WorldWideScience

Sample records for waste clean-up technologies

  1. A systematic assessment of the state of hazardous waste clean-up technologies

    International Nuclear Information System (INIS)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ''Decontamination Systems Information and Research Programs.'' Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming

  2. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    Collard, G.

    2007-01-01

    The primary mission of the Radioactive Waste and Clean-up division is to propose, to develop and to evaluate solutions for a safe, acceptable and sustainable management of radioactive waste. The Radioactive Waste and Clean-up division programme consists in research, studies, development and demonstration aiming to realise the objective of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation on radioactively contaminated sites. Indeed, it participates in the realisation of an objective which is to ensure that radioactive wastes are safely managed, transported, stored and disposed of, with a view to protecting human health and the environment, within a wider framework of an interactive and integrated approach to radioactive waste management and safety. We believe that nuclear energy will be necessary for the sustainable development of mankind in the 21st century, but we well understand that it would not be maintained if it is not proven that within benefits of nuclear energy a better protection of the environment is included. Although the current waste management practices are both technically and from the environmental point of view adequate, efforts in relation of future power production and waste management technologies should be put on waste minimisation. Therefore, the new and innovative reactors, fuel cycle and waste management processes and installations should be designed so that the waste generation can be kept in minimum. In addition to the design, the installations should be operated so as to create less waste; consideration should be given e.g. to keeping water chemistry clean and other quality factors. SCK-CEN in general and the Radioactive Waste and Clean-up division in particular are present in international groups preparing the development of innovative nuclear reactors, as Generation 4 and INPRO. Because performance assessments are often black boxes for the public, demonstration is needed for the acceptation of

  3. Radioactive Waste and Clean-up Division

    International Nuclear Information System (INIS)

    Collard, G.

    2001-01-01

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  4. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

  5. Attitudes toward managing hazardous waste: What should be cleaned up and who should pay for it?

    International Nuclear Information System (INIS)

    Baron, J.; Kunreuther, H.; Gowda, R.

    1993-01-01

    Hazardous waste policy in the United States uses a liability-based approach, including strict, retroactive, and joint and several liability. To assess attitudes toward these basic principles of liability, and toward priorities for clean-up of wastes, a questionnaire was mailed to legislators, judges, executives of oil and chemical companies, environmentalists, and economists. The questionnaire consisted of abstract, simplified cases, which contrasted basic principles rather than dealing with real-world scenarios. Subjects were asked how they would allocate clean-up costs between companies and government as a function of such factors as adherence to standards, adoption of best available technology (BAT), and influence of penalties on future behavior. Most subjects felt that, if the company followed government standards or used the best available technology (BAT), it should pay for only a portion of the clean-up cost, with the government paying the rest. In general, responses did not support the principles underlying current law - strict, retroactive, and joint-and-several liability. Most subjects were more interested in polluters paying for damages than in deterrence or future benefit - even to the extent that they would have 'harmless' waste sites cleaned up. A bias was found toward complete clean-up of some sites, or 'zero risk.' Different groups of subjects gave similar answers, although more committed environmentalists were more willing to make companies pay and to clean up waste regardless of the cost. 21 refs., 3 tabs

  6. A software tool for soil clean-up technology selection

    International Nuclear Information System (INIS)

    Vranes, S.; Gonzalez-Valencia, E.; Lodolo, A.; Miertus, S.

    2002-01-01

    Soil remediation is a difficult, time-consuming and expensive operation. A variety of mature and emerging soil remediation technologies is available and future trends in remediation will include continued competition among environmental service companies and technology developers, which will definitely result in further increase in the clean-up options. Consequently, the demand has enhanced developing decision support tools that could help the decision makers to select the most appropriate technology for the specific contaminated site, before the costly remedial actions are taken. Therefore, a software tool for soil clean-up technology selection is currently being developed with the aim of closely working with human decision makers (site owners, local community representatives, environmentalists, regulators, etc.) to assess the available technologies and preliminarily select the preferred remedial options. The analysis for the identification of the best remedial options is based on technical, financial, environmental, and social criteria. These criteria are ranked by all involved parties to determine their relative importance for a particular project. (author)

  7. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  8. Robotic soil sampler for hazardous waste clean up

    International Nuclear Information System (INIS)

    Jaselskis, E.J.

    1993-01-01

    An innovative field sampling system using LA-ICP-AES (laser ablation-inductively coupled plasma atomic emission spectrometry) technology is currently being developed through an integrated team approach at Ames Laboratory to provide in-situ, real time analysis of inorganic hazardous waste. This sampling approach is conducted through a mobile testing facility which consists of an instrumentation vehicle called the Mobile Demonstration Laboratory for Environmental Screening Technologies (MDLEST), and an attached trailer called the Robotic Sampling Accessory (RSA). The RSA provides automated sampling capabilities through an attached three-degree-of-freedom robot that will be equipped with surface and subsurface sampling probes. The probes are currently being designed by a multidisciplinary team consisting of engineers and scientists at Ames Laboratory, Iowa State University, and Lockheed. This system is expected to improve sample quality assurance, reduce sampling time and cost, and improve worker safety. Limitations and future areas of research for the MDLEST-RSA are also discussed

  9. DOE looks to clean up with vitrification technology

    International Nuclear Information System (INIS)

    Lobsenz, G.

    1994-01-01

    This article describes the vitrification and waste retrieval facility being built by US DOE, designed to handle a mixture of low-level radioactive wastes stored in structurally shaky silos at the Fernald weapons plant

  10. Cleaning up coal-fired plants : multi-pollutant technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2009-06-15

    Coal is the source of 41 per cent of the world's electricity. Emission reduction technologies are needed to address the rapid growth of coal-fired plants in developing countries. This article discussed a multi-pollutant technology currently being developed by Natural Resources Canada's CANMET Energy Technology Centre. The ECO technology was designed to focus on several types of emissions, including sulfur oxides (SOx), nitrogen oxides (NOx), mercury and particulates, as well as acid gases and other metals from the exhaust gas of coal-fired plants. The ECO process converts and absorbs incoming pollutants in a wet electrostatic precipitator while at the same time producing a valuable fertilizer. The ECO system is installed as part of the plant's existing particulate control device and treats flue gas in 3 process steps: (1) a dielectric barrier discharge reactor oxidizes gaseous pollutants to higher oxides; (2) an ammonia scrubber then removes sulfur dioxide (SO{sub 2}) not converted by the reactor while also removing the NOx; and (3) the wet electrostatic precipitator captures acid aerosols produced by the discharge reactor. A diagram of the ECO process flow was included. It was concluded that the systems will be installed in clean coal plants by 2015. 2 figs.

  11. Sectored Clean-up Work Plan for Housekeeping Category Waste Sites

    International Nuclear Information System (INIS)

    Nacht, S. J.

    2000-01-01

    The Sectored Clean-up Work Plan (SCWP) replaces the Housekeeping Category Corrective Action Unit Work Plan and provides a strategy to be used for conducting housekeeping activities using a sectored clean-up approach. This work plan provides a process by which one or more existing housekeeping category Corrective Action Sites (CASS) from the Federal Facility Agreement and Consent Order and/or non-FFACO designated waste site(s) are grouped into a sector for simultaneous remediation and cleanup. This increases effectiveness and efficiencies in labor, materials, equipment, cost, and time. This plan is an effort by the U.S. Department of Energy to expedite work in a more organized and efficient approach. The objectives of this plan are to: Group housekeeping FFACO CASS and non-FFACO housekeeping sites into sectors and remediate during the same field visit; Provide consistent documentation on FFACO CAS and non-FFACO clean-up activities; Perform similar activities under one approved document; Remediate areas inside the Deactivation and Decommissioning facilities and compounds in a campaign-style remediation; and Increase efficiencies and cost-effectiveness, accelerate cleanups, reduce mobilization, demobilization, and remediation costs

  12. Management and disposal of radioactive waste from clean-up operations

    International Nuclear Information System (INIS)

    Lehto, J.

    1997-01-01

    Clean-up of large contaminated areas may create enormous amounts of radioactive waste which need to be safely disposed of. Disposal of the waste may include pre-treatment and transportation to a final repository. There is much experience of the removal and disposal of large amounts of radioactive contaminated material from uranium mill tailings sites. For example, in Salt Lake City, USA, two million tons of radium-containing waste was transported 140 km by rail to a disposal site. In Port Hope, Canada, 70,000 cubic meters of similar waste were moved by road to a disposal site 350 km away. The disposal of the uranium mill tailings can be pre-planned, but an accident situation is quite different. In an emergency, decisions on how to deal with the waste from the clean-up may have to be made rapidly and disposal options may be limited. After the Chernobyl accident, large amounts of contaminated material (mainly soil and trees) were disposed of in shallow pits and surface mounds. Overall, approximately 4x10 6 m 3 of waste were distributed between about 800 disposal sites. Because the amounts of waste after a major nuclear accident could be large, their final disposal may require large human and capital resources. Depending on the scale it is possible that the wastes will have to be placed in several final disposal sites. These are likely to be pits or surface mounds. Such repositories may need clay or concrete liners to prevent migration of the radionuclides from the disposal sites. (EG)

  13. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an

  14. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP AT SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Bergren, C.

    2009-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  15. Historical Waste Retrieval and Clean-up Operations at Nuclear facility no.56, at the Cadarache Nuclear Research Centre

    International Nuclear Information System (INIS)

    Santucci, C.

    2008-01-01

    Among the different activities of the CEA research centre in Cadarache, located in the south of France, one of the most important involves cleaning, cleansing dismantling, decommissioning, and recovery of legacy wastes. This presentation will give an overview of the waste retrieval project from the historical interim storage facility called INB 56. The project is divided into three different sub-projects: the historical unpacked waste retrieval, the historical canister retrieval and the draining and clean-up of the spent fuel pools. All the described operations are conducted in accordance with the ALARA principle and the optimization of the waste categorization. The overall project, including the complete clean-up of the facility and its de-licensing, is due to end by 2020. The aim of this document is to outline the general ongoing historical waste retrieval operations and future projects on the INB 56 at the Cadarache research centre. In the final analysis, it can be seen that most of the waste is to be sent to the new CEDRA facility. Nevertheless one major goal of this project is to optimize the waste categorization and therefore to send the canisters to the ANDRA LLW site whenever possible. Two means will allow us to reach this goal: - The sorting out of un-packed waste in order to constitute a LLW canister - A wide range of measurements (gamma spectrometry, neutron measurement, tomography) in order to assess the exact nature of the contents in the historical canisters. Taking waste treatment and conditioning into account well in advance is a factor of prime importance that must be managed early in the elaboration of the decommissioning scenario. Precise knowledge of the physical and radiological inventories is of the utmost importance in defining the best waste pathway. Overall operations on the facility are due to end by 2020 including complete clean-up of the facility and its de-licensing

  16. Cleaning up eastern Europe: Proposals for a coordinated European hazardous waste management regime

    International Nuclear Information System (INIS)

    Cassidy, B.E.

    1993-01-01

    In the past century, technological development has stimulated tremendous advances in manufacturing productivity and raised living standards throughout the many industrialized nations of the modern world. Only in the last quarter century, however, has the global community begun to recognize the environmental costs of this technological progress. Of principal concern is the large-scale generation by virtually all commercial and industrial sources of waste by-products posing substantial risks to human health or the environment. Methods of the appropriate management of these hazardous or toxic waste streams have received considerable attention in most developed states during the past two decades. More recently, the international community has recognized that hazardous waste management practices adopted by individual nations may pose significant transboundary environmental concerns. Extra-territorial impacts may arise directly, from the exportation of hazardous waste from one state to another, or indirectly, from the contamination of open-quotes migratory mediaclose quotes like air resources and water supplies. Recognition in the scientific community of hazardous waste's contribution to global pollution has progressed at the same time that a new sense of responsibility for the global environment has evolved in the international legal community. Accordingly, the international community has recently initiated several efforts to address the transboundary nature of hazardous waste management practices

  17. Radioisotope tracer technology for a hydraulic efficiency diagnosis of sludge digester after cleaning up

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Kim Jong Bum; Choi, Byung Jong

    2004-03-01

    Radiotracer experiments were carried out on a cylindrical 2-stage anaerobic sludge digester in order to investigate the improvement of its efficiency by means of RTD (Residence Time Distribution) measurements before and after cleaning up the inside of the digester. The tracer was Sc-46 in an EDTA solution which forms such a stable complex compound to keep the isotope from being absorbed onto the surface of the pipelines or the wall. It was injected into the digester by pressurized nitrogen gas and its movement was monitored by NaI(Tl) scintillation detectors installed around the digester and recorded for a month by a 24-channel data acquisition system specially developed for radiotracer experiments by the Korea Tracer Group of KAERI. The experimental data was analyzed for the MRT (Mean Residence Time) and other parameters characterizing the flow behavior. After the cleaning of the digesters the variance has been decreased and the sludge dynamics was activated as a result of the increase of the effective volume from 20% to 80% after cleaning up in the secondary digester. Particularly the MRT of the secondary digester which has no mixing mechanism has been increased by 3 times

  18. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    International Nuclear Information System (INIS)

    Swafford, A.M.; Keller, J.M.

    1993-01-01

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences is necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU·Spec trademark column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable

  19. Clean-up progress at the SNL/NM Classified Waste Landfill

    International Nuclear Information System (INIS)

    Slavin, P.J.; Galloway, R.B.

    1999-01-01

    The Sandia National Laboratories/New Mexico (SNL/NM)Environmental Restoration Project is currently excavating the Classified Waste Landfill in Technical Area II, a disposal area for weapon components for approximately 40 years until it closed in 1987. Many different types of classified parts were disposed in unlined trenches and pits throughout the course of the landfill's history. A percentage of the parts contain explosives and/or radioactive components or contamination. The excavation has progressed backward chronologically from the last trenches filled through to the earlier pits. Excavation commenced in March 1998, and approximately 75 percent of the site (as defined by geophysical anomalies) has been completed as of November 1999. The material excavated consists primarily of classified weapon assemblies and related components, so disposition must include demilitarization and sanitization. This has resulted in substantial waste minimization and cost avoidance for the project as upwards of 90 percent of the classified materials are being demilitarized and recycled. The project is using field screening and lab analysis in conjunction with preliminary and in-process risk assessments to characterize soil and make waste determinations in a timely a fashion as possible. Challenges in waste management have prompted the adoption of innovative solutions. The hand-picked crew (both management and field staff) and the ability to quickly adapt to changing conditions has ensured the success of the project. The current schedule is to complete excavation in July 2000, with follow-on verification sampling, demilitarization, and waste management activities following

  20. ACCESSING FEDERAL DATA BASES FOR CONTAMINATED SITE CLEAN-UP TECHNOLOGIES

    Science.gov (United States)

    The Federal Remediation Technologies Roundtable (Roundtable) eveloped this publication to provide information on accessing Federal data bases that contain data on innovative remediation technologies. The Roundtable includes representatives from the Department of Defense (DoD), En...

  1. Effectiveness of phytoremediation technologies to clean up of metalloids using three plant species in Iran.

    Science.gov (United States)

    Nejatzadeh-Barandozi, Fatemeh; Gholami-Borujeni, Fathollah

    2014-01-01

    Phytoremediation is a potential, innovative, and cost-effective technology for non-destructive remediation of heavy-metal contaminated soils. A field trial was conducted to evaluate the phytoremediation efficiencies of three plants and the effects of ethylenediaminetetraacetic acid (EDTA) or ammonium addition [(NH4)2SO4 and NH4NO3] for assisting removal of heavy metals (Pb, Hg, and Cd) from contaminated soil. The tested plants include Amaranthus retroflexus, Sorghum bicolor, and Lolium perrene. Results showed that maximum concentration of Pb, Hg, and Cd were detected in shoots of A. retroflexus, S. bicolor, and L. perrene at high concentrations in pH=6.2. The application of EDTA as a chelating agent to soil was the most efficient to enhance the phytoavailability of Pb, Hg and Cd. The concentrations of Pb, Hg, and Cd in the shoots of A. retroflexus treated with EDTA were 57 mg/kg, 14.1 mg/kg, and 30 mg/kg, respectively. Results indicated that among the three plants, A. retroflexus had great potential in phytoremediation of contaminated soils.

  2. Clean-up of liquid radiation wastes with elevated mineralization from cesium and cobalt radionuclides by the modified clinoptilolite of the Chankanaj deposit

    International Nuclear Information System (INIS)

    Plotnikov, V.I.; Tuleushev, A.Zh.; Zhabykbaev, G.T.; Kostsov, S.V.; Medvedeva, Z.V.; Plotnikova, O.M.; Chakrova, E.T.; Idrisova, U.R.; Idrisova, D.Zh.

    2003-01-01

    On the base of laboratory studies and semi-industrial testing the possibility of liquid radioactive wastes clean-up from cesium and cobalt radionuclides in elevated mineralization conditions with help of modified clinoptilolite is shown. In the work the synthesized thin-layer inorganic sorbent (TIS) with conventional name MC-2 (modified clinoptilolite) was used. The Chankanaj deposit's zeolite in the crushed form was base for the TIS production. The copper ferrocyanides serves as the modifier. This sorbent is selective one in relationship to cesium and cobalt radionuclides

  3. Petroleum industry is cleaning up its act -- Self-cleaning filters to maximize profits, minimize waste and reduce liability

    International Nuclear Information System (INIS)

    Williams, D.

    2004-01-01

    Recent steps taken by the petroleum industry to control end-of-pipe pollution and to minimize waste at the source by changing over to self-cleaning, backwashable filters instead of the traditional disposable filters such as bags or cartridges, are discussed. Various self-cleaning filter systems and their advantages are described, using REACTOGARD which provides total protection for catalysts in fixed-bed reactors and EROSIONGARD, used in fluidized catalytic crackers, as examples. Both filter systems have been developed by RPA Process Technologies, Inc., a global leader in industrial filtration systems. Major advantages attributed to self-cleaning filters include significantly reduced costs through reducing the number of catalyst change-out cycles, maximized platform productivity through virtually eliminating the risk of plugged wells, reduced waste through ability to recycle cleaning liquids, increased profits through shorter return-on-investment cycles, reduced emissions and reduced future liability through higher safety in the workplace; also reduced pollution of landfill sites. 1 photo

  4. Technology for the oil spills clean-up which provides preliminary accumulation of sorbents into the area of emergence and localization oil spills

    Directory of Open Access Journals (Sweden)

    M.L.Soroka

    2012-12-01

    Full Text Available Introduction: The implementation of measures for the prevention and spill of dangerous goods is an important aspect of sustainable development of railway transport. oil spills accident are the most dangerous. They are accompanied by significant pollution of all environmental objects. Studying and development of oil localization and clean-up technologies of such accidents is an important problem of environmental protection to modern conditions of railway transport development. The purpose: to improve the effectiveness of traditional methods of oil spill elimination and the development of new clean-up technologies adapted to the real conditions of the railway transport of Ukraine. Methods: To achieve the research purposes was used analysis of material flows, typical for places emergence and localization of the oil spill on the railways. Results: Analysis of standard technological scheme for the oil spills eliminations has shown that the most difficult task of effective clean-up surfaces is the timely delivery of oil sorbents and special equipment to the area spill containment. The general effectiveness of the elimination activities specifies the time from the beginning contact of dangerous goods with environmental objects to the absorption it into the structure of sorbent . Us was developed the technological scheme of oil spill elimination. This scheme provide a permanent and fast access to the sorbents into the oil spill localization area. It was proposed to device that allows you to transport the sorbent into sorption booms directly on the tank for transportation of petroleum products. Conclusions: Preventative accumulation of sorbents to the oil spill elimination into the localization area provides the organizational and operational simplicity of all stages of clean-up technology. Technical and economic assessment shows that the proposed technology is effective, technologically feasible and economically competitive.

  5. Heavy oils clean up

    International Nuclear Information System (INIS)

    Collitt, R.

    1997-01-01

    High production, transport and refining costs have long led oil companies to shun heavy crude oils. Advances in the technology of upgrading heavy oils, however, are likely to reduce transport costs and improve the refinery output. Research and development by Venezuela's state oil company, Petroleos de Venezuela (PDVSA), has resulted in a process called Aquaconversion which permits the upgrading of heavy crude oils using a catalyst and the hydrogen from steam. This may be carried out at the wellhead in small low-pressure and relatively inexpensive units. In addition, higher distillate yields of higher value could be produced by revamping the thermal cracking units of refineries to incorporate the new technology. This has generated considerable interest in Venezuela's large extra-heavy crude oil reserves and has led multinational oil companies along with PDVSA to pledge $17 billion to their development. Even at a $2 to $3 per barrel upgrading cost, Venezuela's extra heavy crudes are competitive with lighter oils from other countries. Other major markets for the new technology are likely to be China and Russia, given their own large heavy crude reserves. (UK)

  6. TRACKING CLEAN UP AT HANFORD

    International Nuclear Information System (INIS)

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  7. Cleaning Up Our Drinking Water

    International Nuclear Information System (INIS)

    Manke, Kristin L.

    2007-01-01

    Imagine drinking water that you wring out of the sponge you've just used to wash your car. This is what is happening around the world. Rain and snow pass through soil polluted with pesticides, poisonous metals and radionuclides into the underground lakes and streams that supply our drinking water. 'We need to understand this natural system better to protect our groundwater and, by extension, our drinking water,' said Pacific Northwest National Laboratory's Applied Geology and Geochemistry Group Manager, Wayne Martin. Biologists, statisticians, hydrologists, geochemists, geologists and computer scientists at PNNL work together to clean up contaminated soils and groundwater. The teams begin by looking at the complexities of the whole environment, not just the soil or just the groundwater. PNNL researchers also perform work for private industries under a unique use agreement between the Department of Energy and Battelle, which operates the laboratory for DOE. This research leads to new remediation methods and technologies to tackle problems ranging from arsenic at old fertilizer plants to uranium at former nuclear sites. Our results help regulators, policy makers and the public make critical decisions on complex environmental issues

  8. Clean-up of a radioactive spill

    International Nuclear Information System (INIS)

    Fish, W.

    1987-01-01

    Bikini Atoll in the Marshall Islands of the South Pacific was extensively contaminated with radionuclides deposited by thermonuclear weapons testing in the 1940s and 1950s. In recent years, the U.S. government has attempted to restore the habitability of the islands by cleaning up the remaining radioactive material. Although the island no longer presents an acute radiation risk to inhabitants, plants growing on the island concentrate cesium-137 from the soil, presenting an unacceptable risk to the future population. The behavior of Cs-137 has proved to be an intractable problem that has major implications for the risks associated with transporting and processing high-level nuclear wastes in the U.S. Various proposed soil treatment strategies for Bikini are discussed, including ion-exchange treatments and competing-ion strategies. No fully satisfactory treatment currently exists and the problems and prospects of cleaning up after a major nuclear waste spill are presented

  9. Hazardous waste market and technology trends

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    What forces are currently driving the growth of the hazardous waste remediation market? Which factors will control the development of cleanup technologies during the next decade? At what types of sites are various technologies being applied? In an effort to answer these questions, EPA has produced an overview of trends in the demand for remedial technologies at CERCLA, RCRA corrective action, underground storage tank (UST), and other cleanup sites across the United States. The 160-page document, entitled Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, was developed by EPA's Office of Solid Waste and Emergency Response. Highlights from the report are presented below. 1 ref., 2 figs., 1 tab

  10. The role of peer review in responsive decisions - a case study of clean-up and safe long-term management of historic waste at Port Hope and Clarington

    International Nuclear Information System (INIS)

    Hardy, D.

    2006-01-01

    'Full text:' The Municipalities of Port Hope and Clarington ('Municipalities') are committed to leading the clean- up and safe long-term management of historic low- level radioactive and hazardous wastes deposited in Port Granby (in the Municipality of Clarington) and several locations in the Municipality of Port Hope. They are supported by the Government of Canada through Atomic Energy of Canada Limited's (AECL) Low- Level Radioactive Waste Management Office (LLRWMO). The wastes are the result of radium and uranium processing in Port Hope by Eldorado since the 1930s. To establish the parameters of the clean- up, including the ability to veto the project, the local municipalities negotiated and signed a Legal Agreement with the Government of Canada in 2001. As a Responsible Authority, Natural Resources Canada has defined and approved the scope of the two projects. The LLRWMO is designated as the proponent. Accordingly, the LLRWMO is conducting the Environmental Assessment (EA) Studies and seeking approval of a preferred method of conducting the clean up for each municipality. The municipalities recognized that these large and complex environmental assessment studies would challenge the resources of citizens, municipal professional staff and politicians. Thus, the Legal Agreement specified that both municipalities would have funded staff to work together to coordinate and expedite the project. A Peer Review Team (PRT) would be retained by the municipalities and funded by the Government of Canada. The PRT is made up of experienced professionals led by Hardy Stevenson and Associates Limited in disciplines appropriate to the peer review tasks on hand. The PRT has brought a unique approach to the peer review. The PRT is headed by planners and social scientists trained to be sensitive to the 'people aspects' of the EA process as a major priority. They are supported by engineers and technical specialists. The team includes a physician with a family practice who is also an

  11. The role of the peer review process in the clean up of low-level and historic radioactive waste in the municipalities of Port Hope and Clarington, Ontario, Canada

    International Nuclear Information System (INIS)

    Al-Haydari, D.

    2011-01-01

    This paper describes the role of the Municipal Peer Review Team (MPRT) for the Municipalities of Port Hope (Port Hope Project) and Clarington (Port Granby Project) for the clean-up of low level and historic radioactive waste. The purpose of the MPRT is to provide the municipalities with a team of experts to help assist their participation in the cleanup process. The peer review process has enabled the Municipalities of Port Hope and Clarington to participate in the decision-making processes as equal parties with the Port Hope Area Initiative Management Office and the Regulatory Authorities. Furthermore, the peer review process has stressed the need for a proactive management approach for low-level radioactive waste and marginally contaminated soil clean-ups. With the work of the MPRT, the Port Hope Project has been granted a facility licence (August, 2009). Both Projects have completed the detailed design phase, where the MPRT played a major role in the review of design documentation. The MPRT has developed an excellent working relationship with the Municipal staff and Mayors of Port Hope and Clarington. The MPRT effectively manages the 'people aspects' of the Port Hope and Port Granby Projects for the municipalities and assists in building transparency and trust in all Project activities. Collaborative, multi-disciplinary dialogue has been a key element to project success. Furthermore, the MPRT has become familiar with the local residents from attending community events and public meetings and has become a trusted source on all things Project related. (author)

  12. Demonstrating practical application of soil and groundwater clean-up and recovery technologies at natural gas processing facilities: Bioventing, air sparging and wetlands remediation

    International Nuclear Information System (INIS)

    Moore, B.

    1996-01-01

    This issue of the project newsletter described the nature of bioventing, air sparging and wetland remediation. It reviewed their effectiveness in remediating hydrocarbon contaminated soil above the groundwater surface. Bioventing was described as an effective, low cost treatment in which air is pumped below ground to stimulate indigenous bacteria. The bacteria then use the oxygen to consume the hydrocarbons, converting them to CO 2 and water. Air sparging involves the injection of air below the groundwater surface. As the air rises, hydrocarbons are stripped from the contaminated soil and water. The advantage of air sparging is that it cleans contaminated soil and water from below the groundwater surface. Hydrocarbon contamination of wetlands was described as fairly common. Conventional remediation methods of excavation, trenching, and bellholes to remove contamination often cause extreme harm to the ecosystem. Recent experimental evidence suggests that wetlands may be capable of attenuating contaminated water through natural processes. Four hydrocarbon contaminated wetlands in Alberta are currently under study. Results to date show that peat's high organic content promotes sorption and biodegradation and that some crude oil spills can been resolved by natural processes. It was suggested that assuming peat is present, a good clean-up approach may be to contain the contaminant source, monitor the lateral and vertical extent of contamination, and wait for natural processes to resolve the problem. 3 figs

  13. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  14. Cleaning up a biodiesel plant

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: The project at Biodiesel Producers Limited in Victoria involved remediation of a wastewater treatment process containing a large covered anaerobic lagoon, an aerobic sequencing batch reactor (SBR) and a series of downstream open ponds. The pond downstream of the SBR was heavily loaded with a thick hard grease cap. The CAL was believed to have a metre-plus grease cap and the SBR had developed a thick foam cap that prevented aeration and mixing. Environmental Biotech was called in to assist with bioremediation using its Grease Eradication System bacteria cultures, with the aim of reducing the fats, oil and grease in the CAL discharge to less than 150 milligrams per litre, eliminating the stable fat foam in the SBR to allow the denitrification sequencing program to be reinstated and to clean up the hard fat layer from the surfaces of the comany's open ponds. The inflow to the CAL was designed for a flow of 210kL per day with a loading of 6900mg/L biochemical oxygen demand and FOG of 425mg/L. The actual load, as measured by Environmental Biotech, was 100kL with 20,000mg/L BOD and 1800mg/L (180kg) FOG. The CAL had been in use for more than two years, generating methane but assumed to be working well in the breakdown of chemical oxygen demand and FOG. In December 2009 the quality of the effluent began to decrease, overloading the SBR with FOG. It caused the formation of dense foam on aeration and mixing. The foam would not break down despite a variety of methods being employed and would overflow from the walls of the SBR. “Due to the foaming issue the SBR became a large holding tank for the fat and because of the reduced mixing, the solids were settling on the bottom of the tank,” Environmental Biotech project manager and franshisee Craig Barr said. “We were brought in to start work inApril 2010 and initially we slug dosed the CAL with 400 litres of GES bacteria in addition to a constant metered dosing rate of 400 litres per fortnight with the

  15. Renewable Natural Gas Clean-up Challenges and Applications

    Science.gov (United States)

    2011-01-13

    produced from digesters ─ Animal manure (dairy cows, swine ) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...LNG) for vehicle fuel ─Ft. Lewis — Anaerobic digestion of waste water for production of hydrogen as a fuel cell vehicle fuel ─SCRA * – Landfill gas...BE CLEANED- UP AND PLACED IN THE NATURAL GAS PIPELINE SYSTEM 6 GTI RNG Project Examples >Example GTI Projects: ─Gills Onions— Anaerobic

  16. ROSEE cleans up after the Cold War

    International Nuclear Information System (INIS)

    Valenti, M.

    1994-01-01

    This article describes a robot named ROSEE, designed by engineers at the DOE's Hanford site to minimize the risk of radiation exposure to workers cleaning up to residue left by America's manufacture of nuclear weapons. ROSEE is the acronym for Remotely Operated Sediment Extraction Equipment, a robot designed to vacuum sediment and debris from a nuclear fuels storage pool at the Department of Energy's Hanford nuclear waste storage site in Richland, Wash. The task facing ROSEE involves cleaning out the N basin at Hanford. Work is schedules to begin before the fall. The basin houses nuclear fuel refined during 24 years of the Cold War era. This water-filled structure is 24 feet deep, 87 feet long, and 56 feet wide, approximately three times larger than an Olympic-size swimming pool. Nuclear fuel was contained in honeycomb cells mounted 1 inch from the bottom of the pool. The cells rise 10 feet from the bottom of the basin, and each cell is 21 inches deep and 14 inches wide. The cells now hold radioactive residues that must be removed for final safe disposal

  17. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  18. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    Liang, Xujun; Guo, Chuling; Liao, Changjun; Liu, Shasha; Wick, Lukas Y; Peng, Dan; Yi, Xiaoyun; Lu, Guining; Yin, Hua; Lin, Zhang; Dang, Zhi

    2017-06-01

    Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future. Copyright © 2017. Published by Elsevier Ltd.

  19. Using Phytoremediation to Clean Up Contamination at Military Installations

    International Nuclear Information System (INIS)

    Zellmer, S.D.; Hinchman, R.R.; Negri, M.C.; Schneider, J.F.; Gatliff, E.G.

    1997-07-01

    During and following World War II, wastes from the production of munitions and other military materials were disposed of using the best available practices acceptable at that time. However, these disposal methods often contaminated soil and groundwater with organic compounds and metals that require cleanup under current regulations. An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant's rhizosphere. A phytoremediation system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use. Argonne National Laboratory (ANL) has been conducting basic and applied research in phytoremediation since 1990. Initial greenhouse studies evaluated salt-tolerant wetland plants to clean UP and reduce the volume of salty 'produced water' from petroleum wells. Results of these studies were used to design a bioreactor for processing produced water that is being demonstrated at a natural gas well in Oklahoma; this system can reduce produced water volume by about 75% in less than eight days, representing substantial savings in waste disposal cost. During 1994, ANL conducted a TNT plant uptake and in situ remediation study in a ridge-and-furrow area used for the disposal of pink water at the Joliet Army Ammunition Plant

  20. Using Phytoremediation to Clean Up Contamination at Military Installations

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Hinchman, R.R.; Negri, M.C.; Schneider, J.F. [Argonne National Lab., IL (United States); Gatliff, E.G. [Applied Natural Sciences, Inc., Fairfield, OH (United States)

    1997-07-01

    During and following World War II, wastes from the production of munitions and other military materials were disposed of using the best available practices acceptable at that time. However, these disposal methods often contaminated soil and groundwater with organic compounds and metals that require cleanup under current regulations. An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant`s rhizosphere. A phytoremediation system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use. Argonne National Laboratory (ANL) has been conducting basic and applied research in phytoremediation since 1990. Initial greenhouse studies evaluated salt-tolerant wetland plants to clean UP and reduce the volume of salty `produced water` from petroleum wells. Results of these studies were used to design a bioreactor for processing produced water that is being demonstrated at a natural gas well in Oklahoma; this system can reduce produced water volume by about 75% in less than eight days, representing substantial savings in waste disposal cost. During 1994, ANL conducted a TNT plant uptake and in situ remediation study in a ridge-and-furrow area used for the disposal of pink water at the Joliet Army Ammunition Plant.

  1. Determination of ten steroid hormones in animal waste manure and agricultural soil using inverse and integrated clean-up pressurized liquid extraction and gas chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Martin; Krogh, Kristine Andersen; Halling-Sørensen, Bent

    2011-01-01

    ... Martin Hansen , Kristine A. Krogh , Bent Halling ... in a 22 mL PLE cell : firstly by flushing the sample with heptane to remove unwanted matrix components (inverse- PLE , i- PLE ) and secondly, performing internal clean-up (ic- PLE ) and eluting the steroid hormones by attaching an ...

  2. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov (United States)

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  3. Hanford tank clean up: A guide to understanding the technical issues

    International Nuclear Information System (INIS)

    Gephart, R.E.; Lundgren, R.E.

    1995-01-01

    One of the most difficult technical challenges in cleaning up the US Department of Energy's (DOE) Hanford Site in southeast Washington State will be to process the radioactive and chemically complex waste found in the Site's 177 underground storage tanks. Solid, liquid, and sludge-like wastes are contained in 149 single- and 28 double-shelled steel tanks. These wastes contain about one half of the curies of radioactivity and mass of hazardous chemicals found on the Hanford Site. Therefore, Hanford cleanup means tank cleanup. Safely removing the waste from the tanks, separating radioactive elements from inert chemicals, and creating a final waste form for disposal will require the use of our nation's best available technology coupled with scientific advances, and an extraordinary commitment by all involved. The purpose of this guide is to inform the reader about critical issues facing tank cleanup. It is written as an information resource for the general reader as well as the technically trained person wanting to gain a basic understanding about the waste in Hanford's tanks -- how the waste was created, what is in the waste, how it is stored, and what are the key technical issues facing tank cleanup. Access to information is key to better understanding the issues and more knowledgeably participating in cleanup decisions. This guide provides such information without promoting a given cleanup approach or technology use

  4. Hanford tank clean up: A guide to understanding the technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, R.E.; Lundgren, R.E.

    1995-12-31

    One of the most difficult technical challenges in cleaning up the US Department of Energy`s (DOE) Hanford Site in southeast Washington State will be to process the radioactive and chemically complex waste found in the Site`s 177 underground storage tanks. Solid, liquid, and sludge-like wastes are contained in 149 single- and 28 double-shelled steel tanks. These wastes contain about one half of the curies of radioactivity and mass of hazardous chemicals found on the Hanford Site. Therefore, Hanford cleanup means tank cleanup. Safely removing the waste from the tanks, separating radioactive elements from inert chemicals, and creating a final waste form for disposal will require the use of our nation`s best available technology coupled with scientific advances, and an extraordinary commitment by all involved. The purpose of this guide is to inform the reader about critical issues facing tank cleanup. It is written as an information resource for the general reader as well as the technically trained person wanting to gain a basic understanding about the waste in Hanford`s tanks -- how the waste was created, what is in the waste, how it is stored, and what are the key technical issues facing tank cleanup. Access to information is key to better understanding the issues and more knowledgeably participating in cleanup decisions. This guide provides such information without promoting a given cleanup approach or technology use.

  5. US DoE clean-up programme: an update

    International Nuclear Information System (INIS)

    Whitfield, R.P.

    1993-01-01

    The Office of Environmental Restoration and Waste Management (EM) was established in 1989, when the US DoE's priority changed from nuclear weapons production to environmental clean-up. Both the decreased need for nuclear weapons due to global changes and decreasing threats from the Cold War, and the increased emphasis on environmental stewardship contributed to this change. The Environmental Restoration (ER) programme within EM was tasked to ensure that risks to human health and the environment posed by the DoE's past operations at its nuclear facilities and sites are eliminated or reduced to prescribed, safe levels. This article is a progress report on the programme. (author)

  6. Cleaning up commingled uranium mill tailings: is Federal assistance necessary

    International Nuclear Information System (INIS)

    1979-01-01

    GAO was asked to determine whether Federal assistance should be given to operating mill owners that have processed uranium for sale to both government and industry and, thus, generated residual radioactive wastes. The wastes generated for both government and commercial use are called commingled uranium mill tailings. GAO recommends that the Congress provide assistance to active mill owners to share in the cost of cleaning up that portion of the tailings which were produced under Federal contract. Further, GAO believes that the Congress should also consider having the Federal government assist those mills who acted in good faith in meeting all legal requirements pertaining to controlling the mill tailings that were generated for commercial purposes and for which the Federal government is now requiring retroactive remedial action. At the same time, the Congress should make sure that this action establishes no precedent for the Federal government assuming the financial responsibility of cleaning up other non-Federal nuclear facilities and wastes, including those mill tailings generated after the date when the Federal government notified industry that the failings should be controlled

  7. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  8. Technology needs and trends for hazardous waste site remediation

    International Nuclear Information System (INIS)

    Kovalick, W.W. Jr.

    1995-01-01

    Over the next few decades, federal, state, and local governments and private industry will commit billions of dollars annually to clean up sites contaminated with hazardous waste and petroleum products. While these needs represent an obligation for society, they also represent an important business opportunity for vendors of remediation services. This presentation assesses the remediation market by characterizing sites that comprise the demand for cleanup services, observing remedy selection trends in the Superfund program, and discussing gaps in the supply of technologies

  9. Methodology and data used for estimating the complex-wide impacts of alternative environmental restoration clean-up goals

    International Nuclear Information System (INIS)

    Shay, M.R.; Short, S.M.; Stiles, D.L.

    1994-03-01

    This paper describes the methodologies and data used for estimating the complex-wide impacts of alternative strategies for conducting remediation of all DOE sites and facilities, but does not address issues relating to Waste Management capabilities. Clean-up strategies and their corresponding goals for contaminated media may be driven by concentration-based regulatory standards, land-use standards (e.g., residential, industrial, wild life reserve, or totally restricted), risk-based standards, or other standards determined through stakeholder input. Strategies implemented to achieve these goals usually require the deployment of (a) clean-up technologies to destroy, remove, or contain the contaminants of concern; (b) institutional controls to prevent potential receptors from coming into contact with the contaminants; or (c) a combination of the above

  10. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Sawa, Toshio; Takahashi, Sankichi; Takashima, Yoshie.

    1983-01-01

    Purpose: To efficiently eliminate radioactive materials such as iron oxide and cobalt ions with less heat loss by the use of an electrode assembly applied with a direct current. Constitution: In a reactor water clean-up device adapted to pass reactor water through an electrode assembly comprising at least a pair of anode and cathode applied with a direct current to eliminate various types of ions contained in the reactor water by way of the electrolysis or charge neutralization at the anode, the cathode is constituted with a corrosion resistant grid-like or porous metal plate and a layer to the upper portion of the metal plate filled with a plurality of metal spheres of about 1 - 5 mm diameter, and the anode is made of insoluble porous or spirally wound metal material. (Seki, T.)

