS originating upon exposure to chemotherapeutics and/or radiation therapy. The long-term study in Japanese atomic (A)-bomb survivors demonstrated the significant linear dose-response for MDS confirming the link between radiation exposure and this form of hematopoietic malignancies. All these findings provide the strong basis for studying MDS in the persons exposed to radiation following the Chernobyl disaster, especially those in the cohort of Chernobyl clean-up workers of 1986-1987. The data on MDS among Chernobyl clean-up workers (1986-1987) diagnosed in 1996-2012 at the reference laboratory of RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology are summarized. MDS cases were diagnosed in 23 persons (21 males and 2 females) having been exposed to radiation as clean-up workers of 1986-1987. Refractory anemia (RA) has been detected in 13, refractory anemia with ring sideroblasts (RARS)-in 2, and refractory anemia with excess blasts (RAEB)-in 8 patients. The median age of those MDS patients was 62.0 years. In addition, 5 cases of chronic myelomonocytic leukemia (CMML) were recorded in the group of Chernobyl clean-up workers with the median time of 14.8 years from 1986-1987 to diagnosis. The association between radiation exposure and MDS is discussed. The suggested life-long risk for myelodysplastic syndromes among A-bomb survivors in Japan highlights the importance of the continuing follow-up studies in the affected populations in the post-Chernobyl period.

  3. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  4. ALLOCATING VENDOR RISKS IN THE HANFORD WASTE CLEANUP

    International Nuclear Information System (INIS)

    Keisler, Jeff M.; Buehring, William A.; McLaughlin, Peter D.; Robershotte, Mark A.; Whitfield, Ronald G.

    2004-01-01

    Organizations may view outsourcing as a way to eliminate risk. This application uses a decision analytic approach to determine which risks can be shared or shifted to vendors and which ones should be borne by the buyer. In this case, we found that allocating risks incorrectly could increase costs dramatically. This approach was used to develop the Request for Proposals (RFP) for the U.S. Department of Energy's (DOE's) privatization initiative for the Hanford Tank Waste Remediation System (TWRS). We describe this application and/SUMmarize technical and organizational lessons learned in the years following. The model used an assessment protocol to predict how vendors would react to proposed risk allocations in terms of their actions and their pricing

  5. Waste Processing Cost Recovery at Los Alamos National Laboratory-Analysis and Recommendations

    International Nuclear Information System (INIS)

    Booth, St. R.

    2009-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit of waste. Therefore, the fixed cost ends at the point just before waste begins to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  6. Evolution of EPA/DOE technical cooperation in remediation of radiation/mixed waste contaminated sites

    International Nuclear Information System (INIS)

    Dyer, Robert S.; Garcia-Frias, Beverly; Wolbarst, Anthony B.; Coe, Larry J.

    1992-01-01

    The EPA Office of Radiation Programs (ORP) and the DOE Office of Environmental Restoration and Waste Management (EM) are cooperating in efforts related to restoration of radioactive and mixed waste sites. The impetus for these efforts derived from DOE's need to perform restoration activities according to CERCLA/RCRA requirements, and from ORP's role as a supplier of radiation expertise to federal agencies. These activities include: assessing remediation technology, developing radioanalytical protocols; matching cleanup technologies to soil characteristics; developing a process for the evaluation, selection, and appropriate use of groundwater models; reviewing incinerator practices; and addressing technical issues associated with the WIPP. Cooperative projects planned for the future include: evaluation of methodologies for streamlining the restoration process; assessment of the applicability of process knowledge for waste characterization; evaluation of recycling of radioactive metals; and expansion of selected environmental protection initiatives at the International Atomic Energy Agency (IAEA). Public acceptance is a crucial component of the remediation process. An underlying objective of these cooperative initiatives is to address issues of concern to the public in an open and honest fashion. (author)

  7. Retroactive insurance may fund TMI-2 cleanup

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A Pennsylvania task force recommended that nuclear utilities insure their plants with a mandatory national property insurance program. The proposed Nuclear Powerplant Property Damage Insurance Act of 1981 will cover the cleanup costs of onsite damage in excess of $350 million for a single accident ($50 million when private insurance is added on) and a ceiling of two billion dollars. Participation in the insurance pool would be in conjunction with licensing and would permit no grandfathering. Total payout for Three Mile Island-2 would cover 75% of the cleanup costs, the remainder to be apportioned among other parties. The insurance pool will have a $750 million goal supported by utility premiums

  8. The use of historical imagery in the remediation of an urban hazardous waste site

    Science.gov (United States)

    Slonecker, E.T.

    2011-01-01

    The information derived from the interpretation of historical aerial photographs is perhaps the most basic multitemporal application of remote-sensing data. Aerial photographs dating back to the early 20th century can be extremely valuable sources of historical landscape activity. In this application, imagery from 1918 to 1927 provided a wealth of information about chemical weapons testing, storage, handling, and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5% of the features were spatially correlated with areas of known contamination or other remedial hazardous waste cleanup activity.

  9. The TEES process cleans waste and produces energy

    International Nuclear Information System (INIS)

    Elliott, D.C.; Silva, L.J.

    1995-02-01

    A gasification system is under development that can be used with most types of wet organic wastes. The system operates at 350 degrees C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet waste can be fed as a solution or slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. The system has utility both for direct conversion of high-moisture biomass to fuel gas or as a wastewater cleanup system for wet organic wastes including unconverted biomass from bioconversion processes. By the use of this system >99% conversions of organic waste to medium-Btu fuel gas can be achieved

  10. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    International Nuclear Information System (INIS)

    CD Carlson; SQ Bennett

    2000-01-01

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998, and seven in fiscal year 1999. All of the fiscal year 1996 award projects have been completed and will publish final reports, so their annual updates will not be included in this document. This section summarizes how each of the currently funded grants addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation; Decontamination and Decommissioning; Spent Nuclear Fuel and Nuclear Materials; and Soil and Groundwater Cleanup

  11. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Clark D.; Bennett, Sheila Q.

