WorldWideScience

Sample records for waste characterization application

  1. Application of value of information of tank waste characterization: A new paradigm for defining tank waste characterization requirements

    International Nuclear Information System (INIS)

    Fassbender, L.L.; Brewster, M.E.; Brothers, A.J.

    1996-11-01

    This report presents the rationale for adopting a recommended characterization strategy that uses a risk-based decision-making framework for managing the Tank Waste Characterization program at Hanford. The risk-management/value-of-information (VOI) strategy that is illustrated explicitly links each information-gathering activity to its cost and provides a mechanism to ensure that characterization funds are spent where they can produce the largest reduction in risk. The approach was developed by tailoring well-known decision analysis techniques to specific tank waste characterization applications. This report illustrates how VOI calculations are performed and demonstrates that the VOI approach can definitely be used for real Tank Waste Remediation System (TWRS) characterization problems

  2. Application of value of information of tank waste characterization: A new paradigm for defining tank waste characterization requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, L.L.; Brewster, M.E.; Brothers, A.J. [and others

    1996-11-01

    This report presents the rationale for adopting a recommended characterization strategy that uses a risk-based decision-making framework for managing the Tank Waste Characterization program at Hanford. The risk-management/value-of-information (VOI) strategy that is illustrated explicitly links each information-gathering activity to its cost and provides a mechanism to ensure that characterization funds are spent where they can produce the largest reduction in risk. The approach was developed by tailoring well-known decision analysis techniques to specific tank waste characterization applications. This report illustrates how VOI calculations are performed and demonstrates that the VOI approach can definitely be used for real Tank Waste Remediation System (TWRS) characterization problems.

  3. Virtual environmental applications for buried waste characterization technology evaluation report

    International Nuclear Information System (INIS)

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year

  4. Virtual environmental applications for buried waste characterization technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  5. Application of radiological imaging methods to radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Souza, Daiane Cristini B. de; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiological imaging technologies are most frequently used for medical diagnostic purposes but are also useful in materials characterization and other non-medical applications in research and industry. The characterization of radioactive waste packages or waste samples can also benefit from these techniques. In this paper, the application of some imaging methods is examined for the physical characterization of radioactive wastes constituted by spent ion-exchange resins and activated charcoal beds stored at the Radioactive Waste Management Department of IPEN. These wastes are generated when the filter media of the water polishing system of the IEA-R1 Nuclear Research Reactor is no longer able to maintain the required water quality and are replaced. The IEA-R1 is a 5MW pool-type reactor, moderated and cooled by light water, and fission and activation products released from the reactor core must be continuously removed to prevent activity buildup in the water. The replacement of the sorbents is carried out by pumping from the filter tanks into several 200 L drums, each drum getting a variable amount of water. Considering that the results of radioanalytical methods to determine the concentrations of radionuclides are usually expressed on dry basis,the amount of water must be known to calculate the total activity of each package. At first sight this is a trivial problem that demanded, however some effort to be solved. The findings on this subject are reported in this paper. (author)

  6. Characterization of quartzite waste and their application on red ceramic

    International Nuclear Information System (INIS)

    Babisk, M.P.; Vidal, F.W.H.; Vieira, C.M.F.; Ribeiro, W.S.

    2012-01-01

    The incorporation of industrial waste into red ceramic have been used currently in the search for alternative raw materials, and also seeking for an environmentally friendly waste disposal that pollute. During the process of beneficiation of dimension stone, there are significant losses of material and waste generation, which have been placed inappropriately in nature, with no provision for use or reuse. The quartzite is geologically classified as a metamorphic rock composed almost entirely of quartz grains. The aim of this study is to characterize and evaluate the applicability of quartzite waste in the red ceramic. Incorporations were studied up to 40% by weight of waste in the ceramics body and the results indicated that the residue of quartz is a material with great potential to be used as a component in a red ceramic. (author)

  7. Artificial neural network application in isotopic characterization of radioactive waste drums

    International Nuclear Information System (INIS)