  11. Waste management issues, a set of technologies

    International Nuclear Information System (INIS)

    Gautrot, J.J.

    2000-01-01

    As any other industry, nuclear fuel cycle back-end raises the major issue of waste management. In France, spent fuel is considered as valuable materials and only the ultimate waste are considered as actual waste. Accordingly, waste issue is as follows: a sorting out has to be done, in order to separate valuable materials from actual wastes, put any outlet flow under a stable form and condition them appropriately to their respective recycling or disposal routes. This implies the implementation of a comprehensive set of technologies. Actually, it is an industrial reality, as the COGEMA Group has for a long time set up a reprocessing and conditioning strategy in its plants. Waste management issues are common to many activities. European as well as French regulators already introduced the twofold necessity to reduce waste volumes, and to dispose of only ''ultimate waste'' as concerns industrial and household waste mainly. In this objective, French nuclear reprocessing and recycling industry may be seen as a breeding ground of well-proven technologies and management options. Actually, processes used can also give an answer to such different issues as excess plutonium immobilization, sites cleaning up (including for instance treatment of the liquid HLW legacy), dismantling wastes management. There are a number of operations to be dealt with worldwide that will find a solution in any of the technologies implemented and optimized in COGEMA facilities. Based on the COGEMA Group know-how, the present paper will describe those technologies and explain how they can solve the other stringent waste management issues worldwide. (author)

  12. Cockroaches probably cleaned up after dinosaurs.

    Directory of Open Access Journals (Sweden)

    Peter Vršanský

    Full Text Available Dinosaurs undoubtedly produced huge quantities of excrements. But who cleaned up after them? Dung beetles and flies with rapid development were rare during most of the Mesozoic. Candidates for these duties are extinct cockroaches (Blattulidae, whose temporal range is associated with herbivorous dinosaurs. An opportunity to test this hypothesis arises from coprolites to some extent extruded from an immature cockroach preserved in the amber of Lebanon, studied using synchrotron X-ray microtomography. 1.06% of their volume is filled by particles of wood with smooth edges, in which size distribution directly supports their external pre-digestion. Because fungal pre-processing can be excluded based on the presence of large particles (combined with small total amount of wood and absence of damages on wood, the likely source of wood are herbivore feces. Smaller particles were broken down biochemically in the cockroach hind gut, which indicates that the recent lignin-decomposing termite and cockroach endosymbionts might have been transferred to the cockroach gut upon feeding on dinosaur feces.

  13. Cockroaches probably cleaned up after dinosaurs.

    Science.gov (United States)

    Vršanský, Peter; van de Kamp, Thomas; Azar, Dany; Prokin, Alexander; Vidlička, L'ubomír; Vagovič, Patrik

    2013-01-01

    Dinosaurs undoubtedly produced huge quantities of excrements. But who cleaned up after them? Dung beetles and flies with rapid development were rare during most of the Mesozoic. Candidates for these duties are extinct cockroaches (Blattulidae), whose temporal range is associated with herbivorous dinosaurs. An opportunity to test this hypothesis arises from coprolites to some extent extruded from an immature cockroach preserved in the amber of Lebanon, studied using synchrotron X-ray microtomography. 1.06% of their volume is filled by particles of wood with smooth edges, in which size distribution directly supports their external pre-digestion. Because fungal pre-processing can be excluded based on the presence of large particles (combined with small total amount of wood) and absence of damages on wood, the likely source of wood are herbivore feces. Smaller particles were broken down biochemically in the cockroach hind gut, which indicates that the recent lignin-decomposing termite and cockroach endosymbionts might have been transferred to the cockroach gut upon feeding on dinosaur feces.

  14. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    International Nuclear Information System (INIS)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates

  15. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  16. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    International Nuclear Information System (INIS)

    Castiglioni, Andrew J.; Gelis, Artem V.

    2016-01-01

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  17. Remote technologies for buried waste retrieval

    International Nuclear Information System (INIS)

    Smith, A.M.; Rice, P.

    1995-01-01

    The DOE is evaluating what should be done with this buried waste. Although the radioactive waste is not particularly mobile unless airborne, some of it was buried with volatile organics and/or other substances that tend to spread easily to surrounding soil or water tables. Volatile organics are hazardous materials (such as trichloroethylene) and require clean-up at certain levels in drinking water. There is concern that the buried volatile organics will spread into the water table and contaminate drinking water. Because of this, the DOE is considering options for handling this buried waste and reducing the risks of spreading or exposure. There are two primary options: containment and stabilization, or retrieval. Containment and stabilization systems would include systems that would leave the waste where it is, but contain and stabilize it so that the radioactive and hazardous materials would not spread to the surrounding soil, water, or air. For example, an in situ vitrification system could be used to melt the waste into a composite glass-like material that would not leach into the surrounding soil, water, or air. Retrieval systems are those that would remove the waste from its burial location for treatment and/or repackaging for long term storage. The objective of this project was to develop and demonstrate remote technologies that would minimize dust generation and the spread of airborne contaminants during buried waste retrieval. Remote technologies are essential for the retrieval of buried waste because they remove workers from the hazardous environment and provide greater automation, reducing the chances of human error. Minimizing dust generation is also essential to increased safety for the workers and the environment during buried waste retrieval. The main contaminants within the waste are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides, which are easily suspended in air and spread if disturbed

  18. Moderator clean-up system in a heavy water reactor

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Hamamura, Kenji.

    1983-01-01

    Purpose: To decrease the fluctuation of the poison concentration in heavy water moderator due to a heavy water clean-up system. Constitution: To a calandria tank filled with heavy water as poison-containing moderators, are connected both end of a pipeway through which heavy water flows and to which a clean-up device is provided. Strongly basic resin is filled within the clean-up device and a cooler is disposed to a pipeway at the upstream of the clean-up device. In this structure, the temperature of heavy water at the inlet of the clean-up device at a constant level between the temperature at the exit of the cooler and the lowest temperature for the moderator to thereby decrease the fluctuation in the poison concentration in the heavy water moderator due to the heavy water clean-up device. (Moriyama, K.)

  19. National Policies for cleaning up contaminated sites

    NARCIS (Netherlands)

    Veenman, S.A.; Jörgens, H.; Lenschow, A.; Liefferink, D.

    2014-01-01

    Policies for the remediation of contaminated sites emerged relatively late as a subfield of environmental protection. The policy area is adjacent to other policies, such as waste policy, which often includes provisions on how to deal with waste dumps, as well as soil and groundwater protection

  20. Progress and challenges in cleaning up Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D. [Dept. of Energy, Richland, WA (United States)

    1997-08-01

    This paper presents captioned viewgraphs which briefly summarize cleanup efforts at the Hanford Site. Underground waste tank and spent nuclear fuel issues are described. Progress is reported for the Plutonium Finishing Plant, PUREX plant, B-Plant/Waste Encapsulation Storage Facility, and Fast Flux Test Facility. A very brief overview of costs and number of sites remediated and/or decommissioned is given.

  1. The nuclear age. Cleaning up the mess

    International Nuclear Information System (INIS)

    Menezes, M.; Stunell, A.

    2001-01-01

    This paper focuses on just one essential component of a 'non nuclear' future - the management of nuclear waste. Waste produced by nuclear power is invariably contaminated by radioactivity. It is therefore a serious health and environmental hazard which requires special consideration. As residual radioactive contamination is generally very long lasting, the treatment and disposal options not only have to be robust in themselves, but also capable of retaining their integrity for hundreds, even thousands of years. Until now the debate over the issue of nuclear waste has been polarised; on the one hand there are those who see blocking a long-term solution to waste management as a powerful lever against further nuclear development. On the other, there are those who are in favour of a nuclear-powered future and who consequently have attempted to minimise the problem of dealing with nuclear waste. However, the time is now right for developing a long-term waste strategy for two reasons. Firstly we are confronted with reality, as nuclear plants coming to the end of their life are decommissioned, and secondly, the privatisation of the electricity generation market- has meant that nuclear cannot longer compete in the market with cheaper forms of energy generation and so new build is unlikely. Two options for storing waste have, in the main, been explored: surface storage and geological disposal with the option of retrieval. We believe that geological disposal is the only real option as it does not rely on future societal or climate stability to remain safe and secure. The most vital requirements for the success of finding a long-term solution are public support and legitimacy. Nirex's attempt to gain planning permission for the Rock Characterisation Facility and experience in other countries of gaining support for geological disposal bear this out

  2. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  3. Diabetes mellitus morbidity in Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Tolstaya, E.V.; Ermakova, D.P.; Glinskaya, T.N.

    2016-01-01

    Acute and total diabetes mellitus morbidity in Chernobyl clean-up workers was examined during 1995-2014 period. During all the period of investigations levels of acute and total morbidity were higher in clean-up workers, than in total Belarusian population. (authors)

  4. Helping with the clean-up

    International Nuclear Information System (INIS)

    Peelle, E.

    1990-01-01

    Successes in public involvement efforts for nuclear waste management are so few that they deserve careful documentation and analysis. This paper chronicles the goals, process, problems and outcomes of one such success, the Northwest Defense Waste Citizens Forum (CF), created by the DOE-Richland manager in 1986 to advise DOE on its plans for nuclear waste disposal and cleanup of the Hanford site n eastern Washington state. In the evolving, often-controversial, highly-visible area of agency-public interactions, citizen task forces (TFs) have been shown to be useful in developing public policy at the local level. Making them work at the state level is more problematic. This case shows that a diverse, two-state citizen group can make significant contributions to complex EIS evaluations with heavy technical components. The CFs principal contribution to public policy was communication of its findings to business and professional groups, to area political representatives and state agencies, thereby laying the ground work for refocusing the Northwest upon the need for action on DW cleanup at Hanford. In going well beyond NEPA requirements for public involvement in agency decision making, DOE-Richland demonstrated innovative ways of dealing with the difficult issues of public confidence and public trust by means of agency openness, responsiveness to citizen needs for information, and good faith two-way communication. The success of this pro-active DOE initiative was due to many factors including selecting the right issue (existing wastes), structuring the CF at a broad, regional level, and intensive implementation of trust-building strategies

  5. Eye pathologies of Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Eglite, A.; Ozola, G.; Curbakova, E.

    1998-01-01

    Diseases of the nervous system and sense organs have become the most significant pathologies of Chernobyl clean-up workers during the last four years. The aim of this work was to evaluate the incidence of eye disorders among Chernobyl clean-up workers to provide more information for health specialists. During the last 10 years, the most common eye pathology has been angiopathia retinae, followed by myopia and cataracta. Statistical analyses showed that the clean-up workers have higher risk to develop angiopathia retinae than the control group. (author)

  6. Mobile GAC system cleans up petroleum leak

    International Nuclear Information System (INIS)

    Smiddy, F.

    1991-01-01

    Industry experts have been aware of carbon technology's environmental benefits for more than a decade. These benefits derive in part from granular activated carbon's (GAC) physical properties, including attrition resistance, high surface area, adsorption rate and capacity. Most often used to remove dissolved organics, industrial solvents and other toxic chemicals from groundwater, wastewater and potable sources, GAC expedites EPA compliance and is ideal for a wide variety of remediation applications. Secondary benefits of GAC systems include decolorization, odor control and solvent recovery. Now, pressure-rated systems are available to improve remediation efficiency and speed compliance. Using high-quality GAC, these systems adsorb groundwater contaminants to less-than-detectable concentrations with minimum downtime. This paper reports on a hydrogeological study conducted to investigate the extent of contamination and make recommendations on the best technology available to begin remediating the site. Forty-five monitoring wells were installed to identify the plume's vertical and horizontal profiles, direction of flow and groundwater characteristics. Results were used to identify ideal locations for placing the purge wells necessary to begin remediation

  7. PRP: The Proven Solution for Cleaning Up Oil Spills

    Science.gov (United States)

    2006-01-01

    The basic technology behind PRP is thousands of microcapsules, tiny balls of beeswax with hollow centers. Water cannot penetrate the microcapsule s cell, but oil is absorbed right into the beeswax spheres as they float on the water s surface. This way, the contaminants, chemical compounds that originally come from crude oil such as fuels, motor oils, or petroleum hydrocarbons, are caught before they settle. PRP works well as a loose powder for cleaning up contaminants in lakes and other ecologically fragile areas. The powder can be spread over a contaminated body of water or soil, and it will absorb contaminants, contain them in isolation, and dispose of them safely. In water, it is important that PRP floats and keeps the oil on the surface, because, even if oil exposure is not immediately lethal, it can cause long-term harm if allowed to settle. Bottom-dwelling fish exposed to compounds released after oil spills may develop liver disease, in addition to reproductive and growth problems. This use of PRP is especially effective for environmental cleanup in sensitive areas like coral reefs and mangroves.

  8. Barriers to development and deployment of innovative waste minimization technologies

    International Nuclear Information System (INIS)

    Flores, E.A.; Donaghue, J.F.

    1994-08-01

    Increasing regulation and scrutiny is driving waste generators towards reducing the use of scarce natural resources and reducing or eliminating was streams. There is increasing emphasis on developing and deploying technologies that meet industry needs for recovering valuable materials in a cost-effective manner. At the Department of Energy's (DOE) Hanford Site, Battelle operates Pacific Northwest Laboratory (PNL). PNL's mission is to develop technologies to clean up the environment, and to assist industry in being competitive on a global scale. One such technology developed by PNL is the Waste Acid Detoxification and Reclamation (WADR) process. This technology recovers acids from metal-bearing spent solutions, separating out the metals (which are a valuable byproduct of the acid recycling operation) from the acids. WADR uses selective precipitation and distillation together in an innovative waste recycling technology. Selective precipitation removes the heavy metals, and vacuum distillation recovers clean acid. However, WADR and other innovative waste reduction technologies face numerous barriers to successful development and deployment in the field

  9. Biocomplementation of SVE to achieve clean-up goals in soils contaminated with toluene and xylene.

    Science.gov (United States)

    Soares, António Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina; da Conceição Alvim-Ferraz, Maria; Delerue-Matos, Cristina

    2013-10-01

    Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.

  10. Anthropology and decision making about chronic technological disasters: Mixed waste remediation on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Wolfe, A.K.; Schweitzer, M.

    1996-01-01

    This paper discusses two related case studies of decision making about the remediation of mixed (hazardous and radioactive) wastes on the Oak Ridge Reservation in Tennessee. The three goals of the paper are to (1) place current decision-making efforts in the varied and evolving social, political, regulatory, economic, and technological contexts in which they occur; (2) present definitions and attributes of open-quotes successfulclose quotes environmental decision making from the perspectives of key constituency groups that participate in decision making; and (3) discuss the role of anthropology in addressing environmental decision making. Environmental decision making about remediation is extraordinarily complex, involving human health and ecological risks; uncertainties about risks, technological ability to clean up, the financial costs of clean up; multiple and sometimes conflicting regulations; social equity and justice considerations; and decreasing budgets. Anthropological theories and methods can contribute to better understanding and, potentially, to better decision making

  11. Myelodysplastic syndromes in Chernobyl clean-up workers.

    Science.gov (United States)

    Gluzman, Daniil F; Sklyarenko, Lilia M; Koval, Stella V; Rodionova, Nataliia K; Zavelevich, Michael P; Ivanivskaya, Tetiana S; Poludnenko, Liudmyla Yu; Ukrainskaya, Nataliia I

    2015-10-01

    The studies of the recent decades posed the question of the association between radiation exposure and myelodysplastic syndromes (MDS). This association has been proved in secondary MDS originating upon exposure to chemotherapeutics and/or radiation therapy. The long-term study in Japanese atomic (A)-bomb survivors demonstrated the significant linear dose-response for MDS confirming the link between radiation exposure and this form of hematopoietic malignancies. All these findings provide the strong basis for studying MDS in the persons exposed to radiation following the Chernobyl disaster, especially those in the cohort of Chernobyl clean-up workers of 1986-1987. The data on MDS among Chernobyl clean-up workers (1986-1987) diagnosed in 1996-2012 at the reference laboratory of RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology are summarized. MDS cases were diagnosed in 23 persons (21 males and 2 females) having been exposed to radiation as clean-up workers of 1986-1987. Refractory anemia (RA) has been detected in 13, refractory anemia with ring sideroblasts (RARS)-in 2, and refractory anemia with excess blasts (RAEB)-in 8 patients. The median age of those MDS patients was 62.0 years. In addition, 5 cases of chronic myelomonocytic leukemia (CMML) were recorded in the group of Chernobyl clean-up workers with the median time of 14.8 years from 1986-1987 to diagnosis. The association between radiation exposure and MDS is discussed. The suggested life-long risk for myelodysplastic syndromes among A-bomb survivors in Japan highlights the importance of the continuing follow-up studies in the affected populations in the post-Chernobyl period.

  12. Cleaning up a GNU/Linux operating system

    OpenAIRE

    Oblak , Denis

    2018-01-01

    The aim of the thesis is to develop an application for cleaning up the Linux operating system that would be able to function on most distributions. The theoretical part discusses the cleaning of the Linux operating system that frees up disk space and allows a better functioning. The cleaning techniques and the existing tools for Linux are systematically reviewed and presented. The following part examines the cleaning of the Windows and MacOS operating systems. The thesis also compares all...

  13. Thyroid disorders in Chernobyl clean-up workers from Latvia

    International Nuclear Information System (INIS)

    Kurjane, N.; Orlikovs, G.; Ritenberga, R.; Skudra, M.; Lemane, R.; Lemanis, A.; Curbakova, E.; Groma, V.; Socnevs, A.

    1999-01-01

    The condition of thyroid was examined in 2188 Chernobyl clean-up workers residing in Latvia and a control group consisting of 1041 employees of the Ministry of International Affairs. Thyroid examinations included palpation, ultrasonography, selective scintigraphy and detection of the level of thyroid hormones in blood serum:L STH (thyroid-stimulating hormone), total T3 (triiodothyronine), and T4 (thyroxine). Thyroid was registered in 394 Chernobyl clean-up workers. Of these cases, 28 patients with suspected thyroid cancer were operated, and morphological examinations revealed papillary adenocarcinoma (in 5 patients), follicular adenocarcinoma (2), nodular colloid goiter (16); toxic diffuse goiter (1), papillary-follicular adenoma (3), and chronic thyroiditis (1). It was determined that the thyroid pathology in the Chernobyl clean-up workers had a tendency to progress (27 cases in 1987 versus 394 cases in 1998 in total; and absence of thyroid cancer in 1987, compared with 7 cases in 1998); thyroid nodules increased twice (64 cases in 1997, compare with 126 cases in 1998). (author)

  14. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni

    2013-01-01

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H 2 S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO 2 -laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  15. Early phase clean-up actions after nuclear accidents. Guidelines for the planner. Final report

    International Nuclear Information System (INIS)

    Ulvsand, T.

    1997-06-01

    The work reported has been performed with the purpose of working out a guide for planners of early clean-up actions in nuclear fallout situations and for decision makers in the Nordic countries. The actions considered are hosing of roofs, walls and paved areas, lawn mowing, removal of snow, pruning of trees and bushes and vacuum cleaning of streets. The expected effects, mainly as life time dose reduction, and consequences regarding practicability, waste produced, staffing and protection are presented for urban, suburban and rural living environments. The work has been performed within the fram work of the Nordic Nuclear Safety Research Program 1994-97 (Statens Raeddningsverk). (au)

  16. Technological process of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author introduces the technological process of a multi-purpose radwaste incineration system. It is composed of three parts: pretreatment, incinerating and clean up of off-gas. The waste that may be treated include combustible solid waste, spent resins and oils. Technological routes of the system is pyrolysis incinerating for solid waste, spray incinerating for spent oils, combination of dry-dust removing and wet adsorption for cleaning up off-gas

  17. USA - Paper provided by the US delegation to the RWMC. Site Decontamination and Clean-up Under the U.S. EPA 'Superfund'

    International Nuclear Information System (INIS)

    2003-01-01

    Contaminated and hazardous waste sites, including nuclear facilities, may be subject to clean-up under the U.S. Environmental Protection Agency (EPA). The Comprehensive Environmental Response, Compensation, and Liabilities Act (CERCLA), commonly known as 'Superfund', authorises EPA to respond to releases or threatened releases of hazardous substances, pollutants, or contaminants that may endanger public health or the environment. The legislation defines hazardous substances to include radiation. Entry into Superfund: The EPA may be notified of a site potentially requiring clean up from any source. Potential sites are evaluated under a numerical hazard ranking system, and are then included on the clean-up list ('National Priorities List') if they meet an established threshold. Nuclear Facilities and Radioactively Contaminated Sites under Superfund: Any site may be subject to CERCLA action if EPA determines that it poses a hazard. There are three major types of sites that have been or are subject to action under this program: Federal nuclear facilities, Decommissioned facilities, Privately-owned, unlicensed sites Liabilities Under Superfund: The authorising legislation specifically provided for liability of persons responsible for releases of hazardous waste at uncontrolled sites. Liability under CERCLA is 'strict,' 'retroactive,' and 'joint and several'. Thus, the burden of proof for disproving liability is quite high, and that the extent of the liability is not limited to the share of the waste or hazardous substance contributed by a party. The EPA may pursue liable parties to recover past and future costs associated with clean-up, including direct costs and indirect costs incurred by both EPA and its contractors. Clean-Up Levels: Clean-up goals and technologies are established on a site-specific basis. In general, clean-up goals must meet risk requirements and be consistent with applicable standards. Other factors such as community acceptance, volume reduction

  18. ASN guide project: complete cleaning-up modalities acceptable in nuclear base installations in France - ASN guide project nr 14 - Release of 21/06/2010

    International Nuclear Information System (INIS)

    2010-01-01

    As any nuclear base installation evolves during its exploitation, some premises or buildings may change of use or be destroyed. In the first case, a complete cleaning up might be necessary to get rid of radioactive products. In order to deal with this issue, after a brief recall of the regulatory context and references, and a recall of the general doctrine of waste management in nuclear base installations in France, this guide project presents the principles for a complete cleaning up of structures belonging to an area containing nuclear wastes. It describes the modalities of definition of three different and successive defence lines. It defines the requirements in performing cleaning-up operations, the requirements in terms of quality insurance, and the different administrative procedures (before, during and after cleaning-up works). Some particular cases are addressed

  19. Implications of various dispersants on biofilm clean up processes

    Energy Technology Data Exchange (ETDEWEB)

    Beardwood, E.S.; Therrien, J.K.

    1999-07-01

    A microbiologically fouled industrial cooling water system was investigated utilizing a portable corrosion and fouling monitor according to the NACE RP0189-951 Standard. Baseline data was established and at which time the monitor was subjected to various dispersants (3) typically used for organic and microbiological deposit removal. The results of this in-field, side stream, experiment on a dynamic system will be presented. A number of key points and factors influencing the performance of the foulant clean up will also be discussed.

  20. The TMI-2 clean-up project collection and databases

    International Nuclear Information System (INIS)

    Osif, B.A.; Conkling, T.W.

    1996-01-01

    A publicly accessible collection containing several thousand of the videotapes, photographs, slides and technical reports generated during the clean-up of the TMI-2 reactor has been established by the Pennsylvania State University Libraries. The collection is intended to serve as a technical resource for the nuclear industry as well as the interested public. Two Internet-searchable databases describing the videotapes and technical reports have been created. The development and use of these materials and databases are described in this paper. (orig.)

  1. Global climate-friendly trade : Canada's chance to clean up

    International Nuclear Information System (INIS)

    Goldfarb, D.

    2010-03-01

    This paper discussed the global trade and investment in climate-friendly technologies, Canada's current position in this market, and the policy changes that are necessary for Canadian businesses to gain a stronger foothold in this sector. The global market for climate-friendly technologies is growing rapidly, but Canadian businesses have generally failed to exploit opportunities to export climate-friendly technologies and have generally lagged other countries in adopting such technologies developed elsewhere. Although Canadian businesses generally underperform in this sector, Canada does have notable strengths in 13 identified areas, including waste management technologies, energy technologies, and in parts of the value chains associated with wind and solar power. Targeting these areas of relative strength for further development could position Canada as a global leader in some climate-friendly technologies. For this to happen, Canadian governments need to establish clear policies, invest in research and development, and remove domestic and international barriers to the development and trade in climate-friendly technologies. 30 refs., 5 tabs., 5 figs.

  2. Aviation safely management, Valdez oil spill clean-up

    International Nuclear Information System (INIS)

    Friesenhahn, M.J.; McKeown, W.L.; Williams, R.G.

    1993-01-01

    The March 24, 1989 Exxon Valdez oil spill in Alaska's Prince William Sound (PWS) resulted in an unprecedented mobilization of personnel and oil spill clean-up equipment. This paper describes the comprehensive safety management system implemented for aviation operations supporting the clean-up response in PWS and the Gulf of Alaska (GOA). Aviation support operations quickly expanded to over 100 aircraft obtained from numerous sources. Beginning with early surveillance flights, aviation operations were subject to comprehensive safety management programs, including safety assessments, minimum flight weather criteria, operational standards and procedures, air carrier qualifications, equipment and procedure audits, and emergency response. Communication networks and flight following procedures were established, arctic survival training was conducted, and a full complement of survival equipment was required. These programs were largely responsible for safety performance of the spill response effort-during the 1989-92 response activities, over 56,000 flight hours, 159,000 equivalent passengers, and 20,000 tons of cargo were handled without an aviation related injury. The programs are applicable to offshore development and operational activities, particularly those located in more remote, severe environments

  3. Evaluation of concepts for a NET plasma exhaust clean-up system

    International Nuclear Information System (INIS)

    Glugla, M.; Penzhorn, R.D.; Rodriguez, R.; Herbrechter, D.; Dinner, P.; Murdoch, D.

    1990-07-01

    The process steps for the off-gas clean-up and direct recovery of the unburned fuel gases deuterium and tritium are, together with the isotope separation and the fuel preparation, the major subsystems within the fuel cycle of a fusion reactor. A comparison between process concepts largely based on experimental work at KfK and other process alternatives discussed in the literature is carried out and the various options are evaluated on the basis of the process requirements for NET I. The recovery of most of the unburned hydrogen with a palladium/silver permeator is selected as a first step, common to all seven concepts. The remaining impurity stream is processed either catalytically, with the help of getters, or by oxidation followed by reduction of the produced water. The physicochemical basis of each process alternative is discussed and the corresponding chemical flow sheets (flow diagrams and material flow tables) are presented. Concepts employing getters are unattractive because the produce untolerably high amounts of solid waste. Main drawbacks of process options involving an oxidation step are the non-discriminative oxidation of hydrogen and impurities as well as the non-trivial reduction of the produced highly tritiated water at the required elevated throughput. Advantages of the catalytic process are the production of little solid waste, the low steady state inventory and the comparatively easy scale-up. The catalytic process is therefore considered the most promising option for the development of a fuel clean-up process. (orig./HK) [de

  4. Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.

    Science.gov (United States)

    Merk, B; Litskevich, D; Gregg, R; Mount, A R

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.

  5. Cleaning-up abandoned uranium mines in Saskatchewan's North

    International Nuclear Information System (INIS)

    Schramm, L.L.

    2012-01-01

    Thirty-six now-abandoned uranium mine and mill sites were developed and operated on or near Lake Athabasca, in Northern Saskatchewan, Canada, from approximately 1957 through 1964. During their operating lifetimes these mines produced large quantities of ore and tailings. After closure in the 1960's, these mine and mill sites were abandoned with little remediation and no reclamation being done. The governments of Canada and Saskatchewan are now funding the cleanup of these abandoned northern uranium mine and mill sites and have contracted the management of the project to the Saskatchewan Research Council (SRC). The clean-up activity is underway, with work at many of the smaller sites largely completed, work at the Gunnar site well underway, and a beginning made at the Lorado site. This lecture presents an overview of these operations. (author)

  6. Postprocessing method to clean up streaks due to noisy detectors

    International Nuclear Information System (INIS)

    Tuy, H.K.; Mattson, R.A.

    1990-01-01

    This paper reports that occasionally, one of the thousands of detectors in a CT scanner will intermittently produce erroneous data, creating streaks in the reconstructed image. The authors propose a method to identify and clean up the streaks automatically. To find the rays along which the data values are bad, a binary image registering the edges of the original image is created. Forward projection is applied to the binary image to single out edges along rays. Data along views containing the identified bad rays are estimated by means of forward projecting the original image. Back projection of the negative of the estimated convolved data along these views onto the streaky image will remove streaks from the image. Image enhancement is achieved by means of back projecting the convolved data estimated from the image after the streak removal along views of bad rays

  7. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected by the Department of Energy (DOE) to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s and will achieve an overall decontamination factor of 10 6 per tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to opertional status within 24 h without a significant release of tritium to the environment

  8. Cleaning up gasoline will increase refinery hydrogen demand

    International Nuclear Information System (INIS)

    Pretorius, E.B.; Muan, A.

    1992-01-01

    This paper reports that hydrogen needs will increase two to five times as the world turns its attention to cleaning up engine exhaust. The subject of fuel trends and hydrogen needs at Foster Wheeler USA Corp.'s Hydrogen Plant Conference, June 2--4, in Orlando was addressed. The conference was attended by more than 100 people from 12 different countries. Drawing on knowledge from over 1 billion scfd of total installed hydrogen plant capacity, Foster Wheeler experts presented papers in the fields of steam reforming, partial oxidation (with all feedstocks, from natural gas to resids and coal), and steam reformer design. Other industry specialists gave papers on refinery balances, markets, coal feedstocks, utility systems, and components for hydrogen plants

  9. Clean-up criteria for remediation of contaminated soils

    International Nuclear Information System (INIS)

    Nguyen, H.D.; Wilson, J.R.; Sato, Chikashi

    1997-01-01

    'How clean is clean?' is a question commonly raised in the remediation of contaminated soils. To help with the answer, criteria are proposed to serve as guidelines for remedial actions and to define a clean-up level such that the remaining contaminant residuals in the soil will not violate the Drinking Water Standards (DWS). The equations for computing those criteria are developed from the principle of conservation of mass and are functions of the maximum concentration level in the water (MCL) and the sorption coefficient. A multiplier, ranging from 10 to 1000, is also factored into the soil standard equation to reflect the effectiveness of various remediation techniques. Maximum allowable concentration in the soil (MSCL) is presented for several contaminants which are being regulated at the present time. Future modifications are recommended for better estimates of the MSCLs as additional transport mechanisms are incorporated to account for other potentially dominant effects

  10. Condensate clean up control system with distributed DDC

    International Nuclear Information System (INIS)

    Yoshioka, K.; Tazima, T.; Nakamura, O.; Kobayashi, S.

    1980-01-01

    In the operation of the Condensate Clean Up System in BWR plants, regeneration intervals of the demineralizer are not equal and there is no base to determine the interval, which is usually decided by operator's experience. Regeneration of resin is, therefore, sometimes performed too early, leaving much of the capacity of the resin unused. In order to improve such operations efforts were made to equalize the operating time difference of two sequential demineralizers, to control the initial flow into newly-connected demineralizers. The economic and efficient operation of this system, along with the reduction of radioactive resins and the safety supervisory function can be achieved by the distributed DDC with a microprocessor. (LL)

  11. Plutonium contamination at Maralinga - dosimetry and clean-up criteria

    International Nuclear Information System (INIS)

    Cooper, M.B.; Martin, L.J.; O'Brien, R.S.; Williams, G.A.

    1998-01-01

    An area of South Australia remained contaminated following British nuclear weapons tests at Maralinga during 1955 - 1963. Of importance is the long-lived 239-Pu of which some 24 kg was explosively dispersed in several 'minor trials'. The extent, quantities and physical characteristics of the plutonium have been assessed and estimates of dose, dominated by the inhalation pathway in the critical group of Aborigines living a semi-traditional lifestyle, have been made for potential occupants. Rehabilitation of the most contaminated areas is underway, involving scraping of surface soil and burial at depth on site. Dosimetry, together with social and economic factors, underpins the setting of clean-up criteria in terms of activity concentrations averaged over large areas and permissible concentrations of contaminated particles. The possibility of intentional behaviour such as fragment scavenging has also influenced limits on particulate contamination.The standard for this intervention is that the annual committed dose, for any scenario involving permanent occupancy by semi-traditional Aborigines, will be less than 5 mSv. In fact, following the clean-up, annual doses are not expected to exceed 1 mSv for all realistic scenarios. The possibility of intentional behaviour, such as fragment scavenging, has led to limits on particulate contamination. Three plutonium-contaminated sites have been treated by soil-removal. At Taranaki, the most contaminated site, by limiting the activity of the remaining soil to below about 400 kBq/m2 of 239Pu, and by limiting occupancy factors to those typical of hunting activities in a particular location (0.8%), the dose criteria will be met. An area of about 1.5 km 2 has been treated by removal of surface soil at Taranaki. At the other two sites, with no occupancy constraints, more stringent soil-removal criteria have been applied

  12. Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse

    Science.gov (United States)

    Trucks Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative

  13. High-level waste vitrification off-gas cleanup technology

    International Nuclear Information System (INIS)

    Hanson, M.S.

    1980-01-01

    This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements

  14. Oak Ridge Cleanup Vision: Moving to the Future by Cleaning Up the Past - 13291

    International Nuclear Information System (INIS)

    Cange, Susan M.; Wieland, Christopher C.; DePaoli, Susan M.

    2013-01-01

    The Oak Ridge Office of Environmental Management (EM) strives to be the leader in the Department of Energy's (DOE's) EM Complex regarding successful and safe project execution and stakeholder interactions that yield positive results. EM's goal has been to become 'Investment Worthy' and, in order to accomplish that important objective, has also had to improve communications both within and outside of the Department. One of our most important missions is to assist the Department in achieving the sustainability goals set forth in Executive Order 13514. In this regard, EM's primary role is to return land to beneficial use and reduce energy impacts and maintenance costs by demolishing unneeded and deteriorating structures and remediating environmental contamination. Recent accomplishments toward meeting these goals include significant progress in the decontamination and demolition of the country's largest facility, the former K-25 Gaseous Diffusion Building, constructed in 1942 to enrich uranium to help end World War II; the disposition of the first phase of Uranium-233 material from the Oak Ridge National Laboratory (ORNL) which involved the transfer of Zero Power Reactor Plates to the National Nuclear Security Administration (NNSA); and a host of other project successes associated with transuranic (TRU) waste processing, hot cell decontamination and demolition, remediation of highly contaminated soils and burial grounds, and removal of mercury from storm sewers and surface waters. With regard to successful stakeholder interactions, recent accomplishments include a new method for collaboration that has renewed EM's working relationship with the regulators, and success in completing an extensive consultation process with over a dozen parties on the historic preservation of the former Oak Ridge Gaseous Diffusion Plant, which is now called the East Tennessee Technology Park (ETTP). Regarding improved communications, EM has successfully revised Program priorities and has

  15. Major clean-up effort in the ATLAS cavern

    CERN Document Server

    Marzio Nessi

    On Tuesday 10 October, 58 ATLAS collaborators volunteered to give a hand for a major clean-up of the ATLAS detector prior to the toroid magnet ramp-up. This special task monopolised all of the technical coordination team and eight supervisors to oversee the volunteers who were assigned to two separate five-hour shifts. The volunteers removed all sorts of loose material inside and outside the detector, focusing mainly on potentially magnetic material lost inside the detector and dirt accumulated over several months, not to mention zillions of clipped cable ties! The technical crew provided 120 garbage bags and all were used. All sorts of material that had been lost inside the detector by various people was retrieved, in particular small tools which could potentially damage the detector, as well as metallic fillings hazardous for the electronics once the magnet will be ramped up. A more detailed inspection followed for all the inside of the detector, making sure the current on the magnet could be raised to 5KA ...

  16. Investigation and feasibility study of a former manufactured gas plant site in Tuttlingen (Germany), based on individually determined clean-up criteria

    Energy Technology Data Exchange (ETDEWEB)

    Heinecker, C.; Pickel, H.-J.; Duffek, J. [HPC Harress Pickel Consult GmbH, Fuldatal (Germany)

    1995-12-31

    At the request of the former plant operator, a manufactured gas plant site in Tuttlingen, Germany, was investigated from 1988 through 1992 for subsurface soil contamination resulting from former activities. In 1991, the contents of the former tar pits and parts of the adjacent soil contaminations were removed in the course of clean-up activities by means of excavation and disposed at a special waste site. Following an initial risk assessment, a remedial investigation was carried out in order to further delineate the contaminated areas as well as to create a reliable database for a feasibility study of remedial alternatives. The feasibility study followed applicable Baden-Wurttemberg state guidelines, including the following elements: Determination of the clean-up goals for soils; pre-selection of the clean-up procedure; cost estimate; cost-effectiveness study; Non-monetary evaluation; and total evaluation/clean-up proposal. The following general alternatives were available for the definition of clean-up goals: background values (`H-values`); general guidelines values (`SZ-values`); and clean-up goals based on contaminant fate and transport as well as site use (`SZA-values`).

  17. Plasma technology for waste treatment

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1995-01-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing (∼10,000 degrees C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300 degrees C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams

  18. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  19. Opukushi horizontal well campaign: completion design and wellbore clean-up

    Energy Technology Data Exchange (ETDEWEB)

    Osode, P. I.; Dijkema, R. W. [Shell Petroleum Development Company of Nigeria (Nigeria)

    1998-12-31

    A three-well completion design and installation technique, and a horizontal well clean-up procedure employed as part of the on-going initiative to improve the Opukushi Oilfield in Nigeria was described. In an effort to improve the Field`s ultimate recovery and production potential, horizontal well technology was introduced during the second phase of field development which started in 1995. Openhole liner completion was the design of choice, dictated by the unconsolidated sandstone formation which characterizes the shallow horizons of the field. All three wells were completed in thin oil rim sands of about 70 ft, with 5-1/2 inch by 4-1/2 inch tapered slotted liner assemblies installed across 2300 to 3300 ft of 8-1/2 inch drainhole sections. Drilling was completed with low-solids drilling fluid; well clean-up was done with a coil-tubing unit using nitrified acid at underbalance condition. In addition to a description of the design and liner completion considerations, the paper also includes a comparison of performance data from the three wells with performance of conventional wells. A productivity improvement factor of 10 or better was reported for each of the wells. 6 refs., 2 tabs., 14 figs.

  20. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. Basically, these subsystems would consist of the deuterium-tritium fuel cycle and associated environmental control systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s (1385 ACFM) and will achieve an overall decontamination factor of 10 6 for tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to operational status within 24 h without a significant release of tritium to the environment. The basic process will include compression of the air to 0.35 MPa (3.5 atm) in a reciprocating compressor followed by oxidation of the tritium to T 2 O in a catalytic reactor. The air will be cooled to 275 K (350 0 F) to remove most of the moisture, including T 2 O, as a condensate. The remaining moisture will be removed by molecular sieve dryer beds that incorporate a water-swamping step between beds, allowing greater T 2 O removal. A portion of the detritiated air will be recirculated to the cell; the remainder will be exhausted to the building ventilation stack to maintain a slight negative pressure in the cell. The ETC will be designed for maximum flexibility so that studies can be performed that involve various aspects of room air detritiation

  1. Cleaning up the sea bed in the North Sea. 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The yearly raid was executed in an efficient way and without excess technical equipment interruptions. The vessel ''Lance'' owned by the Norwegian Sea Mapping Authorities which was used for the sonar mapping of the sea bed, was equipped with a Klein 531T side seeking sonar, a Simrad echo sounder of the type EM100 (multiray) and differential GPS navigation system. The executive committee has earlier expressed desire for a strengthening of the co-operation with the Norwegian Sea Mapping Authorities. The use of the vessel was in accordance with this wish. Stolt Comex Seaway A/S used the vessel M/S ''Seaway Commander'' and the underwater vessel ''Solo'' for the cleaning up project. The systems worked satisfactory during the entire operation. The cleaning operation was in 1994 carried out in 2 sections. The Petroleum Directorate agreed to letting the M/S ''Seaway Commander'' complete the project for Norsk Hydro at the Troll field in order to avoid delays in the Troll Oil project. In both periods there were good weather conditions. There was no extensive discontinuations due to the weather. During the two periods of 13,5 days 259 out of 370 positions were investigated visually through the systems. This is in average about 20 inspected positions a day. The reason for the high average is that the sailing distances are short between the positions and the findings corresponded to stated positions and sonar interpretations. Also this year there was installed a side seeking sonar in the underwater vessel which resulted in reduced investigation time at each aim. It was possible with this type of sonar to identify the goal quicker and to seek during transit between goals at moderate distances. Few articles with certainty contributed by the petroleum activities were retrieved

  2. Technology Roadmapping for Waste Management

    International Nuclear Information System (INIS)

    Bray, O.