    2000-07-25

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998 and seven in fiscal year 1999.(a) All of the fiscal year 1996 awards have been completed and the Principal Investigators are writing final reports, so their summaries will not be included in this document. This section summarizes how each of the currently funded grants addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, and Soil and Groundwater Cleanup.

  12. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    CD Carlson; SQ Bennett

    2000-07-25

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998, and seven in fiscal year 1999. All of the fiscal year 1996 award projects have been completed and will publish final reports, so their annual updates will not be included in this document. This section summarizes how each of the currently funded grants addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation; Decontamination and Decommissioning; Spent Nuclear Fuel and Nuclear Materials; and Soil and Groundwater Cleanup.

  13. Development and Implementation of a Low-Cost ex-situ Soil Clean-up Method for Actinide Removal at the AWE Aldermaston Site, U.K

    International Nuclear Information System (INIS)

    Agnew, K.; Purdie, P.; Agnew, K.; Cundy, A.B.; Hopkinson, L.; Croudace, I.W.; Warwick, P.E.F.

    2009-01-01

    This paper details the development (and implementation) of a novel, low-cost electrokinetic soil clean-up method for treatment of Pu-labelled soil wastes at the AWE Aldermaston site, Berkshire, U.K. Nuclear weapons manufacture and maintenance, and related research and development activities, have been carried out at the Aldermaston site for over 50 years, and these historical operations have generated a number of contaminated land legacy issues, including soils which contain above background (although radiologically insignificant) specific activities of Pu. Much of the Pu-labelled soil has been removed (via soil excavation), and is held in containment units on site, prior to remediation / decommissioning. Based on initial small-scale laboratory trials examining the potential for Pu removal and directed migration under a low intensity electrical field, a two year project (funded by the former UK Department of Trade and Industry and AWE PLC) has been implemented, and is reported here, involving a focussed programme of laboratory trials followed by a full-scale field trial to examine the potential of low-cost electrokinetic techniques to reduce the activity of Pu in clay-rich site soils, and reduce site waste disposal costs. Pu (and U) exhibited relatively complex behaviour in the laboratory trials, with Pu forming mobile soluble oxy-anionic species under the high pHs generated by the electrokinetic treatment technique. Clear mobilisation of Pu and U (along with a range of other elements) was however observed, in a range of soil types. The relative efficiency of remobilization was element-dependant, and, in terms of heavy metal contaminants, radionuclides, and the stable analogues of radionuclides known to be problematic at other nuclear sites, was (from most to least mobile) Cl > Zn > Sr > U > Pu > Pb. Both Pu and U showed enhanced mobility when the low-cost soil conditioning agent citric acid was added prior to electrokinetic treatment. Full-scale field trials of

  14. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    Science.gov (United States)

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  15. Technology development activities supporting tank waste remediation

    International Nuclear Information System (INIS)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  16. Biomass gasification hot gas cleanup for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, B.C.; Bachovchin, D.M. [Westinghouse Electric Corp., Orlando, FL (United States); Carty, R.H.; Onischak, M. [Institute of Gas Technology, Chicago, IL (United States); Horazak, D.A. [Gilbert/Commonwealth, Reading, PA (United States); Ruel, R.H. [The Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-12-31

    In support of the US Department of Energy`s Biomass Power Program, a Westinghouse Electric led team consisting of the Institute of Gas Technology (IGT), Gilbert/Commonwealth (G/C), and the Pacific International Center for High Technology Research (PICHTR), is conducting a 30 month research and development program. The program will provide validation of hot gas cleanup technology with a pressurized fluidized bed, air-blown, biomass gasifier for operation of a gas turbine. This paper discusses the gasification and hot gas cleanup processes, scope of work and approach, and the program`s status.

  17. DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Crocker; Verna M. Carpenter

    2003-05-21

    Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase

  18. Status of Environmental Management Initiatives to Accelerate the Reduction of Environmental Risks and Challenges Posed by the Legacy of the Cold War

    International Nuclear Information System (INIS)

    2009-01-01

    Fifty years of nuclear weapons production and energy research in the United States during the Cold War generated large amounts of radioactive wastes, spent nuclear fuel (SNF), excess plutonium and uranium, thousands of contaminated facilities, and contaminated soil and groundwater. During most of that half century, the Nation did not have the environmental regulatory structure or nuclear waste cleanup technologies that exist today. The result was a legacy of nuclear waste that was stored and disposed of in ways now considered unacceptable. Cleaning up and ultimately disposing of these wastes is the responsibility of the U.S. Department of Energy (DOE). In 1989, DOE established the Office of Environmental Management (EM) to solve the large scale and technically challenging risks posed by the world's largest nuclear cleanup. This required EM to build a new nuclear cleanup infrastructure, assemble and train a technically specialized workforce, and develop the technologies and tools required to safely decontaminate, disassemble, stabilize, disposition, and remediate unique radiation hazards. The sites where nuclear activities produced legacy waste and contamination include the original Manhattan Project sites--Los Alamos, New Mexico; Hanford, Washington; and Oak Ridge, Tennessee--as well as major Cold War sites, such as Savannah River Site, South Carolina; the Idaho National Laboratory, Idaho; Rocky Flats Plant, Colorado; and Fernald, Ohio. Today EM has responsibility for nuclear cleanup activities at 21 sites covering more than two million acres in 13 states, and employs more than 30,000 Federal and contractor employees, including scientists, engineers and hazardous waste technicians. This cleanup poses unique, technically complex problems, which must be solved under the most hazardous of conditions, and which will require billions of dollars a year for several more decades. The EM program focus during its first 10 years was on managing the most urgent risks and