    Potiens Junior, Ademar Jose

    2005-01-01

    One of the most important aspects to the development of the nuclear technology is the safe management of the radioactive waste arising from several stages of the nuclear fuel cycles, as well as from production and use of radioisotope in the medicine, industry and research centers. The accurate characterization of this waste is not a simple task, given to its diversity in isotopic composition and non homogeneity in the space distribution and mass density. In this work it was developed a methodology for quantification and localization of radionuclides not non homogeneously distributed in a 200 liters drum based in the Monte Carlo Method and Artificial Neural Network (RNA), for application in the isotopic characterization of the stored radioactive waste at IPEN. Theoretical arrangements had been constructed involving the division of the radioactive waste drum in some units or cells and some possible configurations of source intensities. Beyond the determination of the detection positions, the respective detection efficiencies for each position in function of each cell of the drum had been obtained. After the construction and the training of the RNA's for each developed theoretical arrangement, the validation of the method were carried out for the two arrangements that had presented the best performance. The results obtained show that the methodology developed in this study could be an effective tool for isotopic characterization of radioactive wastes contained in many kind of packages. (author)

  8. Pretest characterization of WIPP experimental waste

    International Nuclear Information System (INIS)

    Johnson, J.; Davis, H.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditions for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper

  9. Strategy and methodology for radioactive waste characterization

    International Nuclear Information System (INIS)

    2007-03-01

    its implementation. Waste acceptance criteria may specify the inventory of specific radionuclides for the whole repository or for individual waste packages, which will affect the characterization programme. The performance assessment of the repository will draw conclusions about the critical radionuclides for disposal. This publication provides: (a) a review of the requirements for and development of a waste characterization programme strategy, quality assurance programme, and quality control activities at the waste generator, processor, repository, and local or national laboratory levels; (b) a review of characterization responsibilities applicable to waste generators, processors, and repository operators, as well as an examination of the cost and benefits of waste characterization; (c) a review of the important factors to be considered in a waste characterization programme, including accuracy and uncertainties, scaling factors, and measurement methods; (d) a discussion of the applicability of various waste characterization methodologies to specific categories of waste streams (simple/stable waste streams, complex/variable waste streams, decommissioning waste streams, etc.); (e) a discussion and a tabulated review of the most commonly used characterization methods and techniques

  10. Waste Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-02

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.

  11. Waste Characterization Methods

    International Nuclear Information System (INIS)

    Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-01-01

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream's generation, characterization, and management; and not merely a list of information sources.

  12. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  13. Application of new technologies for characterization of Hanford Site high-level waste

    International Nuclear Information System (INIS)

    Winters, W.I.

    1998-01-01

    To support remediation of Hanford Site high-level radioactive waste tanks, new chemical and physical measurement technologies must be developed and deployed. This is a major task of the Chemistry Analysis Technology Support (CATS) group of the Hanford Corporation. New measurement methods are required for efficient and economical resolution of tank waste safety, waste retrieval, and disposal issues. These development and deployment activities are performed in cooperation with Waste Management Federal Services of Hanford, Inc. This paper provides an overview of current analytical technologies in progress. The high-level waste at the Hanford Site is chemically complex because of the numerous processes used in past nuclear fuel reprocessing there, and a variety of technologies is required for effective characterization. Programmatic and laboratory operational needs drive the selection of new technologies for characterizing Hanford Site high-level waste, and these technologies are developed for deployment in laboratories, hot cells or in the field. New physical methods, such as the propagating reactive systems screening tool (PRSST) to measure the potential for self-propagating reactions in stored wastes, are being implemented. Technology for sampling and measuring gases trapped within the waste matrix is being used to evaluate flammability hazards associated with gas releases from stored wastes. Application of new inductively coupled plasma and laser ablation mass spectrometry systems at the Hanford Site's 222-S Laboratory will be described. A Raman spectroscopy probe mounted in a cone penetrometer to measure oxyanions in wastes or soils will be described. The Hanford Site has used large volumes of organic complexants and acids in processing waste, and capillary zone electrophoresis (CZE) methods have been developed for determining several of the major organic components in complex waste tank matrices. The principles involved, system installation, and results from

  14. Final Hanford Site Transuranic (TRU) Waste Characterization Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP

  15. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste. The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B permit application, pertinent DOE guidelines governing waste acceptance criteria and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with ALARA precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  16. Final Hanford Site Transuranic (TRU) Waste Characterization Qualit Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP)