    2003-01-01

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects

  3. Microwave waste processing technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  4. Microwave waste processing technology overview

    International Nuclear Information System (INIS)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the open-quotes coldclose quotes demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge

  5. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  6. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)

  7. MSO spent salt clean-up recovery process; TOPICAL

    International Nuclear Information System (INIS)

    Adamson, M G; Brummond, W A; Hipple, D L; Hsu, P C; Summers, L J; Von Holtz, E H; Wang, F T

    1997-01-01

    An effective process has been developed to separate metals, mineral residues, and radionuclides from spent salt, a secondary waste generated by Molten Salt Oxidation (MSO). This process includes salt dissolution, pH adjustment, chemical reduction and/or sulfiding, filtration, ion exchange, and drying. The process uses dithionite to reduce soluble chromate and/or sulfiding agent to suppress solubilities of metal compounds in water. This process is capable of reducing the secondary waste to less than 5% of its original weight. It is a low temperature, aqueous process and has been demonstrated in the laboratory[1

  8. Getting a remote grip on defence waste: a survey of the US DoE's Robotic Technology Development Programme

    International Nuclear Information System (INIS)

    Yarbrough, L.W.

    1994-01-01

    Robots are being developed to work in various practical applications at US Department of Environment site clean-up projects. The sites involved contain large quantities of radioactive waste and contaminated facilities left from the nuclear weapons programme. Four areas of short-term applied robotics have been identified. The first of these is Tank Waste Retrieval which requires the use of long-reach robot manipulators. The second is the Contaminant Analysis Automation programme in which equipment to automate the characterization of chemical, biological and radiological samples is being developed. Developing systems to handle and pre-process mixed waste containers and their contents, and to deal with the final processed waste forms, is the object of the Mixed Waste Operations programme. Decontamination and dismantling is the fourth major robotics area. Linking all these projects together and directed at common areas of concern is the longer-term Cross Cutting and Advanced Technology programme. (UK)

  9. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  10. Status of Pesticides and Degradation Products in Soil After Clean-up ...

    African Journals Online (AJOL)

    The status of pesticide residues in soil samples collected from a former storage site one year after clean-up of stockpiles and treatment with NaOH was investigated. The analytes were extracted from samples by pressurized fluid extraction using n-hexane:acetone (75:25) mixture. Clean-up of extracts was conducted by ...

  11. Cleaning Up the Seas. UNEP Environment Brief No. 5.

    Science.gov (United States)

    United Nations Environment Programme, Nairobi (Kenya).

    While the open oceans remain relatively unpolluted, many coastal areas are suffering from oil, sewage, industrial wastes, and agricultural run-off. This document presents some of the key facts related to these kinds of water pollution. It focuses on the major sources of contamination in the world's seas, and provides an overview of how these…

  12. Accelerated clean-up at the Hanford Site

    International Nuclear Information System (INIS)

    Frain, J.M.; Johnson, W.L.

    1994-01-01

    The Hanford Site began operations in 1943 as one of the sites for plutonium production associated with the Manhattan Project. It has been used, in part, for nuclear reactor operation, reprocessing of spent fuel, and management of radioactive waste. The Hanford Site covers approximately 1,434 km 2 (560 mi 2 2) in southeastern Washington State. The subject of this paper, the 618-9 Burial Ground, is located on the Hanford Site approximately 1.6 km (1 mi) west of the Columbia River, and a few miles north of Richland, Washington. Throughout Hanford Site history, prior to legislation regarding disposal of chemical waste products, some chemical waste byproducts were disposed ,ia burial in trenches. One such trench was the 618-9 Burial Ground. This burial ground was suspected to contain approximately 19,000 L (5,000 gal) of uranium-contaminated organic solvent, disposed in standard 55-gal (208-L) metal drums. The waste was produced from research and development activities related to fuel reprocessing

  13. Cleaning up DOE's weapons sites: Issues of organization and management

    International Nuclear Information System (INIS)

    Morzinski, J.A.

    1994-01-01

    Many Department of Energy facilities across the United States are seriously contaminated with radioactive and other hazardous wastes. Decades of focus on weapons production and inadequate attention to long-term solutions for dealing with those wastes have resulted in tremendous problems. The Department of Energy recognizes the seriousness of those problems and is addressing them. In some cases existing management systems are being used to accomplish the new mission of environmental cleanup, and in other cases new systems have been created to help carry out that mission. Widespread criticism of those efforts to data are evidence that the management systems being used may not be appropriate for the job. In particular, it appears that some management systems aren't producing desired results because they are not well aligned with the people and tasks for whom they are intended, and these issues are discussed in this report

  14. For successfully completed clean-ups treating different kinds of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, A.; Bentz, R.; Huerzeler, R.A.; Matter, B. [Ciba Specialty Chemicals Inc., Basel (Switzerland)

    2003-07-01

    In this Special Session 4 remediation projects are presented, that were run in different environments and under different constraints. The projects / sites showed the following characteristics: Amponville (F) This project represents a successful clean up of an uncontrolled dump by drums containing Chlorophenol-wastes from an old agrochemical production site. Contaminated sandy soil had to be excavated and treated in a Thermal Desorption unit on site. An interactive CD-ROM data medium was created for documentation. Niederglatt (CH) A old industrial area contaminated by organics (hydrocarbons, polyaromatics) as well as by chromium Cr(VI) was remediated by soil-excavation. The soil had to be analysed, separated and treated accordingly. Chromium-contaminated material had to be treated physically and chemically. The soil affected by organic pollutants had to be washed off-site. Special attention was given to the water flowing off the site, groundwater control and to dust deposit measures in the near environment. Dielsdorf (CH) This site contained wastes from former Lindane-production, containing HCH, Dinitro-o-Cresol and metals like As, Cu and Pb. The contaminated soil and the wastes had to be excavated, analysed, partly backfilled and the rest treated in different ways. Residual pollutants concentration was calculated following a risk-analysis/mobility-calculation and agreed upon with the authorities before starting the remediation work. Schweizerhalle (CH) A huge fire left an area of contaminated soil that was affected by argo-chemicals and their incineration-products. The most harmful pollutants were mercury and phosphoric esters. After coverage by a tent and lowering of the groundwater level the gravel and the sandy soil was excavated and treated in an on-site large-scale Soil Washing and Treating installation by using surfactants and other reagents to separate the pollutants. Most of the soil could be backfilled on-site. Less than 5% of the soil volume containing

  15. Oak Ridge Cleanup Vision: Moving to the Future by Cleaning Up the Past - 13291

    Energy Technology Data Exchange (ETDEWEB)

    Cange, Susan M. [DOE Oak Ridge, P.O. Box 2001, Oak Ridge, TN 37831 (United States); Wieland, Christopher C.; DePaoli, Susan M. [Pro2Serve, 1100 Bethel Valley Rd., Oak Ridge, TN 37830 (United States)

    2013-07-01

    The Oak Ridge Office of Environmental Management (EM) strives to be the leader in the Department of Energy's (DOE's) EM Complex regarding successful and safe project execution and stakeholder interactions that yield positive results. EM's goal has been to become 'Investment Worthy' and, in order to accomplish that important objective, has also had to improve communications both within and outside of the Department. One of our most important missions is to assist the Department in achieving the sustainability goals set forth in Executive Order 13514. In this regard, EM's primary role is to return land to beneficial use and reduce energy impacts and maintenance costs by demolishing unneeded and deteriorating structures and remediating environmental contamination. Recent accomplishments toward meeting these goals include significant progress in the decontamination and demolition of the country's largest facility, the former K-25 Gaseous Diffusion Building, constructed in 1942 to enrich uranium to help end World War II; the disposition of the first phase of Uranium-233 material from the Oak Ridge National Laboratory (ORNL) which involved the transfer of Zero Power Reactor Plates to the National Nuclear Security Administration (NNSA); and a host of other project successes associated with transuranic (TRU) waste processing, hot cell decontamination and demolition, remediation of highly contaminated soils and burial grounds, and removal of mercury from storm sewers and surface waters. With regard to successful stakeholder interactions, recent accomplishments include a new method for collaboration that has renewed EM's working relationship with the regulators, and success in completing an extensive consultation process with over a dozen parties on the historic preservation of the former Oak Ridge Gaseous Diffusion Plant, which is now called the East Tennessee Technology Park (ETTP). Regarding improved communications, EM has

  16. Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, A.; Bonalumi, D.; Lozza, G.

    2013-01-01

    Highlights: • Hot fuel gas clean-up is a very favorable technology for IGCC concepts. • IGCC net efficiency reduces to 41.5% when realizing post-combustion CO 2 capture. • Complex IGCC layouts are necessary if exhaust gas recirculation is realized. • IGCC performance does not significantly vary with exhaust gas recirculation. - Abstract: This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO 2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO 2 capture station and to issues related to exhaust gas recirculation in combined cycles. The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO 2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO 2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout

  17. In-situ solidification cleans up old gas plant site

    International Nuclear Information System (INIS)

    Hatfield, A.D.; Dennis, N.D.

    1995-01-01

    A manufactured gas plant site in Columbus, Georgia, was the location of an environmental cleanup in 1992. Manufactured gas was produced at this site from 1854 to 1931 with the availability of natural gas from a transmission pipeline causing its demise. However, waste products, primarily coal tar from the earlier years of plant operation, remained with the site. In-situ solidification was chosen as the cleanup method. Post monitoring activities show that the project was successful and the site is now a park and a leading part of river front development

  18. Solar-wind system powers mountain clean-up

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    By using a hybrid solar-wind system, the Japanese have tackled the problem of human excrement left by tourists in mountain lodges and in natural parks by installing flush toilets and wastewater treatment plants. The solar array (4.9 kW{sub p}) consists of 76 panels of single-crystal photovoltaic cells each with an output of 64 Wp. The wind turbines (total capacity 2.1 kW) operate whatever the wind strength or direction. Storage batteries prevent any dip in power which would result from low ambient temperatures. The system can still function at temperatures as low as minus 25{sup o}C. Between November and April when the lodge is closed, the waste is decomposed biologically. A block diagram shows the elements of the system, and details of cost are given. The system won the 1999 New Energy Award.

  19. Cleaning up That Mess: A Framework for Classifying Educational Apps

    Science.gov (United States)

    Cherner, Todd; Dix , Judy; Lee, Corey

    2014-01-01

    As tablet technologies continue to evolve, the emergence of educational applications (apps) is impacting the work of teacher educators. Beyond online lists of best apps for education and recommendations from colleagues, teacher educators have few resources available to support their teaching of how to select educational apps. In response, this…

  20. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  1. Effectiveness of clean-up procedures on stain susceptibility of different orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Swati Pundlik Mane

    2014-01-01

    Conclusion: Chemical-cure adhesive showed higher stain susceptibility than light-cure adhesive in all clean-up procedures. Both adhesives would show less stain susceptibility with polishing step with rubber cup and pumice.

  2. Waste incineration, Part I: Technology.

    Science.gov (United States)

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  3. Hebei Spirit Oil Spill Exposure and Subjective Symptoms in Residents Participating in Clean-Up Activities

    OpenAIRE

    Cheong, Hae-Kwan; Ha, Mina; Lee, Jong Seong; Kwon, Hojang; Ha, Eun-Hee; Hong, Yun-Chul; Choi, Yeyong; Jeong, Woo-Chul; Hur, Jongil; Lee, Seung-Min; Kim, Eun-Jung; Im, Hosub

    2011-01-01

    Objectives This study was conducted to examine the relationship between crude oil exposure and physical symptoms among residents participating in clean-up work associated with the Hebei Spirit oil spill, 2007 in Korea. Methods A total of 288 residents responded to a questionnaire regarding subjective physical symptoms, sociodemographic characteristics and clean-up activities that occurred between two and eight weeks after the accident. Additionally, the urine of 154 of the respondents was ana...

  4. Toward integrated design of waste management technologies

    International Nuclear Information System (INIS)

    Carnes, S.A.; Wolfe, A.K.

    1994-01-01

    Implementation of waste management technologies has been hindered by the intervention of diverse interests. Relying on a perceived history of inadequate and improper management, operations, and technological design, critics have stymied the implementation of scientifically and governmentally approved technologies and facilities, leading to a critical shortage of hazardous, mixed, and radioactive waste management capacity. The research and development (R ampersand D) required to identify technologies that are simultaneously (1) scientifically valid, (2) economically sound, and (3) publicly acceptable must necessarily address, in an integrated and interdisciplinary manner, these three criteria and how best to achieve the integration of stakeholders early in the technology implementation process (i.e., R ampersand D, demonstration, and commercialization). The goal of this paper is to initiate an identification of factors likely to render radioactive and hazardous waste management technologies publicly acceptable and to provide guidance on how technological R ampersand D might be revised to enhance the acceptability of alternative waste management technologies. Principal among these factors are the equitable distribution of costs, risks, and benefits of waste management policies and technologies, the equitable distribution of authority for making waste management policy and selecting technologies for implementation, and the equitable distribution of responsibility for resolving waste management problems. Stakeholder participation in assessing the likely distribution of these factors and mitigative mechanisms to enhance their equitable distribution, together with stakeholder participation in policy and technology R ampersand D, as informed by stakeholder assessments, should enhance the identification of acceptable policies and technologies

  5. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  6. The new technologies in city waste management

    International Nuclear Information System (INIS)

    Marti, C.

    2016-01-01

    The new EU objectives included in its Circular Economy Package and the Spanish 2016-2022 Waste Plan define a new scenario of transformation of municipal solid waste management. They also define the hierarchization of waste treatment: reduction, reuse, recycling, energy valorization and, as a last resort, landfill. The use of new technologies is contributing to this transformation, including both separation at source and collection and treatment. Improved traceability of wastes via the use of sensors, technological innovation in management and the emergence of a fifth bin for selective collection of organic wastes are only some of the new elements that are increasingly common in Spanish cities. (Author)

  7. Technology applications for radioactive waste minimization

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1994-01-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry

  8. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  9. Technologies 1995: environment and wastes treatment

    International Nuclear Information System (INIS)

    Anon.

    1995-03-01

    From new technical or scientific developments, new products launching, and markets evolutions, this catalog gives informations selection on research and development projects, new fabrication processes, activities and plants strategies, licences or technology transfers opportunities. The covered fields are: atmospheric pollution controls, water and liquid wastes treatment, polluted soils treatments, noise and odors treatments, municipal and industrial wastes treatments (metal, plastic, paper, glass), clean materials and technologies, radioactive wastes, and european cooperation programs. (A.B.)

  10. Development of a matrix approach to estimate soil clean-up levels for BTEX compounds

    International Nuclear Information System (INIS)

    Erbas-White, I.; San Juan, C.

    1993-01-01

    A draft state-of-the-art matrix approach has been developed for the State of Washington to estimate clean-up levels for benzene, toluene, ethylbenzene and xylene (BTEX) in deep soils based on an endangerment approach to groundwater. Derived soil clean-up levels are estimated using a combination of two computer models, MULTIMED and VLEACH. The matrix uses a simple scoring system that is used to assign a score at a given site based on the parameters such as depth to groundwater, mean annual precipitation, type of soil, distance to potential groundwater receptor and the volume of contaminated soil. The total score is then used to obtain a soil clean-up level from a table. The general approach used involves the utilization of computer models to back-calculate soil contaminant levels in the vadose zone that would create that particular contaminant concentration in groundwater at a given receptor. This usually takes a few iterations of trial runs to estimate the clean-up levels since the models use the soil clean-up levels as ''input'' and the groundwater levels as ''output.'' The selected contaminant levels in groundwater are Model Toxic control Act (MTCA) values used in the State of Washington

  11. Hanford Waste Vitrification Plant Technology Plan

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1988-06-01

    The reference Hanford plan for disposal of defense high-level waste is based on waste immobilization in glass by the vitrification process and temporary vitrified waste storage at the Hanford Site until final disposal in a geologic repository. A companion document to the Hanford Waste Management Plan (HWMP) is the Draft, Interim Hanford Waste Management Technology Plan (HWMTP), which provides a description of the technology that must be developed to meet the reference waste management plan. One of the issues in the HWMTP is DST-6, Immobilization (Glass). The HWMTP includes all expense funding needed to complete the Hanford Waste Vitrification Plant (HWVP) project. A preliminary HWVP Technology Plan was prepared in 1985 as a supporting document to the HWMTP to provide a more detailed description of the technology needed to construct and operate a vitrification facility. The plan was updated and issued in 1986, and revised in 1987. This document is an annual update of the plan. The HWVP Technology Plan is limited in scope to technology that requires development or confirmation testing. Other expense-funded activities are not included. The relationship between the HWVP Technology Plan and other waste management issues addressed in the HWMTP is described in section 1.6 of this plan. 6 refs., 4 figs., 34 tabs

  12. Interim Hanford Waste Management Technology Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The Interim Hanford Waste Management Technology Plan (HWMTP) is a companion document to the Interim Hanford Waste Management Plan (HWMP). A reference plan for management and disposal of all existing and certain projected future radioactive Hanford Site Defense Wastes (HSDW) is described and discussed in the HWMP. Implementation of the reference plan requires that various open technical issues be satisfactorily resolved. The principal purpose of the HWMTP is to present detailed descriptions of the technology which must be developed to close each of the technical issues associated with the reference plan identified in the HWMP. If alternative plans are followed, however, technology development efforts including costs and schedules must be changed accordingly. Technical issues addressed in the HWMTP and HWMP are those which relate to disposal of single-shell tank wastes, contaminated soil sites, solid waste burial sites, double-shell tank wastes, encapsulated 137 CsCl and 90 SrF 2 , stored and new solid transuranic (TRU) wastes, and miscellaneous wastes such as contaminated sodium metal. Among the high priority issues to be resolved are characterization of various wastes including early determination of the TRU content of future cladding removal wastes; completion of development of vitrification (Hanford Waste Vitrification Plant) and grout technology; control of subsidence in buried waste sites; and development of criteria and standards including performance assessments of systems proposed for disposal of HSDW. Estimates of the technology costs shown in this report are made on the basis that all identified tasks for all issues associated with the reference disposal plan must be performed. Elimination of, consolidation of, or reduction in the scope of individual tasks will, of course, be reflected in corresponding reduction of overall technology costs

  13. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  14. Plasma technology for treatment of waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center

    1997-12-31

    Meeting goals for waste cleanup will require new technology with improved environmental attractiveness and reduced cost. Plasma technology appears promising because of the high degree of controllability; capability to process waste without the adverse effects of combustion; and a very wide temperature range of operation. At the Plasma Fusion Center at the Massachusetts Institute of Technology, a range of plasma technologies are being investigated. `Hot` thermal plasmas produced by DC arc technology are being examined for treatment of solid waste. In conjunction with this activity, new diagnostics are being developed for monitoring arc furnace operating parameters and gaseous emissions. Electron-beam generated plasma technology is being investigated as a means of producing non-thermal `cold` plasmas for selective processing of dilute concentrations of gaseous waste. (author). 4 figs., 5 refs.

  15. Waste Socio-technological Transitions

    DEFF Research Database (Denmark)

    Zapata Campos, Maria José; Zapata, Patrik; Eriksson-Zetterquist, Ulla

    2014-01-01

    -in as the theoretical context to explore the Swedish case. Then, the evolution of waste handling sociotechnological systems and the challenges faced specifically by waste packaging recovery models in Sweden are presented. Finally, the cases are discussed under the prism of the theoretical framework....... recycling rates can be pointless if the amount of waste does not decrease. This is an example of how well established waste recovery regimes can stand in the way of more sustainable forms to handle waste (Corvellec et al, 2013) and, ultimately, hinder the development towards the EU objective (2008...

  16. TMI-2: Unique waste management technology

    International Nuclear Information System (INIS)

    Bixby, W.W.; Young, W.R.; Grant, P.J.

    1987-01-01

    The 1979 accident at TMI-2 severely damaged the reactor core and contaminated more than a million gallons of water. Subsequent activities created another million gallons of water. The damaged reactor core represented a new waste form and cleanup of the contaminated water and system components created other new waste forms requiring creative approaches to waste management. This paper focuses on technologies that were developed specific to fuel waste management, core debris shipping, processing accident generated water, and disposal of the resultant waste forms

  17. Glufosinate ammonium clean-up procedure from water samples using SPE

    Science.gov (United States)

    Tayeb M., A.; Ismail B., S.; Mardiana-Jansar, K.; Ta, Goh Choo; Agustar, Hani Kartini

    2015-09-01

    For the determination of glufosinate ammonium residue in soil and water samples, different solid phase extraction (SPE) sorbent efficiency was studied. Four different SPE sorbents i.e.: CROMABOND PS-H+, CROMABOND PS-OH-, ISOLUTE ENV+, Water Sep-Pak and OASIS HLB were used. Sample clean-up performance was evaluated using high performance liquid chromatography (Agilent 1220 infinity LC) with fluorescence detector. Detection of FMO-derivatives was done at λ ex = 260 nm and λ em= 310 nm. OASIS HLB column was the most suitable for the clean-up in view of the overall feasibility of the analysis.

  18. Basis of the detection, assessment and cleaning up of sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Calmano, W.; Foerstner, U.

    1993-01-01

    The cleaning up of sites contaminated with heavy metals is still in its infancy. Depending on the type and extent of the contamination, new methods of treatment must be developed and matched to each situation. A survey is given of the groundwater contamination of soil heavy metals; the binding, availability and mobilisation of heavy metals; geo-chemical concepts for sites contaminated by heavy metals; judging the potential danger; safety measures; cleaning up processes and the reinstatement and renaturing of the soil. (orig.) [de

  19. Data clean-up and management a practical guide for librarians

    CERN Document Server

    Hogarth, Margaret

    2012-01-01

    Data use in the library has specific characteristics and common problems. Data Clean-up and Management addresses these, and provides methods to clean up frequently-occurring data problems using readily-available applications. The authors highlight the importance and methods of data analysis and presentation, and offer guidelines and recommendations for a data quality policy. The book gives step-by-step how-to directions for common dirty data issues.focused towards libraries and practicing librariansdeals with practical, real-life issues and addresses common problems that all libraries faceoffe

  20. Dyscirculatory encephalopathy in Chernobyl disaster clean-up workers (a 20-year study).

    Science.gov (United States)

    Podsonnaya, I V; Shumakher, G I; Golovin, V A

    2010-05-01

    Results obtained over 20-years of following 536 Chernobyl clean-up workers and 436 control subjects are presented. Dyscirculatory encephalopathy developed more frequently in persons exposed to radiation at age 30 years. As compared with the control group, workers were characterized by early onset of disease, faster progression, stable symptomatology for 5-6 years, and further progression of disease in the form of autonomic dysfunction, psycho-organic syndrome, and epilepsy. Major strokes were also more common in clean-up workers.

  1. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Conceptual processes and facilities for treating gaseous and various transuranium (TRU) wastes produced during the past fission portion of the light water reactor fuel cycle are described in volume 2. The goal of the treatment process for TRU wastes and for long-lived radionuclides removed from the gaseous waste streams is to convert these wastes to stable products suitable for placement in geologic isolation repositories. The treatment concepts are based on available technology. They do not necessarily represent an optimum design but are representative of what could be achieved with current technology. In actual applications it is reasonable to expect that there could be some improvement over these concepts that might be reflected in either lower costs or lower environmental impacts or both. These conceptual descriptions do provide a reasonable basis for cost analysis and for development of estimates of environmental impacts. The waste treatment technologies considered here include: high-level waste solidification, packaging of fuel residue, failed equipment and noncombustible waste treatment, general trash and combustible waste treatment, degraded solvent treatment, dilute aqueous waste pretreatment, immobilization of wet and solid wastes, off-gas particle removal systems, fuel reprocessing plant dissolver off-gas treatment, process off-gas treatment, and fuel reprocessing plant atmospheric protection system

  2. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  3. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  4. Plasma technologies: applications to waste processing

    International Nuclear Information System (INIS)

    Fauchais, P.

    2007-01-01

    Since the 1990's, plasma technologies have found applications in the processing of toxic wastes of military and industrial origin, like the treatment of contaminated solids and low level radioactive wastes, the decontamination of soils etc.. Since the years 2000, this development is becoming exponential, in particular for the processing of municipal wastes and the recovery of their synthesis gas. The advantage of thermal plasmas with respect to conventional combustion techniques are: a high temperature (more than 6000 K), a pyrolysis capability (CO formation instead of CO 2 ), about 90% of available energy above 1500 K (with respect to 23% with flames), a greater energy density, lower gas flow rates, and plasma start-up and shut-down times of only few tenth of seconds. This article presents: 1 - the present day situation of thermal plasmas development; 2 - some general considerations about plasma waste processing; 3 - the plasma processes: liquid toxic wastes, solid wastes (contaminated soils and low level radioactive wastes, military wastes, vitrification of incinerators fly ash, municipal wastes processing, treatment of asbestos fibers, treatment of chlorinated industrial wastes), metallurgy wastes (dusts, aluminium slags), medical and ship wastes, perspectives; 4 -conclusion. (J.S.)

  5. Regulatory barriers to hazardous waste technology innovation

    International Nuclear Information System (INIS)

    Kuusinen, T.L.; Siegel, M.R.

    1991-02-01

    The primary federal regulatory programs that influence the development of new technology for hazardous waste are the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, also commonly known as Superfund). Two important aspects of RCRA that can create barriers to hazardous waste technology innovation are technology-based waste pre-treatment standards and a cumbersome permitting program. By choosing a technology-based approach to the RCRA land disposal restrictions program, the US Environmental Protection Agency (EPA) has simultaneously created tremendous demand for the technologies specified in its regulations, while at the same time significantly reduced incentives for technology innovation that might have otherwise existed. Also, the RCRA hazardous waste permitting process can take years and cost hundreds of thousands of dollars. The natural tendency of permit writers to be cautious of unproven (i.e., innovative) technology also can create a barrier to deployment of new technologies. EPA has created several permitting innovations, however, to attempt to mitigate this latter barrier. Understanding the constraints of these permitting innovations can be important to the success of hazardous waste technology development programs. 3 refs

  6. Determination of the viability of chicken feather as oil spill clean-up ...

    African Journals Online (AJOL)

    In this study a comparative assessment was conducted between chicken feather and a conventional synthetic sorbent mat used in the oil industry to clean-up oil spill. The result of the study shows that chicken feather has higher oil sorption capacity and sorbed oil recoverability than the standard (synthetic sorbent mat), and ...

  7. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    Science.gov (United States)

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  8. Status of Pesticides and Degradation Products in Soil After Clean up

    African Journals Online (AJOL)

    dell

    The status of pesticide residues in soil samples collected from a former storage site one year after clean-up ... risk to the underground water (Felsot et al. ... the properties of the contaminants, soil .... and isotope ratios for the labelled standards.

  9. Latvian Chernobyl clean-up workers dynamics of morbidity 15 years of the post radiation period

    International Nuclear Information System (INIS)

    Zvagule, T.; Eglite, M.; Bruvere, R.; Gabruseva, N.; Feldmane, G.

    2003-01-01

    Nearly 1.0% of the male population of Latvia were sent (1986-1991) to Chernobyl to assist in the clean-up activities after the nuclear power plant accident (1986). The prevalence of all types of diseases, dynamic of breaking out of the key symptoms and interferon status were evaluated in respect to date of work, duration of work and kind of work in the whole clean-up workers group and in the particular group with seizures of unconsciousness. The disease incidence in clean-up workers from Latvia exceeds that observed in age and sex matched male population. Most had several diseases each and their poly-symptomatic sicknesses exhibited tendency to progress even 10-14 years after the exposure (during 1996-2000). Diseases of nervous, digestive and circulatory system, mental disorders and diseases of muscles and connective tissue were the most frequent. The primary outset of symptoms being low in the first 2-3 years after the work gradually increased during the following 10 years. Leukopenia was predominant in 1990-1993 and leucocytosis in 1997-2000. Ability of leukocytes to produce interferons was significantly decreased. Since the external radiation doses did not exceed 50 centyGy (cGy) there is sufficient reasons to believe that the principal cause of the gradually increased frequency of health problems is the long-life radioisotopes incorporated in the clean-up workers bodies as permanent radiation and toxic compounds source. (authors)

  10. Case Study: Using Microbe Molecular Biology for Gulf Oil Spill Clean Up

    Science.gov (United States)

    Jones, Daniel R.

    2011-01-01

    This case has the student actively investigate the regulation of expression of a novel bacterial gene in the context of attempts to solve a real world problem, clean up of the April 2010 Deep Water Horizon oil spill in the Gulf of Mexico. Although the case is fictitious, it is based on factual gene regulatory characteristics of oil-degrading…

  11. Chromosome aberrations and rogue cells in lymphocytes of Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Lazutka, J.R.

    1996-01-01

    A cytogenetic analysis was performed on peripheral blood lymphocytes from 183 Chernobyl clean-up workers and 27 control individuals. Increased frequencies of chromosome aberrations were associated with exposure to radiation at Chernobyl, alcohol abuse and a history of recent influenza infection. However, only approximately 20% of Chernobyl clean-up workers had an increased frequency of dicentric and ring chromosomes. At the same time, an increased frequency of acentric fragments in lymphocytes of clean-up workers was characteristic. The use of multivitamins as dietary supplement significantly decreased the frequency of chromosome aberrations, especially of chromatid breaks. Rogue cells were found in lymphocytes of 28 clean-up workers and 3 control individuals. The appearance of rogue cells was associated with a recent history of acute respiratory disease (presumably caused by adenoviral infection) and, probably, alcohol abuse. Dicentric chromosomes in rogue cells were distributed according to a negative binomial distribution. Occurrence of rogue cells due to a perturbation of cell cycle control and abnormal apoptosis is suggested

  12. Hebei Spirit Oil Spill Exposure and Subjective Symptoms in Residents Participating in Clean-Up Activities

    Science.gov (United States)

    Cheong, Hae-Kwan; Lee, Jong Seong; Kwon, Hojang; Ha, Eun-Hee; Hong, Yun-Chul; Choi, Yeyong; Jeong, Woo-Chul; Hur, Jongil; Lee, Seung-Min; Kim, Eun-Jung; Im, Hosub

    2011-01-01

    Objectives This study was conducted to examine the relationship between crude oil exposure and physical symptoms among residents participating in clean-up work associated with the Hebei Spirit oil spill, 2007 in Korea. Methods A total of 288 residents responded to a questionnaire regarding subjective physical symptoms, sociodemographic characteristics and clean-up activities that occurred between two and eight weeks after the accident. Additionally, the urine of 154 of the respondents was analyzed for metabolites of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) and heavy metals. To compare the urinary levels of exposure biomarkers, the urine of 39 inland residents who were not directly exposed to the oil spill were analyzed. Results Residents exposed to oil remnants through clean-up work showed associations between physical symptoms and the exposure levels defined in various ways, including days of work, degree of skin contamination, and levels of some urinary exposure biomarkers of VOCs, metabolites and metals, although no major abnormalities in urinary exposure biomarkers were observed. Conclusions This study provides evidence of a relationship between crude oil exposure and acute human health effects and suggests the need for follow-up to evaluate the exposure status and long-term health effects of clean-up participants. PMID:22125768

  13. Giving waste a hot time [incineration technology

    International Nuclear Information System (INIS)

    Cruickshank, Andrew.

    1986-01-01

    High temperature incineration technology, as an effective way of managing both solid wastes and sludges, is described. The process, developed by the Belgian Nuclear Research Centre, is detailed. (U.K.)

  14. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  15. Thyroid Nodularity and cancer in Chernobyl clean-up workers from Latvia

    International Nuclear Information System (INIS)

    Kurjane, N.; Farbtuha, T.; Matisane, L.

    2004-01-01

    The Chernobyl nuclear reactor accident on April 26, 1986, resulted in massive radioactive contamination of the surrounding area. Radiation exposure was from rapidly decaying radioactive iodines, as well as from 137 CS and other long-lived radioisotopes. About 6000 clean-up workers of the Chernobyl Power Plant accident were from Latvia. External radiation exposure was defined for 40% of them and the doses were 0.01-0.5 Grey (Gy). Although according to conclusions of authoritative experts of different countries, the actual doses of radiation might be at least 3-4 times higher. Because the thyroid is highly susceptible to cancer induction by ionizing radiation, our examination was conducted in 2001 to determine the prevalence of thyroid tumors in 1990-2000 and other nodular thyroid disease 14 years after the accident in Latvia's Chernobyl clean-up workers. The Latvian State Register for persons who have received ionising radiation in Chernobyl and Latvia's Cancer Register were used in this work as well as 1000 Chernobyl accident clean-up workers medical ambulatory cards were analysed. We have received that occurrence of thyroid cancer in Chernobyl clean-up workers was 10,6 times higher than in Latvia's population (men) in 1990-2000 and also it occurs at earlier age in comparison with population data (40-50 and 55-65 accordingly). This can be explained in two ways: either due to effect of the short-term or long-term external and internal radiation exposure (including, from the incorporated 131 I) on the thyroid tissue, or due to a better dispensarisation (obligatory thyroid ultrasound examination once per year) of the examined group. The first thyroid cancer was discovered in 1996 -after ten years of latent period. The relative risk of thyroid cancer in Chernobyl clean-up workers in 1996 was 33.27, and in 1997 -42.64. Then, the morbidity of the thyroid cancer exhibits tendency to decrease (RR 18.27 in 1998, and 9.42 in 1999). The presence of thyroid benign nodules was

  16. Technology catalogue. Second edition

    International Nuclear Information System (INIS)

    1995-04-01

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE's clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community

  17. Technology catalogue. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

  18. Assessing mixed waste treatment technologies

    International Nuclear Information System (INIS)

    Berry, J.B.; Bloom, G.A.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m 3 of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers

  19. Efficiency of different protocols for enamel clean-up after bracket debonding: an in vitro study

    Directory of Open Access Journals (Sweden)

    Lara Carvalho Freitas Sigilião

    2015-10-01

    Full Text Available Objective: This study aimed to assess the efficiency of six protocols for cleaning-up tooth enamel after bracket debonding.Methods:A total of 60 premolars were divided into six groups, according to the tools used for clean-up: 12-blade bur at low speed (G12L, 12-blade bur at high speed (G12H, 30-blade bur at low speed (G30L, DU10CO ORTHO polisher (GDU, Renew System (GR and Diagloss polisher (GD. Mean roughness (Ra and mean roughness depth (Rz of enamel surface were analyzed with a profilometer. Paired t-test was used to assess Ra and Rz before and after enamel clean-up. ANOVA/Tukey tests were used for intergroup comparison. The duration of removal procedures was recorded. The association between time and variation in enamel roughness (∆Ra, ∆Rz were evaluated by Pearson's correlation test. Enamel topography was assessed by scanning electron microscopy (SEM.Results:In Groups G12L and G12H, original enamel roughness did not change significantly. In Groups G30L, GDU, GR and GD, a smoother surface (p < 0.05 was found after clean-up. In Groups G30L and GD, the protocols used were more time-consuming than those used in the other groups. Negative and moderate correlation was observed between time and (∆Ra, ∆Rz; Ra and (∆Ra, ∆Rz; Rz (r = - 0.445, r = - 0.475, p < 0.01.Conclusion:All enamel clean-up protocols were efficient because they did not result in increased surface roughness. The longer the time spent performing the protocol, the lower the surface roughness.

  20. Mixed waste focus area alternative technologies workshop

    International Nuclear Information System (INIS)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-01-01

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ''wise'' configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE's mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities

  1. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  2. Progress in waste management technology

    International Nuclear Information System (INIS)

    Hart, R.G.

    1978-08-01

    In a previous paper by the same author, emphasis was placed on the role that 'pathways analysis' would play in providing 'beyond reasonable doubt' that a particular method and a particular formation would be suitable for the safe geologic disposal of nuclear wastes. Since that paper was released, pertinent pathways analyses have been published by Bernard Cohen, de Marsily et al., the American Physical Society's Special Study Group on Nuclear Fuel Cycles and Waste Management, and KBS of Sweden. The present paper reviews and analyses the strengths and weaknesses of each of these papers and their implications for the Canadian plan for the geologic disposal of nuclear waste. The conclusion is that the Canadian plan is on the right track and that the disposal of nuclear wastes is not an intractable problem. Indeed the analyses show that several options, each with large safety factors, are likely eventually to be identified. (author)

  3. Radioactive waste treatment technology at Czech nuclear power plants

    International Nuclear Information System (INIS)

    Kulovany, J.

    2001-01-01

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  4. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  5. Innovative technologies for managing oil field waste

    International Nuclear Information System (INIS)

    Veil, J.A.

    2003-01-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  6. DOE low-level waste long term technology development

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1982-01-01

    The objective of the Department of Energy's Low-Level Waste Management Program is to provide a low-level waste management system by 1986. Areas of concentration are defined as: (1) Waste Generation Reduction Technology, (2) Process and Handling Technology, (3) Environmental Technology, (4) Low-Level Waste Disposal Technology. A program overview is provided with specific examples of technical development. 2 figures

  7. Immune state of patients of vegeto-vascular dystonia, clean-up workers of the Chernobyl accident

    International Nuclear Information System (INIS)

    Sakhno, T.A.; Davydova, T.I.; Bazika, D.A.; Chumak, A.A.

    1995-01-01

    Immune state of 272 clean-up workers, participants of the Chernobyl Power Plant accident, suffering from vegeto-vascular dystonia is studied. Comparison groups were formed by 20 healthy clean-up workers, 25 vegeto-vascular dystonia patients non-participating in the clean-up works, and 60 healthy donors. Immune state disturbances in the vegeto-vascular dystonia patients have unidirectional changing but among the clear-up workers their expression was much significant coinciding with the more severe clinical courses of disease comparing to the patients non-participating in the clean-up works

  8. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  9. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  10. Mixed Waste Integrated Program emerging technology development

    International Nuclear Information System (INIS)

    Berry, J.B.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m 3 of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development's Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW

  11. Mixed Waste Integrated Program emerging technology development

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B. [Oak Ridge National Lab., TN (United States); Hart, P.W. [USDOE, Washington, DC (United States)

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m{sup 3} of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development`s Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW.

  12. Hanford Waste Vitrification Plant applied technology plan

    International Nuclear Information System (INIS)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs

  13. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  14. Mine Waste Technology Program Electrochemical Tailings Cover

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 40, Electrochemical Tailings Cover, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy (DOE). MSE Technology A...

  15. Possibility of soil clean-up from 137Cs in coast part of drainage system

    International Nuclear Information System (INIS)

    Karlin, Yh.V.; Barinov, A.S.; Prozorov, L.B.; Kropotov, V.N.; Chujkov, V.Yh.; Shcheglov, M.Yh.; Bakanov, A.V.

    1996-01-01

    The net of drainage canals is used for the collection of the surface ground waters on the radioactive waste storage at the MosNPO RADON. The soils of the drainage system were contaminated by 137-Cs migrating in the direction of the common flow. A unique technology was elaborated permitting to extract 137 Cs from soil 90% and to concentrate 137-Cs on the selective inorganic sorbent (nickel ferrocyanide). This technology combines electrokinetics, membrane and sorption methods of the contaminated media cleaning

  16. Review of decontamination and clean-up techniques for use in the UK following accidental releases of radioactivity to the environment

    International Nuclear Information System (INIS)

    Brown, J.; Cooper, J.R.; Jones, J.A.; Flaws, L.; McGeary, R.; Spooner, J.

    1996-10-01

    This review examines decontamination and clean-up methodologies that may be applied following an accidental release of radionuclides to the atmosphere in the UK. An accidental release of radionuclides to the environment could cause contamination of land and property, and may necessitate movement of the resident population to reduce their exposure. Decontamination procedures may reduce the level of contamination and, in determining whether to implement such procedures in an affected area, it is necessary to weigh the effectiveness of the techniques against the associated economic costs and other disadvantages. The report gives a review of available methods of decontamination and clean-up in terms of the effectiveness of the various methods to remove activity from building or land surfaces and dose saved. It also considers associated disadvantages, costs, clean-up rates for land and buildings, waste disposal implications, and personnel and resource requirements. On the basis of these factors, the techniques are prioritised and overall strategies for decontamination following releases of both fission products and alpha emitters are presented. (author)

  17. Innovative hazardous waste treatment technology

    International Nuclear Information System (INIS)

    Freeman, H.M.; Sferra, P.R.