  19. Status of Environmental Management Initiatives to Accelerate the Reduction of Environmental Risks and Challenges Posed by the Legacy of the Cold War

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    Fifty years of nuclear weapons production and energy research in the United States during the Cold War generated large amounts of radioactive wastes, spent nuclear fuel (SNF), excess plutonium and uranium, thousands of contaminated facilities, and contaminated soil and groundwater. During most of that half century, the Nation did not have the environmental regulatory structure or nuclear waste cleanup technologies that exist today. The result was a legacy of nuclear waste that was stored and disposed of in ways now considered unacceptable. Cleaning up and ultimately disposing of these wastes is the responsibility of the U.S. Department of Energy (DOE). In 1989, DOE established the Office of Environmental Management (EM) to solve the large scale and technically challenging risks posed by the world's largest nuclear cleanup. This required EM to build a new nuclear cleanup infrastructure, assemble and train a technically specialized workforce, and develop the technologies and tools required to safely decontaminate, disassemble, stabilize, disposition, and remediate unique radiation hazards. The sites where nuclear activities produced legacy waste and contamination include the original Manhattan Project sites--Los Alamos, New Mexico; Hanford, Washington; and Oak Ridge, Tennessee--as well as major Cold War sites, such as Savannah River Site, South Carolina; the Idaho National Laboratory, Idaho; Rocky Flats Plant, Colorado; and Fernald, Ohio. Today EM has responsibility for nuclear cleanup activities at 21 sites covering more than two million acres in 13 states, and employs more than 30,000 Federal and contractor employees, including scientists, engineers and hazardous waste technicians. This cleanup poses unique, technically complex problems, which must be solved under the most hazardous of conditions, and which will require billions of dollars a year for several more decades. The EM program focus during its first 10 years was on managing the most urgent risks and

  20. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  1. Field guide for the protection and cleanup of oiled Arctic shorelines

    International Nuclear Information System (INIS)

    Owens, E.H.

    1996-01-01

    Practical suggestions for the protection, treatment and cleanup of oiled shorelines during summer and open-water conditions are described. This manual was developed as a field guide to be used during spill response operations for the rapid identification of shoreline response options. Special attention is given to techniques that are normally available and appropriate for shoreline types and coastal environmental setting that are typical of Arctic regions. The guide is divided into four main sections: (1) shoreline protection, (2) treatment strategy by shoreline type, (3) treatment or cleanup methods, and (4) response strategies for specific environments. The importance of the type and volume of oil spilled, and the environmental factors that should be taken into account in the event of a spill (time of year, weather, ice and wave conditions) are stressed. The presence of sensitive resources such as wildlife, fish stocks, plant communities and human-use activities are also considered. tabs., figs

  2. Pursing other deep pockets: California's underground storage tank cleanup fund and insurance policies

    International Nuclear Information System (INIS)

    Almanza, P.R.

    1995-01-01

    When faced with a potentially very expensive environmental cleanup, most companies and individuals try to do the only sensible thing, which is to find out if anyone else will pay the bill. This presentation will outline two avenues that may provide a substantial financial contribution to environmental cleanups: (a) California's Underground Storage Tank Cleanup Fund and (b) insurance policies. The Underground Storage Tank Cleanup Fund was established in 1989 to help eligible owners and operators of petroleum underground storage tanks (USTs) to: (a) get reimbursed for costs of unauthorized releases of petroleum from USTs; (b) get reimbursed for damages awarded to third parties as a result of unauthorized releases of petroleum from USTs; and (c) meet federal and state requirements that the UST owner and/or operator be able to pay for cleanup costs and damages to third parties caused by unauthorized releases of petroleum

  3. Low and medium activity solid wastes processing and encapsulation

    International Nuclear Information System (INIS)

    Taillard, D.; Claes, J.; Hennart, D.

    1983-01-01

    This work, carried out under contract with the European Atomic Energy Community, describes the techniques in use for waste management. The activity of low and medium activity solid wastes is from few curies to few tens of curies per cubic meter, they are produced by nuclear facilities and are often complex mixtures. Radioactive wastes are characterized and processing and conditioning are described. Leaching, stability, mechanical resistance and radiolysis of encapsulated wastes are examined. Handling, storage and disposal are treated

  4. Aube very low activity waste storage Centre. Annual report 2009

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of the ANDRA (the French national agency for radioactive waste management), its role and missions, its sites, its strategy with respect to a sustainable development, this report contains a description of waste storage installations and key figures of the activity in 2009 (origin and nature of very low activity wastes, brief description of the Aube centre installations, stored volumes, performed works). It describes arrangements related to security, safety and radioprotection, presents results of the radiological survey activity performed in the environment and on wastes, and activities related to public information

  5. Quarterly Briefing Book on Environmental and Waste Management Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs.

  6. Quarterly Briefing Book on Environmental and Waste Management Activities

    International Nuclear Information System (INIS)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs

  7. Mental disorders among Chernobyl cleanup workers from Estonia: A clinical assessment.

    Science.gov (United States)

    Laidra, Kaia; Rahu, Kaja; Kalaus, Katri-Evelin; Tekkel, Mare; Leinsalu, Mall

    2017-08-01

    To assess, at a clinical level, the mental health of former Chernobyl cleanup workers from Estonia by comparing them with same-age controls. The Mini International Neuropsychiatric Interview (MINI) was administered during 2011-2012 to 99 cleanup workers and 100 population-based controls previously screened for mental health symptoms. Logistic regression analysis showed that cleanup workers had higher odds of current depressive disorder (odds ratio [OR] = 3.07, 95% confidence interval [CI: 1.34, 7.01]), alcohol dependence (OR = 3.47, 95% CI [1.29, 9.34]), and suicide ideation (OR = 3.44, 95% CI [1.28, 9.21]) than did controls. Except for suicide ideation, associations with Chernobyl exposure became statistically nonsignificant when adjusted for education and ethnicity. A quarter of a century after the Chernobyl accident, Estonian cleanup workers were still at increased risk of mental disorders, which was partly attributable to sociodemographic factors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Environmental management activities