  17. Mixed waste characterization reference document

    International Nuclear Information System (INIS)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization

  18. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project (RWMP) at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste (MW). The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B Permit application, pertinent DOE guidelines governing waste acceptance criteria (WAC) and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with as low as reasonably achievable (ALARA) precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  19. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  20. Waste Characterization: Approaches and Methods

    DEFF Research Database (Denmark)

    Lagerkvist, A.; Ecke, H.; Christensen, Thomas Højlund

    2011-01-01

    Characterization of solid waste is usually a difficult task because of the heterogeneity of the waste and its spatial as well as temporal variations. This makes waste characterization costly if good and reliable data with reasonable uncertainty is to be obtained. Therefore, a waste characterization...... is often narrowly defined to meet specific needs for information. This may however limit the general usefulness of the information gained, for example, if the specific purpose limited the characterization to a subset of variables. In general, data available in the solid waste area are limited and often...... related to individual treatment processes and waste products are dealt with in the following chapters: Characteristic data on residential waste (Chapter 2.2), commercial and institutional waste (Chapter 2.3), industrial waste (Chapter 2.4) and construction and demolition waste (Chapter 2...

  1. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  2. TRU waste characterization chamber gloveboxes

    International Nuclear Information System (INIS)

    Duncan, D. S.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes

  3. TRU Waste Sampling Program: Volume I. Waste characterization

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies

  4. TWRS privatization support project waste characterization resource dictionary

    International Nuclear Information System (INIS)

    Patello, G.K.; Wiemers, K.D.

    1996-09-01

    A single estimate of waste characteristics for each underground storage tanks at the Hanford Site is not available. The information that is available was developed for specific programmatic objectives and varies in format and level of descriptive detail, depending on the intended application. This dictionary reflects an attempt to define what waste characterization information is available. It shows the relationship between the identified resource and the original data source and the inter-relationships among the resources; it also provides a brief description of each resource. Developed as a general dictionary for waste characterization information, this document is intended to make the user aware of potenially useful resources

  5. Work plan for waste receiving and processing module 2A waste characterization study

    International Nuclear Information System (INIS)

    Bergeson, C.L.

    1994-11-01

    This WRAP 2A Waste Characterization Study effort addresses those certification strategy functions related to characterization by defining criteria associated with each function, identifying administrative and design mechanisms for accomplishing each of these functions and evaluating alternatives where applicable. This work plan provides direction for completing the study

  6. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  7. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  8. Data quality objectives lessons learned for tank waste characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.

    1996-01-01

    The tank waste characterization process is an integral part of the overall effort to control the hazards associated with radioactive wastes stored in underground tanks at the Hanford Reservation. The programs involved in the characterization of the wastes are employing Data Quality Objective (DQO) process in all information and data collection activities. The DQO process is used by the programs to address an issue or problem rather than a specific sampling event. Practical limits do not always allow for precise characterization of a tank or the implementation of the DQO process. Because of the flexibility of the DQO process, it can be used as a tool for sampling and analysis of the underground waste storage tanks. The iterative nature of the DQO process allows it to be used as additional information is claimed or lessons are learned concerning an issue or problem requiring sampling and analysis of tank waste. In addition, the application of DQO process forces alternative actions to be considered when precise characterization of a tank or the full implementation of the DQO process is not practical

  9. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  10. Transuranic waste characterization sampling and analysis methods manual. Revision 1

    International Nuclear Information System (INIS)

    Suermann, J.F.

    1996-04-01

    This Methods Manual provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) and the WIPP Waste Analysis Plan. This Methods Manual includes all of the testing, sampling, and analytical methodologies accepted by DOE for use in implementing the Program requirements specified in the QAPP and the WIPP Waste Analysis Plan. The procedures in this Methods Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site-specific procedures. With some analytical methods, such as Gas Chromatography/Mass Spectrometry, the Methods Manual procedures may be used directly. With other methods, such as nondestructive characterization, the Methods Manual provides guidance rather than a step-by-step procedure. Sites must meet all of the specified quality control requirements of the applicable procedure. Each DOE site must document the details of the procedures it will use and demonstrate the efficacy of such procedures to the Manager, National TRU Program Waste Characterization, during Waste Characterization and Certification audits

  11. Data quality objectives lessons learned for tank waste characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.; Banning, D.L.