    1990-01-01

    This book contains 21 various biodegradation techniques for hazardous waste treatment. Topics include: cyclic vertical water table movement for enhancement of in situ biodegradation of diesel fuel; enhanced biodegradation of petroleum hydrocarbons; and evaluation of aeration methods to bioremediate fuel-contaminated soils

  18. Epidemiology of non-tumor diseases in Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Buzunov, V.A.; Pirogova, E.A.; Tereshchenko, V.M.; Krasnikova, L.I.; Vojchulene, Yu.S.

    2004-01-01

    Epidemiological study of non-tumor diseases in Chernobyl clean-up workers was effectuated on the materials of State Registry of Ukraine for Victims of Chernobyl NPP Accident. Percent of healthy people among the clean-up workers of 1986 - 1987 decreased from 67.6% in 1988 to 9.6% in 1998, patients with chronic diseases increased from 12,8% in 1988 to 79,1% in 1998. Quantitative risk-analysis proves to possible relationship with absorbed doses prevalences of diseases of blood and hemopoietic organs, coronary hearth disease, cerebrovascular diseases, thyroid pathology. The age at the time of investigation, tobacco smoking and stress were statistically significant non-radiation factors of relative risk

  19. Fuel cycles and fission products clean up for the MOSART concept

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. V.; Feynberg, O. S.; Zakirov, R. Y. [Russian Research Center, Kurchatov Institute, Moscow (Russian Federation)

    2008-08-15

    Analysis of different methods for MOSART fuel salt clean up and experimental results produced within ISTC 1606 permits to make the following conclusions: {center_dot} Fuel salt clean up steps of Li,Be/F MOSART system could be based on the method of reductive extraction in liquid bismuth. {center_dot} Electrodeposition on solid indifferent electrodes (Mo, W) is not effective for separation of actinides and lanthanides in Li,Na,Be/F melt. However, preliminary experiments on electrodeposition on solid non indifferent electrodes (nickel) give foundation to suppose that An/Ln separation on these electrodes could be more effective. In order to determine characteristics of An/Ln electrochemical separation, it is necessary to conduct additional studies in Li,Na,Be/F melt on solid non indifferent electrodes.

  20. Clean-up of the sea bed in the North Sea 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The petroleum activities in the North Sea have inadvertently caused some conflict with fishermen getting their trawls etc. into trash from littering of the sea bed. In the present report, the Norwegian Petroleum Directorate describes a clean-up operation undertaken in 1996 and paid by the State. A clean-up area of 1000 km 2 off Karmoey was selected. This area was mapped by side scan sonar along survey lines 300 m equidistant and a sonar range of 200 m. The sonar data were continuously interpreted by a geophysicist. Selected targets were then identified by ROV and eventually removed. Of the 59 targets examined, 11 were removed and dumped onshore. The largest part elevated was a chain cable of 9 tons. There is also a brief discussion of the compensation agreement with Norwegian fishermen. 4 figs

  1. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  2. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  3. The use of ultrafiltration for the clean-up of alkaline Pu containing effluents

    International Nuclear Information System (INIS)

    Biddle, P.; Gutman, R.G.

    1983-07-01

    Ultrafiltration has been used to clean up low level Pu solutions at high pH. The decontamination factors achieved were greater than 1000 and were significantly higher than those attained by sedimentation or centrifugation. The results confirmed the findings of earlier work based on the use of Th as a simulant for Pu. A preliminary flowsheet for the decontamination of Pu oxalate liquors is proposed. (author)

  4. Tank farm waste characterization Technology Program Plan

    International Nuclear Information System (INIS)

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved

  5. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    International Nuclear Information System (INIS)

    Nurul Huda Mamat Ghani; Norashikin Sain; Rozita Osman; Zuraidah Abdullah Munir

    2007-01-01

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  6. Coupling detergent lysis/clean-up methodology with intact protein fractionation for enhanced proteome characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ritin [ORNL; Dill, Brian [ORNL; Chourey, Karuna [ORNL; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL

    2012-01-01

    The expanding use of surfactants for proteome sample preparations has prompted the need to systematically optimize the application and removal of these MS-deleterious agents prior to proteome measurements. Here we compare four different detergent clean-up methods (Trichloroacetic acid (TCA) precipitation, Chloroform/Methanol/Water (CMW) extraction, commercial detergent removal spin column method (DRS) and filter-aided sample preparation(FASP)) with respect to varying amounts of protein biomass in the samples, and provide efficiency benchmarks with respect to protein, peptide, and spectral identifications for each method. Our results show that for protein limited samples, FASP outperforms the other three clean-up methods, while at high protein amount all the methods are comparable. This information was used in a dual strategy of comparing molecular weight based fractionated and unfractionated lysates from three increasingly complex samples (Escherichia coli, a five microbial isolate mixture, and a natural microbial community groundwater sample), which were all lysed with SDS and cleaned up using FASP. The two approaches complemented each other by enhancing the number of protein identifications by 8%-25% across the three samples and provided broad pathway coverage.

  7. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  8. Treatment technology for organic radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. J.; Lee, Y. H.; Shon, J. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    In this report, various alternative technologies to the incineration for the treatment of radioactive organic wastes were described and reviewed, fallen into two groups of low temperature technologies and high temperature technologies. These technologies have the advantages of low volume gaseous emission, few or no dioxin generation, and operation at low enough temperature that radionuclides are not volatilized. Delphi chemical oxidation, mediated electrochemical oxidation, and photolytic ultraviolet oxidation appear to be the most promising low temperature oxidation process and steam reforming and supercritical water oxidation in the high temperature technologies. 52 refs., 39 figs., 2 tabs. (Author)

  9. Sodium waste technology: A summary report

    International Nuclear Information System (INIS)

    Abrams, C.S.; Witbeck, L.C.

    1987-01-01

    The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds

  10. Superfund Reauthorization 1994: DoD’s Opportunity to Clean Up Its Hazardous Waste Act

    Science.gov (United States)

    1994-04-01

    doctrines of waiver, estoppel and laches are relevant and admissible on the issue of allocation of liability under a contribution plan); Westwood...injunctive relief, estoppel and unclean hands to proceed to trial); United States v. Dickerson, 640 F. Supp. 448, 451 (D. Md. 1986) (court allowed estoppel

  11. Wastes characterization using APSTNG technology

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Dickerman, C.E.

    1996-01-01

    The associated-particle sealed-tube neutron generator (APSTNG) interrogates the inspected object with 14-MeV neutrons from d-t reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra from resulting neutron reactions inside the inspected volume identify fissionable materials and many nuclides. Flight times from detection times of the gamma rays and alpha particles separate the prompt and delayed gamma-ray spectra and can yield coarse tomographic images from a single orientation. The high-energy neutrons and gamma rays penetrate large objects and dense materials. The gamma-ray detector and neutron generator can be on the same side of the interrogated objects, so walls and other confined areas can be inspected as well as sealed containers. No collimators or radiation shielding are needed. The neutron generator is simple and small. Commercial electronics are used. A complete system could be transported in a van. Laboratory and limited field tests indicate APSTNG could be useful in analyzing radioactive waste in drums, walls, soils, and processing systems, particularly for unknown or heterogeneous configurations that may attenuate radiation. Toxic chemicals could be identified in mixed waste, and the ability to detect pockets of water may address criticality concerns

  12. MIxed Waste Integrated Program (MWIP): Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Integrated Program (MWIP) is to develop and demonstrate innovative and emerging technologies for the treatment and management of DOE's mixed low-level wastes (MLLW) for use by its customers, the Office of Waste Operations (EM-30) and the Office of Environmental Restoration (EM-40). The primary goal of MWIP is to develop and demonstrate the treatment and disposal of actual mixed waste (MMLW and MTRU). The vitrification process and the plasma hearth process are scheduled for demonstration on actual radioactive waste in FY95 and FY96, respectively. This will be accomplished by sequential studies of lab-scale non-radioactive testing followed by bench-scale radioactive testing, followed by field-scale radioactive testing. Both processes create a highly durable final waste form that passes leachability requirements while destroying organics. Material handling technology, and off-gas requirements and capabilities for the plasma hearth process and the vitrification process will be established in parallel

  13. Municipal solid waste disposal by using metallurgical technologies and equipments

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jiuju; Sun, Wenqiang [State Environmental Protection Key Laboratory of Eco-industry, Institute of Thermal and Environmental Engineering, Northeastern University, Shenyang 110819 (China)

    2012-07-01

    Pyrolysis of municipal solid waste can take full advantage of energy and resource and avoid producing hazardous material during this period. In combination with mature metallurgical technologies of coking by coke oven, regenerative flame furnace technology and melting by electric arc furnace, technologies of regenerative fixed bed pyrolysis technology for household waste, co-coking technology for waste plastic and blend coal, and incineration ash melting technology by electric arc technology for medical waste were respectively developed to improve current unsatisfied sorting status of waste. The investigation results of laboratory experiments, semi-industrial experiments and industrial experiments as well as their economic benefits and environmental benefits for related technologies were separately presented.

  14. Technology development activities supporting tank waste remediation

    International Nuclear Information System (INIS)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  15. Advanced pyrochemical technologies for minimizing nuclear waste

    International Nuclear Information System (INIS)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-01-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts

  16. Chemistry and technology of radioactive waste management - the IAEA perspective

    International Nuclear Information System (INIS)

    Efremenkov, V.M.; )

    2003-01-01

    The paper refers the consideration of chemical composition of radioactive waste in selection of particular method and technology for waste treatment and conditioning, importance of physico-chemical parameters of waste processing techniques for optimisation of waste processing to produce waste form of appropriate quality. Consideration of waste chemistry is illustrated by several IAEA activities on radioactive waste management and by outlining the scope of some selected technical reports on different waste management subjects. Different components of the IAEA activities on radioactive waste management and on technology transfer are presented and discussed. (author)

  17. Development of the destruction technology for radioactive organic solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Park, H.S.; Lee, K.W. [and others

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs.

  18. Development of the destruction technology for radioactive organic solid wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Park, H.S.; Lee, K.W.

    1999-04-01

    The followings were studied through the project entitled 'Technology development for nuclear fuel cycle waste treatment'. 1. Organic waste decomposition technology development A. Destruction technology for organic wastes using Ag(2)-mediated electrochemical oxidation B. Recovery and regeneration technology for the spent chemicals used in the MEO process 2. Radioactive metal waste recycling technology A. Surface decontamination processes B. Decontamination waste treatment technology 3. Volume reduction technology nuclear fuel cycle (NFC) technology A. Estimation of the amount of radwastes and the optimum volume reduction methodology of domestic NFC B. Pretreatment of spent fuel cladding by electrochemical decontamination C. Hot cell process technology for the treatment of NFC wastes 4. Design and fabrication of the test equipment of volume reduction and reuse of alpha contaminated wastes 5. Evaluation on environmental compatibility of NFC A. Development of evaluation methodology on environmental friendliness of NFC B. Residual activity assessment of recycling wastes. (author). 321 refs., 54 tabs., 183 figs

  19. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Horschel, D.S.

    1994-01-01

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  20. Next steps in the development of ecological soil clean-up values for metals.

    Science.gov (United States)

    Wentsel, Randall; Fairbrother, Anne

    2014-07-01

    This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.

  1. LC clean-up and GC/MS analysis of polycyclic aromatic hydrocarbons in river sediment

    International Nuclear Information System (INIS)

    Nondek, L.; Kuzilek, M.; Krupicka, S.

    1993-01-01

    An LC clean-up procedure based upon a complexation between polycyclic aromatic hydrocarbons (PAHs) and silica with chemically bonded 2,4-dinitroaniline has been combined with GC/MS. The LC pre-separation makes it possible to obtain a relatively clean fraction of PAHs free from alkanes, alkylbenzenes and naphthalenes, PCBs, chlorinated pesticides and many other interfering compounds. This fraction has been analyzed using capillary GC and mass selective detector (MSD). Substantial improvement of the MS spectra of PAHs with three or more fused benzene rings is achieved. (orig.)

  2. Key Lake mine water spill: further clean-up not required

    International Nuclear Information System (INIS)

    Potvin, R.

    1984-02-01

    The Atomic Energy Control Board (AECB) has concluded that no additional remedial measures are warranted with regard to the mine water spill which occurred in early January at the Key Lake Mining Corporation facility in northern Saskatchewan, and has advised the company to reconsider its proposal for clean-up of the adjoining Gerald Lake basin. On January 5, an estimated 87 million litres of mine water was accidentally released to the environment when a water storage reservoir at the mine site overflowed. The spilled water flowed into the adjoining Gerald Lake catchment area where it has remained adequately contained

  3. Technology Catalogue

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy's Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM's Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department's clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD's applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina)

  4. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Conceptual facilities for interim storage of various treated transuranic (TRU) and gaseous wastes produced during fuel reprocessing and mixed oxide fuel fabrication are described in volume 3. Alternatives for interim storage of spent fuel prior to reprocessing or geologic isolation are also described. The storage concepts are based on available technology. They do not necessarily represent optimum designs, but are representative of what could be achieved with current capabilities. In actual applications it is reasonable to expect that there could be some improvements over these concepts, reflected in lower costs, lower environmental impacts, or both. These conceptual descriptions provide a reasonable basis for cost analysis and for development of estimates of environmental impacts. Sections are devoted to: storage of high-level liquid waste in large stainless steel tanks; two interim storage concepts for fuel residue waste (fuel hulls and hardware) waste storage; storage concepts for other nonhigh-level TRU waste; two alternatives for storage of solidified high-level waste; conceptual storage for large quantities of plutonium oxide; a concept for storing krypton gas cylinders; and alternatives for both short-term and extended storage of spent fuel

  5. Alternative oxidation technologies for organic mixed waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented

  6. Waste disposal technologies: designs and evaluations

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    Many states and compacts are presently in the throes of considering what technology to select for their low level waste disposal site. Both the technical and economic aspects of disposal technology are important considerations in these decisions. It is also important that they be considered in the context of the entire system. In the case of a nuclear power plant, that system encompasses the various individual waste streams that contain radioactivity, the processing equipment which reduces the volume and/or alters the form in which the radioisotopes are contained, the packaging of the processed wastes in shipment, and finally its disposal. One further part of this is the monitoring that takes place in all stages of this operation. This paper discusses the results of some research that has been sponsored by EPRI with the principal contractor being Rogers and Associates Engineering Corporation. Included is a description of the distinguishing features found in disposal technologies developed in a generic framework, designs for a selected set of these disposal technologies and the costs which have been derived from these designs. In addition, a description of the early efforts towards defining the performance of these various disposal technologies is described. 5 figures, 1 table

  7. Site-specific sediment clean-up objectives developed by the sediment quality triad

    International Nuclear Information System (INIS)

    Redman, S.; Janisch, T.

    1995-01-01

    Sediment chemistry, sediment toxicity, and benthic macroinvertebrate community data were collected and evaluated in concert (1) to characterize adverse effects of hydrocarbon and metal contaminants in the sediments of a small inlet of Superior Bay, Lake Superior and a tributary creek and (2) to derive numeric objectives for the clean up of this system. Sediments from reference locations and eight study sites were analyzed for a range of contaminants, including hydrocarbons (measured both as diesel range organics (DRO) and oil and grease), lead, chromium, and ammonia. A range of sediment toxicity was observed across the eight study sites using a variety of tests and endpoints: Hyalella azteca (10 day survival and growth), Chironomus tentans (10 day survival and growth), Ceriodaphnia dubia (48 hour survival), and Daphnia magna (48 hour survival and 10 day survival and reproduction). A range of alterations of the benthic macroinvertebrate community compared with communities from reference locations were observed. Benthic community alterations were summarized quantitatively by taxa richness and Shannon-Weiner mean diversity. Lowest effect levels determined through this study included 150 microg/g dry sediment for DRO (as measured in this study) and 40 microg/g dry sediment for lead. Effects thresholds determined through this study included 1,500 microg/g dry sediment for DRO and 90 microg/g dry sediment for lead. These levels and concentrations measured in relevant reference locations are being used to define objectives for sediment clean up in the inlet and creek

  8. Early aging in Chernobyl clean-up workers: long-term study.

    Science.gov (United States)

    Krasnov, V; Kryukov, V; Samedova, E; Emelianova, I; Ryzhova, I

    2015-01-01

    This paper represents data of long-term open prospective study. 312 male clean-up workers, who participated in elimination of the Chernobyl disaster consequences in 1986-87, were observed and examined in Moscow Research Institute of Psychiatry. The average age of patients was 57,0 ± 6,8 years. All patients were diagnosed with psychoorganic syndrome, caused by combination of different factors, which led to early cerebrovascular pathology, which was confirmed by clinical, neuropsychological, and instrumental examination. Anamnesis and the level of social adaptation were also assayed. Clinical estimation was done with the use of specially developed Clinical Psychopathological Chart. All the symptoms were divided into 4 groups (asthenic, psychovegetative, dysthymic, and cognitive symptom-complexes). No pronounced signs of dementia were observed. The control group included 44 clean-up workers without mental disorders. Predomination of various exogenous factors before and after accident was noted. Therapy included different vasotropic remedies, as well as family therapy, art therapy, and cognitive training. The possibilities of the reverse development of symptoms were statistically proved. The results allow making a conclusion that these disorders could not be explained either by radiation effects or by PTSD but connected with cerebrovascular pathology.

  9. Early Aging in Chernobyl Clean-Up Workers: Long-Term Study

    Directory of Open Access Journals (Sweden)

    V. Krasnov

    2015-01-01

    Full Text Available This paper represents data of long-term open prospective study. 312 male clean-up workers, who participated in elimination of the Chernobyl disaster consequences in 1986-87, were observed and examined in Moscow Research Institute of Psychiatry. The average age of patients was 57,0 ± 6,8 years. All patients were diagnosed with psychoorganic syndrome, caused by combination of different factors, which led to early cerebrovascular pathology, which was confirmed by clinical, neuropsychological, and instrumental examination. Anamnesis and the level of social adaptation were also assayed. Clinical estimation was done with the use of specially developed Clinical Psychopathological Chart. All the symptoms were divided into 4 groups (asthenic, psychovegetative, dysthymic, and cognitive symptom-complexes. No pronounced signs of dementia were observed. The control group included 44 clean-up workers without mental disorders. Predomination of various exogenous factors before and after accident was noted. Therapy included different vasotropic remedies, as well as family therapy, art therapy, and cognitive training. The possibilities of the reverse development of symptoms were statistically proved. The results allow making a conclusion that these disorders could not be explained either by radiation effects or by PTSD but connected with cerebrovascular pathology.

  10. [Structural and functional changes of myocardium in Chernobyl disaster clean-up workers with atrial fibrillation].

    Science.gov (United States)

    Khomaziuk, I M; Habulavichene, Zh M; Khomaziuk, V A

    2011-01-01

    Particularities and clinical importance of the structural and functional changes of myocardium were estimated in Chernobyl disaster clean-up workers with atrial fibrillation (AF). We examined 122 men with AF, which was associated with ischemic heart disease and arterial hypertension. Paroxysmal AF was diagnosed in 42 patients, 80 patients had permanent AE Control group comprised 80 men without AF. Echocardiography and Doppler studies were performed using ultrasound scanner Aloka SSD-630 (Japan). Significant structural and functional changes of the heart were revealed already in paroxysmal AF and became more pronounced in permanent AF. Increased left atrial size, its ratio to left ventricular end diastolic diameter, diastolic dysfunction were important echocardiographic predictors of AF. Heart walls thickening was accompanied by disorders of myocardial relaxation, increase in myocardial mass led to ischemia, and together they promoted overload, dysfunction of atrium and development of AF. Obligatory echocardiographic examination of the Chernobyl disaster clean-up workers with ischemic heart disease and arterial hypertension is necessary for predicting AF early, ordering adequate therapy in proper time and improving prognosis.

  11. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This paper contains the proceedings of emergin technologies for hazardous waste management. Topics covered include: advanced transuranic waste managements; remediation of soil/water systems contaminated with nonaqueous pollutants; advances in molten salt oxidation; air treatment and protection; advanced waste minimization strategies; removal of hazardous materials from soils or groundwater; bioremediation of soils and sediment; innovation, monitoring, and asbestos; high-level liquid waste chemistry in the Hanford tanks; biological contributions to soil and groundwater remediation; soil treatment technologies; pollution prevention; incineration and vitrification; current technology; systematic design approaches to hazardous waste management; waste management and environmental restoration at Savannah River; soil washing and flushing for remediation of hazardous wastes

  12. Dosimetric monitoring at time of Chernobyl clean-up. A retrospective view

    International Nuclear Information System (INIS)

    Chumak, V.V.; Bakhanova, E.V.; Musijachenko, N.V.; Krjuchkov, V.P.

    2000-01-01

    Although at time of the accident many thousands of individuals were subjected to personal dosimetric monitoring, a status of dosimetric support of clean-up activities performed in 1986-1987 remains one of the most uncertain radiological issues related to Chernobyl accident. It is known that the scope, practical coverage and methodologies of dosimetry at time of the accident significantly varied. Unfortunately, the dose records available now in a number registries and databases are lacking direct indications of the methods of dosimetry, locations of work and tasks performed by liquidators. Moreover, data record linkage in many cases is problematic due to lack of unique identifiers in the databases of concern. However, this information, collected in course of dosimetric monitoring is extremely valuable for epidemiological consideration of this cohort and, therefore, cannot be neglected because of problems with strait forward application of this data. Retrospective consideration of dosimetric monitoring data was conducted along several lines. First, data sets (in some cases impersonal), related to the known dosimetric practices were studied in order to determine regularities in their dose distributions, evaluate possible distortions caused by extraneous admixtures to dose arrays and evaluate possible contribution of falsified dose records. Another effort was directed towards individualization of information regarding affiliation and tasks of the liquidators included into the State Chernobyl Registry (SCR), which is, essentially, the main pool of subjects for observation in the framework of post Chernobyl epidemiological studies. The SCR in its original shape was missing this crucial information. In order to recover this information gap, a wide scale postal survey of liquidators was undertaken. Those persons who are included into the State Chernobyl Registry and have official dose records were asked to respond to a simple five-entry questionnaire, dealing with their

  13. Model for acquiring innovative waste immobilization technologies

    International Nuclear Information System (INIS)

    Dole, L.R.; Singh, S.P.N.

    1988-01-01

    The US Department of Energy's (DOE's) Oak Ridge Operations (ORO) has established the Waste Management Technology Center (WMTC) at Oak Ridge National Laboratory to assist in meeting the environmental requirements for federal facilities as stated in the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The WMTC will bring innovative mixed chemical and radioactive waste treatment and site closure technologies to bear on the many mixed chemical and radioactive waste problems at the DOE-ORO facilities located in Tennessee, Kentucky, and Ohio. The WMTC seeks innovative technologies through a phased procurement cycle that encourages the teaming of emerging technologies with experienced contractors in order to comply with on-site requirements of DOE orders concerning protection of the environment. This three-phase procurement cycle includes: (1) a feasibility study and implementation plan, (2) an on-site pilot demonstration, and (3) full-scale implementation. This paper describes the statements of work for some related demonstrations and remedial actions

  14. Waste Management with Earth Observation Technologies

    Science.gov (United States)

    Margarit, Gerard; Tabasco, A.

    2010-05-01

    The range of applications where Earth Observation (EO) can be useful has been notably increased due to the maturity reached in the adopted technology and techniques. In most of the cases, EO provides a manner to remotely monitor particular variables and parameters with a more efficient usage of the available resources. Typical examples are environmental (forest, marine, resources…) monitoring, precision farming, security and surveillance (land, maritime…) and risk / disaster management (subsidence, volcanoes…). In this context, this paper presents a methodology to monitor waste disposal sites with EO. In particular, the explored technology is Interferometric Synthetic Aperture Radar (InSAR), which applies the interferometric concept to SAR images. SAR is an advanced radar concept able to acquire 2D coherent microwave reflectivity images for large scenes (tens of thousands kilometres) with fine resolution (case of waste management, InSAR has been used to evaluate the potentiality of EO to monitor the disposed volume along a specific range of time. This activity has been developed in collaboration with the Agència de Resídus de Catalunya (ARC) (The Waste Agency of Catalonia), Spain, in the framework of a pilot project. The motivation comes from the new law promoted by the regional Government that taxes the volume of disposed waste. This law put ARC in duty to control that the real volume matches the numbers provided by the waste processing firms so that they can not commit illegal actions. Right now, this task is performed with in-situ altimetry. But despite of the accurate results, this option is completely inefficient and limits the numbers of polls that can be generated and the number of waste sites that can be studied. As a consequence, the option to take profit of EO represents a good chance for ARC to improve the precision and quality of the monitoring tasks. This paper will present the methodology developed for monitoring waste sites as well as some

  15. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  16. Retrospective Dosimetry and Clinical Follow-up Programme of Chernobyl Accident Clean-up Workers in Latvia

    International Nuclear Information System (INIS)

    Mironova-Ulmane, N.; Pavlenko, A.; Zvagule, T.; Karner, T.; Bruvere, R.; Volrate, A.

    2001-01-01

    Full text: About 6500 Latvian inhabitants were recruited for clean-up works at Chernobyl Nuclear Power Plant during 1986-1991. Absorbed doses for them are usually unknown, because only less then half of the clean-up workers cohort had officially documented external exposure. Clinical investigations show high morbidity rate of clean-up workers compared with general population. The results of Electronic Spin Resonance (ESR) dose reconstruction (doses absorbed in the tooth enamel) for the clean-up workers were always higher as documented of exposure doses of physical measurements. In many cases more than half of total absorbed dose is due to 90 Sr accumulated in teeth. Most of the clean-up workers have poli-symptomatic sicknesses that exhibit tendency to progress, and their morbidity exceeds that observed in general population. ESR dosimetry programs and clinical follow-up improved existing knowledge in the field of radiation medicine. These data will help to develop and apply the proper treatment and rehabilitation procedures for clean-up workers. (author)

  17. Influence of the Chernobyl accident on the frequency of chromosomal damage and health status of Lithuanian clean-up workers

    International Nuclear Information System (INIS)

    Lazutka, R. J.; Ridmeika, G. J.

    2006-01-01

    Chromosomal damage and health status were analyzed in Chernobyl clean-up workers currently residing in Lithuania. Statistically significantly (P < 0.05) increased frequencies of chromosome-type aberrations (chromosome breaks, dicentric and ring chromosomes) as well as aberrant cells were found in the peripheral blood lymphocytes of clean-up workers when measured 6-8 years after the exposure. Significant health impairment was characteristic of these persons as well. On average, 5.6 diseases per patient were diagnosed in clean-up workers suffering from cardiovascular diseases. This high co-morbidity resulted in quite high rates of metabolic syndrome (16.7%). Among Chernobyl clean-up workers that had experienced post-traumatic stress disorder, 76% suffered from highly expressed sleep disturbances. Analysis of thyroid diseases among 500 clean-up workers has revealed that 27.6% individuals have different pathology of thyroid gland. Thus, even 20 years after the Chernobyl disaster, clean-up workers must be considered as a group of primary interest both for researchers and physicians. (author)

  18. Wasting the Future: The Technological Sublime, Communications Technologies, and E-waste

    Directory of Open Access Journals (Sweden)

    Sebine Label

    2012-08-01

    Full Text Available Literally speaking, e-waste is the future of communications. E-waste is the fastest growing waste stream in the world, much of it communications technologies from cell phones to laptops, televisions to peripherals. As a result of policies of planned obsolescence working computers, cell phones, and tablets are routinely trashed. One of the most powerful and enduring discourses associated with emerging technologies is the technological sublime, in which technology is seen as intellectually, emotionally, or spiritually transcendent. It comprises a contradictory impulse that elevates technology with an almost religious fervor, while simultaneously overlooking some of the consequences of industrialism, as well as ignoring the necessity of social, economic, and governmental infrastructures necessary to the implementation and development of new technologies. The idea that a new technology will not pollute or harm the environment is a persistent, though often quickly passed over, theme in the technological sublime, echoed in discourses about emerging technologies such as the silicon chip, the internet, and other ICTs. In this paper, I make connections between the discourse of newness, the practice of planned obsolescence, and the mountains of trashed components and devices globally. Considering the global context demonstrates the realities of the penetration of ICTs and their enduring pollution and negative implications for the health of humans and nonhumans, including plants, animals, waterways, soil, air and so on. I use the discourse of the technological sublime to open up and consider the future of communications, to argue that this discourse not only stays with us but also contains within it two important and related components, the promise of ecological harmony and a future orientation. I argue that these lingering elements keep us from considering the real future of communications – e-waste – and that, as communications scholars, we must also

  19. Decision support tools for evaluation and selection of technologies for soil remediation and disposal of halogenated waste

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, O.; Zinovyev, S.; Lodolo, A.; Vranes, S.; Miertus, S. [ICS-UNIDO, Trieste (Italy)

    2004-09-15

    One of the most justified demands in abating the pollution created by polychlorinated substances is the remediation of contaminated sites, mainly soil remediation, which is also the most complex technical task in removing pollution because of the necessity to process huge quantities of matrix and to account for numerous side factors. The commercial technologies are usually based on rather direct and simplified but also secure processes, which often approach remediation in a general way, where different types of pollutants can be decontaminated at the same time by each technology. A number of different soil remediation technologies are nowadays available and the continuous competition among environmental service companies and technology developers generates a further increase in the clean-up options. The demand for decision support tools that could help decision makers in selecting the most appropriate technology for the specific contaminated site has consequently increased. These decision support tools (DST) are designed to help decision makers (site owners, local community representatives, environmentalists, regulators, etc.) to assess available technologies and preliminarily select the preferred remedial options. The analysis for the identification of the most suitable options in the DST is based on technical, economic, environmental, and social criteria. These criteria are ranked by all parties involved in the decision process to determine their relative importance for a particular remediation project. The aim of the present paper is to present the new approach for building decision support tool to evaluate different technologies for remediation and disposal of halogenated waste.

  20. Development of thermal conditioning technology for Alpha-containment wastes: Alpha-contaminated waste incineration technology

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, Jeong Guk; Yang, Hee Chul; Choi, Byung Seon; Jeong, Myeong Soo

    1999-03-01

    As the first step of a 3-year project named 'development of alpha-contaminated waste incineration technology', the basic information and data were reviewed, while focusing on establishment of R and D direction to develop the final goal, self-supporting treatment of α- wastes that would be generated from domestic nuclear industries. The status on α waste incineration technology of advanced states was reviewed. A conceptual design for α waste incineration process was suggested. Besides, removal characteristics of volatile metals and radionuclides in a low-temperature dry off-gas system were investigated. Radiation dose assessments and some modification for the Demonstration-scale Incineration Plant (DSIP) at Korea Atomic Energy Research Institute (KAERI) were also done

  1. Development of thermal conditioning technology for Alpha-containment wastes: Alpha-contaminated waste incineration technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Jeong Guk; Yang, Hee Chul; Choi, Byung Seon; Jeong, Myeong Soo

    1999-03-01

    As the first step of a 3-year project named 'development of alpha-contaminated waste incineration technology', the basic information and data were reviewed, while focusing on establishment of R and D direction to develop the final goal, self-supporting treatment of {alpha}- wastes that would be generated from domestic nuclear industries. The status on {alpha} waste incineration technology of advanced states was reviewed. A conceptual design for {alpha} waste incineration process was suggested. Besides, removal characteristics of volatile metals and radionuclides in a low-temperature dry off-gas system were investigated. Radiation dose assessments and some modification for the Demonstration-scale Incineration Plant (DSIP) at Korea Atomic Energy Research Institute (KAERI) were also done.

  2. Remediation of uranium contaminated sites: clean-up activities in Serbia

    International Nuclear Information System (INIS)

    Raicevic, S.; Raicevic, J. . E-mail address of corresponding author: raich@beotel.yu; Raicevic, S.)

    2005-01-01

    One of the serious environmental problems in Serbia represent sites contaminated with depleted uranium (DU) during past war activities. According to UNEP reports and our findings there are two types of contamination: (i) localized points of high, concentrated contamination where DU penetrators enter the soil, and (ii) low level of widespread DU contamination, which indicates that during the conflict DU dust was dispersed into the environment. Remediation of these sites is an urgent need because they represent a permanent threat to the population living in this area. Here we give a brief description of approaches commonly used in remediation of DU contaminated sites, and an overview of current clean-up activities performed in Serbia. (author)

  3. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  4. Cleaning up a salt spill : predictive modelling and monitoring natural attenuation to save remedial costs

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, B.; Shaikh, A.A. [EBA Engineering Consultants Ltd., Calgary, AB (Canada)

    2006-07-01

    Predictive modelling and monitoring natural attenuation to save remedial costs in cleaning up a salt spill were discussed with reference to a site located in central Alberta, as well as a pipeline break in 2002 from a corroded pipe which resulted in a large spill of produced water and oil. Remedial alternatives and an assessment of the site were presented. This included an electromagnetic survey in 2004, groundwater flow regime, soil and groundwater quality data, vegetation survey, and predictive modelling versus observed water quality. Photos and illustrations of the site from the air were provided. A conceptual salt leaching and transport model was proposed as a solution. Model calculation results were also presented. Last, the presentation discussed some important considerations for predictive modeling and next steps for the site. These included continued monitoring, implementation of a restoration plan and engagement of stakeholders such as Alberta Environment and the site landowner. tabs., figs.

  5. Follow-up of CRNL employees involved in the NRX reactor clean-up

    International Nuclear Information System (INIS)

    Werner, M.M.; Myers, D.K.; Morrison, D.P.

    1982-07-01

    Data available to date on the mortality of continuing and retired employees of the Chalk River Nuclear Laboratories are consistent with the Σhealthy workerΣ effect that has been observed in similar studies at other nuclear facilities. Because of an accident at the NRX research reactor in December 1952, the reactor was largely dismantled and rebuilt in 1953-54. These operations involved appreciable radiation exposures to a number of employees. The follow-up of the 850 on-site AECL staff involved in the clean-up has indicated that there were no unusual patterns in the mortality of this group when compared with those of the general population of Ontario

  6. Social and psychological state of the Chornobyl clean up workers. Risk factors for negative changes.

    Science.gov (United States)

    Buzunov, V O; Loganovsky, K N; Krasnikova, L I; Bomko, M O; Belyaev, Yu M; Yaroshenko, Zh S; Domashevska, T Ye

    2016-12-01

    It is generally recognized that the Chornobyl nuclear accident caused strong psychosocial stress affecting the entire population of Ukraine, primarily people involved in recovery operations. But what are the reasons? What is the struc ture of stressors? What are their social, medical and biological consequences, what are strategy and preventive meas ures? Issues that require special research and development. To study social and psychological state of the Chornobyl cleanup workers 1986-1987, and to determine regularities of changes and dangerous risk factors. On the basis of Polyclinic of Radiation Registry, NRCRM, we conducted sample epidemiolog ical study of social and psychological state of the Chornobyl clean up workers 1986-1987. We used method of inter viewing based on «questionnaire», specially developed for this purpose. The study was conducted in October 2013 - May 2015. The sample numbered 235 males aged 18-50 at the time of the accident. Their average age was (31.3 ± 5.3) years at the time of the accident and (58.9 ± 5.3) at the time of survey. The results revealed that the Chornobyl nuclear accident and its consequences caused strong social and psychological stress among clean up workers 1986-1987. We have identified a set of factors closely related to the Chornobyl accident, they have caused a sustainable development of mental syndrome - «Anxiety about their own health and the health of family members, especially children». The other set of stressors which are not closely relat ed to the Chornobyl accident but are the result of the social and economic, social and political situation in the coun try. However the former was found to be the cause of such a psychological state as «dissatisfaction with the com pleteness and quality of life». Social and psychological state of the Chornobyl clean up workers 1986-1987 is estimated as «poor» and it integrally can be characterized as a state of chronic psychosocial stress. Mental syndrome

  7. Studies of leukemia and thyroid disease among Chernobyl clean-up workers from the Baltics

    International Nuclear Information System (INIS)

    Inskip, P.D.; Tekkel, M.; Rahu, M.

    1997-01-01

    Following the reactor accident at Chernobyl in late April of 1986, hundreds of thousands of men from throughout the former Soviet Union were sent to Chernobyl to entomb the damaged reactor, remove radioactive debris, and help decontaminate the local environment. They remained for an average of three months and were allowed to accumulate up to 25 cGy of radiation before being sent home. Doses for some workers may have exceeded the allowable limit. The experience of Chernobyl clean-up workers is potentially informative about cancer risk associated with protracted exposure to low levels of radiation. Cohorts of clean-up workers from the Baltic Republics were assembled for study, based on military records and other lists. The study population includes 4,833 men from Estonia 5,709 from Latvia and at least 5,446 from Lithuania, where a pilot study is underway. They are being monitored for cancer incidence through linkages with the corresponding national cancer registries. Biodosimetric assays, including fluorescent in situ hybridization (FISH) for chromosome translocation analysis and the glycophorin A (GPA) somatic cell mutation assay, are being used to supplement information about radiation doses from worker records and questionnaires. Thyroid screening examinations, including palpation, ultrasound and, selectively, fine-needle aspiration biopsies were performed on nearly 2,000 workers in the Estonian cohort (mean age, 40 y) during the spring of 1995, nine years after the reactor accident. The study is still in progress. Work began first in Estonia, and results presented here pertain to this subgroup except as otherwise noted. The average age at the time of arrival at Chernobyl was 31 years. 62% were sent in 1986. Possible reasons for the apparent absence or rarity of radiation-induced thyroid nodules include low and protracted doses, low susceptibility among men exposed as adults, and insufficient passage of time since the accident

  8. Enamel Surface Roughness after Debonding of Orthodontic Brackets and Various Clean-Up Techniques

    Directory of Open Access Journals (Sweden)

    Farzaneh Ahrari

    2013-01-01

    Full Text Available Objective: This study aimed to evaluate enamel roughness after adhesive removal using different burs and an Er:YAG laser.Materials and Methods: The buccal surfaces of forty human premolars were sealed by two layers of nail varnish, except for a circular area of 3 mm in diameter on the middle third. The enamel surfaces were initially subjected to profilometry analysis and four parameters of surface irregularity (Ra, Rq, Rt and Rz were recorded. Following bracket bonding and debonding, adhesive remnants were removed by tungsten carbide burs in low- or high- speed handpieces (group 1 and 2, respectively, an ultrafine diamond bur (group 3 or an Er:YAG laser (250 mJ, long pulse, 4 Hz (group 4, and surface roughness parameters were measured again. Then, the buccal surfaces were polished and the third profilometry measurements were performed.Results: The specimens that were cleaned with a low speed tungsten carbide bur showed no significant difference in surface irregularity between the different treatment stages (p>0.05. Surface roughness increased significantly after clean-up with the diamond bur and the Er:YAG laser (p<0.01. In comparison between groups, adhesive removal with tungsten carbide burs at slow- or high-speed handpieces produced the lowest, while enamel clean-up with the Er:YAG laser caused the highest values of roughness measurements (P<0.05.Conclusion: Under the study conditions, application of the ultrafine diamond bur or the Er:YAG laser caused irreversible enamel damage on tooth surface, and thus these methods could not be recommended for removing adhesive remnants after debonding of orthodontic brackets.