    International Nuclear Information System (INIS)

    1997-01-01

    The Office of Environmental Management (EM) has been delegated the responsibility for the Department of Energy's (DOE's) cleanup of the nuclear weapons complex. The nature and magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. Within the United States, operational DOE facilities, as well as the decontamination and decommissioning of inactive facilities, have produced significant amounts of radioactive, hazardous, and mixed wastes. In order to ensure worker safety and the protection of the public, DOE must: (1) assess, remediate, and monitor sites and facilities; (2) store, treat, and dispose of wastes from past and current operations; and (3) develop and implement innovative technologies for environmental restoration and waste management. The EM directive necessitates looking beyond domestic capabilities to technological solutions found outside US borders. Following the collapse of the Soviet regime, formerly restricted elite Soviet scientific expertise became available to the West. EM has established a cooperative technology development program with Russian scientific institutes that meets domestic cleanup objectives by: (1) identifying and accessing Russian EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) increasing US private sector opportunities in Russian in EM-related areas

  9. Activity monitoring of alpha-bearing wastes

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1980-01-01

    The paper aims at the survey on the actual situation in activity monitoring of alpha-bearing wastes. Homogeneous materials such as liquid-, gaseous- and homogeneous solid wastes are amenable to destructive analyses of representative samples. Available destructive analyses methods are sensitive and precise enough to cope with all requirements in alpha-waste monitoring. The more difficult problems are encountered with alpha-contaminated solids, when representative sampling is not practicable. Non-destructive analysis techniques are applied for monitoring this category of solid wastes. The techniques for nondestructive analysis of alpha-bearing wastes are based on the detection of gamma and/or neutron-emission of actinides. Principles and a theory of non-destructive radiometric assay of plutonium contaminated solid waste streams are explained. Guidelines for the calibration of instruments and interpretation of experimental data are given. Current theoretical and experimental development work in this problem area is reviewed. Evaluations concerning capabilities and limitations of monitoring systems for alpha-bearing solid wastes are very complex and out of the scope of this paper

  10. Comparison study for the CCME reference method for determination of PHC in soil by using internal and external standard methods and by using silica gel column cleanup and in-situ silica gel cleanup methods

    International Nuclear Information System (INIS)

    Wang, Z.; Fingas, M.; Sigouin, L.; Yang, C.; Hollebone, B.

    2003-01-01

    The assessment, cleanup, and remediation of hydrocarbon contaminated sites is covered in the Reference Method for Canada-Wide Standard for Petroleum Hydrocarbons-Tier 1 Method. It replaces several analytical methods used in the past by some laboratories and jurisdictions in Canada. The authors conducted two comparative evaluations to validate the Tier 1 Analytical Method. The first compared the Internal and External Standard Methods, and the second compared the Silica Gel Column Cleanup Method with the In-situ Silica Gel Cleanup Method. The Canadian Council of Ministers of the Environment (CCME) Tier 1 Method recommends and requires the External Standard Method to determine petroleum hydrocarbons (PHC) in soil samples. The Internal Method is widely used to quantify various organic and inorganic pollutants in environmental samples. The Tier 1 Method offers two options for the same extract cleanup. They are: Option A - In-situ Silica Gel Cleanup, and Option B - Silica Gel Column Cleanup. Linearity, precision, and PHC quantification results were the parameters considered for diesel and motor oil solutions, for diesel spiked soil samples, and for motor oil spiked soil samples. It was concluded that both the External and Internal Standard Methods for gas chromatograph (GC) determination of PHC in soil possess their own advantages. The PHC results obtained using the In-Situ Silica Gel Cleanup Method were lower than those obtained with the Silica Gel Column Cleanup Methods. The more efficient and effective sample cleanup method proved to be the Silica Gel Column Method. 13 refs., 7 tabs., 7 figs

  11. Environmental Restoration and Waste Management (EM) program: An introduction

    International Nuclear Information System (INIS)

    1991-06-01

    This booklet introduces the reader to the mission and functions of a major unit within the US Department of Energy (DOE): the Office of Environmental Restoration and Waste Management (EM). The Secretary of Energy established EM in November 198, implementing the first step in fulfilling the central purpose of DOE's annually updated Environmental Restoration and Waste Management Five-Year Plan (FYP). The first FYP had been developed three months earlier. The contents of this booklet, and their arrangement, reflect (and will, it is hoped, serve as a kind of appetizer for) the annual update of the Five-Year Plan. The Five-Year Plan supports DOE's strategy for meeting its 30-year compliance and cleanup goal. This strategy involves: (1) focusing DOE's activities on eliminating or reducing known or recognized potential risks to workers, the public, and the environment; (2) containing or isolating, removing, or detoxifying onsite and offsite contamination; and (3) developing technology to achieve DOE's environmental goals. 101 refs

  12. Activities of the IAEA in the area of radioactive waste management

    International Nuclear Information System (INIS)

    Efremenkov, V.M.