    1996-01-01

    The tank waste characterization process is an integral part of the overall effort to control the hazards associated with radioactive wastes stored in underground tanks at the Hanford Reservation. The programs involved in the characterization of the waste are employing the Data Quality Objective (DQO) process in all information and data collection activities. The DQO process is used by the programs to address an issue or problem rather than a specific sampling event. Practical limits (e.g., limited number and location of sampling points) do not always allow for precise characterization of a tank or the full implementation of the DQO process. Because of the flexibility of the DQO process, it can be used as a planning tool for sampling and analysis of the underground waste storage tanks. The iterative nature of the DQO process allows it to be used as additional information is obtained or open-quotes lessons are learnedclose quotes concerning an issue or problem requiring sampling and analysis of tank waste. In addition, the application of the DQO process forces alternative actions to be considered when precise characterization of a tank or the fall implementation of the DQO process is not practical

  12. Characterization of radioactive waste from nuclear power reactors

    International Nuclear Information System (INIS)

    Piumetti, Elsa H.; Medici, Marcela A.

    2007-01-01

    Different kinds of radioactive waste are generated as result of the operation of nuclear power reactors and in all cases the activity concentration of several radionuclides had to be determined in order to optimize resources, particularly when dealing with final disposal or long-term storage. This paper describes the three basic approaches usually employed for characterizing nuclear power reactor wastes, namely the direct methods, the semi-empirical methods and the analytical methods. For some radionuclides or kind of waste, the more suitable method or combination of methods applicable is indicated, stressing that these methods shall be developed and applied during the waste generation step, i.e. during the operation of the reactor. In addition, after remarking the long time span expected from waste generation to their final disposal, the importance of an appropriate record system is pointed out and some basic requirements that should be fulfilled for such system are presented. It is concluded that the tools for a proper characterization of nuclear reactor radioactive waste are available though such tools should be tailored to each specific reactor and their history. (author) [es

  13. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    International Nuclear Information System (INIS)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities

  14. WIPP Waste Characterization: Implementing Regulatory Requirements in the Real World

    International Nuclear Information System (INIS)

    Cooper Wayman, J.D.; Goldstein, J.D.

    1999-01-01

    It is imperative to ensure compliance of the Waste Isolation Pilot Project (WIPP) with applicable statutory and regulatory requirements. In particular, compliance with the waste characterization requirements of the Resource Conservation and Recovery Act (RCRA) and its implementing regulation found at 40 CFR Parts 262,264 and 265 for hazardous and mixed wastes, as well as those of the Atomic Energy Act of 1954, as amended, the Reorganization Plan No. 3 of 1970, the Nuclear Waste Policy Act of 1982, as amended, and the WIPP Land Withdrawal Act, as amended, and their implementing regulations found at 40 CFR Parts 191 and 194 for non-mixed radioactive wastes, are often difficult to ensure at the operational level. For example, where a regulation may limit a waste to a certain concentration, this concentration may be difficult to measure. For example, does the definition of transuranic waste (TRU) as 100 nCi/grain of alpha-emitting transuranic isotopes per gram of waste mean that the radioassay of a waste must show a reading of 100 plus the sampling and measurement error for the waste to be a TRU waste? Although the use of acceptable knowledge to characterize waste is authorized by statute, regulation and DOE Orders, its implementation is similarly beset with difficulty. When is a document or documents sufficient to constitute acceptable knowledge? What standard can be used to determine if knowledge is acceptable for waste characterization purposes? The inherent conflict between waste characterization regulatory requirements and their implementation in the real world, and the resolution of this conflict, will be discussed

  15. Applicability of FTIR-spectroscopy for characterizing waste organic matter

    International Nuclear Information System (INIS)

    Smidt, E.