  9. Application and research of special waste plasma disposal technology

    International Nuclear Information System (INIS)

    Lan Wei

    2007-12-01

    The basic concept of plasma and the principle of waste hot plasma disposal technology are simply introduced. Several sides of application and research of solid waste plasma disposal technology are sumed up. Compared to the common technology, the advantages of waste hot plasma disposal technology manifest further. It becomes one of the most prospective and the most attended high tech disposal technology in particular kind of waste disposal field. The article also simply introduces some experiment results in Southwest Institute of Physics and some work on the side of importation, absorption, digestion, development of foreign plasma torch technology and researching new power sources for plasma torch. (authors)

  10. Mercury and Cyanide Contaminations in Gold Mine Environment and Possible Solution of Cleaning Up by Using Phytoextraction

    Directory of Open Access Journals (Sweden)

    NURIL HIDAYATI

    2009-09-01

    Full Text Available Water contamination with heavy metals, mainly mercury and cyanide (CN due to small scale of public mines and large scale of industrial mines have been in concern to residents around the area. Surveys of heavy metal contamination in aquatic environments, such as rivers and paddy fields over two gold mine areas in West Jawa were conducted and possible solution of using indigenous plants for phytoremediation was studied. The results showed that most of the rivers and other aquatic environments were affected by gold mine activities. Rivers, ponds, and paddy fields around illegal public mines were mostly contaminated by mercury in considerably high levels, such as paddy fields in two locations (Nunggul and Leuwijamang, Pongkor were contaminated up to 22.68 and 7.73 ppm of Hg, respectively. Whereas rivers located around large scale industrial mines were contaminated by CN. Possible solution of cleaning up by using green technology of phytoremediation was examined. Some plant species grew in the contaminated sites showed high tolerance and potentially effective in accumulating cyanide or mercury in their roots and above ground portions. Lindernia crustacea (L. F.M., Digitaria radicosa (Presl Miq, Paspalum conjugatum, Cyperus kyllingia accumulated 89.13, 50.93, 1.78, and 0.77 ppm of Hg, respectively. Whereas, Paspalum conjugatum, Cyperus kyllingia accumulated 16.52 and 33. 16 ppm of CN respectively.

  11. A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas.

    Science.gov (United States)

    Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan

    2015-03-21

    A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    International Nuclear Information System (INIS)

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP

  13. Assessment of selected furnace technologies for RWMC waste

    International Nuclear Information System (INIS)

    Batdorf, J.; Gillins, R.; Anderson, G.L.

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste

  14. Determination of fusarium mycotoxins in wheat, maize and animal feed using on-line clean-up with high resolution mass spectrometry.

    Science.gov (United States)

    Ates, E; Mittendorf, K; Stroka, J; Senyuva, H

    2013-01-01

    An automated method involving on-line clean-up and analytical separation in a single run using TurboFlow™ reversed phase liquid chromatography coupled to a high resolution mass spectrometer has been developed for the simultaneous determination of deoxynivalenol, T2 toxin, HT2 toxin, zearalenone and fumonisins B1 and B2 in maize, wheat and animal feed. Detection was performed in full scan mode at a resolution of R = 100,000 full width at half maximum with high energy collision cell dissociation for the determination of fragment ions with a mass accuracy below 5 ppm. The extract from homogenised samples, after blending with a 0.1% aqueous mixture of 0.1% formic acid/acetonitrile (43:57) for 45 min, was injected directly onto the TurboFlow™ (TLX) column for automated on-line clean-up followed by analytical separation and accurate mass detection. The TurboFlow™ column enabled specific binding of target mycotoxins, whereas higher molecular weight compounds, like fats, proteins and other interferences with different chemical properties, were removed to waste. Single laboratory method validation was performed by spiking blank materials with mycotoxin standards. The recovery and repeatability was determined by spiking at three concentration levels (50, 100 and 200% of legislative limits) with six replicates. Average recovery, relative standard deviation and intermediate precision values were 71 to 120%, 1 to 19% and 4 to 19%, respectively. The method accuracy was confirmed with certified reference materials and participation in proficiency testing.

  15. Characteristic of the immunological state of Chernobyl accident clean-up workers in a late period after the accident

    International Nuclear Information System (INIS)

    Kurjane, N.; Zvagule, T.; Curbakova, E.; Bruvere, R.; Romanova, T.; Sitova, O; Hagina, E.; Socnevs, A.

    2001-01-01

    No differences in the number of immunologically competent cells and other immunological variables were found among the clean-up workers, depending on the time they were in Chernobyl. However, a statistically significant reduction in the number of CD3+, CD4+, CD16+ and CD19+, decrease in the levels of IgG and suppression of APH and the phagocytic activity of neutrophils with a simultaneous increase in the levels of IgA and C3d was found in all clean-up workers when compared to controls. In a small group of clean-up workers, the levels of some plasma cytokines were detected. A statistically significant increase in IL-6 levels was found in the clean-up workers when compared to controls. The irradiation received by the Chernobyl accident clean-up workers was large enough to cause disturbances in the function of cells and organ systems through immune system disorders with a resultant weakening of the body response and adaptation mechanisms. (authors)

  16. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  17. The Future: Innovative Technologies for Radioactive Waste Processing and Disposal

    International Nuclear Information System (INIS)

    Bychkov, Alexander V.

    2014-01-01

    Safe, proliferation resistant and economically efficient nuclear fuel cycles that minimize waste generation and environmental impacts are key to sustainable nuclear energy. Innovative approaches and technologies could significantly reduce the radiotoxicity, or the hazard posed by radioactive substances to humans, as well as the waste generated. Decreasing the waste volume, the heat load and the duration that the waste needs to be isolated from the biosphere will greatly simplify waste disposal concepts

  18. Technologies for environmental cleanup: Toxic and hazardous waste management

    International Nuclear Information System (INIS)

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ''Technologies for Environmental Cleanup.'' To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste

  19. ISV technology development plan for buried waste

    International Nuclear Information System (INIS)

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K)

  20. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... to attain optimal designs for each bottoming unit by selecting specific functions tailored to the oil and gas sector, i.e. yearly CO2 emissions, weight and economic revenue. The test case is the gas turbine-based power system serving an offshore platform in the North Sea. Results indicate that the organic...... and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...

  1. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  2. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  3. Environmental restoration and waste management five-year plan, Fiscal years 1994--1998

    International Nuclear Information System (INIS)

    1993-01-01

    The US Department of Energy (DOE) understands that cleaning up the Nation's nuclear-related sites and facilities affects many different segments of the public, ranging from communities near DOE facilities to engineers concerned with developing new technologies to clean up the environment. In an effort to make the Environmental Restoration and Waste Management Five-Year Plan for Fiscal Years (FY) 1994--1998 more responsive to your concerns, DOE invites your comments on the plan. Volume II contains 37 Installation Summaries that provide a synopsis of past, present and future activities of each major installation, and Progress Charts

  4. Dynamic analysis of the CRBRP clean-up system (three stage aqueous scrubber)

    International Nuclear Information System (INIS)

    Kyi, R.; Bijlani, C.; Fazekas, P.; Dajani, A.

    1981-01-01

    The CRBRP containment clean-up system design required the determination of the thermal-hydraulic performance of the system during its projected operating cycle. The reduced scale component tests at HEDL provided valuable information about the generic performance of the components; however, due to the limitations of the test facility the exact simulation of the actual CRBRP conditions was not feasible. A computer program was developed to permit dynamic system analysis of the full size air cleaning system. The dynamic system analysis considered the mass and energy balances across each component. In addition to the major filtration system components, the system modeling included the supporting fluid system components such as pumps, tanks and heat exchangers. Variable gas flow, temperature, chemical concentrations, and other system parameters were also modeled. Fission product heat, chemical reaction heat and heat of solution were considered. The analysis results provided sodium hydroxide solution concentrations and temperatures, gas temperatures and other variables at the various components within the air cleaning system for each calculated time interval. The accuracy of the computer modeling was verified by comparing the calculated results with HEDL test data. The comparison indicated a better than +-10% agreement with the test data. The analysis results provided the basis for the selection of the system components

  5. Estimation of health in Chernobyl NPP accident consequences cleaning-up participants

    International Nuclear Information System (INIS)

    Bebeshko, V.G.; Kovalenko, A.N.; Chomazjuk, I.N.

    1997-01-01

    Over 11 years period of health observation of Chernobyl Accident's victims permits to make some conclusions. Quantitative changes of peripheral blood and bone marrow cells, changes in ultrastructural organization of hemopoietic cells, disturbance of proliferative activity of hemopoietic and stromal progenitor cells in clean-up workers testify to alterations of functional properties of hemopoiesis. There are high level of T- helpers, early appearance regenerated T-cells, which simultaneously express surface antigens of helpers and supressors, synchronization of proliferative cycle of immunocompetentive cells in these patients. Oppressing of antioxidant protection, stable changes of hormonal maintenance of adaptation and reproduction processes, disturbance of feedback mechanism between effector glands and hypophysis, significant rise of polyamines were determined. Cardiovascular diseases are the principal cause of health disruptions at victims. Neural and psychological diseases, suicidal cases, trauma, death in automobile accidents are rank second and third in structure of morbidity. In structure of chronic nonspecific pulmonary diseases dominated chronic obstructive bronchitis. The adrenergic tonus of vegetative nervous system was seen. The peculiarity of rehabilitation measures is complexness and continuity in-patients, out-patients service and providing facilities in health resorts. (author)

  6. Mississippi mud pie: cleaning up a large land-based oil spill

    International Nuclear Information System (INIS)

    Vitello, C.

    2001-01-01

    Clean-up of one of the largest land-based oil spills in the history of the United States near Collins, Mississippi, which occurred in December 1999, is described. The oil spill resulted from a corroded pipeline and had been leaking for several days before it was noticed. By the time the first responders arrived the oil had travelled more than five kilometres to the Leaf River, and 24 kilometers downstream. Oil Gator, a patented material that accelerates the biodegradation of hydrocarbons, was used to remediate most of the soil onsite. The product is of low toxicity; it is not harmful to humans, animals or plant life, nor is it WHMIS or OSHA regulated. It was applied with a Samsung Track hoe with a Rhom rake attachment, a mini bobcat hoe and rototillers. The absorbent was effective and very little vegetation had to be removed except for certain trees that were soaked to the root. The cleanup effort cost about $17 million, used 30 truckloads of sorbent product, ten truckloads less than was initially estimated. After some 18 months the Collins site is now covered by two-foot tall grass. Regular third party monitoring is continuing. photos

  7. Mississippi mud pie: cleaning up a large land-based oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Vitello, C.

    2001-07-01

    Clean-up of one of the largest land-based oil spills in the history of the United States near Collins, Mississippi, which occurred in December 1999, is described. The oil spill resulted from a corroded pipeline and had been leaking for several days before it was noticed. By the time the first responders arrived the oil had travelled more than five kilometres to the Leaf River, and 24 kilometers downstream. Oil Gator, a patented material that accelerates the biodegradation of hydrocarbons, was used to remediate most of the soil onsite. The product is of low toxicity; it is not harmful to humans, animals or plant life, nor is it WHMIS or OSHA regulated. It was applied with a Samsung Track hoe with a Rhom rake attachment, a mini bobcat hoe and rototillers. The absorbent was effective and very little vegetation had to be removed except for certain trees that were soaked to the root. The cleanup effort cost about $17 million, used 30 truckloads of sorbent product, ten truckloads less than was initially estimated. After some 18 months the Collins site is now covered by two-foot tall grass. Regular third party monitoring is continuing. photos.

  8. LC-MS/MS determination of tranexamic acid in human plasma after phospholipid clean-up.

    Science.gov (United States)

    Fabresse, Nicolas; Fall, Fanta; Etting, Isabelle; Devillier, Philippe; Alvarez, Jean-Claude; Grassin-Delyle, Stanislas

    2017-07-15

    Tranexamic acid is a widely used antifibrinolytic drug but its pharmacology and pharmacokinetics remains poorly understood. Owing to the recent knowledge on phospholipid-induced matrix effects during human plasma analysis, our aim was to develop a liquid chromatography-mass spectrometry method for the quantitation of tranexamic acid after efficient sample clean-up. Sample preparation consisted in phospholipid removal and protein precipitation. Hydrophilic interaction liquid chromatography was used and the detection was achieved with multiple reaction monitoring. The method was validated according to the European Medicine Agency guideline in the range 1.0-1000.0μg/mL. The performance of the method was excellent with a precision in the range 1.2-3.0%, an accuracy between 88.4 and 96.6% and a coefficient of variation of the internal standard-normalized matrix factor below 6.7%. This method is suitable for the quantification of tranexamic acid in the wide range of concentrations observed during clinical studies, with all the advantages related to phospholipid removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cancer incidence and thyroid disease among Estonian Chernobyl clean-up workers

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A; Salomaa, S [eds.; Radiation and Nuclear Safety Authority, Helsinki (Finland); Rahu, M; Veidebaum, T; Tekkel, M [eds.; Inst. of Experimental and Clinical Medicine, Tallinn (Estonia); Hakulinen, T [ed.; Finnish Cancer Registry, Helsinki (Finland); Boice, Jr, J D [ed.; Int. Epidemiology Inst., MD (United States)

    1998-09-01

    The report describes the development and summarizes the results of the project Cancer incidence and thyroid disease among Estonian Chernobyl clean-up workers. One of the goals of the report is to give research protocols and questionnaires for researchers involved in other studies. Eight previously published articles are also included summarizing the results. The development of the collaboration work of the project is described in the introduction of the report. Epidemiological methods are described in an article complemented by the protocol and English version of the questionnaire administered to all cleanup workers, as well as the data collection form of the thyroid study. The results from biological biodosimetry using both glycophorin A and FISH methods have shown that the radiation doses received by the Chernobyl cleanup workers were relatively low. Thyroid nodularity was not associated with any radiation exposure characteristic in the thyroid screening study. Estonian Chernobyl cleanup workers were followed up for cancer incidence through the Estonian Cancer Registry. No cases of leukemia or thyroid cancer were observed by the end of 1993. It is too early to observe possible effect on other types of cancer. However, mortality from suicides was increased compared with general population. Further follow-up and the extension to other Baltic countries in the future will undoubtedly strengthen the study. There are also plans for future projects covering areas from psychosocial factors to radiation biology

  10. Chernobyl NPP accident consequences cleaning up participants in Ukraine -health status epidemiologic study main results

    International Nuclear Information System (INIS)

    Buzunov, V.; Omelyanetz, N.; Strapko, N.; Ledoschuck, B.; Krasnikova, L.; Kartushin, G.

    1996-01-01

    The Epidemiologic Studies System for Chernobyl NPP Accident consequences cleaning up participants (CNPP ACCP) health status was worked out and than improving in Ukraine after the CNPP Accident. The State Register of Ukraine both with several other Registers are the organizational, methodological and informational basis here. The ACCP health status worsening ,-was registered in dynamics through the post-accidental period i.e. the nervous system, digestive system, blood circulation system, respiratory system, bone-muscular system, endocrine and genitourinary systems chronic non-tumoral pathology both with mental disorders amount increase. In cohort study the differences of morbidity formation were fixed among emergency workers with different radiation exposure doses. The dependence of leukemia morbidity on presence in 30-km zone duration was noticed, it's access manifested 5 years after the participance in ACC. The ACCP disablement increase with main reason of general somatic diseases, and annual mortality growth are registered. But that doesn't exceed the mortality rate among population of working age in Ukraine

  11. California Conservation Corps trains youth to safely clean up oil spills

    International Nuclear Information System (INIS)

    Penn, P.

    1993-01-01

    Initiated in response to environmentally destructive crude oil spills, the California Conservation Corps (CCC) is trained to respond anywhere in California, and beyond. Corpsmembers are provided 32 hours of training to exceed both State and Federal Occupational Health and Safety Administration (OSHA) requirements for worker safety. The CCC responded to the Huntington Beach spill in 1990 and impressed both the private sector and government agencies with the high quality of work performed, the organization and discipline of the responders and the safe manner in which they approached the sensitive environmental cleanup. The program was begun with a $75,000 grant from BP America (British Petroleum), the owner of the oil in the American Trader incident. Following the passage of comprehensive oil spill legislation in California, the California Department of Fish and Game Office of Oil Spill Prevention and Response (OSPR) contracted with the CCC to provide 200 trained oil spill workers for beach cleanup. Subsequently, the Corps has responded along the California coast to a pipeline break at Avila Beach in San Luis Obispo County and cleaned up tar balls in the Monterey area

  12. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    International Nuclear Information System (INIS)

    Jacobson, Victor Levon

    2002-01-01

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodium-bearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements

  13. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  14. Hanford Waste Vitrification Plant technology progress

    International Nuclear Information System (INIS)

    Wolfe, B.A.; Scott, J.L.; Allen, C.R.

    1989-10-01

    The Hanford Waste Vitrification Plant (HWVP) is currently being designed to safely process and temporarily store immobilized defense liquid high-level wastes from the Hanford Site. These wastes will be immobilized in a borosilicate glass waste form in the HWVP and stored onsite until a qualified geologic waste repository is ready for permanent disposal. Because of the diversity of wastes to be disposed of, specific technical issues are being addressed so that the plant can be designed and operated to produce a waste form that meets the requirements for permanent disposal in a geologic repository. This paper reports the progress to date in addressing these issues. 2 figs., 3 tabs

  15. Radioactive waste management and advanced nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    2007-01-01

    In 2007 ENEA's Department of Nuclear Fusion and Fission, and Related Technologies acted according to national policy and the role assigned to ENEA FPN by Law 257/2003 regarding radioactive waste management and advanced nuclear fuel cycle technologies

  16. Cleaning up: environmental services are bound to stay a growth industry

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2000-01-01

    Environmental protection regulations with particular regard for the oil and natural gas industry are reviewed. New flaring regulations will be reduced by 70 per cent within the next seven years and remaining flares will operate at nearly 100 per cent efficiency in burning harmful substances. The Canadian Council of Ministers of the Environment (CCME) is currently targeting other emission sources from oilfield equipment. Benzene emissions from glycol dehydrators will be reduced by 90 per cent by 2007. Soil remediation targets are also very ambitious. The standard is 1,000 parts per million of hydrocarbons. As an indication of the difficulties experienced by oil companies in land reclamation, one out of five topsoil replacement and revegetation applications have failed. As a result of these stringent regulations, a multi-billion dollar environmental industry has emerged, constantly searching for better and more cost effective ways to comply with rising standards. The most immediate challenge is to snuff out some 5,300 flare stacks. The science behind environmental protection is still weak and controversial, and satisfactory answers are still some years away; in the meantime oil companies must meet existing requirements, inventing new equipment and approaches in the process. Incineration may be one answer, but alternative approaches are also being investigated. Wellsite reclamation, cleaning up of exhausted fields, identifying and preserving wild animal habitats, protecting endangered species, accounting for human populations and their effects, greenhouse gas emissions and the complex issues of emissions trading and credits are just some of the issues that will ensure that environmental services will continue to be a growth industry

  17. Heart rate variability and hear left ventricle hypertrophy in clean-up workers after Chernobyl accident with essential hypertension

    International Nuclear Information System (INIS)

    Khomazyuk, Yi.M.; Sidorenko, G.V.

    2004-01-01

    Correlation of heart rate variability (HRV) and hear left ventricle hypertrophy (LVH) in clean-up workers of Chernobyl accident with essential hypertension was estimated. Lowering of total HRV, parasympathetic and sympathetic activity associated with increased range of LVH was discovered

  18. Rapid and simple clean-up and derivatizaton procedure for the gas chromatographic determination of acidic drugs in plasma

    NARCIS (Netherlands)

    Roseboom, H.; Hulshoff, A.

    1979-01-01

    A rapid and simple clean-up and derivatization procedure that can be generally applied to the gas chromatographie (GC) determination of acidic drugs of various chemical and therapeutic classes is described. The drugs are extracted from acidified plasma with chloroform containing 5% of isopropanol,

  19. The use of laser therapy in complex treatment of ulcer diseases in participants of Chernobyl accident clean-up

    International Nuclear Information System (INIS)

    Simonova, L.Yi.; Rozdyil's'kij, S.Yi.; Kulyinyich, G.V.; Fertman, V.Z.; Krapivnij, O.O.; Abramova, L.P.; Byilogurova, L.V.; Levchenko, A.P.

    2001-01-01

    The study involved 59 male patients with relapsing duodenal ulcer who had participated in Chernobyl accident clean-up. Laser therapy was administrated daily on the projection of the zone of the ulcer and acupuncture zones. The obtained results allow to conclude that transcutaneous laser therapy is an effective method of treatment of ulcer disease

  20. Clinical and metabolic features of type 2 diabetes mellitus in participants of Chernobyl accident clean-up

    International Nuclear Information System (INIS)

    Zujeva, N.O.; Kovalenko, O.M.; Jefyimov, A.S.

    2000-01-01

    The clinical and metabolic features of type 2 diabetes mellitus (DM) in the participants of Chernobyl accident clean-up (PCAC) was studied. It was found out that DM in PCAC was first diagnosed against a background of formed cardiovascular pathology and hyper coagulation

  1. Social Technology Apply to National Policy on Solid Waste: Solid Waste Management Integrated in the Countryside

    Directory of Open Access Journals (Sweden)

    Greice Kelly Lourenco Porfirio de Oliveira

    2016-06-01

    Full Text Available This article aims to study the environmentally friendly social technologies through appropriate techniques to the treatment of solid waste disposed of improperly. After exposure of concepts, a reflection on the use of social technologies as a mechanism for realization of integrated management objectives of waste set by the National Solid Waste Policy will be made – 12.305/10 . Finally, data from the Social Technologies Bank of Brazil Foundation will be displayed showing the results of the use of technology to promote the integrated management of solid waste in rural communities Crateús/CE , through a provision aimed at PNRS, selective collection

  2. Nuclear waste disposal: technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1980-01-01

    The subject is discussed under the headings: introduction; the nature and origin of wastes (fuel cycles; character of wastes; mining and milling operations; middle stages; irradiated fuel; reprocessing (waste generation); reactor wastes); disposal techniques and disposal of reprocessing wastes; siting of repositories; potential environmental impacts (impacts after emplacement in a rock repository; catastrophic effects; dispersion processes (by migrating ground water); thermal effects; future security; environmental survey, monitoring and modelling); conclusion. (U.K.)

  3. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    Servin, M. A. [Washington River Protection Solutions, LLC, Richland, WA (United States); Garfield, J. S. [AEM Consulting, LLC (United States); Golcar, G. R. [AEM Consulting, LLC (United States)

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  4. Feasibility Study Of Pressure Pulsing Pipeline Unplugging Technologies For Hanford

    International Nuclear Information System (INIS)

    Servin, M. A.; Garfield, J. S.; Golcar, G. R.

    2012-01-01

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging

  5. Technology Catalogue. First edition

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  6. Mixed Waste Integrated Program -- Problem-oriented technology development

    International Nuclear Information System (INIS)

    Hart, P.W.; Wolf, S.W.; Berry, J.B.

    1994-01-01

    The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. Technology development is ongoing in technical areas required to process mixed waste: materials handling, chemical/physical treatment, waste destruction, off-gas treatment, final forms, and process monitoring/control. MWIP is currently developing a suite of technologies to process heterogeneous waste. One robust process is the fixed-hearth plasma-arc process that is being developed to treat a wide variety of contaminated materials with minimal characterization. Additional processes encompass steam reforming, including treatment of waste under the debris rule. Advanced off-gas systems are also being developed. Vitrification technologies are being demonstrated for the treatment of homogeneous wastes such as incinerator ash and sludge. An alternative to conventional evaporation for liquid removal--freeze crystallization--is being investigated. Since mercury is present in numerous waste streams, mercury removal technologies are being developed

  7. Clinical aspects of the health disturbances in Chernobyl Nuclear Power Plant accident clean-up workers (liquidators) from Latvia.

    Science.gov (United States)

    Eglite, M E; Zvagule, T J; Rainsford, K D; Reste, J D; Curbakova, E V; Kurjane, N N

    2009-06-01

    The health status of some 6,000 workers from Latvia who went to clean-up the Chernobyl Nuclear Power Plant (CNPP) site following the explosion on 26 April 1986 has been analyzed. The data on these workers have been recorded in the Latvian State Register of Occupational disease patients and people exposed to ionizing radiation due to Chernobyl NPP accident (Latvian State Register) that was established in 1994. From these data, estimates have been made of external ionizing radiation to which these workers were exposed together with observations on the impact of exposure to heavy metals (especially lead and zinc) and radioactive isotopes released during the reactor 'meltdown'. These factors along with psycho-emotional and social-economic stresses account for a marked excess of mortality and morbidity in the group of CNPP accident clean-up workers compared with that of the non-exposed normal Latvian population adjusted for age and sex. The number of diseases or conditions in the CNPP accident clean-up workers has progressively risen from an average of 1.3 in 1986 to 10.9 in 2007. This exceeds for the Latvian population when adjusted for age and sex. The most serious conditions affect the nervous, digestive, respiratory, cardiovascular, endocrine (especially thyroid) and immunological systems. While the morbidity associated with diseases of the respiratory and digestive systems has decreased in recent years that in the other systems is increasing. In recent years, there has been an increased occurrence of cancers affecting the thyroid, prostate and stomach. Clinical and laboratory investigations suggest that surviving CNPP accident clean-up workers exhibit signs of immuno-inflammatory reactions causing premature aging with evidence of autoimmune diseases and immunological deficiencies or abnormalities. It is suggested that the CNPP accident clean-up workers may have a specific syndrome, the 'Chernobyl post-radiation neurosomatic polypathy', due to sustained oxidant

  8. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning

  9. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    OpenAIRE

    Sudipta De; Rafael Luque

    2014-01-01

    The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as wel...

  10. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  11. Clean-up and dismantling, Dismantling - legacy of the past, prospects for the future: CEA, a pioneer in the dismantling process, nuclear dismantling, research and innovation dedicated to dismantling

    International Nuclear Information System (INIS)

    Lorec, Amelie

    2016-01-01

    France - a world leader in the whole nuclear power cycle - is also responsible for the clean-up and dismantling of its end-of-life nuclear facilities. Here, the CEA is considered to be a pioneer both in the project ownership of work sites and in the R and D for optimising the timescales, costs and safety of those work sites. Its responsibilities range from defining the most appropriate scenario, characterising the radiological state of equipment and decontaminating premises, carrying out dismantling and optimising the resulting waste. With this wide range of skills and the diversity of its facilities, the CEA Nuclear Energy Division is developing innovative solutions which are already the subject of industrial transfers. Two-thirds of France's end-of-life nuclear facilities belong to the CEA - a situation connected with its history. This implies setting up clean-up and dismantling work sites which have unprecedented scientific, human and financial challenges. Every regulated nuclear installation (INB) (nuclear reactors, laboratories, etc.) has a limited operating life. When it stops being used, it is first cleaned up (removal of radioactive substances), then dismantled (disassembly of components) in accordance with the baseline safety requirements, and finally decommissioned so that it can be used for other purposes or be demolished. Cleanup and dismantling operations concern all the facility's components, such as hot (shielded) cells which can be found in some laboratories. As the owner of its clean-up and dismantling projects, the CEA also devotes a significant amount of R and D to reducing the timescales, costs and waste from current and future programmes, while improving their safety. The resulting innovations often lead to industrial transfers. (authors)

  12. HYDRAULIC ELEVATOR INSTALLATION ESTIMATION FOR THE WATER SOURCE WELL SAND-PACK CLEANING UP

    Directory of Open Access Journals (Sweden)

    V. V. Ivashechkin

    2016-01-01

    Full Text Available The article offers design of a hydraulic elevator installation for cleaning up water-source wells of sand packs. It considerers the installation hydraulic circuit according to which the normal pump feeds the high-level tank water into the borehole through two parallel water lines. The water-jet line with washing nozzle for destroying the sand-pack and the supply pipe-line coupled with the operational nozzle of the hydraulic elevator containing the inlet and the supply pipelines for respectively intaking the hydromixture and removing it from the well. The paper adduces equations for fluid motion in the supply and the water-jet pipelines and offers expressions for evaluating the required heads in them. For determining water flow in the supply and the water-jet pipe lines the author proposes to employ graphical approach allowing finding the regime point in Q–H chart by means of building characteristics of the pump and the pipe-lines. For calculating the useful vertical head, supply and dimensions of the hydraulic elevator the article employs the equation of motion quantity with consistency admission of the motion quantity before and after mixing the flows in the hydraulic elevator. The suggested correlations for evaluating the hydraulic elevator efficiency determine the sand pack removal duration as function of its sizes and the ejected fluid flow rate. A hydraulic-elevator installation parameters estimation example illustrates removing a sand pack from a water-source borehole of 41 m deep and 150 mm diameter bored in the village of Uzla of Myadelsk region, of Minsk oblast. The working efficiency of a manufactured and laboratory tested engineering prototype of the hydraulic elevator installation was acknowledged in actual tests at the indicated borehole site. With application of graphical approach, the suggested for the hydraulic elevator installation parameters calculation procedure allows selecting, with given depth and the borehole diameter

  13. Evaluation of waste treatment technologies by LLWDDD [Low-Level Waste Disposal Development and Demonstration] Programs

    International Nuclear Information System (INIS)

    Kennerly, J.M.; Williams, L.C.; Dole, L.R.; Genung, R.K.

    1987-01-01

    Waste treatments are divided into four categories: (1) volume reduction; (2) conditioning to improve waste form performance; (3) segregation to achieve waste reduction; and (4) separation to remove radioactive (or hazardous) constituents. Two waste treatment demonstrations are described. In the first, volume reduction by mechanical means was achieved during the supercompaction of 300 55-gal drums of solid waste at ORNL. In the second demonstration, conditioning of waste through immobilization and packaging to improve the performance of the waste form is being evaluated. The final section of this paper describes potential scenarios for the management of uranium-contaminated wastes at the Y-12 Plant in Oak Ridge and emphasizes where demonstrations of treatment technology will be needed to implement the scenarios. Separation and thermal treatment are identified as the principal means for treating these wastes. 15 figs

  14. Municipal solid waste management. Strategies and technologies for sustainable solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, C.; Hellweg, S.; Stucki, S. (eds.)

    2002-10-01

    The way municipal solid waste is handled greatly determines its impact on the local as well as the global environment. New technologies habe emerged for the treatment of waste, for the recovery of raw materials and energy, and for safe final disposal. The environmental performance of technologies, their social acceptance and their economic viability are key issues to be considered in sustainable waste management. This book provides an overview of current practices in waste management and a synthesis of new developments achieved through interdisciplinary discussions of recent research results. (orig.)

  15. Containment and stabilization technologies for mixed hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1993-05-01

    A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications

  16. Development of thermal conditioning technology for alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, H. Y.; Kim, J. G.

    2001-04-01

    To develop a thermal conditioning technology for alpha-contaminated wastes, which are presumed to generate from pyrochemical processing of spent fuel, research on the three different fields have been performed; incineration, off-gas treatment, and vitrification/cementation technology. Through the assessment on the amount of alpha-contaminated waste and incineration characterises, an oxygen-enriched incineration process, which can greatly reduce the off-gas volume, was developed by our own technology. Trial burn test with paper waste resulted in a reduction of off-gas volume by 3.5. A study on the behavior and adsorption of nuclides/heavy metals at high-temperature was performed to develop an efficient removal technology. Off-gas treatment technologies for radioiodine at high-temperature and 14 CO 2 , acidic gases, and radioactive gaseous wastes such as Xe/Kr at room temperature were established. As a part of development of high-level waste solidification technology, manufacture of high-frequency induction melter, fabrication and characterization of base-glass media fabricated with spent HEPA filter medium, and development of titanate ceramic material as a precursor of SYNROC by a self-combustion method were performed. To develop alpha-contaminated waste solidification technology, a process to convert periodontal in the cement matrix to calcite with SuperCritical Carbon Dioxide (SCCD) was manufactured. The SCCD treatment enhanced the physicochemical properties of cement matrices, which increase the long-term integrity of cement waste forms during transportation and storage

  17. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  18. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.; Mendoza, R.E.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  19. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    A general analysis of transportation requirements for postfission radioactive wastes that are produced from the commercial light water reactor (LWR) fuel cycle and that are assumed to require Federal custody for storage or disposal is given. Possible radioactive wastes for which transportation requirements are described include: spent fuel, solidified high-level waste, fuel residues (cladding wastes), plutonium, and non-high-level transuranic (TRU) wastes. Transportation is described for wastes generated in three fuel cycle options: once-through fuel cycle, uranium recycle only, and recycle of uranium and plutonium. The geologic considerations essential for repository selection, the nature of geologic formations that are potential repository media, the thermal criteria for waste placement in geologic repositories, and conceptual repositories in four different geologic media are described. The media are salt deposits, granite, shale, and basalt. Possible alternatives for managing retired facilities and procedures for decommissioning are reviewed. A qualitative comparison is made of wastes generated by the uranium fuel cycle and the thorium fuel cycle. This study presents data characterizing wastes from prebreeder light water breeder reactors using thorium and slightly enriched uranium-235. The prebreeder LWBRs are essentially LWRs using thorium. The operation of HTGR and LWBR cycles are conceptually designed, and wastes produced in these cycles are compared for potential differences

  20. Analysis of polycyclic aromatic hydrocarbons in vegetable oils combining gel permeation chromatography with solid-phase extraction clean-up

    DEFF Research Database (Denmark)

    Fromberg, Arvid; Højgård, A.; Duedahl-Olesen, Lene

    2007-01-01

    system equipped with a GPC column (S-X3) and pre-packed silica SPE columns for the subsequent clean-up and finally gas chromatography-mass spectrometry (GC-MS) determination. The method was validated for the determination of PAHs in vegetable oils and it can meet the criteria for the official control...... of benzo[a]pyrene levels in foods laid down by the Commission of the European Communities. A survey of 69 vegetable oils sampled from the Danish market included olive oil as well as other vegetable oils such as rapeseed oil, sunflower oil, grape seed oil and sesame oil. Levels of benzo[a]pyrene in all......A semi-automatic method for the determination of polycyclic aromatic hydrocarbons (PAHs) in edible oils using a combined gel permeation chromatography/solid-phase extraction (GPC/SPE) clean-up is presented. The method takes advantage of automatic injections using a Gilson ASPEC XL sample handling...

  1. Bioremediation of toxic and hazardous wastes by denitrifying bacteria

    International Nuclear Information System (INIS)

    Barraquio, Wilfredo L.

    2005-01-01

    This papers discusses the wastes coming rom domestic, industrial and agricultural sources are polluting the forests, rivers lakes, groundwater, and air and there are some measures like the physicochemical and biological measures are being utilized to remedy the destruction of resources; and of the measures, bioremediation offers great potential in cleaning up the environment of pollutants which is a cost-effective and environment-friendly technology that uses microorganisms to degrade hazardous substances into less toxic

  2. Risk assessments of innovative technologies for treatment of mixed waste

    International Nuclear Information System (INIS)

    Ragaini, R.C.; Aycock, M.T.; Russell, J.E.

    1993-01-01

    The mission of the US Department of Energy's (DOE'S) Mixed Waste Integrated Program (MWIP) is to develop complete and appropriate technologies for the treatment of DOE mixed low-level waste and transuranic wastes in order to ensure that all affected DOE installations and projects can come into compliance with environmental law and meet DOE's 30-yr cleanup and operational goals. The MWIP will achieve its goal by developing technologies that are in compliance with regulatory requirements, are socially and politically viable, and are cost beneficial and effective in disposed waste source term and volume reduction. The project management plan for MWIP requires that technologies be evaluated in accordance with criteria that rank technologies with regard to performance, risk, and cost-effectiveness. This paper addresses the methodology used to rank alternative mixed-water treatment technologies with regard to relative risk

  3. New Technological Options to Manage High Level Waste

    International Nuclear Information System (INIS)

    Gonzalez Romero, E. M.

    2007-01-01

    Nuclear energy renaissance and its expansion in time and space has renewed the need for minimization technologies applicable to nuclear wastes. The minimization technologies include new power reactor concepts, Generation IV, and dedicated technologies like Partitioning and Transmutation of the actinides contained in the spent fuel. These technologies apply the principle of classification and recycling to the spent fuel to transform what at present is an environmental hazard into an energy source. the waste minimization technologies are also relevant for countries planning the reduction or phase-out of nuclear energy, as they will allow minimizing the size and number of the final waste repositories. Present estimations indicate that reductions as large as a factor 100 in the amount (radiotoxicity) of long lived nuclear waste are feasibly, with a modest increase on the final electricity cost. (Author)

  4. Factors governing the ability of clean-up plant to remove settling particles from contaminants: theory for stable particles

    International Nuclear Information System (INIS)

    Longworth, J.P.

    1979-11-01

    Consideration is given to the processes by which particles are removed from fluid systems. In particular, it is noted that in tank, as opposed to loop, systems the natural process of gravitational settling competes with engineered removal systems. Calculational methods are given for estimating the relative amounts of settling and removal to clean-up plant for well-mixed fluids, unmixed fluids with horizontal or vertical flow, and turbulent diffusion with incomplete mixing. The criteria for complete mixing are discussed. (author)

  5. Three-dimensional analysis of enamel surface alteration resulting from orthodontic clean-up -comparison of three different tools.

    Science.gov (United States)

    Janiszewska-Olszowska, Joanna; Tandecka, Katarzyna; Szatkiewicz, Tomasz; Stępień, Piotr; Sporniak-Tutak, Katarzyna; Grocholewicz, Katarzyna

    2015-11-18

    The present study aimed at 3D analysis of adhesive remnants and enamel loss following the debonding of orthodontic molar tubes and orthodontic clean-up to assess the effectiveness and safety of One-Step Finisher and Polisher and Adhesive Residue Remover in comparison to tungsten carbide bur. Thirty human molars were bonded with chemical-cure orthodontic adhesive (Unite, 3M, USA), stored 24 h in 0.9 % saline solution, debonded and cleaned using three methods (Three groups of ten): tungsten carbide bur (Dentaurum, Pforzheim, Germany), one-step finisher and polisher (One gloss, Shofu Dental, Kyoto, Japan) and Adhesive Residue Remover (Dentaurum, Pforzheim, Germany). Direct 3D scanning in blue-light technology to the nearest 2 μm was performed before etching and after adhesive removal. Adhesive remnant height and volume as well as enamel loss depth and volume were calculated. An index of effectiveness and safety was proposed and calculated for every tool; adhesive remnant volume and duplicated enamel lost volume were divided by a sum of multiplicands. Comparisons using parametric ANOVA or nonparametric ANOVA rank Kruskal-Wallis tests were used to compare between tools for adhesive remnant height and volume, enamel loss depth and volume as well as for the proposed index. No statistically significant differences in the volume (p = 0.35) or mean height (p = 0.24) of adhesive remnants were found (ANOVA rank Kruskal-Wallis test) between the groups of teeth cleaned using different tools. Mean volume of enamel loss was 2.159 mm(3) for tungsten carbide bur, 1.366 mm(3) for Shofu One Gloss and 0.659 mm(3) for Adhesive Residue Remover - (F = 2.816, p = 0.0078). A comparison of the proposed new index between tools revealed highly statistically significant differences (p = 0.0081), supporting the best value for Adhesive Residue Remover and the worst - for tungsten carbide bur. The evaluated tools were all characterized by similar effectiveness. The most

  6. IAEA Meeting to Highlight Technologies to Safely Manage Radioactive Waste

    International Nuclear Information System (INIS)

    2014-01-01

    The two-day Forum was divided into four sessions that follow the journey of radioactive waste from its generation to final disposal: The first session provided an overview of the peaceful uses of nuclear technologies, the radioactive waste they generate, and of integrated management approaches adapted to various waste classes, as well as associated economic, security and safeguards considerations; The second session developed the steps required to manage radioactive waste before its disposal; The third illustrated disposal solutions for radioactive waste that must remain under regulatory control; and The fourth and final session focused on how evolving nuclear technologies, such as better use of nuclear fuel, innovative fuels and advanced reactors and fuel cycles, could affect future waste management needs

  7. Evaluation of Technologies for Retrieval of Waste from Leaking Tanks

    International Nuclear Information System (INIS)

    Bamberger, Judith A.; Hatchell, Brian K.; Lewis, Benjamin E.; Randolph, John D.; Killough, Stephen M.

    2000-01-01

    The US Department of Energy Environmental and Waste Management Tanks Focus Area selected as a strategic initiative the need to identify and develop technologies for remediation of tanks that are known or are suspected to leak. This investigation identified and evaluated technical options for single-shell tank waste retrieval applicable to retrieve waste from potentially leaking tanks. Technologies that minimize leakage use minimal water, and dry retrieval technologies were evaluated. Safety, cost, authorization basis, and schedule risks were identified for each technology to provide River Protection Program with information to evaluate technical and programmatic risk. A workshop was held to identify technology needs and solutions. These approaches grouped into five categories: those related to waste dislodging, waste conveyance, both waste dislodging and conveyance, the deployment platform, and technologies related to leak detection, monitoring, and mitigation. Based on the ranking, six technologies were selected as potential candidates for further evaluation. These items were prioritized into four technologies to recommend for further evaluation (1) Air assisted TORE(R). The TORE(R) produces a processing vortex core with the ability to convey solids at pre-determined slurry concentrations over great distances. The dry TORE(R) concept uses air to develop the vortex to fluidize dry solids. The TORE(R)the solids in a slurry transport line. (2) Sonication for waste dislodging utilizes ultrasonic energy to fracture and dislodge hard waste types such as salt cake and sludge. (3) Novel long-reach manipulators concept is to investigate novel cost effective approaches for long-reach manipulator technology. (4) Next generation crawler technology envisions a non-umbilical dislodger, possibly radio controlled and powered remotely to provide a deployment platform not affected by path, or the need to retrace steps

  8. Cost-time management: A powerful tool in a new application - cleaning up the weapons complex

    International Nuclear Information System (INIS)

    Gallagher, J.L.