    1998-01-01

    The IAEA activity in the area of radioactive waste management mainly concentrates on three areas, namely: (i) the establishing of international principles and standards for the safe management of radioactive waste; (ii) to promote the development and improvements of waste processing technologies, including handling, treatment, conditioning, packaging, storage and disposal of waste; and (iii) assisting developing Member States in establishing good waste management practice through dissemination of technical information, providing technical support and training. These activities are carried out by the Waste Technology Section, Department of Nuclear Energy, and the Waste Safety Section, Department of Nuclear Safety. The Waste Technology Section's activities are organized into four subprogrammes covering: the handling, processing and storage of radioactive waste; radioactive waste disposal; technology and management aspects of decontamination, decommissioning and environmental restoration; and waste management information and support services

  13. Worker Safety and Health Issues Associated with the DOE Environmental Cleanup Program: Insights From the DOE Laboratory Directors' Environmental and Occupational/Public health Standards Steering Group

    International Nuclear Information System (INIS)

    M.C. Edelson; Samuel C. Morris; Joan M. Daisey

    2001-01-01

    The U.S. Department of Energy (DOE) Laboratory Directors' Environmental and Occupational/Public Health Standards Steering Group (or ''SSG'') was formed in 1990. It was felt then that ''risk'' could be an organizing principle for environmental cleanup and that risk-based cleanup standards could rationalize clean up work. The environmental remediation process puts workers engaged in cleanup activities at risk from hazardous materials and from the more usual hazards associated with construction activities. In a real sense, the site remediation process involves the transfer of a hypothetical risk to the environment and the public from isolated contamination into real risks to the workers engaged in the remediation activities. Late in its existence the SSG, primarily motivated by its LANL representative, Dr. Harry Ettinger, actively investigated issues associated with worker health and safety during environmental remediation activities. This paper summarizes the insights noted by the SSG. Most continue to be pertinent today

  14. Decommissioning and waste markets attract new global alliances

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear24, London (United Kingdom)

    2014-08-15

    Renewed global efforts to broaden knowledge and expertise in the field of radwaste management and identify the most promising technologies for clean-up and treatment of nuclear wastes are being led by the International Atomic Energy Agency (IAEA). In its recently-published annual report for 2013, the IAEA has given details of the development of new projects for the management of intermediate-level waste and large amounts of waste. Decommissioning can be a lucrative prospect. The availability of skills will be a key factor. Whatever technological advances are made in the coming years, there needs to be corresponding investment in attracting new recruits to the nuclear industry and equipping them with the skills that the industry will need.

  15. Decommissioning and waste markets attract new global alliances

    International Nuclear Information System (INIS)

    Shepherd, John

    2014-01-01

    Renewed global efforts to broaden knowledge and expertise in the field of radwaste management and identify the most promising technologies for clean-up and treatment of nuclear wastes are being led by the International Atomic Energy Agency (IAEA). In its recently-published annual report for 2013, the IAEA has given details of the development of new projects for the management of intermediate-level waste and large amounts of waste. Decommissioning can be a lucrative prospect. The availability of skills will be a key factor. Whatever technological advances are made in the coming years, there needs to be corresponding investment in attracting new recruits to the nuclear industry and equipping them with the skills that the industry will need.

  16. The Estonian study of Chernobyl cleanup workers: II. Incidence of cancer and mortality

    International Nuclear Information System (INIS)

    Rahu, M.; Tekkel, M.; Veidebaum, T.

    1997-01-01

    A cohort of 4,472 men from Estonia who had participated in the cleanup activities in the Chernobyl area sometime between 1986 and 1991 and were followed through 1993 was analyzed with respect to the incidence of cancer and mortality. Incidence and mortality in the cleanup workers were assessed relative to national rates. No increases were found in all cancers (25 incident cases compared to 26.5 expected) or in leukemia (no cases observed, 1.0 expected). Incidence did not differ statistically significantly from expectation for any individual cancer site or type, though lung cancer and non-Hodgkin's lymphoma both occurred slightly more often than expected. A total of 144 deaths were observed [standardized mortality ratio (SMR) = 0.98; 95% confidence interval (CI) = 0.82-1.14] during an average of 6.5 years of follow-up. Twenty-eight deaths (19.4%) were suicides (SMR = 1.52; 95% CI = 1.01-2.19). Exposure to ionizing radiation while at Chernobyl has not caused a detectable increase in the incidence of cancer among cleanup workers from Estonia. At least for the short follow-up period, diseases directly attributable to radiation appear to be of relatively minor importance when compared with the substantial excess of deaths due to suicide. 28 refs., 3 tabs

  17. Assessment, Cleanup and Redevelopment Exchange System (ACRES)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Assessment, Cleanup and Redevelopment Exchange System (ACRES) is an online database for Brownfields Grantees to electronically submit data directly to EPA.

  18. Military Munitions Waste Working Group report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices

  19. Military Munitions Waste Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-30

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

  20. Management of the Area 5 Radioactive Waste Management Site using Decision-based, Probabilistic Performance Assessment Modeling

    International Nuclear Information System (INIS)

    Carilli, J.; Crowe, B.; Black, P.; Tauxe, J.; Stockton, T.; Catlett, K.; Yucel, V.

    2003-01-01

    Low-level radioactive waste from cleanup activities at the Nevada Test Site and from multiple sites across the U.S. Department of Energy (DOE) complex is disposed at two active Radioactive Waste Management Sites (RWMS) on the Nevada Test Site. These facilities, which are managed by the DOE National Nuclear Security Administration Nevada Site Office, were recently designated as one of two regional disposal centers and yearly volumes of disposed waste now exceed 50,000 m3 (> 2 million ft3). To safely and cost-effectively manage the disposal facilities, the Waste Management Division of Environmental Management has implemented decision-based management practices using flexible and problem-oriented probabilistic performance assessment modeling. Deterministic performance assessments and composite analyses were completed originally for the Area 5 and Area 3 RWMSs located in, respectively, Frenchman Flat and Yucca Flat on the Nevada Test Site. These documents provide the technical bases for issuance of disposal authorization statements for continuing operation of the disposal facilities. Both facilities are now in a maintenance phase that requires testing of conceptual models, reduction of uncertainty, and site monitoring all leading to eventual closure of the facilities and transition to long-term stewardship

  1. Preliminary analysis of environmental regulations related to remedial action activities at the Oak Ridge National Laboratory: Environmental Sciences Division Publication No. 2695

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Saylor, R.E.