    2001-12-01

    State and development of waste organic matter were characterized by means of FTIR-spectroscopy. Due to the interaction of infrared light with matter energy is absorbed by chemical functional groups. Chemical preparation steps are not necessary and therefore this method offers a more holistic information about the material. The first part of experiments was focussed on spectra of different waste materials representing various stages of decomposition. Due to characteristics in the fingerprint- region the identity of wastes is provable. Heights of significant bands in the spectrum were measured and relative absorbances were calculated. Changes of relative absorbances indicate the development of organic matter during decomposition. Organic matter of waste samples was compared to organic matter originating from natural analogous processes (peat, soil). The second part of experiments concentrated on a composting process for a period of 260 days. Spectral characteristics of the samples were compared to their chemical, physical and biological data. The change of relative absorbances was reflected by conventional parameters. According to the development of the entire sample humic acids underwent a change as well. For practical use the method offers several possibilities: monitoring of a process, comparison of different processes, quality control of products originating from waste materials and the proof of their identity. (author)

  16. WRAP Module 1 waste characterization plan

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1995-01-01

    The purpose of this document is to present the characterization methodology for waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing (WRAP) Module 1 facility. The scope of this document includes all solid low level waste (LLW), transuranic (TRU), mixed waste (MW), and dangerous waste. This document is not meant to be all-inclusive of the waste processed or generated within WRAP Module 1, but to present a methodology for characterization. As other streams are identified, the method of characterization will be consistent with the other streams identified in this plan. The WRAP Module 1 facility is located in the 200 West Area of the Hanford Site. The facility's function is two-fold. The first is to verify/characterize, treat and repackage contact handled (CH) waste currently in retrievable storage in the LLW Burial Grounds, Hanford Central Waste Complex, and the Transuranic Storage and Assay Facility (TRUSAF). The second is to verify newly generated CH TRU waste and LLW, including MW. The WRAP Module 1 facility provides NDE and NDA of the waste for both drums and boxes. The NDE is used to identify the physical contents of the waste containers to support waste characterization and processing, verification, or certification. The NDA results determine the radioactive content and distribution of the waste

  17. Characterization and durability testing of a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing

  18. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  19. Waste characterization: What's on second?

    International Nuclear Information System (INIS)

    Schultz, F.J.; Smith, M.A.

    1989-07-01

    Waste characterization is the process whereby the physical properties and chemical composition of waste are determined. Waste characterization is an important element which is necessary to certify that waste meets the acceptance criteria for storage, treatment, or disposal. Department of Energy (DOE) Orders list and describe the germane waste form, package, and container criteria for the storage of both solid low-level waste package, and container criteria for the storage of both solid low-level waste (SLLW) and transuranic (TRU) waste, including chemical composition and compatibility, hazardous material content (e.g., lead), fissile material content, radioisotopic inventory, particulate content, equivalent alpha activity, thermal heat output, and absence of free liquids, explosives, and compressed gases. At the Oak Ridge National Laboratory (ORNL), the responsibility for waste characterization begins with the individual or individuals who generate the waste. The generator must be able to document the type and estimate the quantity of various materials (e.g., waste forms -- physical characteristics, chemical composition, hazardous materials, major radioisotopes) which have been placed into the waste container. Analyses of process flow sheets and a statistically valid sampling program can provide much of the required information as well as a documented level of confidence in the acquired data. A program is being instituted in which major generator facilities perform radionuclide assay of small packets of waste prior to being placed into a waste drum. 17 refs., 1 fig., 4 tabs

  20. Characterization of radioactive mixed wastes: The industrial perspective

    International Nuclear Information System (INIS)

    Leasure, C.S.

    1992-01-01

    Physical and chemical characterization of Radioactive Mixed Wastes (RMW) is necessary for determination of appropriate treatment options and to satisfy environmental regulations. Radioactive mixed waste can be classified as two main categories; contact-handled (low level) RMW and remote-handled RMW. Ibis discussion will focus mainly on characterization of contact handled RMW. The characterization of wastes usually follows one of two pathways: (1) characterization to determine necessary parameters for treatment or (2) characterization to determine if the material is a hazardous waste. Sometimes, however, wastes can be declared as hazardous waste without testing and then treated as hazardous waste. Characterization of radioactive mixed wastes pose some unique issues, however, that will require special solutions. Below, five issues affecting sampling and analysis of RMW will be discussed

  1. A vehicle mounted multi-sensor array for waste site characterization

    International Nuclear Information System (INIS)

    Baumgart, C.W.; Ciarcia, C.A.; Tunnell, T.W.