    1992-01-01

    Westinghouse Electric Corporation is aggressively applying cost-time management to bolster timely, cost-effective cleanup and waste management activities at sites it manages for the U.S. Department of Energy (DOE). Cost-time management is a diagnostic technique which is applicable to virtually any process. It identifies opportunities to reduce cycle-times and costs. When applied to cleanup and waste management at DOE facilities, cost-time profile analysis helps identify actions to improve productivity and quality. Moreover, by reducing cycle-times and costs, it achieves significant savings to taxpayers. (author)

  9. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  10. Application of thermal technologies for processing of radioactive waste

    International Nuclear Information System (INIS)

    2006-12-01

    The primary objective of this publication is to provide an overview of the various thermal technologies for processing various solid, liquid, organic and inorganic radioactive waste streams. The advantages, limitations and operating experience of various thermal technologies are explained. This publication also goes beyond previous work on thermal processes by addressing the applicability of each technology to national or regional nuclear programmes of specific relative size (major advanced programmes, small to medium programmes, and emerging programmes with other nuclear applications). The most commonly used thermal processing technologies are reviewed, and the key factors influencing the selection of thermal technologies as part of a national waste management strategy are discussed. Accordingly, the structure and content of this publication is intended to assist decision-makers, regulators, and those charged with developing such strategies to identify and compare thermal technologies for possible inclusion in the mix of available, country-specific waste management processes. This publication can be used most effectively as an initial cutting tool to identify whether any given technology will best serve the local waste management strategy in terms of the waste generated, technical complexity, available economic resources, environmental impact considerations, and end product (output) of the technology. If multiple thermal technologies are being actively considered, this publication should be instrumental in comparing the technologies and assisting the user to reach an informed decision based on local needs, economics and priorities. A detailed set of conclusions is provided in Section 7

  11. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  12. Conditioning of uranium-containing technological radioactive waste

    International Nuclear Information System (INIS)

    Smodis, B.; Tavcar, G.; Stepisnik, M.; Pucelj, B.

    2006-01-01

    Conditioning of mostly liquid uranium containing technological radioactive waste emerging from the past research activities at the Jozef Stefan Institute is described. The waste was first thoroughly characterised, then the radionuclides present solidified by appropriate chemical treatment, and the final product separated and prepared for storage in compliance with the legislation. The activities were carried out within the recently renewed Hot Cells Facility of the Jozef Stefan Institute and the overall process resulted in substantial volume reduction of the waste initially present. (author)

  13. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  14. Evaluation of the persistence of functional and biological respiratory health effects in clean-up workers 6 years after the Prestige oil spill.

    NARCIS (Netherlands)

    Zock, J.P.; Rodríguez-Trigo, G.; Rodríguez-Rodríguez, E.; Souto-Alonso, A.; Espinosa, A.; Pozo-Rodríguez, F.; Gómez, F.P.; Fuster, C.; Castaño-Vinyals, G.; Antó, J.M.; Barberà, J.A.

    2014-01-01

    Fishermen who had participated in clean-up activities of the Prestige oil spill showed increased bronchial responsiveness and higher levels of respiratory biomarkers 2years later. We aimed to evaluate the persistence of these functional and biological respiratory health effects 6years after clean-up

  15. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  16. Buried Waste Integrated Demonstration Technology Preparedness and Status Report Guidance

    International Nuclear Information System (INIS)

    Blacker, P.B.; Bonnenberg, R.W.; Cannon, P.G.; Hyde, R.A.; Watson, L.R.

    1994-04-01

    A Technology Preparedness and Status Report is required for each Technical Task Plan funded by the Buried Waste Integrated Demonstration. This document provides guidance for the preparation of that report. Major sections of the report will include a subset of the need for the technology, objectives of the demonstration, technology description and readiness evaluation, demonstration requirements, and preparedness checklist and action plan

  17. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  18. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  19. Proceedings of Sixth National Seminar of Waste Management Technology

    International Nuclear Information System (INIS)

    Sucipta; Zainus Salimin; Lubis, Erwansyah; Herlan Martono; Aisyah; Syahrir; Erini Yuwatini; Thamzil Las; Kusnanto

    2008-06-01

    The sixth proceedings of the seminar on technology of waste management held by National Nuclear Energy Agency on June 24, 2007. The aim of seminar is to increase strengthening of radioactive waste management infrastructure to support a success in nuclear energy program in Indonesia. The proceedings consist of 32 articles from researcher of BATAN and outside BATAN. (PPIKSN)

  20. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  1. Technology development for recycling of decommissioning waste

    International Nuclear Information System (INIS)

    Choi, W. K.; Kim, G. N.; Lee, K. W.

    2010-04-01

    The scenarios for recycling or self-disposal of concrete wastes was established according to the regulatory requirements for clearance settled up in overseas countries as well as our country. Through the radiological safety assessment for those scenarios, the exposure rate for the workers and the public was evaluated to come up with the clearance level of radioactive nuclides. On the basis of the results, the necessary condition of the process equipment for a volume reduction and self-disposal was suggested toward recycling in non-nuclear field and limited recycling in nuclear filed. In order to satisfy the clearance level suggested from the assessment of the scenarios for recycling of dismantled concrete wastes, the processes for thermal crushing and mechanical grinding were optimized through the experiments on the characteristics of the thermal and mechanical treatment of concrete wastes generated from the KRR and UCP. As a consequence, the process which can be reduced the radioactive concrete waste volume by about 70% was established. And also, not only the originative integrated thermal crushing equipment in which the concrete wastes were crushed simultaneously with the thermal treatment but also the rotated paddle type impact crushing equipment were developed. An optimized stabilization processes which have the conditions for manufacturing cemented waste form containing the maximum content of fine concrete waste resulting the minimization of increase in volume of cemented waste form was established

  2. MINE WASTE TECHNOLOGY PROGRAM: A SUCCESS STORY

    Science.gov (United States)

    Mining Waste generated by active and inactive mining operations is a growing problem for the mining industry, local governments, and Native American communities because of its impact on human health and the environment. In the US, the reported volume of mine waste is immense: 2 b...

  3. An overview of in situ waste treatment technologies

    International Nuclear Information System (INIS)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified

  4. Water treatment technologies for a mixed waste remedial action

    Energy Technology Data Exchange (ETDEWEB)

    Reith, C; Freeman, G [Weldon Spring Site Remedial Action Project, Jacobs Engineering Group, Inc., St. Charles, MO (United States); Ballew, B [Weldon Spring Site Remedial Action Project, Dames and Moore, St. Charles, MO (United States)

    1992-07-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  5. Water treatment technologies for a mixed waste remedial action

    International Nuclear Information System (INIS)

    Reith, C.; Freeman, G.; Ballew, B.

    1992-01-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  6. Technology Summary Advancing Tank Waste Retreival And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  7. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    International Nuclear Information System (INIS)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-01-01

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  8. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to section 3021(a) of the Resource Conservation and Recovery Act (RCRA), as amended by section 105(a) of the Federal Facility Compliance Act (FFCA) of 1992 (Pub. L. No. 102-386). DOE has prepared this report for submission to EPA and the States in which DOE stores, generates, or treats mixed wastes. As required by the FFCA, this report contains: a national inventory of all mixed wastes in the DOE system that are currently stored or will be generated over the next five years, including waste stream name, description, EPA waste codes, basis for characterization (i.e., sampling and analysis or process knowledge), effect of radionuclides on treatment, quantity stored that is subject to the Land Disposal Restrictions (LDRs) storage prohibition, quantity stored that is not subject to the LDRS, expected generation over the next five years, Best Demonstrated Available Technology (BDAT) used for developing the LDR requirements, and waste minimization activities; and a national inventory of mixed waste treatment capacities and technologies, including information such as the descriptions, capacities, and locations of all existing and proposed treatment facilities, explanations for not including certain existing facilities in capacity evaluations, information to support decisions on unavailability of treatment technologies for certain mixed wastes, and the planned technology development activities

  9. U.S., Russia join efforts to clean up nuclear sites

    International Nuclear Information System (INIS)

    Richard Seltzer.

    1993-01-01

    U.S. and Russian scientists are stepping up their cooperative efforts to deal with a vexing and controversial problem in both nations--cleanup of radioactive wastes at former nuclear weapons production sites. Last month, a top-level delegation of Russian officials and scientists came to the U.S. for two weeks. They visited Washington, D.C., and the Department of Energy's (DOE) Hanford site in Washington State, studying U.S. cleanup activities and providing information on Russian problems and efforts. The visit was part of a program of exchanges in the areas of environmental restoration and waste management called for by a 1990 memorandum of cooperation between DOE and the Russian Ministry of Atomic Energy. The memo helps implement a U.S.-Russian collaborative agreement on peaceful uses of atomic energy. Currently, cooperation under the memo exists in four areas: vitrification, waste separation, contaminant transport modeling, and student-scientist exchanges. The paper summarizes the visit to the Hanford Reservation and describes the cleanup efforts there

  10. Waste management of the Nuclear Technology Development Center - CDTN

    International Nuclear Information System (INIS)

    Miaw, S.T.W.; Oliveira Lopes, M.J. de; Tello, C.C.O. de; Silva, E.M.P. da; Guzella, M.F.R.; Reis, L.C.A.; Menezes Cussiol, N.A. de

    1993-01-01

    Liquid and solid wastes of low radiation level are produced at the Nuclear Technology Development Centre (CDTN). Trying to minimise the waste volume and to give proper treatment, the wastes, are segregated at their origin according their radiological, chemistry and physical characteristics. The Radioactive Waste Program was established in 1983 based on CNEN resolution 6/73 and more recently modernized following CNEN Norm NE-6.05. This paper describes all activities involved in CDTN's Program. (B.C.A.). 6 refs, 02 tabs, 01 fig

  11. The development of radioactive waste treatment technology(IV)

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Yim, Sung Paal; Lee, Kune Woo; Yoo, Jeong Woo; Kim, Young Min; Park, Seong Chul

    1992-03-01

    Following studies were performed in the project of development of radioactive waste treatment technology. 1) Treatment of radioactive borated liquid wastes by reverse osmosis : Separation characteristics of boric acid were estimated using cellulose acetate membrane and aromatic polyamide membrane. The performance of reverse osmosis process was evaluated in terms of boric acid recovery, radiochemical rejection, and membrane flux by operating variables such as applied pressure and feed concentration. 2) Oily waste treatment : The mathematical model to estimate oil removal efficiency is to be proposed at coalescence column. 3) Treatment of radioactive laundry waste 4) Comparison of evaporation and ion-exchange 5) State of the art of high integrity container. (Author)

  12. From waste to technology. An environmental acceptable technology

    International Nuclear Information System (INIS)

    Tabasaran, O.

    2001-01-01

    Modern thermal waste treatment has the task to produce deposit capable inert products and is able to reduce contaminants emitted to the environment. In addition waste to energy plants enable the recovery of energy by a maximum amount of environmental protection even in the comparison with modern power stations or other industrial plants. Over that, regarding modern technical solutions, today's waste to energy plants can no more be turned on financial reasons [it

  13. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  14. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    Directory of Open Access Journals (Sweden)

    Sudipta De

    2014-12-01

    Full Text Available The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as well as the competitive role of those catalysts in hydrotreating and hydrocracking processes.

  15. PHYTOREMEDIATION: USING PLANTS TO CLEAN UP CONTAMINATED SOIL, GROUNDWATER, AND WASTEWATER

    Science.gov (United States)

    Phytoremediation is an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost. The cleanup technology is defined as the use of green plants to remove, contain, or render harmless such environmental contaminants as heavy ...

  16. A review of waste heat recovery technologies for maritime applications

    International Nuclear Information System (INIS)

    Singh, Dig Vijay; Pedersen, Eilif

    2016-01-01

    Highlights: • Major waste heat sources available on ships have been reviewed. • A review of suitable waste heat recovery systems was conducted for marine vessels. • Technologies have been compared for their potential and suitability for marine use. • Kalina cycle offers the highest potential for marine waste heat recovery. • Turbo compound system most suitable for recovering diesel exhaust pressure energy. - Abstract: A waste heat recovery system produces power by utilizing the heat energy lost to the surroundings from thermal processes, at no additional fuel input. For marine vessels, about 50 percent of the total fuel energy supplied to diesel power-plant aboard is lost to the surroundings. While the total amount of wasted energy is considerable, the quality of this energy is quite low due to its low temperature and has limited potential for power production. Effective waste heat recovery systems use the available low temperature waste heat to produce mechanical/electrical power with high efficiency value. In this study a review of different waste heat recovery systems has been conducted, to lay out the potential recovery efficiencies and suitability for marine applications. This work helps in identifying the most suitable heat recovery technologies for maritime use depending on the properties of shipboard waste heat and achievable recovery efficiencies, whilst discussing the features of each type of system.

  17. RFID technology for hazardous waste management and tracking.

    Science.gov (United States)

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  18. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  19. Study on technology for radioactive waste treatment and management from uranium production

    International Nuclear Information System (INIS)

    Vu Hung Trieu; Vu Thanh Quang; Nguyen Duc Thanh; Trinh Giang Huong; Tran Van Hoa; Hoang Minh Chau; Ngo Van Tuyen; Nguyen Hoang Lan; Vuong Huu Anh

    2007-01-01

    There is some solid and liquid radioactive waste created during producing Uranium that needs being treated and managed to keep our environment safe. This radioactive waste contains Uranium (U-238), Thorium (Th-232), Radium (Ra-226) and some heavy metals and mainly is low radioactive waste. Our project has researched and built up appropriate technology for treating and managing the radioactive waste. After researching and experimenting, we have built up four technology processes as follows: Technology for separating Radium from liquid waste; Technology for treating and managing solid waste containing Ra; Technology for separating Thorium from liquid waste after recovering radium; Technology for stabilizing solid waste from Uranium production. (author)

  20. ''New ' technology of solidification of liquid radioactive waste'

    International Nuclear Information System (INIS)

    Sytyl, V.A.; Svistova, L.M.; Spiridonova, V.P.

    1998-01-01

    It is generally accepted that the best method of processing of radioactive waste is its solidification and then storage. At present time, three methods of solidification of radioactive waste are widely used in the world: cementation, bituminous grouting and vitrification. But they do not solve the problem of ecologically processing of waste because of different disadvantages. General disadvantages are: low state of filling, difficulties in solidification of the crystalline hydrated forms of radioactive waste; particular sphere of application and economical difficulties while processing the great volume of waste. In connection with it the urgent necessity is emerging: to develop less expensive and ecologically more reliable technology of solidification of radioactive waste. A new method of solidification is presented with its technical schema. (N.C.)

  1. Field test plan: Buried waste technologies, Fiscal Year 1995

    International Nuclear Information System (INIS)

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management

  2. Technology transfer and the management of radioactive waste

    International Nuclear Information System (INIS)

    Bonne, A.; Chan-Sands, C.

    1998-01-01

    One of the IAEA's fundamental roles is to act as a centre for the transfer of nuclear technologies, including those for managing radioactive wastes. In the area of waste management technology, the Agency is actively working to improve and develop new and efficient means to fulfill that responsibility. Recognizing its responsibilities and challenges, IAEA efforts related to radioactive waste management technologies into the next century are framed around three major areas: the development and implementation of mechanisms for better technology transfer and information exchange; the promotion of sustainable and safer processes and procedures; and the provision of peer reviews and direct technical assistance that help facilitate bilateral and multinational efforts. To illustrate some specific elements of the overall programme, this article reviews selected technology-transfer activities that have been initiated in the field

  3. Development of high-level waste solidification technology 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Hwan Young; Kim, In Tae [and others

    1999-02-01

    Spent nuclear fuel contains useful nuclides as valuable resource materials for energy, heat and catalyst. High-level wastes (HLW) are expected to be generated from the R and D activities and reuse processes. It is necessary to develop vitrification or advanced solidification technologies for the safe long-term management of high level wastes. As a first step to establish HLW vitrification technology, characterization of HLWs that would arise at KAERI site, glass melting experiments with a lab-scale high frequency induction melter, and fabrication and property evaluation of base-glass made of used HEPA filter media and additives were performed. Basic study on the fabrication and characterization of candidate ceramic waste form (Synroc) was also carried out. These HLW solidification technologies would be directly useful for carrying out the R and Ds on the nuclear fuel cycle and waste management. (author). 70 refs., 29 tabs., 35 figs.

  4. The technology available for more efficient combustion of waste gases

    International Nuclear Information System (INIS)

    Burrows, J.

    1999-01-01

    Alternative combustion technologies for open flare systems are discussed, stressing their advantages and limitations while meeting the fundamental requirements of personnel and plant safety, high destruction efficiencies, environmental parameters and industrial reliability. The use of BACT (Best Available Control Technologies) is dependent on the destruction efficiency of waste gas defined by regulatory agencies or industrial leaders. Enclosed vapour combustors and high destruction efficiency thermal oxidation are two of the technologies which result in more efficient combustion of waste gases. There are several conditions that should be considered when choosing combustion equipment for the disposal of waste gas. These include volatile organic compounds content, lower heating value, the composition of the waste gas, the specified combustion efficiency, design flow rates, smokeless operation, operating conditions, ground level radiation, SO 2 dispersion, environmental and social expectations, and economic limitation. 10 figs

  5. Spreading, retention and clean-up of oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jr, M P

    1976-05-01

    This study reviews and assesses the technology of oil spill spreading, retention and cleanup and proposes research needs in these areas. Sources of oil spills are analyzed and the difficulty of gathering meaningful statistics is discussed. Barrier technology is reviewed and problem areas analyzed. Natural and forced biodegradation and natural and chemical dispersion of oil spills are considered. Research recommendations are categorized under the following two headings (1) Preventive techniques and (2) Containment, Cleanup and Dispersion.

  6. Clean-up levels for recovery of a 137Cs contaminated site in the Slovak Republic

    International Nuclear Information System (INIS)

    Slavik, O.; Moravek, J.

    2003-01-01

    The 19 km long banks of the Bohunice NPP waste water recipient (Manivier canal (0.3 m 3 /s) and Dudvah River (0.8 m 3 /s)) has been identified as contaminated by 137 Cs as a result of two accidents on the CO 2 cooled and heavy water moderated NPP-A1 unit in 1976 and 1977. Until 1992, NPP waste water had been derived through a 5 km-long canal to the Dudvah River (Q a 1.8 m 3 /s) conducting with the Vah River (150 m 3 /s) after 13 km downstream at 90 km from Vah's mouth into the Danube River. Between 1976 and 1978, when both accidents happened, construction of a flood control project on Dudvah River had just been being implemented in the length of 8 km upstream of its mouth. In the next upstream part of the River with about 5 km long river section, affected by NPP, the flood control conditions are insufficient and has, hitherto, caused permanent concern of the public. In this paper authors deals with the radiological characterization of the contaminated banks, re-consideration of the restoration project, criteria dose assessments and cleanup level developments, as well as present conditions for implementation of planned bank restoration

  7. Modern technology for landfill waste placement

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L. [Landfill Service Corp., Apalachin, NY (United States)

    1995-12-31

    The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits of this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.

  8. Plastic solid waste utilization technologies: A Review

    Science.gov (United States)

    Awasthi, Arun Kumar; Shivashankar, Murugesh; Majumder, Suman

    2017-11-01

    Plastics are used in more number of applications in worldwide and it becomes essential part of our daily life. In Indian cities and villages people use the plastics in buying vegetable as a carry bag, drinking water bottle, use of plastic furniture in home, plastics objects uses in kitchen, plastic drums in packing and storage of the different chemicals for industrial use, use plastic utensils in home and many more uses. After usage of plastics it will become part of waste garbage and create pollution due to presence of toxic chemicals and it will be spread diseases and give birth to uncontrolled issues in social society. In current scenario consumption of plastic waste increasing day by day and it is very difficult to manage the plastic waste. There are limited methodologies available for reutilization of plastic waste again. Such examples are recycling, landfill, incineration, gasification and hydrogenation. In this paper we will review the existing methodologies of utilization of plastic waste in current scenario

  9. Buried Waste Integrated Demonstration lessons learned: 1993 technology demonstrations

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Owens, K.J.

    1994-01-01

    An integrated technology demonstration was conducted by the Buried Waste Integrated Demonstration (BWID) at the Idaho National Engineering Laboratory Cold Test Pit in the summer of 1993. This program and demonstration was sponsored by the US Department of Energy Office of Technology Development. The demonstration included six technologies representing a synergistic system for the characterization and retrieval of a buried hazardous waste site. The integrated technology demonstration proved very successful and a summary of the technical accomplishments is presented. Upon completion of the integrated technology demonstration, cognizant program personnel participated in a lessons learned exercise. This exercise was conducted at the Simplot Decision Support Center at Idaho State University and lessons learned activity captured additional information relative to the integration of technologies for demonstration purposes. This information will be used by BWID to enhance program planning and strengthen future technology demonstrations

  10. 1999 Annual Report on Waste Generation and Pollution Prevention Progress as Required by DOE Order 5400.1

    International Nuclear Information System (INIS)

    SEGALL, P.

    2000-01-01

    Hanford's missions are to safely clean-up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or clean-up mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infrastructure, and site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The clean-up activity is an immense and challenging undertaking. Including characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  11. Incorporating regulatory considerations into waste treatment technology development

    International Nuclear Information System (INIS)

    Siegel, M.R.; Powell, J.A.; Williams, T.A.; Kuusinen, T.L.; Lesperance, A.M.

    1991-02-01

    It is generally recognized that the development of new and innovative waste treatment technologies can significantly benefit the US Department of Energy's (DOE) environmental restoration and waste management program. DOE has established a research, development, demonstration, testing, and evaluation (RDDT ampersand E) program, managed by its Office of Technology Development, to encourage and direct the development of new waste treatment and management technologies. The treatment, storage, and disposal of hazardous and radioactive waste is heavily regulated both at the federal and state levels. In order to achieve the goals of applying the best new technologies in the fastest and most cost-effective manner possible, it is essential that regulatory factors be considered early and often during the development process. This paper presents a number of regulatory issues that are relevant to any program intended to encourage the development of new waste treatment and management technologies. It will also address how the use of these basic regulatory considerations can help ensure that technologies that are developed are acceptable to regulators and can therefore be deployed in the field. 2 refs

  12. Mercury emissions control technologies for mixed waste thermal treatment

    International Nuclear Information System (INIS)

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.

    1997-01-01

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates

  13. Systems analysis support to the waste management technology center

    International Nuclear Information System (INIS)

    Rivera, A.L.; Osborne-Lee, I.W.; DePaoli, S.M.

    1988-01-01

    This paper describes a systems analysis concept being developed in support of waste management planning and analysis activities for Martin Marietta Energy Systems, Inc. (Energy Systems), sites. This integrated systems model serves as a focus for the accumulation and documentation of technical and economic information from current waste management practices, improved operations projects, remedial actions, and new system development activities. The approach is generic and could be applied to a larger group of sites. This integrated model is a source of technical support to waste management groups in the Energy Systems complex for integrated waste management planning and related technology assessment activities. This problem-solving methodology for low-level waste (LLW) management is being developed through the Waste Management Technology Center (WMTC) for the Low-Level Waste Disposal, Development, and Demonstration (LLWDDD) Program. In support of long-range planning activities, this capability will include the development of management support tools such as specialized systems models, data bases, and information systems. These management support tools will provide continuing support in the identification and definition of technical and economic uncertainties to be addressed by technology demonstration programs. Technical planning activities and current efforts in the development of this system analysis capability for the LLWDDD Program are presented in this paper

  14. Modules for estimating solid waste from fossil-fuel technologies

    International Nuclear Information System (INIS)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides

  15. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  16. Systems engineering identification and control of mixed waste technology development

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1997-01-01

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department's commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper

  17. Expert system technology for nondestructive waste assay

    International Nuclear Information System (INIS)

    Becker, G.K.; Determan, J.C.

    1998-01-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications

  18. Product waste in the automotive industry : Technology and environmental management

    NARCIS (Netherlands)

    Groenewegen, Peter; Hond, Frank Den

    1993-01-01

    In this article the changes in technology and industry structure forced by waste management in the automotive industry are explored. The analysis is based on (1) a characterisation of corporate response to environmental issues, and (2) the management of technology applied to the car manufacturing

  19. A summary and historical review of the radioactive clean-up in Port Hope, Ontario

    International Nuclear Information System (INIS)

    Case, G.

    1980-01-01

    In 1976 several buildings and other areas of the town of Port Hope were found to be contaminated by radium and radon from residues produced by a local uranium refining plant and from materials salvaged from old refinery buildings. In the spring of 1976 the entire town was surveyed and 550 houses were found to have elevated radon gas levels or background radiation levels. Of these, 500 properties were classified as sites requiring remedial work. Large amounts of contaminated soil and fill were removed, as well as other building materials. Demolition was necessary in some cases. For the first three years contaminated materials were stored at the Chalk River Nuclear Laboratories, but finally the waste disposal site there was filled with over 104 000 tons of contaminated soil. By the end of 1979 work had been completed on 441 properties. Work on smaller sites was continuing, but progress on the cleanup of of larger areas depended on another disposal area being found

  20. Fuel clean-up: poisoning of palladium-silver membranes by gaseous impurities

    International Nuclear Information System (INIS)

    Chabot, J.; Lecomte, J.; Grumet, C.; Sannier, J.

    1988-01-01

    The feasibility of a permeation process using a palladium-silver alloy membrane, to separate deuterium and tritium from fusion reactor gaseous wastes needs demonstration owing to poisoning effects of impurities. A parametric investigation of the poisoning by the most important expected gaseous impurities (C0, C0 2 and CH 4 ) is carried out with the loop PALLAS, in function of membrane temperature (100 to 450 0 C), H 2 pressure (0.3 to 14 kPa) and impurity concentration (0.2 to 9.5 vol. %). The poisoning effect of C0 is a concern for the process while C0 2 and CH 4 appear to have no practical effect on the permeation rate. Depending on C0 concentration optimal operating temperatures of the membrane should lie between 250 and 375 0 C limits

  1. Site clean-up requirements: where does one dispose of dirt?

    International Nuclear Information System (INIS)

    Feldman, J.

    1986-01-01

    Under its Superfund program the US Environmental Protection Agency (EPA) has committed itself to remediate certain residential and commercial properties impacted by an accumulation of indoor radon or thoron resulting from deposition of contaminated dirt. A case in point: The State of New Jersey now has a number of sites contaminated with the residues of radium or thorium extraction operations. The residues (dirt) were removed from the original operations areas and used as landfill, often in locations which are now around houses or other buildings. EPA's soil contamination limits for radium or thorium dictate that remediation efforts consist of removal of that fill. This solution presents the problem of disposing of large volumes of marginally radioactive materials. Options which recognize the present lack of low-level radioactive waste disposal facilities are examined here

  2. Zero Waste and Conversion Efficiencies of Various Technologies for Disposal of Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    Zhang Wenyang

    2005-01-01

    Zero waste is a philosophy and a design principle of dealing with our waste stream for the 21st century. After reviewing the available information, the goal of zero waste from landfill is considered to be unachievable by using known and proven methods and approaches. The comparison of various technologies shows that the conversion efficiencies depend upon the type of system chosen for processing residual waste, and the best overall diversion rate of waste management system that can be achieved is about 71%. The maximum achievable overall diversion rate can be increased to approximate 92% if current environmental regulations to permit the routine use of the bottom ash or char for advanced thermal technologies.

  3. Low-level radioactive waste technology: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description

  4. Low-level radioactive waste technology: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  5. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  6. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  7. Environmental remediation 1991: ''Cleaning up the environment for the 21st Century''

    International Nuclear Information System (INIS)

    Wood, D.E.

    1991-01-01

    This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases

  8. Options for cleaning up subsurface contamination at Alberta sour gas plants

    International Nuclear Information System (INIS)

    Hardisty, P.; Dabrowski, T.L.

    1992-01-01

    At the conclusion of two major phases of a study on subsurface treatment technologies for Alberta sour gas plants, a candidate site was selected for a remediation technologies demonstration project. The plant has an extensive groundwater monitoring network in place, monitoring records for a period exceeding 10 years, ten recovery wells with aquifer test data and four reinjection wells. Hydrogeological exploration determined the presence and delineated a plume of free phase natural gas condensate. Aquifer remediation efforts at the site began in 1990 with the installation of recovery wells. Recovered groundwater was treated using a pilot scale air stripping system with pretreatment for iron, manganese and hardness. Dual pump system, water depression and free product skimmers were installed in the wells and tested. The nature and extent of contamination, study methodology, technology-dependent criteria, assessment of technology, and conceptual design are discussed for the three demonstration projects selected, which are enhanced soil vapour extraction with off-gas treatment, pump-and-treat with soil vapour extraction, biological treatment and air sparging, and treatment of dissolved process chemicals by advanced oxidation. 5 refs., 1 fig., 1 tab

  9. Battelle Research Outlook, Volume 2 Number 3. Cleaning Up the Atmosphere.

    Science.gov (United States)

    Westerman, Arthur B., Ed.

    "Outlook" publications focus on areas of science and technology in which research can be valuable to industry, government, and society as a whole. This issue deals with the problems of air pullution and air quality control. The first of six essays,". . . This Most Excellent Canopy, the Air," prognosticates the surge in atmospheric pollution and…

  10. Biocomplementation of SVE to achieve clean up goals in soils contaminated with toluene and xylene

    DEFF Research Database (Denmark)

    Soares, Antonio; Pinho, Maria Teresa; Albergaria, José Tomás

    2013-01-01

    Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work...

  11. Environmental remediation 1991: ``Cleaning up the environment for the 21st Century``. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.E. [ed.] [Westinghouse Hanford Co., Richland, WA (United States)

    1991-12-31

    This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.

  12. Use of waste ceramics in adsorption technologies

    Czech Academy of Sciences Publication Activity Database

    Doušová, B.; Koloušek, D.; Keppert, M.; Machovic, V.; Lhotka, M.; Urbanová, Martina; Brus, Jiří; Holcova, L.

    2016-01-01

    Roč. 134, Part 2 (2016), s. 145-152 ISSN 0169-1317 R&D Projects: GA ČR(CZ) GA13-24155S Institutional support: RVO:61389013 Keywords : waste ceramics * brick dust * toxic cations Subject RIV: JN - Civil Engineering Impact factor: 3.101, year: 2016

  13. Emerging technologies in hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.; Pohland, F.G.

    1990-01-01

    The book includes chapters on topics such as municipal solid wastes, water purification by radiation, the isolation or organic species and inorganic radionuclides, and solvent recycling. Several chapters cover radiolysis chemistry in dilute aqueous media, solar treatment, chemical separations (adsorption, ion exchange, membrane dialysis, and distillation), the biological and chemical treatment of soils and sludges, and solids immobilization

  14. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    An analysis of the complete waste management system was developed to assess the total impact of managing radioactive wastes generated over the entire lifetime of a nuclear power system. The analysis considers the treatment and disposal of all post-fission TRU, gaseous and airborne and decommissioning wastes. Each radioactive waste stream is tracked each year from its origin through treatment, storage, transport, and accumulation in a geologic repository. The reference system is based on 400 GWe of nuclear power installed in the year 2000 and produces approximately 10,000 GWe-years of electric energy. An alternative low-growth projection based on 255 GWe in the year 2000 is also considered, but for fewer cases. This system produces approximately 6400 GWe year of electric energy. Capacity additions beyond the year 2000 are not considered a part of this system. After 40 years of operation each nuclear power plant is shut down and decommissioned. Thus, the last nuclear power plant is shut down in the year 2040. The last fuel reprocessing plant is shut down in the year 2044 and dismantled in the year 2075. Thus, the system operation encompasses a 101-year period from 1975 through 2075. In addition, the decay of radioactivity in the final repositories is followed over a million year period

  15. High-level waste management technology program plan

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs

  16. High-level waste management technology program plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  17. DC plasma arc melter technology for waste vitrification

    International Nuclear Information System (INIS)

    Hamilton, R.A.; Wittle, J.K.; Trescot, J.

    1995-01-01

    This paper describes the features and benefits of a breakthrough DC Arc Melter for the permanent treatment of all types of solid wastes including nonhazardous, hazardous and radioactive. This DC Arc Furnace system, now commercially available, is the low cost permanent solution for solid waste pollution prevention and remediation. Concern over the effective disposal of wastes generated by the industrial society, worldwide, has prompted development of technologies to address the problem. For the most part these technologies have resulted in niche solutions with limited application. The only solution that has the ability to process almost all wastes, and to recover/recycle metallic and inorganic matter, is the group of technologies known as melters. Melters have distinct advantages over traditional technologies such as incineration because melters operate at higher temperatures, are relatively unaffected by changes in the waste stream, produce a vitrified stable product, and have the capability to recover/recycle slag, metals and gas. The system, DC Plasma Arc Melter, has the lowest capital, maintenance and operating cost of any melter technology because of its patented DC Plasma Arc with graphite electrode. DC Plasma Arc Melter systems are commercially available in sizes from 50 kg/batch or 250--3,000 kg/hr on a continuous feed basis. This paper examines the design and operating benefits of a DC Plasma Arc Melter System

  18. Low-level radioactive waste technology: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

    1981-10-01

    This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas

  19. The evolution of waste management processes and technologies in BNFL

    International Nuclear Information System (INIS)

    Asquith, R.W.; Fairhall, G.A.

    1997-01-01

    The treatment of wastes arising from BNFL''s nuclear fuel cycle operations can be traced through a number of phases. The first was the development of vitrification and cementation for fresh arisings. Plants utilising these technologies are now in operation. To handle the mixed, heterogeneous intermediate level wastes, retrieval, segregation and robust treatment processes are at an advanced stage of development, with all plants to be operational from 2002. BNFL is focusing attention on reducing waste management lifetime costs including reducing waste volumes of source. Technologies aimed at significant reductions are now being developed. The final phase, now in progress, recognizes the need for an integrated approach to advanced fuel cycle processes which incorporates BNFL''s holistic concept. (author)

  20. Status of technologies related to radioactive waste management and disposal

    International Nuclear Information System (INIS)

    1979-09-01

    The document discusses the status of technologies relevant to radioactive waste management and disposal, as defined by the INFCE Working Group 7 study. All fuel cycle wastes, with the exception of mill tailings, are placed in mined geologic repositories. In addition to the availability of technologies, the document discusses the: a) importance of the systems viewpoint, b) importance of modeling, c) need for site-specific investigations, d) consideration of future sub-surface human activities and e) prospects for successful isolation. In the sections on waste isolation and repository safety assessments, principal considerations are discussed. The document concludes that successful isolation of radioactive wastes from the biosphere appears technically feasible for periods of thousands of years provided that the systems view is used in repository siting and design

  1. Evaluating the technical aspects of mixed waste treatment technologies

    International Nuclear Information System (INIS)

    Bagaasen, L.M.; Scott, P.A.

    1992-10-01

    This report discusses treatment of mixed wastes which is thought to be more complicated than treatment of either hazardous or radioactive wastes. In fact, the treatment itself is no more complicated: however, the regulations that define acceptability of the final waste disposal system are significantly more entangled, and sometimes in apparent conflict. This session explores the factors that influence the choice of waste treatment technologies, and expands on some of the limitations to their application. The objective of the presentation is to describe the technical factors that influence potential treatment processes and the ramifications associated with particular selections (for example, the generation of secondary waste streams). These collectively provide a framework for making informed treatment process selections

  2. Development of treatment technology for radioactive concrete wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Choi, W. K.; Lee, K. W., E-mail: bymin@kaeri.re.k [Korea Atomic Energy Research Institute, 1045 Daeduk-daero, Yuseong-gu, Daejeon, 305-353 Republic of Korea (Korea, Republic of)

    2010-10-15

    The aim of this study was the separation of clean aggregates from contaminated dismantling concrete wastes by thermal and mechanical processes. In Korea, the decontamination and decommissioning of the retired Korea research reactor (KRR) and a uranium conversion plant (UCP) at the Korea Atomic Energy Research Institute (KAERI) has been under way. Hundreds of tons of concrete wastes are expected from these facilities. The KAERI has developed volume reduction technology applicable to an activated heavy concrete waste generated by dismantling KRR-2 and a uranium contaminated light weight concrete produced from a UCP. Contamination level of the gravel and sand aggregates was remarkably decreased by thermal and mechanical process. The volume reduction rate could be achieved above 70% for KRR-2 concrete waste and above to 80% for the UCP concrete waste. (Author)

  3. Strip-drains for in situ clean up of contaminated fine-grained soils

    International Nuclear Information System (INIS)

    Bowders, J.J.; Gabr, M.A.

    1995-01-01

    Methods for in situ remediation of contaminated soils, such as bioremediation, vacuum/air stripping and soil flushing have been found to be less effective under fine-grained soil conditions. To enhance the performance of these techniques, it was proposed that strip-drains or wick drains also known as prefabricated vertical (PV) drains be used. The research objective was to determine the feasibility of using PV drains to enhance the soil flushing process. Bench top and intermediate-scale laboratory experiments were conducted. An overview of the work, results and future considerations were presented. Results indicated that the technology is feasible. A preliminary model for the technology to be used in any field situation was developed. The model is currently being tested with data from physical experiments on both intermediate and field tests. 5 figs

  4. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water.

    Science.gov (United States)

    Cho, Youngsoo; Cattrall, Robert W; Kolev, Spas D

    2018-01-05

    Thiocyanate is present in gold mine tailings waters in concentrations up to 1000mgL -1 and this has a serious environmental impact by not allowing water reuse in the flotation of gold ore. This significantly increases the consumption of fresh water and the amount of wastewater discharged in tailings dams. At the same time thiocyanate in tailings waters often leads to groundwater contamination. A novel continuous membrane-based method for the complete clean-up of thiocyanate in concentrations as high as 1000mgL -1 from its aqueous solutions has been developed. It employs a flat sheet polymer inclusion membrane (PIM) of composition 70wt% PVC, 20wt% Aliquat 336 and 10wt% 1-tetradecanol which separates counter-current streams of a feed thiocyanate solution and a 1M NaNO 3 receiving solution. The PIM-based system has been operated continuously for 45days with 99% separation efficiency. The volume of the receiving solution has been drastically reduced by recirculating it and continuously removing thiocyanate by precipitating it with in-situ generated Cu(I). The newly developed PIM-based thiocyanate clean-up method is environmentally friendly in terms of reagent use and inexpensive with respect to both equipment and running costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Phenotypical characteristics of leukocyte membranes in Chernobyl clean-up workers from Latvia: use of the fluorescent probe ABM

    International Nuclear Information System (INIS)

    Kalnina, I.; Meirovics, I.; Garbuseva, N.; Bruvere, R.; Heisele, O.; Zvagule, T.; Volrate, A.; Feldmane, G.

    2001-01-01

    A fluorescent probe - aminoderivative of benzanthrone, AMB (developed at the Riga Technical University, Riga, Latvia) - has been previously shown to localise within the phospholipid bilayer of the cell membrane, and shown to affect the structural and functional properties of peripheral blood mononuclear cells (PBMC). The probe ABM was used to characterise the PBMC membranes of 97 Chernobyl clean-up workers from Latvia. The study was conducted in the years 1997-1998. After addition of the probe to PBMC, fluorescence intensity of ABM (F) was measured, the depolarisation value P was calculated, and emission spectra were recorded. Screening of all individuals showed 5 different patterns of fluorescence spectra. Four of the patterns had never been previously observed in healthy individuals or patients with tuberculosis, multiple sclerosis, oncologic patients, etc., examined by us. The spectral patterns of ABM suspensions were associated with ability of leukocytes to produce interferons, with the levels of immunoglobulins A, G, and M, the concentration of lead in peripheral blood, and with several neurologic diseases. The use of ABM allowed to show phenotypic differences in PBMC between Chernobyl clean-up workers and individuals who had never had professional contact with radioactivity. (author)

  6. Comparison of enamel discoloration associated with bonding with three different orthodontic adhesives and cleaning-up with four different procedures.