    1986-11-01

    Past research and development activities at Oak Ridge National Laboratory (ORNL) have resulted in the presence of several areas where low-level radioactive and/or hazardous waste have been disposed of or that have been contaminated through accidental spills or planned releases of radionuclides. Although these areas have been monitored and controlled to ensure that on-site and off-site releases of contaminants are within applicable Department of Energy (DOE) guidelines, ORNL established the Environmental Restoration and Facilities Upgrade (ERFU) Program to address formally the immediate and long-range needs of meeting all applicable federal and state regulations regarding waste disposal. The environmental laws, regulations, and DOE Orders governing the cleanup activities are numerous and complex. Hence, a synthesis of the principal regulations related to the ERFU Program is presented to facilitate efficient planning for characterization and cleanup of contaminated sites. Because of regulatory decisions made after this report was finalized, several statements presented herein may no longer apply to the ERFU Program. Nevertheless, the report is issued as originally written so that ORNL's early planning efforts to comply with environmental laws and legislation are formally documented. Several general principles to consider when developing a plan for environmental compliance - which would be of use to others who must comply with legislation related to the cleanup of sites contaminated with radionuclides and hazardous chemicals - are also discussed

  2. HANDBOOK ON THE BENEFITS, COSTS, AND IMPACTS OF LAND CLEANUP AND REUSE

    Science.gov (United States)

    Summarizes the theoretical and empirical literature addressing benefit-cost and impact assessment of the land cleanup and reuse scenario. When possible, recommendations are provided for conducting economic analysis of land cleanup and reuse sites and programs. The knowledge base ...

  3. Application of EnviroTRADE information system for the cleanup of the former Soviet Union (FSU) site at Komarom Base, Hungary

    International Nuclear Information System (INIS)

    Matalucci, R.V.; Harrington, M.W.; Harlan, C.P.; Kuperberg, J.M.; Biczo, I.L.

    1994-01-01

    During a NATO Advanced Research Workshop (ARW) held in Visegrad, Hungary, June 21-23, 1994, portions of contamination data from the Former Soviet Union (FSU) site at Komarom, Hungary were used to demonstrate the international EnviroTRADE Information System as a tool to assist with the identification of alternative cleanup measures for contaminated sites. The NATO ARW was organized and conducted by the joint Florida State University and the Technical University of Budapest, Center for Hungarian-American Environmental Research, Studies, and Exchanges (CHAERSE). The purpose of the workshop was to develop a strategy for the identification and selection of appropriate low-cost and innovative site remediation technologies and approaches for a typical abandoned FSU site. The EnviroTRADE information system is a graphical, photographical, and textual environmental management tool under development by the U.S. Department of Energy (USDOE) at Sandia National Laboratories (SNL) as a part of the cleanup program of the nuclear weapons complex. EnviroTRADE provides a single, powerful, multi-purpose, multi-user, multi-media, and interactive computer information system for worldwide environmental restoration and waste management (ER/WM). Graphical, photographic, and textual data from the Komarom FSU site were entered into EnviroTRADE. These data were used to make comparative evaluations of site characterization and remediation technologies that might be used to clean up primarily hydrocarbon contamination in the groundwater and soil. Available Hydrogeological and geological features, contaminated soil profiles, and topographical maps were included in the information profiles. Although EnviroTRADE is currently only partially populated (approximately 350 technologies for cleanup are included in the database), the utility of the information system to evaluate possible options for cleanup of the Komarom site has been demonstrated

  4. Status of Pesticides and Degradation Products in Soil After Clean-up ...

    African Journals Online (AJOL)

    The status of pesticide residues in soil samples collected from a former storage site one year after clean-up of stockpiles and treatment with NaOH was investigated. The analytes were extracted from samples by pressurized fluid extraction using n-hexane:acetone (75:25) mixture. Clean-up of extracts was conducted by ...

  5. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  6. Mental health and alcohol problems among Estonian cleanup workers 24 years after the Chernobyl accident.

    Science.gov (United States)

    Laidra, Kaia; Rahu, Kaja; Tekkel, Mare; Aluoja, Anu; Leinsalu, Mall

    2015-11-01

    To study the long-term mental health consequences of the 1986 Chernobyl nuclear accident among cleanup workers from Estonia. In 2010, 614 Estonian Chernobyl cleanup workers and 706 geographically and age-matched population-based controls completed a mail survey that included self-rated health, the Posttraumatic Stress Disorder Checklist (PCL), alcohol symptoms (AUDIT), and scales measuring depressive, anxiety, agoraphobia, fatigue, insomnia, and somatization symptoms. Respondents were dichotomized into high (top quartile) and low symptom groups on each measure. Logistic regression analysis detected significant differences between cleanup workers and controls on all measures even after adjustment for ethnicity, education, marital status, and employment status. The strongest difference was found for somatization, with cleanup workers being three times more likely than controls to score in the top quartile (OR = 3.28, 95% CI 2.39-4.52), whereas for alcohol problems the difference was half as large (OR = 1.52, 95% CI 1.16-1.99). Among cleanup workers, arrival at Chernobyl in 1986 (vs. later) was associated with sleep problems, somatization, and symptoms of agoraphobia. The toll of cleanup work was evident 24 years after the Chernobyl accident among Estonian cleanup workers indicating the need for focused mental health interventions.