    1995-02-01

    Personnel at AlliedSignal Aerospace, Kirtland Operations (formerly EG ampersand G Energy Measurements, Kirtland Operations) and EG ampersand G Energy Measurements, Los Alamos Operations, have successfully developed and demonstrated a number of technologies which can be applied to the environmental remediation and waste management problem. These applications have included the development of self-contained and towed remote sensing platforms and advanced signal analysis techniques for the detection and characterization of subsurface features. This presentation will provide a brief overview of applications that have been and are currently being fielded by both AlliedSignal and EG ampersand G Energy Measurements personnel and will describe some of the ways that such technologies can and are being used for the detection and characterization of hazardous waste sites

  2. Characterization of radioactive waste forms and packages

    International Nuclear Information System (INIS)

    1997-01-01

    This publication provides a compendium of waste form, container and waste package properties which are potential importance for waste characterization to support approval for treatment/conditioning, storage and disposal methods and for predicting both short and long term waste behaviour in the repository environment. The properties to be characterized are defined in terms of the technical rationale for their control and characterization. Characterization methods for each property are described in general with reference to detailed discussions existing in the literature. Guidance as to the advantages and disadvantages of individual methods from a technical perspective is also provided where appropriate. This report deals with the characterization of all types of radioactive wastes except spent fuel intended for direct disposal. 115 refs, 17 figs, 12 tabs

  3. Waste characterization practices: summary paper

    International Nuclear Information System (INIS)

    Logan, J.A.

    1987-01-01

    Recent reviews of the records on disposal waste at several DOE sites have indicated that records still contain little information practical to waste management. Much of the disposed waste is identified by vague terms, i.e., general plant waste. Attached to this paper is a new waste characterization code devised by the Idaho National Engineering Laboratory to aid in waste volume reduction and stabilization. It is recommended that every facility involved in waste generation and disposal needs to be detailing its wastes to support upgrading of waste management practices. 1 table

  4. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Christensen, B. D.

    1999-01-01

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization

  5. Multi-method characterization of low-level radioactive waste at two Sandia National Laboratories environmental restoration sites

    International Nuclear Information System (INIS)

    Johnson, C.E. Jr.; Galloway, R.B.; Dotson, P.W.

    1999-01-01

    This paper discusses the application of multiple characterization methods to radioactive wastes generated by the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) Project during the excavation of buried materials at the Classified Waste Landfill (CWLF) and the Radioactive Waste Landfill (RWL). These waste streams include nuclear weapon components and other refuse that are surface contaminated or contain sealed radioactive sources with unknown radioactivity content. Characterization of radioactive constituents in RWL and CWLF waste has been problematic, due primarily to the lack of documented characterization data prior to burial. A second difficulty derives from the limited information that ER project personnel have about weapons component design and testing that was conducted in the early days of the Cold War. To reduce the uncertainties and achieve the best possible waste characterization, the ER Project has applied both project-specific and industry-standard characterization methods that, in combination, serve to define the types and quantities of radionuclide constituents in the waste. The resulting characterization data have been used to develop waste profiles for meeting disposal site waste acceptance criteria

  6. Contamination control aspects of attaching waste drums to the WIPP Waste Characterization Chamber

    International Nuclear Information System (INIS)

    Rubick, L.M.; Burke, L.L.

    1998-01-01

    Argonne National Laboratory West (ANL-W) is verifying the characterization and repackaging of contact-handled transuranic (CH-TRU) mixed waste in support of the Waste Isolation Pilot Program (WIPP) project located in Carlsbad, New Mexico. The WIPP Waste Characterization Chamber (WCC) was designed to allow opening of transuranic waste drums for this process. The WCC became operational in March of 1994 and has characterized approximately 240 drums of transuranic waste. The waste drums are internally contaminated with high levels of transuranic radionuclides. Attaching and detaching drums to the glove box posed serious contamination control problems. Prior to characterizing waste, several drum attachment techniques and materials were evaluated. An inexpensive HEPA filter molded into the bagging material helps with venting during detachment. The current techniques and procedures used to attach and detach transuranic waste drums to the WCC are described

  7. Nondestructive characterization of low-level transuranic waste

    International Nuclear Information System (INIS)

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system

  8. Ground-penetrating radar in characterizing and monitoring waste-burial sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.