    Science.gov (United States)

    Ye, Cui; Zhao, Zhihe; Zhao, Qing; Du, Xi; Ye, Jun; Wei, Xing

    2013-11-01

    The aim of this study was to compare whether there was any difference in the enamel discoloration after staining when three orthodontic adhesives and four enamel clean-up methods were tested. Three types of orthodontic adhesives were used: chemically cured resin, light-cured resin and resin-modified glass-ionomer cement. A total of 120 human extracted premolars were included. 10 teeth of each orthodontic adhesive were randomly cleaned-up with one of four different procedures and stained in coffee for seven days: (1) carbide bur (TC); (2) carbide bur; Sof-Lex polishers (TC+SL); (3) carbide bur and one gloss polishers (TC+OG); and (4) carbide bur and PoGo polishers (TC+PG). Color measurements were made with Crystaleye dental spectrophotometer at baseline and after storage in a coffee solution one week. Two-way ANOVA and Bonferroni tests were used for statistical analyses (P0.05). The resin-modified glass-ionomer cement groups showed the lowest color differences and chemically cured resin groups showed the highest ΔE* values among all the orthodontic adhesives (P<0.05). The color change of enamel surface was affected by the type of adhesive materials and cleanup procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Gas stream clean-up filter and method for forming same

    International Nuclear Information System (INIS)

    Mei, J.S.; DeVault, J.; Halow, J.S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products

  8. Oakland Operations Office, Oakland, California: Technology summary

    International Nuclear Information System (INIS)

    1994-11-01

    DOE's Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention

  9. Oakland Operations Office, Oakland, California: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  10. WASTE-FREE PRODUCTION TECHNOLOGY OF DRY MASHED POTATOES

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2015-01-01

    Full Text Available Summary. According to data on norms of consumption of vegetable production of scientific research institute of Food of the Russian Academy of Medical Science, potatoes win first place with norm of 120 kg a year on the person. In this regard much attention is paid to processing of potatoes that allows to prolong the term of its validity, and also to reduce the capacity of storages and to reduce transport transportations as 1 kg of a dry potatoes produсt is equivalent 7-8 kg of fresh potatoes. Thus industrial processing of potatoes on dry mashed potatoes allows to reduce losses of potatoes at storage and transportation, there is a possibility of enrichment of products vitamins and other useful components, its nutrition value remains better, conditions for complex processing of raw materials with full recycling and creations of stocks of products from potatoes on a crop failure case are created. Dry mashed potatoes are a product of long storage. On the basis of studying of the production technology of mashed potatoes the analysis of technological processes as sources of creation of waste, and the directions of recovery of secondary raw materials for complex waste-free technology of processing of potatoes are defined is provided. The waste-free technological scheme of processing of potatoes and production of dry instant mashed potatoes on the basis of dehydration and moisture thermal treatment a component providing recovery of secondary carbohydrate content raw materials in the form of waste of the main production is developed. The main stages of production of dry instant mashed potatoes are described. It is offered the technological scheme of a production line of mashed potatoes on the basis of waste-free technology. Advantages of the offered waste-free production technology of dry instant mashed potatoes with processing of secondary starch-containing raw materials are given.

  11. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and...

  12. Treatment technologies for non-high-level wastes (USA)

    International Nuclear Information System (INIS)

    Cooley, C.R.; Clark, D.E.

    1976-06-01

    Non-high-level waste arising from operations at nuclear reactors, fuel fabrication facilities, and reprocessing facilities can be treated using one of several technical alternatives prior to storage. Each alternative and the associated experience and status of development are summarized. The technology for treating non-high-level wastes is generally available for industrial use. Improved techniques applicable to the commercial nuclear fuel cycle are being developed and demonstrated to reduce the volume of waste and to immobilize it for storage. 36 figures, 59 references

  13. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  14. Tank waste remediation system integrated technology plan. Revision 2

    International Nuclear Information System (INIS)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-01-01

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m 3 (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program

  15. Waste conditioning technology of radiocontaminated soil

    International Nuclear Information System (INIS)

    Chen Dahua; Wang Xiaoli; Chen Xin

    2012-01-01

    A special conditioning way for low level soil contaminated by 241 Am was discussed. Firstly, the contaminated soil was condensed in package container (200 L drum) by 20 t pressing machine. The contaminated soil was pressed from loose state to compaction state, and the volume reduction rate was from 1.1 to 1.4. Secondly, cement with thickness of 10 cm to 15 cm was poured on the package container for sealing. Thus, a cement sealing member was made up by contaminated soil and it could be described as normal solid waste. Finally, taking the cement sealing member as conditioning object, using Ⅶ steel trunk as package container and cement conditioning, Ⅶ steel trunk package was got. Through radiation monitoring, the Ⅶ steel trunk package can satisfy the transport requirement of radiation waste. Also, it can satisfy the accept and disposal requirements of national repository. (authors)

  16. Nuclear waste disposal: Technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1984-01-01

    The authors have arrived at what appears to be a comforting conclusion--that the ultimate disposal of nuclear wastes should be technically feasible and very safe. They find that the environment and health impacts will be negligible in the short-term, being due to the steps that precede the emplacement of the wastes in the repository. Disposal itself, once achieved, offers no short-term threat--unless an unforseen catastrophe of very low probability occurs. The risks appear negligible by comparison with those associated with earlier stages of the fuel cycle. Ultimately -- millinnia hence -- a slow leaching of radionuclides to the surface might begin. But it would be so slow that great dilution of each nuclide will occur. This phase is likely to be researched somewhere in the period 100,000 to 1,000,000 years hence

  17. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  18. Low-level waste disposal technology

    International Nuclear Information System (INIS)

    Levin, G.B.

    1983-01-01

    A design has been proposed for a low-level radioactive waste disposal site that should provide the desired isolation under all foreseeable conditions. Although slightly more costly than current practices; this design provides additional reliability. This reliability is desirable to contribute to the closure of the fuel cycle and to demonstrate the responsible management of the uranium cycle by reestablishing confidence in the system

  19. Modern efficient methods of steel vertical oil tanks clean-up

    Directory of Open Access Journals (Sweden)

    Nekrasov Vladimir

    2016-01-01

    Full Text Available The legislative base of the Russian Federation operating in the field of operation of tanks and tank parks is considered, and consecutive stages of technological process of cleaning of vertical steel tanks from oil ground deposits are presented. In work shortcomings of existing most widespread electromechanical mixers are described when using a hydraulic method of removal and prevention of formation of ground deposits in tanks with oil and oil products. For the purpose of increase of efficiency, reliability and decrease in power consumption of washout of oil ground deposits in tanks the new design of system of funneled washout and prevention of formation of deposits is offered.

  20. ORNL grouting technologies for immobilizing hazardous wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon

  1. Nuclear Wastes: Technologies for Separations and Transmutation

    National Research Council Canada - National Science Library

    .... The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted...

  2. Monitoring technologies for ocean disposal of radioactive waste

    Science.gov (United States)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  3. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  4. Development and Implementation of a Low-Cost ex-situ Soil Clean-up Method for Actinide Removal at the AWE Aldermaston Site, U.K

    International Nuclear Information System (INIS)

    Agnew, K.; Purdie, P.; Agnew, K.; Cundy, A.B.; Hopkinson, L.; Croudace, I.W.; Warwick, P.E.F.

    2009-01-01

    This paper details the development (and implementation) of a novel, low-cost electrokinetic soil clean-up method for treatment of Pu-labelled soil wastes at the AWE Aldermaston site, Berkshire, U.K. Nuclear weapons manufacture and maintenance, and related research and development activities, have been carried out at the Aldermaston site for over 50 years, and these historical operations have generated a number of contaminated land legacy issues, including soils which contain above background (although radiologically insignificant) specific activities of Pu. Much of the Pu-labelled soil has been removed (via soil excavation), and is held in containment units on site, prior to remediation / decommissioning. Based on initial small-scale laboratory trials examining the potential for Pu removal and directed migration under a low intensity electrical field, a two year project (funded by the former UK Department of Trade and Industry and AWE PLC) has been implemented, and is reported here, involving a focussed programme of laboratory trials followed by a full-scale field trial to examine the potential of low-cost electrokinetic techniques to reduce the activity of Pu in clay-rich site soils, and reduce site waste disposal costs. Pu (and U) exhibited relatively complex behaviour in the laboratory trials, with Pu forming mobile soluble oxy-anionic species under the high pHs generated by the electrokinetic treatment technique. Clear mobilisation of Pu and U (along with a range of other elements) was however observed, in a range of soil types. The relative efficiency of remobilization was element-dependant, and, in terms of heavy metal contaminants, radionuclides, and the stable analogues of radionuclides known to be problematic at other nuclear sites, was (from most to least mobile) Cl > Zn > Sr > U > Pu > Pb. Both Pu and U showed enhanced mobility when the low-cost soil conditioning agent citric acid was added prior to electrokinetic treatment. Full-scale field trials of

  5. DC graphite plasma arc melter technology for waste vitrification

    International Nuclear Information System (INIS)

    Hamilton, R.A.; Wittle, J.K.; Trescot, J.; Wilver, P.

    1995-01-01

    This paper describes the features and benefits of a DC Arc Melter for the permanent treatment of all types of solid wastes including nonhazardous, hazardous and radioactive. This DC Arc Melter system is the low cost permanent solution for solid waste pollution prevention and remediation. Concern over the effective disposal of wastes generated by our industrial society, worldwide, has prompted development of technologies to address the problem. The only solution that has the ability to process almost all wastes, and to recover/recycle metallic and inorganic matter, is the group of technologies known as melters. Melters have distinct advantages over traditional technologies such as incineration because melters; operate at higher temperatures, are relatively unaffected by changes in the waste stream, produce a vitrified stable product, reduce gaseous emissions, and have the capability to recover/recycle slag, metals and gas. The system, DC Plasma Arc Melter, has the lowest capital, maintenance and operating cost of any melter technology because of its patented DC Plasma Arc with graphite electrode. DC Plasma Arc Melter systems are available in sizes from 50 kg/batch or 250-3,000 kg/hr on a continuous basis

  6. Perspectives on innovative characterization and remediation technologies for contaminated sites

    International Nuclear Information System (INIS)

    Kovalick, W.W. Jr.

    2002-01-01

    Contaminated soil and groundwater have been the subject of legislative attention in the U.S. for about 20 years. Major strides in implementing cleanup programs have been accomplished. From complex abandoned hazardous waste sites to underground petroleum storage tanks to (more recently) Brownfields redevelopment, much assessment and remediation work have been carried out. This paper describes some of the data on the kinds of contamination, media, and technologies deployed to deal with problems at these sites. In addition, it highlights technology partnerships that have evolved to demonstrate and verify site measurement and clean-up technologies and to assure a more robust set of clean-up options. Finally, the advent of the Internet has increased access to a considerable body of publicly available information on the cost and performance of these technologies that might be of interest. (author)

  7. Re-injection accelerates groundwater clean up at Fernald, Fluor Fernald, Inc

    International Nuclear Information System (INIS)

    Dave Brettschneider; William Hertel; Ken Broberg

    2000-01-01

    A successful one year long, field scale demonstration of the use of groundwater re-infection at Fernald was recently completed bringing DOE one step closer to achieving an accelerated site remediation (DOE 2000). The demonstration marks the end of a several year effort to evaluate whether: re-injection could be conducted efficiently at Fernald, and if the approved aquifer remedy at Fernald would benefit by incorporating re-infection. Evaluation of re-injection technology involved not only technical considerations, but also participation and cooperation of regulators and stakeholders. The demonstration was considered to be unique in that it was integrated into the design of the current approved aquifer remedy and utilized the existing remediation infrastructure. Information collected during the demonstration indicated that re-injection wells could be operated efficiently at Fernald and that the current approved groundwater remedy should be modified to include the use of re-injection

  8. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  9. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  10. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    International Nuclear Information System (INIS)

    Denise Lach; Stephanie Sanford

    2006-01-01

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; are concerned equally about technological and implementation issues; and believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites

  11. Impact of oil spill and posterior clean-up activities on wrack-living talitrid amphipods on estuarine beaches

    Directory of Open Access Journals (Sweden)

    Carlos A. Borzone

    2009-12-01

    Full Text Available A geomorphological and faunistic seasonal study of six estuarine beaches on Paranaguá Bay, Brazil, was abruptly interrupted when the Chilean ship "Vicuña" exploded and sank, spilling 291 tons of bunker fuel oil. The beaches sampled twice before the accident were affected by the oil spill deposition and the posterior clean-up activities. Neither drastic reduction in abundances nor occurrences of oil-covered individuals were registered. Significant variation in both amount of debris and talitrid amphipod densities was directly related to beach clean-up activities. A short (1-3 month manual clean-up of polluted wrack resulted in an increase in talitrid abundances, with the local distribution expansion of one species, Platorchestia monodi, from three to six of the beaches sampled. The active migration and concentration of organisms at sites without wrack during cleaning activities and a massive and continuous recovery of new debris, characteristic of estuarine beaches, may contribute to the findings.Um estudo sazonal da geomorfologia e fauna de seis praias estuarinas na baia de Paranaguá, Brasil, foi interrompido bruscamente pela explosão e posterior afundamento do navio chileno Vicuña, que derramou 291 toneladas de óleo bunker. As praias que foram afetadas pela deposição de óleo e pelas posteriores atividades de limpeza, tinham sido amostradas duas vezes antes do acidente. Nas coletas posteriores ao acidente não foram registradas nem reduções drásticas das abundâncias nem indivíduos impregnados por óleo. As significativas variações tanto da quantidade de detrito quanto nas densidades de anfipodes talitrídeos foram relacionadas às atividades de limpeza. Uma limpeza manual e de curta duração (1 a 3 meses resultou num aumento das abundâncias dos talitrídeos, juntamente com o aumento da distribuição de uma das espécies, Platorchestia monodi, que de três passou a ser encontrada em seis praias amostradas.Os fatores que

  12. Overview of established and emerging treatment technologies for polycyclic aromatic hydrocarbons at wood preserving facilities

    International Nuclear Information System (INIS)

    Shearon, M.D.

    1992-01-01

    The contamination of soil and groundwater by polycyclic aromatic hydrocarbons (PAHs) is common to wood preserving facilities and manufactured gas plants. Since the inception of RCRA and CERCLA, much attention has been focused upon the remediation of both active and defunct wood preserving facilities. The experiences gleaned from the use of proven technologies, and more importantly, the lessons being learned in the trials of emerging technologies on creosote-derived PAH clean-ups at wood preserving sites, should have direct bearing on the clean-up of similar contaminants at MGP sites. In this paper, a review of several remedial actions using waste removal/disposal, on-site incineration, and bioremediation will be presented. Additionally, emerging technologies for the treatment of PAH-contaminated soil and water will be reviewed. Lastly, recent information on risk assessment results for creosote sites and treated PAH waste will be discussed

  13. Sodium-Bearing Waste Treatment, Applied Technology Plan

    International Nuclear Information System (INIS)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-01-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology

  14. Sodium-Bearing Waste Treatment, Applied Technology Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  15. Processing of palm oil mill wastes based on zero waste technology

    Science.gov (United States)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  16. Low-level waste management program and interim waste operations technologies

    International Nuclear Information System (INIS)

    Mezga, L.J.

    1983-01-01

    The Department of Energy currently supports an integrated technology development and transfer program aimed at ensuring that the technology necessary for the safe management and disposal of LLW by the commercial and defense sectors is available. The program focuses on five technical areas: (1) corrective measures technology, (2) improved shallow land burial technology, (3) greater confinement disposal technology, (4) model development and validation, and (5) treatment methods for problem wastes. The results of activities in these areas are reported in the open literature and the Proceedings of the LLWMP Annual Participants Information Meeting

  17. Monsanto Mound Laboratory tritium waste control technology development program

    International Nuclear Information System (INIS)

    Bixel, J.C.; Kershner, C.J.; Rhinehammer, T.B.

    1975-01-01

    Over the past four years, implementation of tritium waste control programs has resulted in a 30-fold reduction in the gaseous tritium effluents from Mound Laboratory. However, to reduce tritium waste levels to the ''as low as practicable'' guideline poses problems that are beyond ready solution with state-of-the-art tritium control technology. To meet this advanced technology need, a tritium waste control technology program was initiated. Although the initial thrust of the work under this program was oriented toward development of gaseous effluent treatment systems, its natural evolution has been toward the liquid waste problem. It is thought that, of all the possible approaches to disposal of tritiated liquid wastes, recovery offers the greatest advantages. End products of the recovery processes would be water detritiated to a level below the Radioactivity Concentration Guide (RCG) or detritiated to a level that would permit safe recycle in a closed loop operation and enriched tritium. The detritiated water effluent could be either recycled in a closed loop operation such as in a fuel reprocessing plant or safely released to the biosphere, and the recovered tritium could be recycled for use in fusion reactor studies or other applications

  18. Low-level radioactive waste management technology development

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1985-01-01

    Although reviews of disposal practices and site performance indicated that there were no releases to the environment that would affect public health and safety, it became clear that: (a) several burial grounds were not performing as expected; (b) long-term maintenance of closed trenches could be a costly problem, and (c) more cost-effective methods could be developed for the treatment, packing, and disposal of low-level waste. As a result of these reviews, the Department of Energy developed the Low-level Waste Management Program to seek improvements in existing practices, correct obvious deficiencies, and develop site closure techniques that would avoid expensive long-term maintenance and monitoring. Such technology developments provide a better understanding of the physical and technical mechanisms governing low-level waste treatment and disposal and lead to improvement in the performance of disposal sites. The primary means of disposal of low-level waste has been the accepted and regulated practice of shallow land disposal, i.e., placement of low-level waste in trenches 5 to 10 meters deep with several meters of special soil cover. Department of Energy waste is primarily disposed at six major shallow land disposal sites. Commercial waste is currently disposed of at three major sites in the nation - Barnwell, South Carolina; Richland, Washington; and Beatty, Nevada. In the late 1970's public concern arose regarding the management practices of sites operated by the civilian sector and by the Department of Energy

  19. The evolution of waste management processes and technologies in BNFL

    International Nuclear Information System (INIS)

    Asquith, R. W.; Fairhall, G. A.

    1997-01-01

    The treatment of wastes arising from BNFL's nuclear fuel cycle operations can be traced through a number of phases. The first was the development of vitrification and cementation for fresh arising and plants are now in operation. To handle the mixed, heterogeneous intermediate level wastes, retrieval, segregation and robust treatment processes are at an advanced stage of development, with all plants to be operational from 2002. BNFL is focusing attention on reducing waste management lifetime costs including reducing waste volumes of source. Technologies aimed at significant reductions are now being developed. The final phase, now in progress, recognizes the need for an integrated approach to advanced fuel cycle processes which incorporates BNFL holistic concept. (author) 6 refs., 1 fig

  20. Recent developments in powder resin precoat filtration for condensate clean-up at nuclear power plants with boiling water reactors

    International Nuclear Information System (INIS)

    Plaisier, L.

    1990-01-01

    The necessity to optimize condensate clean-up by means of powder resin precoat filtration has gained more and more importance. Not only the cost of powder resins themselves is important in this regard, but even more so the disposal of used resins and replaced filter elements. The factors influencing direct filtration efficiency, resin consumption, and service life of filter elements (powder resin quality; way of preparing the water - resin mixture; precoating method; filter design and piping; type and quality of filter elements, and filtration speed) are outlined. A method designed to reduce filtration speed as much as possible, i.e. to enlarge the filter surface while maintaining its volume and avoiding adverse effects, is described in detail and substantiated by data obtained from pilot tests. (orig./BBR) [de

  1. Simultaneous extraction and clean-up of polychlorinated biphenyls and their metabolites from small tissue samples using pressurized liquid extraction

    Science.gov (United States)

    Kania-Korwel, Izabela; Zhao, Hongxia; Norstrom, Karin; Li, Xueshu; Hornbuckle, Keri C.; Lehmler, Hans-Joachim

    2008-01-01

    A pressurized liquid extraction-based method for the simultaneous extraction and in situ clean-up of polychlorinated biphenyls (PCBs), hydroxylated (OH)-PCBs and methylsulfonyl (MeSO2)-PCBs from small (< 0.5 gram) tissue samples was developed and validated. Extraction of a laboratory reference material with hexane:dichloromethane:methanol (48:43:9, v/v) and Florisil as fat retainer allowed an efficient recovery of PCBs (78–112%; RSD: 13–37%), OH-PCBs (46±2%; RSD: 4%) and MeSO2-PCBs (89±21%; RSD: 24%). Comparable results were obtained with an established analysis method for PCBs, OH-PCBs and MeSO2-PCBs. PMID:19019378

  2. Proceedings of the 1st workshop on radioactive waste treatment technologies, October 28, 1997 Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This proceedings describes the volume reduction of radioactive waste, the radioactive waste treatment technology, the decontamination and decommissioning, and the incineration and solidification of radioactive waste. Twenty two papers are submitted.

  3. Proceedings of the 1st workshop on radioactive waste treatment technologies, October 28, 1997 Taejon, Korea

    International Nuclear Information System (INIS)

    1997-01-01

    This proceedings describes the volume reduction of radioactive waste, the radioactive waste treatment technology, the decontamination and decommissioning, and the incineration and solidification of radioactive waste. Twenty two papers are submitted

  4. The state of the art on the radioactive metal waste recycling technologies

    International Nuclear Information System (INIS)

    Oh, Won Jin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1997-09-01

    As the best strategy to manage the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following recycling technologies are investigated. 1. decontamination technologies for radioactive metal waste recycling 2. decontamination waste treatment technologies. 3. residual radioactivity evaluation technologies. (author). 260 refs., 26 tabs., 31 figs

  5. Application of membrane technologies for liquid radioactive waste processing

    International Nuclear Information System (INIS)

    2004-01-01

    Membrane separation processes have made impressive progress since the first synthesis of membranes almost 40 years ago. This progress was driven by strong technological needs and commercial expectations. As a result the range of successful applications of membranes and membrane processes is continuously broadening. In addition, increasing application of membrane processes and technologies lies in the increasing variations of the nature and characteristics of commercial membranes and membrane apparatus. The objective of the report is to review the information on application of membrane technologies in the processing of liquid radioactive waste. The report covers the various types of membranes, equipment design, range of applications, operational experience and the performance characteristics of different membrane processes. The report aims to provide Member States with basic information on the applicability and limitations of membrane separation technologies for processing liquid radioactive waste streams

  6. Integrated preservation and sample clean up procedures for studying water ingestion by recreational swimmers via urinary biomarker determination.

    Science.gov (United States)

    Cantú, Ricardo; Shoemaker, Jody A; Kelty, Catherine A; Wymer, Larry J; Behymer, Thomas D; Dufour, Alfred P; Magnuson, Matthew L

    2017-08-22

    The use of cyanuric acid as a biomarker for ingestion of swimming pool water may lead to quantitative knowledge of the volume of water ingested during swimming, contributing to a better understanding of disease resulting from ingestion of environmental contaminants. When swimming pool water containing chlorinated cyanurates is inadvertently ingested, cyanuric acid is excreted quantitatively within 24 h as a urinary biomarker of ingestion. Because the volume of water ingested can be quantitatively estimated by calculation from the concentration of cyanuric acid in 24 h urine samples, a procedure for preservation, cleanup, and analysis of cyanuric acid was developed to meet the logistical demands of large scale studies. From a practical stand point, urine collected from swimmers cannot be analyzed immediately, given requirements of sample collection, shipping, handling, etc. Thus, to maintain quality control to allow confidence in the results, it is necessary to preserve the samples in a manner that ensures as quantitative analysis as possible. The preservation and clean-up of cyanuric acid in urine is complicated because typical approaches often are incompatible with the keto-enol tautomerization of cyanuric acid, interfering with cyanuric acid sample preparation, chromatography, and detection. Therefore, this paper presents a novel integration of sample preservation, clean-up, chromatography, and detection to determine cyanuric acid in 24 h urine samples. Fortification of urine with cyanuric acid (0.3-3.0 mg/L) demonstrated accuracy (86-93% recovery) and high reproducibility (RSD urine suggested sufficient cyanuric acid stability for sample collection procedures, while longer holding times suggested instability of the unpreserved urine. Preserved urine exhibited a loss of around 0.5% after 22 days at refrigerated storage conditions of 4 °C. Published by Elsevier B.V.

  7. AECL experience with low-level radioactive waste technologies

    International Nuclear Information System (INIS)

    Buckley, L.P.; Charlesworth, D.H.

    1988-08-01

    Atomic Energy of Canada Limited (AECL), as the Canadian government agency responsible for research and development of peaceful uses of nuclear energy, has had experience in handling a wide variety of radioactive wastes for over 40 years. Low-level radioactive waste (LLRW) is generated in Canada from nuclear fuel manufacturers and nuclear power facilities, from medical and industrial uses of radioisotopes and from research facilities. The technologies with which AECL has strength lie in the areas of processing, storage, disposal and safety assessment of LLRW. While compaction and incineration are the predominant methods practised for solid wastes, purification techniques and volume reduction methods are used for liquid wastes. The methods for processing continue to be developed to improve and increase the efficiency of operation and to accommodate the transition from storage of the waste to disposal. Site-specific studies and planning for a LLRW disposal repository to replace current storage facilities are well underway with in-service operation to begin in 1991. The waste will be disposed of in an intrusion-resistant underground structure designed to have a service life of over 500 years. Beyond this period of time the radioactivity in the waste will have decayed to innocuous levels. Safety assessments of LLRW disposal are performed with the aid of a series of interconnected mathematical models developed at Chalk River specifically to predict the movement of radionuclides through and away from the repository after its closure and the subsequent health effects of the released radionuclides on the public. The various technologies for dealing with radioactive wastes from their creation to disposal will be discussed. 14 refs

  8. Waste Technology Engineering Laboratory (324 building)

    International Nuclear Information System (INIS)

    Kammenzind, D.E.

    1997-01-01

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection

  9. Waste Technology Engineering Laboratory (324 building)

    Energy Technology Data Exchange (ETDEWEB)

    Kammenzind, D.E.

    1997-05-27

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

  10. Screening of pollution control and clean-up materials for river chemical spills using the multiple case-based reasoning method with a difference-driven revision strategy.

    Science.gov (United States)

    Liu, Rentao; Jiang, Jiping; Guo, Liang; Shi, Bin; Liu, Jie; Du, Zhaolin; Wang, Peng

    2016-06-01

    In-depth filtering of emergency disposal technology (EDT) and materials has been required in the process of environmental pollution emergency disposal. However, an urgent problem that must be solved is how to quickly and accurately select the most appropriate materials for treating a pollution event from the existing spill control and clean-up materials (SCCM). To meet this need, the following objectives were addressed in this study. First, the material base and a case base for environment pollution emergency disposal were established to build a foundation and provide material for SCCM screening. Second, the multiple case-based reasoning model method with a difference-driven revision strategy (DDRS-MCBR) was applied to improve the original dual case-based reasoning model method system, and screening and decision-making was performed for SCCM using this model. Third, an actual environmental pollution accident from 2012 was used as a case study to verify the material base, case base, and screening model. The results demonstrated that the DDRS-MCBR method was fast, efficient, and practical. The DDRS-MCBR method changes the passive situation in which the choice of SCCM screening depends only on the subjective experience of the decision maker and offers a new approach to screening SCCM.

  11. Nuclear waste disposal technology for Pacific Basin countries

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; Brothers, G.W.

    1981-01-01

    Safe long-term disposal of nuclear wastes is technically feasible. Further technological development offers the promise of reduced costs through elimination of unnecessary conservatism and redundance in waste disposal systems. The principal deterrents to waste disposal are social and political. The issues of nuclear waste storage and disposal are being confronted by many nuclear power countries including some of the Pacific Basin nuclear countries. Both mined geologic and subseabed disposal schemes are being developed actively. The countries of the Pacific Basin, because of their geographic proximity, could benefit by jointly planning their waste disposal activities. A single repository, of a design currently being considered, could hold all the estimated reprocessing waste from all the Pacific Basin countries past the year 2010. As a start, multinational review of alterntive disposal schemes would be beneficial. This review should include the subseabed disposal of radwastes. A multinational review of radwaste packaging is also suggested. Packages destined for a common repository, even though they may come from several countries, should be standardized to maximize repository efficiency and minimize operator exposure. Since package designs may be developed before finalization of a repository scheme and design, the packages should not have characteristics that would preclude or adversely affect operation of desirable repository options. The sociopolitical problems of waste disposal are a major deterrent to a multinational approach to waste disposal. The elected representatives of a given political entity have generally been reluctant to accept the waste from another political entity. Initial studies would, nevertheless, be beneficial either to a common solution to the problem, or to aid in separate solutions

  12. Geological Disposal of Radioactive Waste: Technological Implications for Retrievability

    International Nuclear Information System (INIS)

    2009-01-01

    Various IAEA Member States are discussing whether and to what degree reversibility (including retrievability) might be built into management strategies for radioactive waste. This is particularly the case in relation to the disposal of long lived and/or high level waste and spent nuclear fuel (SNF) in geological repositories. It is generally accepted that such repositories should be designed to be passively safe with no intention of retrieving the waste. Nevertheless, various reasons have been advanced for including the concept of reversibility and the ability to retrieve the emplaced wastes in the disposal strategy. The intention is to increase the level of flexibility and to provide the ability to cope with, or to benefit from, new technical advances in waste management and materials technologies, and to respond to changing social, economic and political opinion. The technological implications of retrievability in geological disposal concepts are explored in this report. Scenarios for retrieving emplaced waste packages are considered and the report aims to identify and describe any related technological provisions that should be incorporated into the design, construction, operational and closure phases of the repository. This is based on a number of reference concepts for the geological disposal of radioactive waste (including SNF) which are currently being developed in Member States with advanced development programmes. The report begins with a brief overview of various repository concepts, starting with a summary of the types of radioactive waste that are typically considered for deep geological disposal. The main host rocks considered are igneous crystalline and volcanic rocks, argillaceous clay rocks and salts. The typical design features of repositories are provided with a description of repository layouts, an overview of the key features of the major repository components, comprising the waste package, the emplacement cells and repository access facilities

  13. Chemistry of nuclear resources, technology, and waste

    International Nuclear Information System (INIS)

    Keller, O.L. Jr.

    1978-01-01

    Chemistry is being called on today to obtain useful results in areas that have been found very difficult for it in the past, but new instrumentation and new theories are allowing much progress. The area of hydrolytic phenomena and colloid chemistry, as exemplified by the plutonium polymer problem, is clearly entering a new phase in which it can be studied in a much more controlled and understandable manner. The same is true of the little studied interfacial regions, where so much important chemistry occurs in solvent extraction and other systems. The studies of the adsorption phenomena on clays are an illustration of the new and useful modeling of geochemical phenomena that is now possible. And finally, the chemist is called upon to participate in the developement and evaluation of models for nuclear waste isolation requiring extrapolations of hundreds to hundreds of thousands of years into the future. It is shown that chemistry may be useful in keeping the extrapolations in the shorter time spans, and also in selecting the best materials for containment. 36 figures

  14. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    International Nuclear Information System (INIS)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-01-01

    Highlights: ► We outline the differences of Chinese MSW characteristics from Western MSW. ► We model the requirements of four clusters of plant owner/operators in China. ► We examine the best technology fit for these requirements via a matrix. ► Variance in waste input affects result more than training and costs. ► For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don’t sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no ‘best’ plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four

  15. Current status of low-level-waste-segregation technology

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.; Sailor, V.L.

    1982-01-01

    The adoption of improved waste segregation practices by waste generators and burial sites will result in the improved disposal of low-level wastes (LLW) in the future. Many of the problems connected with this disposal mode are directly attributable to or aggravated by the indiscriminate mixing of various waste types in burial trenches. Thus, subsidence effects, contact with ground fluids, movement of radioactivity in the vapor phase, migration of radionuclides due to the presence of chelating agents or products of biological degradation, deleterious chemical reactions, and other problems have occurred. Regulations are currently being promulgated which will require waste segregation to a high degree at LLW burial sites. The state-of-the-art of LLW segregation technology and current practices in the USA have been surveyed at representative facilities. Favorable experience has been reported at various sites following the application of segregation controls. This paper reports on the state-of-the-art survey and addresses current and projected LLW segregation practices and their relationship to other waste management activities

  16. Oil spill clean up

    International Nuclear Information System (INIS)

    Claxton, L.D.; Houk, V.S.; Williams, R.; Kremer, F.

    1991-01-01

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. During biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic constituents to toxic species. Also, toxic compounds refractory to biological degradation may compromise the effectiveness of the treatment technique. In the study, the Salmonella mutagenicity assay showed that both the Prudhoe Bay crude oil and its weathered counterpart collected from oil-impacted water were weakly mutagenic. Results also showed that the mutagenic components were depleted at a faster rate than the overall content of organic material

  17. A New Technology for Treating Pulp Waste with Plasma

    International Nuclear Information System (INIS)

    Feng Xiaozhen; Tian Zhongyu

    2009-01-01

    New methods for both the treatment of pulp waste liquor called black liquor (BL) and the recovery of chemicals by using plasma, and the concentration of BL with the freezing technique were developed. The new methods aiming at the pilot plant scale are described and the experiments in a small-scale research facility for demonstration and test are presented. The energy consumption for treating waste liquid is 1 kg/kWh. Plasma processing can reduce the costs for treatment and eliminate pollution. (plasma technology)

  18. Research and technology programmes supporting waste management in BNFL

    International Nuclear Information System (INIS)

    Fairhall, G.A.; Horner, A.M.

    2000-01-01

    Waste Management is a major activity of BNFL in the UK and at various locations internationally. To support these activities extensive programmes of Research and Technology have been undertaken for many years. This involves practical studies involving active and non-active work at laboratory and pilot plant scale. Extensive use is also made of theoretical and modelling techniques. Current work is aimed at underpinning and improving current operations supporting the design and safety cases of new plant and addressing waste management activities of the future including decommissioning. (authors)

  19. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  20. A review on technological options of waste to energy for effective management of municipal solid waste.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of treatment technologies of the processing of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J. Jr.; Lurk, P.; Wolf, S.M.

    1994-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. In response to the need for a comprehensive and consistent approach to mixed-waste technology development, the Office of Technology Development of the US Department of Energy (DOE) has established the Mixed Waste Integrated Program. The program is identifying and evaluating treatment technologies to treat present and estimated future mixed wastes at DOE sites. The status of the technical initiatives in chemical/physical treatment, waste destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  2. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  3. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    International Nuclear Information System (INIS)

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ''ideas''. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ''cradle-to-grave'' systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ''downselection'' of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW

  4. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis.

    Science.gov (United States)

    Uclés, Ana; Herrera López, Sonia; Dolores Hernando, Maria; Rosal, Roberto; Ferrer, Carmen; Fernández-Alba, Amadeo R

    2015-11-01

    The use of yttria-stabilized zirconium dioxide nanoparticles as d-SPE clean-up sorbent for a rapid and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the determination of post-harvest fungicides (carbaryl, carbendazim, chlorpropham, diphenylamine, ethoxyquin, flutriafol, imazalil, iprodione, methomyl, myclobutanil, pirimiphos-methyl, prochloraz, pyrimethanil, thiabendazole, thiophanate-methyl and tolclofos-methyl) in orange and pear samples has been evaluated and validated. The sample preparation was a modification of the QuEChERS extraction method using yttria-stabilized zirconium dioxide and multi-walled carbon nanotubes (MWCNTs) nanoparticles as the solid phase extraction (d-SPE) clean-up sorbents prior to injecting the ten-fold diluted extracts into the LC system. By using the yttria-stabilized zirconium dioxide extraction method, more recoveries in the 70-120% range were obtained - thus this method was used for the validation. Quantification was carried out using a matrix-matched calibration curve which was linear in the 1-500 µg kg(-1) range for almost all the pesticides studied. The validated limit of quantification was 10 µg kg(-1) for most of the studied compounds, except chlorpropham, ethoxyquin and thiophanate-methyl. Pesticide recoveries at the 10 and 100 µg kg(-1) concentration levels were satisfactory, with values between 77% and 120% and relative standard deviations (RSD) lower than 10% (n=5). The developed method was applied for the determination of selected fungicides in 20 real orange and pear samples. Four different pesticide residues were detected in 10 of these commodities; 20% of the samples contained pesticide residues at a quantifiable level (equal to or above the LOQs) for at least one pesticide residue. The most frequently-detected pesticide residues were: carbendazim, thiabendazole and imazalil-all were below the MRL. The highest concentration found was imazalil at 1175 µg kg

  5. Radioactive Tank Waste Remediation Focus Area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    In February 1991, DOE's Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina

  6. Metal decontamination for waste minimization using liquid metal refining technology

    International Nuclear Information System (INIS)

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-01-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species

  7. Powder technological vitrification of simulated high-level waste

    International Nuclear Information System (INIS)

    Gahlert, S.

    1988-03-01

    High-level waste simulate from the reprocessing of light water reactor and fast breeder fuel was vitrified by powder technology. After denitration with formaldehyde, the simulated HLW is mixed with glass frit and simultaneously dried in an oil-heated mixer. After 'in-can calcination' for at least 24 hours at 850 or 950 K (depending on the type of waste and glass), the mixture is hot-pressed in-can for several hours at 920 or 1020 K respectively, at pressures between 0.4 and 1.0 MPa. The technology has been demonstrated inactively up to diameters of 30 cm. Leach resistance is significantly enhanced when compared to common borosilicate glasses by the utilization of glasses with higher silicon and aluminium content and lower sodium content. (orig.) [de

  8. The development of control technologies applied to waste processing operations

    International Nuclear Information System (INIS)

    Grasz, E.; Baker, S.; Couture, S.; Dennison, D.; Holliday, M.; Hurd, R.; Kettering, B.; Merrill, R.; Wilhelmson, K.

    1993-02-01

    Typical waste and residue processes involve some level of human interaction. The risk of exposure to unknown hazardous materials and the potential for radiation contamination provide the impetus for physically separating or removing operators from such processing steps. Technologies that facilitate separation of the operator from potential contamination include glove box robotics; modular systems for remote and automated servicing; and interactive controls that minimize human intervention. Lawrence Livermore National Laboratory (LLNL) is developing an automated system which by design will supplant the operator for glove box tasks, thus affording protection from the risk of radiation exposure and minimizing operator associated waste.This paper describes recent accomplishments in technology development and integration, and outlines the future goals at LLNL for achieving this integrated, interactive control capability

  9. Program summary for the Office of Remedial Action and Waste Technology

    International Nuclear Information System (INIS)

    1989-10-01

    The US Department of Energy is the lead Federal agency responsible for planning and implementing the programs that ensure safe and efficient management of nuclear wastes from both civilian and defense activities. Within the Department, three offices share this responsibility: the Office of Remedial Action and Waste Technology, the Office of Civilian Radioactive Waste Management, and the Office of Defense Waste and Transportation Management. This document summarizes the programs managed by the Office of Remedial Action and Waste Technology

  10. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Ressel, K.

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.) [de

  11. Tackling the challenge of selective analytical clean-up of complex natural extracts: the curious case of chlorophyll removal.