  7. Experience in radioactive waste management of research centre-CIAE

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2001-01-01

    China Institute of Atomic Energy (CIAE) is the birthplace of China nuclear science and technology and the important base for nuclear science and technology implementing pioneering, basic and comprehensive studies. The major tasks and activities of CIAE are: (1) Fundamental research of nuclear science and technology; (2) Research and development of advanced nuclear energy; and (3) Application of nuclear technology. CIAE is equipped with three research reactors (15MW heavy water reactor, 3.5MW light water swimming pool reactor, 27kW neutron source reactor), four zero-power facilities, eleven accelerators, hot cells and a lot of glove boxes which produce various kinds of radioactive wastes. CIAE pays great attention to the safe management of radioactive waste. Many measurements were and are adopted. CIAE carries out the national policy of radioactive waste management and the international fundamental principles of radioactive waste management. To protect human body and environment both now and future generation minimizes the releasing amounts and activity, minimizes the solidified wastes to be disposed of. The principles of 'controlled generation, categorized collection, volume-reduction immobilization, reliable package, in-situ storage, safe transportation and disposal' are followed in managing LLW and ILW. The liquid wastes are separately treated by precipitation, evaporation, ion exchange or adsorption by organic or inorganic materials. The spent organic solvents are treated by incineration at a special incinerator. The low level radioactive gases and liquids can be discharged into the environment only when they are clean-up and permissible level is achieved. Such discharge is controlled by two factors: total discharge amount and specific activity. The solid wastes are separately collected in site according to their physical properties and specific activity. The storage waste is retrievable designed. The spent/sealed radiation sources are collected and stored with

  8. Thyroid disorders in Chernobyl clean-up workers from Latvia

    International Nuclear Information System (INIS)

    Kurjane, N.; Orlikovs, G.; Ritenberga, R.; Skudra, M.; Lemane, R.; Lemanis, A.; Curbakova, E.; Groma, V.; Socnevs, A.

    1999-01-01

    The condition of thyroid was examined in 2188 Chernobyl clean-up workers residing in Latvia and a control group consisting of 1041 employees of the Ministry of International Affairs. Thyroid examinations included palpation, ultrasonography, selective scintigraphy and detection of the level of thyroid hormones in blood serum:L STH (thyroid-stimulating hormone), total T3 (triiodothyronine), and T4 (thyroxine). Thyroid was registered in 394 Chernobyl clean-up workers. Of these cases, 28 patients with suspected thyroid cancer were operated, and morphological examinations revealed papillary adenocarcinoma (in 5 patients), follicular adenocarcinoma (2), nodular colloid goiter (16); toxic diffuse goiter (1), papillary-follicular adenoma (3), and chronic thyroiditis (1). It was determined that the thyroid pathology in the Chernobyl clean-up workers had a tendency to progress (27 cases in 1987 versus 394 cases in 1998 in total; and absence of thyroid cancer in 1987, compared with 7 cases in 1998); thyroid nodules increased twice (64 cases in 1997, compare with 126 cases in 1998). (author)

  9. Evaluation of beach cleanup effects using linear system analysis.

    Science.gov (United States)

    Kataoka, Tomoya; Hinata, Hirofumi

    2015-02-15

    We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. GPU seeks new funding for TMI cleanup

    International Nuclear Information System (INIS)

    Utroska, D.

    1982-01-01

    General Public Utilities (GPU) wants approval for annual transfer of money from base rate increases in other accounts to pay for the cleanup at Three Mile Island (TMI) until TMI-1 returns to service or the public utility commission takes further action. This proposal confirms fears of a delay in TMI-1 startup and demonstrates that the January negotiated settlement will produce little funding for TMI-2 cleanup. A review of the settlement terms outlines the three-step process for base rate increases and revenue adjustments after the startup of TMI-1, and points out where controversy and delays due to psychological stress make a new source of money essential. GPU thinks customer funding will motivate other parties to a broad-based cost-sharing agreement

  11. Latvian Chernobyl clean-up workers dynamics of morbidity 15 years of the post radiation period

    International Nuclear Information System (INIS)

    Zvagule, T.; Eglite, M.; Bruvere, R.; Gabruseva, N.; Feldmane, G.

    2003-01-01

    Nearly 1.0% of the male population of Latvia were sent (1986-1991) to Chernobyl to assist in the clean-up activities after the nuclear power plant accident (1986). The prevalence of all types of diseases, dynamic of breaking out of the key symptoms and interferon status were evaluated in respect to date of work, duration of work and kind of work in the whole clean-up workers group and in the particular group with seizures of unconsciousness. The disease incidence in clean-up workers from Latvia exceeds that observed in age and sex matched male population. Most had several diseases each and their poly-symptomatic sicknesses exhibited tendency to progress even 10-14 years after the exposure (during 1996-2000). Diseases of nervous, digestive and circulatory system, mental disorders and diseases of muscles and connective tissue were the most frequent. The primary outset of symptoms being low in the first 2-3 years after the work gradually increased during the following 10 years. Leukopenia was predominant in 1990-1993 and leucocytosis in 1997-2000. Ability of leukocytes to produce interferons was significantly decreased. Since the external radiation doses did not exceed 50 centyGy (cGy) there is sufficient reasons to believe that the principal cause of the gradually increased frequency of health problems is the long-life radioisotopes incorporated in the clean-up workers bodies as permanent radiation and toxic compounds source. (authors)

  12. Applicability of the Clean Water Act to Indian tribes - may tribes stop or constrain a cleanup?

    International Nuclear Information System (INIS)

    Emge, M.L.

    1993-01-01

    Indian tribes retain their sovereign rights of self-government and self-determination unless it is specifically waived by the tribe or abrogated by the US Congress, through treaty or statute. The Clean Water Act does not specifically abrogate tribal sovereignty. This raises the issue of what would occur if an on-scene coordinator decides that cleanup of tribal lands is necessary to protect the public health and welfare, but the tribe does not want the cleanup activities to proceed? May a tribe impede cleanup efforts? During the cleanup of the barge Nestucca oil spill, this occurred when the Quinault Tribe did not allow the OSC to clean lands that the tribe holds sacred. This issue with the Clean Water Act has not been decided by Congress, nor by the courts. Recently, courts have applied at least three different approaches to determine if a statute of general application, such as the Clean Water Act, applies to Indian tribes. The different tests do not always yield the same result. An on-scene coordinator, when confronted with this scenario, might handle the situation in several different ways, or perhaps move to prevent such an occurrence. The different approaches used by the courts can be taken together to gain a sense of whether the Clean Water Act may preempt tribal sovereignty

  13. Retrospective Dosimetry and Clinical Follow-up Programme of Chernobyl Accident Clean-up Workers in Latvia

    International Nuclear Information System (INIS)

    Mironova-Ulmane, N.; Pavlenko, A.; Zvagule, T.; Karner, T.; Bruvere, R.; Volrate, A.