    1982-02-01

    Potential environmental hazards are associated with buried chemical and nuclear wastes because of the possibilities of inadvertent excavation or migration of toxic chemicals or radionuclides into groundwater or surface water bodies. Concern is often related to the fact that many existing waste burial sites have been found to be inadequately designed and/or poorly documented. New technology and innovative applications of current technology are needed to locate, characterize, and monitor the wastes contained in such sites. The work described in this paper is focused on the use of ground-penetrating radar (GPR) for those purposes

  9. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2005-01-01

    The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the

  10. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    International Nuclear Information System (INIS)

    Johnson, J.E.

    1995-01-01

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State's Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP's Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m 3 of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals

  11. Characterization of urban solid waste in Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2008-01-01

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system

  12. Characterization of urban solid waste in Chihuahua, Mexico.

    Science.gov (United States)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2008-12-01

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.

  13. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  14. Activation and characterization of waste coffee grounds as bio-sorbent

    Science.gov (United States)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  15. Standardization of waste acceptance test methods by the Materials Characterization Center

    International Nuclear Information System (INIS)

    Slate, S.C.

    1985-01-01

    This paper describes the role of standardized test methods in demonstrating the acceptability of high-level waste (HLW) forms for disposal. Key waste acceptance tests are standardized by the Materials Characterization Center (MCC), which the US Department of Energy (DOE) has established as the central agency in the United States for the standardization of test methods for nuclear waste materials. This paper describes the basic three-step process that is used to show that waste is acceptable for disposal and discusses how standardized tests are used in this process. Several of the key test methods and their areas of application are described. Finally, future plans are discussed for using standardized tests to show waste acceptance. 9 refs., 1 tab

  16. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  17. Site characterization report for the basalt waste isolation project. Volume II

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment

  18. Moessbauer Spectroscopy in the Characterization of waste product used like fertilizer in soil. Some Applications

    International Nuclear Information System (INIS)

    Furet, N. R.; Orihuela, D. L.; Hernandez

    2007-01-01

    At the present time, the use of industrial solid wastes is an important task, because a great effort that have been carried out to preserve the environmental and to obtain the high technologies. In this work, a characterization of a industrial waste product, on base of the monohydrous iron sulphate (FeSO 4 .1H 2 O) with a 15% approximately of free sulphuric acid, used like improvement of soil was carried out by Mossabuer spectroscopy. This waste product was used in a series of the experiences in parcels (where peaches, (Prunus persica), strawberries are cultivated) in the zone of Cartaya (Huelva, Spain). The characterisation of soil from the parcel before application of this product was carried out in order to analyse and compare with the final results by using the methods of the Moessbauer spectroscopy. High contents of Fe, S, and Zn at the studied product are observed . This elements are very important for plants. The pH in soil and Fe, Mn, and Zn contents in soil and leaf were determined. The knowledge of the main chemical-structural properties of this product, used like improvement of soil, will permit the study of the influence to) on the soil properly, b) on the peach leaves and c) on the foodstuff fruit. (Author)

  19. Waste Sampling and Characterization Facility (WSCF)

    International Nuclear Information System (INIS)

    Bozich, J.L.

    1993-07-01

    This Maintenance Implementation Plan has been developed for maintenance functions associated with the Waste Sampling and Characterization Facility (WSCF). This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4A, Maintenance Management Program (DOE 1990), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying WHC conformance programs and policies applicable to implementation of DOE order 4330.4A guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at WSCF

  20. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    International Nuclear Information System (INIS)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems

  1. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  2. WIPP's Hazardous Waste Facility Permit Renewal Application

    International Nuclear Information System (INIS)

    Most, W.A.; Kehrman, R.F.