    Science.gov (United States)

    Bijttebier, Sebastiaan; D'Hondt, Els; Noten, Bart; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2014-11-15

    Alkaline saponification is often used to remove interfering chlorophylls and lipids during carotenoids analysis. However, saponification also hydrolyses esterified carotenoids and is known to induce artifacts. To avoid carotenoid artifact formation during saponification, Larsen and Christensen (2005) developed a gentler and simpler analytical clean-up procedure involving the use of a strong basic resin (Ambersep 900 OH). They hypothesised a saponification mechanism based on their Liquid Chromatography-Photodiode Array (LC-PDA) data. In the present study, we show with LC-PDA-accurate mass-Mass Spectrometry that the main chlorophyll removal mechanism is not based on saponification, apolar adsorption or anion exchange, but most probably an adsorption mechanism caused by H-bonds and dipole-dipole interactions. We showed experimentally that esterified carotenoids and glycerolipids were not removed, indicating a much more selective mechanism than initially hypothesised. This opens new research opportunities towards a much wider scope of applications (e.g. the refinement of oils rich in phytochemical content). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A probabilistic model estimating oil spill clean-up costs – A case study for the Gulf of Finland

    International Nuclear Information System (INIS)

    Montewka, Jakub; Weckström, Mia; Kujala, Pentti

    2013-01-01

    Highlights: • A model evaluating oil spill cleanup-costs for the Gulf of Finland is presented. • Bayesian Belief Networks are used to develop the model in a probabilistic fashion. • The results are compared with existing models and good agreement is found. • The model can be applicable for cost-benefit analysis in risk framework. -- Abstract: Existing models estimating oil spill costs at sea are based on data from the past, and they usually lack a systematic approach. This make them passive, and limits their ability to forecast the effect of the changes in the oil combating fleet or location of a spill on the oil spill costs. In this paper we make an attempt towards the development of a probabilistic and systematic model estimating the costs of clean-up operations for the Gulf of Finland. For this purpose we utilize expert knowledge along with the available data and information from literature. Then, the obtained information is combined into a framework with the use of a Bayesian Belief Networks. Due to lack of data, we validate the model by comparing its results with existing models, with which we found good agreement. We anticipate that the presented model can contribute to the cost-effective oil-combating fleet optimization for the Gulf of Finland. It can also facilitate the accident consequences estimation in the framework of formal safety assessment (FSA)

  13. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  14. Treatment technology analysis for mixed waste containers and debris

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste

  15. Graphite electrode DC arc technology program for buried waste treatment

    International Nuclear Information System (INIS)

    Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Woskov, P.P.; Thomas, P.; Surma, J.E.; Titus, C.H.

    1994-01-01

    The goal of the program is to apply EPI's Arc Furnace to the processing of Subsurface Disposal Area (SDA) waste from Idaho National Engineering Laboratory. This is being facilitated through the Department of Energy's Buried Waste Integrated Demonstration (BWID) program. A second objective is to apply the diagnostics capability of MIT's Plasma Fusion Center to the understanding of the high temperature processes taking place in the furnace. This diagnostics technology has promise for being applicable in other thermal treatment processes. The program has two parts, a test series in an engineering-scale DC arc furnace which was conducted in an EPI furnace installed at the Plasma Fusion Center and a pilot-scale unit which is under construction at MIT. This pilot-scale furnace will be capable of operating in a continuous feed and continuous tap mode. Included in this work is the development and implementation of diagnostics to evaluate high temperature processes such as DC arc technology. This technology can be used as an effective stabilization process for Superfund wastes

  16. An assessment of thermal destruction technologies for application to Department of Energy mixed wastes

    International Nuclear Information System (INIS)

    1991-08-01

    A study of known operational and emerging thermal treatment technologies was conducted for the Department of Energy's (DOE's) Office of Technology Development (OTD) through the Hazardous Waste Remedial Actions Program (HAZWRAP). This study addressed thermal treatment of mixed wastes (MWs), for which the most comprehensive set of waste has been divided into two volumes. Volume 1 contains the details and results of the technology assessments and comparisons between technologies. This volume (Volume 2) contains the comprehensive data collected on each technology, including descriptions, process and cost data, comments on advantages and deficiencies, types of waste treatable and by-products of these wastes, and reference information. 2 figs

  17. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  18. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Ilona [BCS, Inc., Laurel, MD (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States); Davidson, Amber [BCS, Inc., Laurel, MD (United States)

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  19. Women, e-waste, and technological solutions to climate change.

    Science.gov (United States)

    McAllister, Lucy; Magee, Amanda; Hale, Benjamin

    2014-06-14

    In this paper, we argue that a crossover class of climate change solutions (which we term "technological solutions") may disproportionately and adversely impact some populations over others. We begin by situating our discussion in the wider climate discourse, particularly with regard to the Millennium Development Goals (MDGs) and the Basel Convention. We then suggest that many of the most attractive technological solutions to climate change, such as solar energy and electric car batteries, will likely add to the rapidly growing stream of electronic waste ("e-waste"). This e-waste may have negative downstream effects on otherwise disenfranchised populations. We argue that e-waste burdens women unfairly and disproportionately, affecting their mortality/morbidity and fertility, as well as the development of their children. Building on this, we claim that these injustices are more accurately captured as problems of recognition rather than distribution, since women are often institutionally under-acknowledged both in the workplace and in the home. Without institutional support and representation, women and children are deprived of adequate safety equipment, health precautions, and health insurance. Finally, we return to the question of climate justice in the context of the human right to health and argue for greater inclusion and recognition of women waste workers and other disenfranchised groups in forging future climate agreements. Copyright © 2014 McAllister, Magee. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  20. Development and demonstration of treatment technologies for the processing of US Department of Energy Mixed Waste

    International Nuclear Information System (INIS)

    Bloom, G.A.; Berry, J.B.

    1994-01-01

    Mixed waste is defined as ''waste contaminated with chemically hazardous and radioactive species.'' The Mixed Waste Integrated Program (MWIP) was established in response to the need for a unified, DOE complexwide solution to issues of mixed waste treatment that meets regulatory requirements. MWIP is developing treatment technologies that reduce risk, minimize life-cycle cost, and improve process performance as compared to existing technologies. Treatment for waste streams for which no current technology exists, and suitable waste forms for disposal, will be provided to improve operations of the DOE Office of Waste Management. MWIP is composed of six technical areas within a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas are described in this paper

  1. Waste disposal by hydrofracture and application of the technology to the management of hazardous wastes

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.; Weeren, H.O.

    1985-01-01

    A unique disposal method, involving hydrofracturing, has been used for management of liquid low-level radioactive wastes at Oak Ridge National Laboratory (ORNL). Wastes are mixed with cement and other solids and injected along bedding plane fractures into highly impermeable shale at a depth of 300 m forming a grout sheet. The process has operated successfully for 20 years and may be applicable to disposal of hazardous wastes. The cement grout represents the primary barrier for immobilization of the wastes; the hydrologically isolated injection horizon represents a secondary barrier. At ORNL work has been conducted to characterize the geology of the disposal site and to determine its relationship to the injection process. The site is structurally quite complex. Research has also been conducted on the development of methods for monitoring the extent and orientation of the grout sheets; these methods include gamma-ray logging of cased observation wells, leveling surveys of benchmarks, tiltmeter surveys, and microseismic arrays. These methods, some of which need further development, offer promise for real-time and post-injection monitoring. Initial suggestions are offered for possible application of the technology to hazardous waste management and technical and regulatory areas needing attention are addressed. 11 refs., 1 fig

  2. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9

  3. Sodium-bearing Waste Treatment Technology Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  4. Immunoaffinity column clean-up and thin layer chromatography for determination of ochratoxin A in green coffee.

    Science.gov (United States)

    Santos, E A; Vargas, E A

    2002-05-01

    An immunoaffinity clean-up-based method for determining ochratoxin A (OTA) in green coffee aiming at one-dimensional thin layer chromatography (TLC) analysis was established. OTA was extracted with a mixture of methanol and aqueous sodium hydrogen carbonate solution, purified through an immunoaffinity column, separated on normal or reversed-phase (RP) TLC plates and detected and quantified by visual and densitometric analysis. The linear equation of the standard calibration curve by densitometric analysis gave R(2) > 0.999 (0.04-84 ng). The mean recovery (R) of OTA from spiked samples (1.8-109 microg kg(-1)) by densitometric and visual analyses were 98.4 and 103.8%, respectively. The relative standard deviations (RSD) for densitometric and visual analysis varied from 1.1 to 24.9% and from 0.0 to 18.8%, respectively. The RSD for naturally contaminated samples by densitometry (three levels of contamination, n = 3) varied from 11.1 to 18.1%. The correlation (R(2)) between high-performance liquid chromatography (HPLC) and densitometry, and between visual and densitometric analysis for spiked samples were > 0.99. The limit of detection (LOD) of the method was 0.5 microg kg(-1) for normal TLC. Toluene-ethyl acetate-88% formic acid (6:3:1 v/v/v) and acetonitrile-methanol-water-glacial acetic acid (35:35:29:10 v/v/v/v) were regarded as the suitable TLC solvents for eluting both standards and samples on normal and RP TLC plates, respectively. Toluene-acetic acid (99:1 v/v) was chosen as the spotting solvent among several others for giving the best sensitivity and resolution of OTA on TLC plates as well as the best recovery of OTA from standard and sample extract residues. Preliminary studies were carried out to investigate the reuse of the immunoaffinity column and the interference of caffeine in the OTA recovery.

  5. Determination of mycophenolic acid in mest products using mixed mode reversed phase-anion exchange clean-up and liquid chromatography-high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Sørensen, Louise Marie; Nielsen, Kristian Fog; Jacobsen, Thomas

    2008-01-01

    A method for determination of mycophenolic acid (MPA) in dry-cured ham, fermented sausage and liver pate is described. MPA was extracted from meat with bicarbonate-acetonitrile, further cleaned-up by mixed mode reversed phase-anion exchange and detected using a LC-MS system with electrospray...

  6. Health problems shown by clinical and immunological tests in Chernobyl clean-up workers during a 15-year period (1986-2000)

    International Nuclear Information System (INIS)

    Zvagule, T.; Bruvere, R.; Gabruseva, N.; Balodis, V.; Feldmane, G.

    2002-01-01

    Nearly 1% of the male population of Latvia (n∼6500) was sent (1986-1991) to Chernobyl to assist in the clean-up activities after the nuclear power plant accident (1986). The disease incidence, dynamic of appearance of the key symptoms, and interferon status were evaluated in relation to time of work, duration of work, and type of work, in the whole clean-up worker group and in specific group with seizures of unconsciousness (n=321). The disease incidence in clean-up workers from Latvia exceeds that observed in an age- and sex-matched male population. Most had several diseases each and their multiple symptoms exhibited a tendency to progress even 10-14 years after the exposure (during 1996-2000). Diseases of the nervous, digestive and circulatory systems, mental disorders, and diseases of muscles and connective tissue were the most frequent. The primary outset of symptoms was low in the first 2-3 years after the work, and gradually increased during the following 10-12 years. Leucopoenia was predominant in 1990-1993 and leucocytosis in 1997-2000. The ability of leucocytes to produce interferons was significantly decreased. Since the external radiation doses did not exceed 50 centigray (cGy) there was sufficient reason to believe that the man cause of the gradually increased frequency of health problems was a permanent radiation and toxic compounds source from the long-life radioisotopes incorporated in the clean-up workers bodies. (authors)

  7. The state of immune system in children of participants of Chornobyl accident clean-up at the final state of sexual maturation

    International Nuclear Information System (INIS)

    Shlyakhova, N.V.

    2009-01-01

    The changes in the immune system involving all links of the immunity are three times more frequent in children whose fathers participated in Chornobyl accident clean-up. Disorders of humoral and phagocyte links are gender-dependent. Significant difference in the level of immunological parameters depending on the year of the father's stay in the zone was not revealed.

  8. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    Science.gov (United States)

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  9. The Development of an Automated Clean-up for Fat Extracts in the Routine Analysis of Organochlorine Compounds in Fish Meat

    Directory of Open Access Journals (Sweden)

    Ana Andreea CIOCA

    2017-05-01

    Full Text Available The present work describes the development of a new, automatic High Performance Liquid Chromatography (HPLC Clean-up step, in the methodology of sample preparation and multi-residue determination of organochlorine compounds (OCs in fish meat. 24 OCs were taken into study. In addition 7 Polychlorinated Biphenyls (PCBs, 7 chlorobenzene compounds and one 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD were investigated. The HPLC conditions were established in accordance with the validated traditional Clean-up step of the laboratory. The technique was applied on a dilution of analytes of interest in order to establish the period of time in which the compounds are eluted. Another set of experiments involved fish oil, in order to identify and separate the fat fraction from the analytes. To confirm the findings of the experiments mentioned above, extracts of fish samples obtained after Accelerated Solvent Extraction (ASE were examined. The samples were spiked with the analytes of interest before HPLC clean-up step and quantified through Gas Chromatography coupled with tandem Mass Spectrometry (GC-MS/MS. A HPLC clean-up technique lasting 38 minutes/sample was developed. The method is not suitable for OCs such as Endosulfansulfat and Endrine Ketone due to the very low recovery results.Â

  10. The functional state of the cardiovascular system in adolescents aged 16-18 born from the parents who participated in Chornobyl accident clean-up

    International Nuclear Information System (INIS)

    Korenjev, M.M.; Kostenko, T.O.; Borisko, G.O.; Kalmikova, N.V.; Cherevatova, S. Kh.; Bondarenko, V.L.

    2010-01-01

    The state of the cardiovascular system of the adolescents aged 16-18 born from the parents who participated in Chornobyl accident clean-up was characterized by a high incidence of myocardium bioelectric activity disorders, presence of congenital small heart defects, widening of the left ventricle cavity, reduction of contractile function and myocardium tolerance to physical load.

  11. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  12. Technological Desition of Extraction of Melanin from the Waste of Production of Sunflower-Seed Oil

    Science.gov (United States)

    Kartushina, Yu N.; Nefedieva, E. E.; Sevriukova, G. A.; Gracheva, N. V.; Zheltobryukhov, V. F.

    2017-05-01

    The research was realized in the field of the technology for re-use of waste of sunflower-seed oil production. A technological scheme of production of melanin from sunflower husk as a waste was developed. Re-cycling will give the opportunity to reduce the amount of waste and to obtain an additional source of income.

  13. On-line Technology Information System (OTIS): Solid Waste Management Technology Information Form (SWM TIF)

    Science.gov (United States)

    Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriguez, Luis

    2003-01-01

    Contents include the following: What is OTIS? OTIS use. Proposed implementation method. Development history of the Solid Waste Management (SWM) Technology Information Form (TIF) and OTIS. Current development state of the SWM TIF and OTIS. Data collection approach. Information categories. Critiques/questions/feedback.

  14. High-level Waste Long-term management technology development

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kang, C. H.; Ko, Y. K.

    2012-02-01

    The purpose of this project is to develop a long-term management system(A-KRS) which deals with spent fuels from domestic nuclear power stations, HLW from advanced fuel cycle and other wastes that are not admitted to LILW disposal site. Also, this project demonstrate the feasibility and reliability of the key technologies applied in the A-KRS by evaluating them under in-situ condition such as underground research laboratory and provide important information to establish the safety assessment and long-term management plan. To develop the technologies for the high level radioactive wastes disposal, demonstrate their reliability under in-situ condition and establish safety assessment of disposal system, The major objects of this project are the following: Ο An advanced disposal system including waste containers for HLW from advanced fuel cycle and pyroprocess has been developed. Ο Quantitative assessment tools for long-term safety and performance assessment of a radwaste disposal system has been developed. Ο Hydrological and geochemical investigation and interpretation methods has been developed to evaluate deep geological environments. Ο The THMC characteristics of the engineered barrier system and near-field has been evaluated by in-situ experiments. Ο The migration and retardation of radionuclides and colloid materials in a deep geological environment has been investigated. The results from this project will provide important information to show HLW disposal plan safe and reliable. The knowledge from this project can also contribute to environmental conservation by applying them to the field of oil and gas industries to store their wastes safe

  15. Molten metal technologies advance waste processing systems for liquid radioactive waste treatment for PWRs and BWRs

    International Nuclear Information System (INIS)

    Strand, Gary; Vance, Jene N.

    1997-01-01

    Molten Metal Technologies (MMT) has recently acquired a proprietary filtration process for specific use in radioactive liquid waste processing systems. The filtration system has been incorporated in to a PWR liquid radwaste system which is currently being designed for the ComEd Byron Nuclear Station. It has also been adopted as the prefiltration step up from of the two RO systems which were part of the VECTRA acquisition and which are currently installed in the ComEd Dresden and Lacily Nuclear Stations. The filtration process has been successfully pilot-tested at both Byron and Dresden and is currently being tested at LaSalle. The important features of the filtration process are the high removal efficiencies for particulates, including colloidal particles, and the low solid waste volume generation per gallon filtered which translates into very small annual solid waste volumes. This filtration process system has been coupled with the use of selective ion exchange media in the PWR processing system to reduce the solid waste volumes generated compared to the current processing methods and to reduce the curie quantities discharged to the environs. In the BWR processing system, this filtration method allows the coupling of an RO system to provide for recycling greater than 95% of the liquid radwaste back to the plant for reuse while significantly reducing the solid waste volumes and operating costs. This paper discusses the process system configurations for the MMT Advanced Waste Processing Systems for both PWRs and BWRs. In addition, the pilot test data and full-scale performance projections for the filtration system are discussed which demonstrate the important features of the filtration process

  16. Membrane technology for treating of waste nanofluids coolant: A review

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide

  17. Environmental, technical and technological aspects of hazardous waste management in Poland

    Science.gov (United States)

    Pyssa, Justyna

    2017-10-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions deciding on the full success of investment, and namely: economic effectiveness, ecological efficiency and social acceptance. The structure of generation of hazardous waste in EU-28 has been presented in the paper. Methods of hazardous waste disposal in Poland have been discussed. Economic and ecological criteria for the selection of technology of hazardous waste disposal have been analyzed. The influence of the hazardous waste on the environment is also presented. For four groups of waste, which are currently stored, alternative methods of disposal have been proposed.

  18. Research priorities in bioconversion of municipal solid waste to produce chemicals, liquid and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. [BABA Ltd., Reading (United Kingdom)

    1988-09-01

    Areas for future research on the bioconversion of municipal solid wastes are highlighted in order to optimise the potential use of this resource to make chemical, liquid and gaseous fuels. Despite widespread research, a biological understanding of bioconversion technologies, including landfill gas, composting and anaerobic digestion, has yet to be established. Specifically, work on the development and growth of microorganisms in uncontrolled systems and the detailed biochemistry of purified strains needs to be undertaken. The microbial breakdown of xenobiotics to clean up polluted sites, and as an alternative to incineration of toxic organic wastes, is viewed as a desirable outcome of such an understanding. (UK)

  19. 3-D Mapping Technologies For High Level Waste Tanks

    International Nuclear Information System (INIS)

    Marzolf, A.; Folsom, M.

    2010-01-01

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  20. Long-term high-level waste technology. Composite quarterly technical report, October-December 1979

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1980-06-01

    This document summarizes work for the immobilization of high-level radioactive wastes from the chemical reprocessing of nuclear reactor fuels. The progress is reported in two main areas: site technology, and alternative waste form development

  1. Technologies for in situ immobilization and isolation of radioactive wastes at disposal and contaminated sites

    International Nuclear Information System (INIS)

    1997-11-01

    This report describes technologies that have been developed worldwide and the experiences applied to both waste disposal and contaminated sites. The term immobilization covers both solidification and embedding of wastes

  2. Future-proof radioactive waste treatment technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Klaus; Braehler, Georg [NUKEM Technologies Engineering Services GmbH, Alzenau (Germany)

    2014-08-15

    In order to select the optimal treatment method for radioactive waste three options can be considered. First, to treat the radioactive waste only to allow long term interim storage until the waste acceptance criteria are defined and the disposal sites are operable. Second, to select treatment methods just in compliance with the current state of discussion with the regard to the above. Third, taking also the future development in the field of waste acceptance criteria and disposal into account. When developing waste treatment systems for Nuclear Power Plants NUKEM Technologies follows the following targets, minimisation of the amount of radioactive waste, maximisation of free release material, volume reduction, avoidance of unwanted materials in the waste package, as well as efficient waste treatment solutions (low investment, high volume reduction). With its technologies produced waste packages fulfil the most stringent waste acceptance criteria.

  3. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  4. Environmental, technical and technological aspects of hazardous waste management in Poland

    OpenAIRE

    Pyssa Justyna

    2017-01-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions...

  5. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-03-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  6. Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-12-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  7. Environmental technology applications: fact file on toxic contaminants in industrial waste process streams

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1977-05-11

    This report is a compendium of facts related to chemical materials present in industrial waste process streams which have already been declared or are being evaluated as hazardous under the Toxic Substances Control Act. Since some 400 chemicals are presently covered by consensus standards, the substances reviewed are only those considered to be a major threat to public health and welfare by Federal and State regulatory agencies. For each hazardous material cited, the facts relate, where possible, to an identification of the stationary industrial sources, the kind of waste stream impacted, proposed regulations and established effluent standards, the volume of emissions produced each year, the volume of emissions per unit of industrial product produced, present clean-up capabilities, limitations, and costs. These data should be helpful in providing information for the assessment of potential problems, should be of use to the manufacturers of pollution control equipment or of chemicals for pollution control, should be of use to the operators or potential operators of processes which produce pollutants, and should help to define industry-wide emission practices and magnitudes.

  8. Thermal treatment technology study and data base for Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Gillins, R.L.; Steverson, E.M.; Balo, K.A.

    1991-01-01

    The Department of Energy (DOE) has a wide variety of waste streams that must be treated to meet various regulations before final disposal. One category of technologies for treating many of these waste streams is thermal treatment. A study of known thermal treatment technologies was conducted to aid DOE in the development of strategies to meet its waste management needs. The study was specifically addressed to mixed waste, but it is also applicable to hazardous and radioactive wastes. The data collected in the study, along with other waste management data, are being included in a comprehensive data base that DOE is developing. 3 refs., 1 fig

  9. Assessment of impacts from different waste treatment and waste disposal technologies: Regional Management Plan

    International Nuclear Information System (INIS)

    Robertson, B.C.; Sutherland, A.A.

    1986-01-01

    This report presents assessments of treatment and disposal technologies that appear to be appropriate for use in regional facilities in the Midwest Compact Region. The treatment technologies assessed: compaction with a supercompactor; incineration; and incineration followed by solidfication of the incinerator ash. The disposal technologies assessed are: shallow land burial, considered a baseline for comparison of other technologies; below-ground vaults; abov-groudn vaults; the earth mounded concrete bunker, a technology developed in France; improved shallow land burial, essentially deeper burial; modular concrete canister disposal; mined cavities (both new and existing); and unlined augered holes; and lined augered holes. The teatment technologies are assessed primarily in terms of the their impact on the waste management system, and generally not comparatively. The dispoal technologies are assessed relative to the present standard practice shallow land burial; shallow land burial was slected as a frame of reference because it has an experience base spanning several decades, not because of any preferential characteristics. 20 refs., 5 tabs

  10. INNOVATIVE TECHNIQUES AND TECHNOLOGY APPLICATION IN MANAGEMENT OF REMOTE HANDLED AND LARGE SIZED MIXED WASTE FORMS

    International Nuclear Information System (INIS)

    BLACKFORD LT

    2008-01-01

    of RCRA storage regulations, reduce costs for waste management by nearly 50 percent, and create a viable method for final treatment and disposal of these waste forms that does not impact retrieval project schedules. This paper is intended to provide information to the nuclear and environmental clean-up industry with the experience of CH2M HILL and ORP in managing these highly difficult waste streams, as well as providing an opportunity for sharing lessons learned, including technical methods and processes that may be applied at other DOE sites

  11. Development of treatment technologies for the processing of US Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. Management of mixed waste requires treatment which must meet the standards established by the US Environmental Protection Agency for the specific hazardous constituents while also providing adequate control of the radionuclides. Technology has not been developed, demonstrated, or tested to produce a low-risk final waste form specifically for mixed waste. Throughout the US Department of Energy (DOE) complex, mixed waste is a problem because definitive treatment standards have not been established and few disposal facilities are available. Treatment capability and capacity are also limited. Site-specific solutions to the management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development between various sites. Significant progress is being made in developing technology for mixed waste under the Mixed Waste Integrated Program. The status of the technical initiatives in chemical/physical treatment, destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  12. Field study of wastes from fluidized-bed combustion technologies

    International Nuclear Information System (INIS)

    Weinberg, A.; Holcombe, L.; Butler, R.

    1991-01-01

    The Department of Energy (DOE) has undertaken a research project to monitor advanced coal process wastes placed in natural geologic settings. The overall objective of the study is to gather field data on the engineering and environmental performance of disposed solid waste from various advanced coal processes. The coal ash from a fluidized-bed combustion unit is being studied as part of the DOE program. The unit is a 110-MW circulating fluidized bed (CFB) at Colorado Ute Electric Association's Nucla Steam Electric Station, which is being demonstrated with the support of the DOE Clean Coal Technology Program. The Electric Power Research Institute is cofunding the study. In June of 1989, a test cell approximately 100 feet square and 8 feet deep was constructed and filled with ash from the Colorado Ute CFB unit. The cell was instrumented with lysimeters and neutron probe access tubes to monitor water flow and leachate chemistry in the ash; groundwater wells and runoff collection devices were installed to determine the effects on groundwater and surface water quality, and a meteorological station was installed to determine the water balance. Additionally, tests are being performed to evaluate the chemical, physical, and mineralogical properties of the solid waste and geologic materials. Results from the first year of monitoring are presented

  13. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  14. Integrated technologies for solid waste bin monitoring system.

    Science.gov (United States)

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  15. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  16. Pesticide analysis in coffee leaves using a quick, easy, cheap, effective, rugged and safe approach and liquid chromatography tandem mass spectrometry: Optimization of the clean-up step.

    Science.gov (United States)

    Trevisan, Maria Teresa Salles; Owen, Robert Wyn; Calatayud-Vernich, Pau; Breuer, Andrea; Picó, Yolanda

    2017-08-25

    An analytical method using a quick, easy, cheap, effective, rugged and safe (QuEChERS) procedure for multi-residue determination of 52 pesticides in coffee leaf extractshas been developed and validated according to SANTE/11945/2015 guidelines. Different sorbent combinations for dispersive solid phase extraction (d-SPE) clean-up as well as dispersive liquid-liquid microextraction (DLLME) were tested. The relative standard deviations (RSDs) for the recovery of 87-94% of pesticides added to coffee leaf extracts,was ≤20% for samples spiked at concentrations up to 50ng*g -1 depending on the clean-up procedures. However, samples spiked with a 100ng*g -1 pesticide mixture gave RSDs>20% for most pesticides when d-SPE was carried out adding Supelclean ENVI-Carb 120/400. To explain this fact,the secondary metabolic profile was analyzed in all the extraction and clean-up procedures. Only in the clean-up procedure with the addition of Supel QuE Z-Sep+, does caffeine show a constant adsorption between blank and spiked samples. In other clean-up procedures, the amount of caffeine was higher in those samples spiked with pesticides. This indicates competition between caffeine and pesticides for adsorption to the sorbent. Addition of Supel QuE Z-Sep+ to the procedure revealed only a 32% matrix effect, whereas using PSA+ C18 the matrix effect was close to 97%. The process efficiency is up to 54% with the addition of Supel QuE Z-Sep+ and just up to 7% for the other clean-up procedures. The method was successfully tested in coffee leaves from different types of cultivars. Pesticides were not detected in organic coffee leaf extracts, but thiametoxan was clearly detected in 50% of coffee leaf extracts harvested from coffee trees grown under traditional conditions as determined by UHPLC-TOFMSLC/QqTOF-MS/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The effect of vitrification technology on waste loading

    International Nuclear Information System (INIS)

    Hrma, P.R.; Smith, P.A.

    1994-08-01

    Radioactive wastes on the Hanford Site are going to be permanently disposed of by incorporation into a durable glass. These wastes will be separated into low and high-level portions, and then vitrified. The low-level waste (LLW) is water soluble. Its vitrifiable part (other than off-gas) contains approximately 80 wt% Na 2 O, the rest being Al 2 O 3 , P 2 O 5 , K 2 O, and minor components. The challenge is to formulate durable LLW glasses with as high Na 2 O content as possible by optimizing the additions of SiO 2 , Al 2 O 3 , B 2 O 3 , CaO, and ZrO 2 . This task will not be simple, considering the non-linear and interactive nature of glass properties as a function of composition. Once developed, the LLW glass, being similar in composition to commercial glasses, is unlikely to cause major processing problems, such as crystallization or molten salt segregation. For example, inexpensive LLW glass can be produced in a high-capacity Joule-heated melter with a cold cap to minimize volatilization. The high-level waste (HLW) consists of water-insoluble sludge (Fe 2 O 3 , Al 2 O 3 , ZrO 2 , Cr 2 O 3 , NiO, and others) and a substantial water-soluble residue (Na 2 O). Most of the water-insoluble components are refractory; i.e., their melting points are above the glass melting temperature. With regard to product acceptability, the maximum loading of Hanford HLW in the glass is limited by product durability, not by radiolytic heat generation. However, this maximum may not be achievable because of technological constraints imposed by melter feed rheology, frit properties, and glass melter limits. These restrictions are discussed in this paper. 38 refs

  18. Shredder and incinerator technology for treatment of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters

  19. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  20. Innovative Technology Development Program. Final summary report

    International Nuclear Information System (INIS)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program. The plan is part of the DOE's program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE's clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process

  1. Economic assessment of partitioning, transmutation and waste reduction technologies

    International Nuclear Information System (INIS)

    Lauferts, U.; Van Heek, A.; Hart, J.

    2007-01-01

    This nuclear system study focuses on a realistic evolution of Partitioning and Transmutation technologies, which can be deployed incrementally on an industrial scale as well as on future developments such as reactors of the third and fourth generation and Accelerated Driven Systems (ADS). A set of five different fuel cycles has been selected, representing the options proposed in different European countries. Two industrial scenarios as continuation of the open nuclear fuel cycles and mono-recycling of plutonium in PWRs have been chosen as a reference. In addition, 3 more innovative cycles are considered using Fast Generation IV reactors and double strata scenarios with advanced PWR, ADS and fast reactors. This study shows, first, that closing the nuclear fuel cycle would be a useful strategy to mitigate concerns about a rapid depletion of natural uranium resources in this century. Secondly, all the 3 advanced fuel cycle strategies proposed reduce effectively the total amount of nuclear waste out of pile and consequently the need for large capacities of deep geological repositories. Thirdly, the most efficient strategy towards the mitigation of waste production is the utilization of fast reactors technology to burn plutonium and ADS to burn minor actinides

  2. Expanding worldwide urban solid waste recycling: The Brazilian social technology in waste pickers inclusion.

    Science.gov (United States)

    Rutkowski, Jacqueline E; Rutkowski, Emília W

    2015-12-01

    'If an integrated urban waste management system includes the informal recycling sector (IRS), there is a good chance that more solid waste is recycled' is common sense. However, informal integration brings additional social, environmental, and economic benefits, such as reduction of operational costs and environmental impacts of landfilling. Brazil is a global best practice example in terms of waste picker inclusion, and has received international recognition for its recycling levels. In addition to analysing the results of inclusive recycling approaches, this article evaluates a selection of the best Brazilian inclusive recycling practices and summaries and presents the resulting knowledge. The objective is to identify processes that enable the replication of the inclusion of the informal recycling sector model as part of municipal solid waste management. Qualitative and quantitative data have been collected in 25 Brazilian cities that have contracted waste pickers co-operatives for door-to-door selective collection of recyclables. Field data was collected in action research projects that worked with waste pickers co-operatives between 2006 and 2013. The Brazilian informal recycling sector integration model improves municipal solid waste recycling indicators: it shows an increase in the net tonness recycled, from 140 to 208 t month(-1), at a much lower cost per tonne than conventional selective collection systems. Inclusive systems show costs of US$35 per tonne of recyclables collected, well below the national average of US$195.26. This inclusive model improves the quality of collected material and the efficiency of municipal selective collection. It also diminishes the negative impacts of informal recycling, by reducing child labour, and by improving the conditions of work, occupational health and safety, and uncontrolled pollution. Although treating the Brazilian experience as a blueprint for transfer of experience in every case is unrealistic, the results

  3. Hazardous waste management: Reducing the risk

    International Nuclear Information System (INIS)

    Goldman, B.A.; Hulme, J.A.; Johnson, C.

    1986-01-01

    Congress has strengthened the laws under which active hazardous waste facilities are regulated. Nevertheless, after visiting a number of active treatment, storage, and disposal facilities, the Council on Economic Priorities (CEP) found that not only do generators not know which facilities are the best, but that the EPA has not always selected the best facilities to receive wastes removed from Superfund sites. Other facilities were better managed, better located, and better at using more advanced technologies than the facilities the EPA selected. In fact, of the ten facilities CEP evaluated in detail the EPA chose the one that performed worst - CECOS International, Inc. in Williamsburg, Ohio - to receive Superfund wastes in more instances than any of the other nine facilities. Data from a house subcommittee survey indicate that almost half of the operating hazardous waste facilities the EPA chose to receive wastes removed from Superfund sites may have contaminated groundwater. Some of the chosen facilities may even be partially responsible for a share of the wastes they are being paid to clean up. Hazardous waste management strategies and technology, how to evaluate facilities, and case studies of various corporations and hazardous waste management facilities are discussed

  4. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  5. Review of the factors affecting the selection and implementation of waste management technologies

    International Nuclear Information System (INIS)

    1999-08-01

    The objective of this publication is to identify and critically review the factors affecting the selection of waste management strategies and technologies; summarize and discuss the options available, and offer a systematic approach for considering these factors to design, install and operate appropriate technologies for waste streams generated. The scope of this publication includes the management of radioactive waste from all orientations including low and intermediate level waste arising from the production of radionuclides and their application in industry, agriculture, medicine, education and research; waste generated from research reactors, power reactors and from nuclear fuel cycle activities including reprocessing high level waste. Although waste from decommissioning is not specifically addressed, the management of this waste is not significantly different from other types of waste in the same category

  6. Review of the factors affecting the selection and implementation of waste management technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The objective of this publication is to identify and critically review the factors affecting the selection of waste management strategies and technologies; summarize and discuss the options available, and offer a systematic approach for considering these factors to design, install and operate appropriate technologies for waste streams generated. The scope of this publication includes the management of radioactive waste from all orientations including low and intermediate level waste arising from the production of radionuclides and their application in industry, agriculture, medicine, education and research; waste generated from research reactors, power reactors and from nuclear fuel cycle activities including reprocessing high level waste. Although waste from decommissioning is not specifically addressed, the management of this waste is not significantly different from other types of waste in the same category 32 refs, 11 figs, 12 tabs

  7. Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies

    International Nuclear Information System (INIS)

    Bates, S.O.

    1993-06-01

    The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management's technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies' effectiveness over the complete range of expected wastestream compositions

  8. Decommissioning and waste markets attract new global alliances

    International Nuclear Information System (INIS)

    Shepherd, John

    2014-01-01

    Renewed global efforts to broaden knowledge and expertise in the field of radwaste management and identify the most promising technologies for clean-up and treatment of nuclear wastes are being led by the International Atomic Energy Agency (IAEA). In its recently-published annual report for 2013, the IAEA has given details of the development of new projects for the management of intermediate-level waste and large amounts of waste. Decommissioning can be a lucrative prospect. The availability of skills will be a key factor. Whatever technological advances are made in the coming years, there needs to be corresponding investment in attracting new recruits to the nuclear industry and equipping them with the skills that the industry will need.

  9. Decommissioning and waste markets attract new global alliances

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear24, London (United Kingdom)

    2014-08-15

    Renewed global efforts to broaden knowledge and expertise in the field of radwaste management and identify the most promising technologies for clean-up and treatment of nuclear wastes are being led by the International Atomic Energy Agency (IAEA). In its recently-published annual report for 2013, the IAEA has given details of the development of new projects for the management of intermediate-level waste and large amounts of waste. Decommissioning can be a lucrative prospect. The availability of skills will be a key factor. Whatever technological advances are made in the coming years, there needs to be corresponding investment in attracting new recruits to the nuclear industry and equipping them with the skills that the industry will need.

  10. Optimization of accelerator-driven technology for LWR waste transmutation

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-01-01

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan

  11. Buried waste remediation: A new application for in situ vitrification

    International Nuclear Information System (INIS)

    Kindle, C.H.; Thompson, L.E.

    1991-04-01

    Buried wastes represent a significant environmental concern and a major financial and technological challenge facing many private firms, local and state governments, and federal agencies. Numerous radioactive and hazardous mixed buried waste sites managed by the US Department of Energy (DOE) require timely clean up to comply with state or federal environmental regulations. Hazardous wastes, biomedical wastes, and common household wastes disposed at many municipal landfills represent a significant environmental health concern. New programs and regulations that result in a greater reduction of waste via recycling and stricter controls regarding generation and disposal of many wastes will help to stem the environmental consequences of wastes currently being generated. Groundwater contamination, methane generation, and potential exposures to biohazards and chemically hazardous materials from inadvertent intrusion will continue to be potential environmental health consequences until effective and permanent closure is achieved. In situ vitrification (ISV) is being considered by the DOE as a permanent closure option for radioactive buried waste sites. The results of several ISV tests on simulated and actual buried wastes conducted during 1990 are presented here. The test results illustrate the feasibility of the ISV process for permanent remediation and closure of buried waste sites in commercial landfills. The tests were successful in immobilizing or destroying hazardous and radioactive contaminants while providing up to 75 vol % waste reduction. 6 refs., 7 figs., 5 tabs

  12. Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides.

    Science.gov (United States)

    Kaczyński, Piotr

    2017-09-01

    This study reports an innovative and sensitive procedure for analysis of difficult high polar herbicides (HPH) in diverse foods of plant origin. The QuPPe (Quick Polar Pesticides) method followed by determination by LC-MS/MS was modified. Chromatographic conditions, extraction, clean-up, and matrix effect were studied. Several liquid chromatography stationary and mobile phases were evaluated, and it was found that hydrophilic interaction chromatography (HILIC) gives good retention and sensitivity. An acidified methanol-water mixture was used as an effective extraction solvent of eleven HPH. Dispersive solid-phase clean-up sorbents (C18, GCB, Florisil, chitosan and graphene) were evaluated. The efficiency of the method was examined using data on recovery, precision and matrix effects. High extraction yields were achieved, and recoveries were within the 64-97% range with relative standard deviations <20% for all HPH in all commodities. Low matrix effects were observed when graphene was used during clean-up of onion extract and when chitosan was used for wheat, potato and pea extract. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biological dosimetric studies in the Chernobyl radiation accident, on populations living in the contaminated areas (Gomel regions) and in Estonian clean-up workers, using FISH technique

    International Nuclear Information System (INIS)

    Darroudi, F.; Natarajan, A.T.

    1996-01-01

    In order to perform retrospective estimations of radiation doses seven years after the nuclear accident in Chernobyl, the frequencies of chromosomal aberrations in the peripheral blood lymphocytes of individuals living in contaminated areas around Chernobyl and the Estonian clean-up workers were determined. The first study group composed of 45 individuals living in four areas (i.e. Rechitsa, Komsomolski, Choiniki and Zaspa) in the vicinity (80-125 km) of Chernobyl and 20 individuals living in Minsk (control group - 340 km from Chernobyl). The second study group (Estonian clean-up workers) composed of 26 individuals involved in cleaning up the Chernobyl for a different period of time (up to 7 months) and a matched control group consisting of 9 probands. Unstable aberrations (dicentrics and rings) were scored in Giemsa stained preparations and stable aberrations (translocations) were analyzed using chromosome specific DNA libraries and fluorescence in situ hybridization (FISH) technique. For both study groups the estimated average dose is between 0,1-0,4 Gy. Among the people living in the contaminated areas in the vicinity of Chernobyl, a higher frequency of numerical aberrations (i.e. trisomy, hyper diploidy) was evident

  14. Operational Waste Volume Projection

    Energy Technology Data Exchange (ETDEWEB)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  15. Operational waste volume projection

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995

  16. Operational Waste Volume Projection

    International Nuclear Information System (INIS)

    STRODE, J.N.

    2000-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000

  17. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  18. Sol-gel technology applied to alternative high-level waste forms development

    International Nuclear Information System (INIS)

    Angelini, P.; Stinton, D.P.; Vavruska, J.S.; Caputo, A.J.; Lackey, W.J.

    1981-01-01

    Sol-gel technology appears applicable to waste solidification. It is attractive for remote operation, and a variety of waste compositions and forms can be produced. Spheres and pellets of gel-derived Synroc waste forms were produced. Spheres of the Synroc-B type were coated with pyrolytic carbon and silicon carbide. Partitioning of actinides in Synroc-B was experimentally determined

  19. Process and technological wastes compaction through a fluidized bed incineration process

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1993-01-01

    The various fluidized bed systems (dense or circulating) are reviewed and the advantages of the circulation fluidized bed are highlighted (excellent combustion performance, clean combustion, large operating range, poly-functionality with regards to waste type, ...). Applications to contaminated graphite (with the problem of ash management) and to plant process wastes (ion exchangers, technological wastes, aqueous effluents); study of the neutralization and chlorine emission

  20. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.J. (comp.)

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.