    2001-01-01

    Full text: About 6500 Latvian inhabitants were recruited for clean-up works at Chernobyl Nuclear Power Plant during 1986-1991. Absorbed doses for them are usually unknown, because only less then half of the clean-up workers cohort had officially documented external exposure. Clinical investigations show high morbidity rate of clean-up workers compared with general population. The results of Electronic Spin Resonance (ESR) dose reconstruction (doses absorbed in the tooth enamel) for the clean-up workers were always higher as documented of exposure doses of physical measurements. In many cases more than half of total absorbed dose is due to 90 Sr accumulated in teeth. Most of the clean-up workers have poli-symptomatic sicknesses that exhibit tendency to progress, and their morbidity exceeds that observed in general population. ESR dosimetry programs and clinical follow-up improved existing knowledge in the field of radiation medicine. These data will help to develop and apply the proper treatment and rehabilitation procedures for clean-up workers. (author)

  14. Comparative study on cleanup procedures for the determination of organophosphorus pesticides in vegetables

    International Nuclear Information System (INIS)

    Alvin, Chai Lian Kuet; Lau, Seng

    2008-01-01

    A study was carried out to compare the cleanup procedures for the determination of organophosphorus pesticides in vegetables. Eleven organophosphorus pesticides were extracted with acetone and methylene chloride. Extracts were cleanup by solid-phase extraction (SPE) mixed-mode column using quaternary amine and aminopropyl (SAX/ NH 2 ) or octadecyl (C 18 ) sorbents. The pesticides were determined by gas chromatography with flame photometric detector. The recovery results obtained from the SPE SAX/ NH 2 and C 18 cleanups in carrot, cucumber and green mustard samples were in the range of 71.0 % to 115 %. Lower recoveries were obtained for polar pesticides, methamidophos and dimethoate. These results were compared to the method currently used in the laboratory which does not include any cleanup. (author)

  15. Radiation Dose to Post-Chernobyl Cleanup Workers

    Science.gov (United States)

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  16. Radioactive waste characterisation by neutron activation

    International Nuclear Information System (INIS)

    Nicol, Tangi

    2016-01-01

    Nuclear activities produce radioactive wastes classified following their radioactive level and decay time. an accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. at the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point of view, but also from stable toxic chemicals. This PhD thesis concerns the characterization of toxic chemicals and nuclear material in radioactive waste, by using neutron activation analysis, in the frame of collaboration between the Nuclear Measurement Laboratory of CEA Cadarache, France, and the Institute of Nuclear Waste Management and Reactor Safety of the research center, FZJ (Forschungszentrum Juelich GmbH), Germany. The first study is about the validation of the numerical model of the neutron activation cell MEDINA (FZJ), using MCNP Monte Carlo transport code. Simulations and measurements of prompt capture gamma rays from small samples measured in MEDINA have been compared for a number of elements of interest (beryllium, aluminum, chlorine, copper, selenium, strontium, and tantalum). The comparison was performed using different nuclear databases, resulting in satisfactory agreement and validating simulation in view of following studies. Then, the feasibility of fission delayed gamma-ray measurements of "2"3"9Pu and "2"3"5U in 225 L waste drums has been studied, considering bituminized or concrete matrixes representative of wastes produced in France and Germany. The delayed gamma emission yields were first determined from uranium and plutonium metallic samples measurements in REGAIN, the neutron activation cell of LMN, showing satisfactory consistency with published data. The useful delayed gamma signals of "2"3"9Pu and "2"3"5U, homogeneously distributed in the 225 L

  17. Characterization plan for the immobilized low-activity waste borehole

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy's (DOE's) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment

  18. Distinguishing method for contamination/radio-activation of radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Takuji; Kato, Keiichiro; Koda, Satoshi.

    1994-01-01

    The present invention concerns a method of distinguishing the contamination/radio-activation of radioactive wastes used in processing wastes generated upon dismantling of exhausted nuclear reactors. Especially, contaminated/radio-activation is distinguished for wastes having openings such as pipes and valves, by utilizing scattering of γ-rays or γ-ray to β-ray ratio. That is, ratio of scattered γ-rays and direct γ-rays or ratio of β-rays and γ-rays from radioactive wastes are measured and compared by a radiation detector, to distinguish whether the radioactive wastes contaminated materials or radio-activated materials. For example, when an object to be measured having an opening is contaminated at the inner side, the radiation detector facing to the opening mainly detects high direct γ-rays emitted from the object to be measured while a radiation detector not facing the opening mainly detects high scattered γ-rays relatively. On the other hand, when the object is a radio-activated material, any of the detectors detect scattered γ-rays, so that they can be distinguished by these ratios. (I.S.)

  19. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    Hernandez H, V.

    1997-01-01

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 10 13 cm -2 s -1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  20. 77 FR 21433 - Regulated Navigation Area; Pacific Sound Resources and Lockheed Shipyard EPA Superfund Cleanup...

    Science.gov (United States)

    2012-04-10

    ... superfund cleanup remediation efforts. This RNA will prohibit activities that would disturb the seabed, such... or capped are arsenic, copper, lead, mercury, zinc, PAHs and PCBs. The metal contaminants were... installed in the designated regulated navigation area, pursuant to the remediation efforts of the U.S...