    2009-01-01

    Hazardous waste permits issued by the New Mexico Environment Department (NMED) have a maximum term of 10-years from the permit's effective date. The permit condition in the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit (HWFP) governing renewal applications, directs the Permittees to submit a permit application 180 days prior to expiration of the Permit. On October 27, 1999, the Secretary of the NMED issued to the United States Department of Energy (DOE), the owner and operator of WIPP, and to Washington TRU Solutions LLC (WTS), the Management and Operating Contractor and the cooperator of WIPP, a HWFP to manage, store, and dispose hazardous waste at WIPP. The DOE and WTS are collectively known as the Permittees. The HWFP is effective for a fixed term not to exceed ten years from the effective date of the Permit. The Permittees may renew the HWFP by submitting a new permit application at least 180 calendar days before the expiration date, of the HWFP. The Permittees are not proposing any substantial changes in the Renewal Application. First, the Permittees are seeking the authority to dispose of Contact-Handled and Remote-Handled TRU mixed waste in Panel 8. Panels 4 through 7 have been approved in the WIPP Hazardous Waste Facility Permit as it currently exists. No other change to the facility or to the manner in which hazardous waste is characterized, managed, stored, or disposed is being requested. Second, the Permittees also seek to include the Mine Ventilation Rate Monitoring Plan, as Attachment Q in the HWFP. This Plan has existed as a separate document since May 2000. The NMED has requested that the Plan be submitted as part of the Renewal Application. The Permittees have been operating to the Mine Ventilation Rate Monitoring Plan since the Plan was submitted. Third, some information submitted in the original WIPP RCRA Part B Application has been updated, such as demographic information. The Permittees will submit this information in the

  3. Hanford Waste Vitrification Plant Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Facility currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. This Vitrification Plant Dangerous Waste Permit Application, Revision 2, consists of both a Part A and a Part B permit application. An explanation of the Part A revisions, including Revision 4 submitted with this application, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987)

  4. Guidance on the application of quality assurance for characterizing a low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.; Starmer, R.J.; Hedges, D.

    1990-10-01

    This document provides the Nuclear Regulatory Commission's staff guidance to an applicant on meeting the quality control (QC) requirements of Title 10 of the Code of Federal Regulations, Part 61, Section 61.12 (10 CFR 61.12), for a low-level waste disposal facility. The QC requirements combined with the requirements for managerial controls and audits are the basis for developing a quality assurance (QA) program and for the guidance provided herein. QA guidance is specified for site characterization activities necessary to meet the performance objectives of 10 CFR Part 61 and to limit exposure to or the release of radioactivity. 1 tab

  5. Site characterization report for the basalt waste isolation project. Volume III

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 3 contains chapters 13 through 19: site issues and plans; geoengineering and repository design issues and plans; waste package and site geochemistry issues and plans; performance-assessment issues and plans; site characterization program; quality assurance; and identification of alternate sites

  6. Characterization of civil construction waste and its incorporation to mortar

    International Nuclear Information System (INIS)

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C.

    2009-01-01

    As the preservation of the environment is a big concern nowadays, plenty of studies have arisen in order to decrease the production or reuse the waste from human activities. In this context, the civil construction industry comes up, as it is able to incorporate waste to mortar, being a great alternative for the reuse of solid waste. The scope of this work has been the characterization of Construction and Demolishment Waste (RCD) and its incorporation to the mortar aiming at the development of alternative construction materials in the future for the economical reutilization of waste discharged in embankments and landfills so far preserving the environment so far. The experimental studies taken with sample bodies, such as water absorption, resistance to compression, X-ray diffraction, X-ray fluorescence and scanning electronic microscopy, elicits the viability of the partial substitution of cement by RCD mixed waste, taking its different applications into consideration. (author)

  7. Application for approval to construct the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The following Application For Approval Of Construction is being submitted by the US Department of Energy, Richland Field Office pursuant to 40 CFR 61.07, ''Application for Approval of Construction or Modification,'' for the Waste Receiving and Processing (WRAP) Module 1 facility (also referred to as WRAP 1). The WRAP 1 facility will be a new source of radioactive emissions to the atmosphere. The WRAP 1 facility will be housed in the new 2336-W Building, which will be located in the 200 West Area south of 23rd Street and west of Dayton Avenue. The 200 West Area is located within the boundary of the Hanford Site. The mission of the WRAP 1 facility is to examine, assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the waste in accordance with all applicable regulations. The solid wastes to be handled in the WRAP 1 facility include low-level waste (LLW), Transuranic (TRU) waste, TRU mixed waste, and low-level mixed waste (LLMW). The WRAP 1 facility will only accept contact handled (CH) waste containers. CH waste is a waste category whose external surface dose rate does not exceed 200 mrem/h. These containers have a surface dose rate of less than 200 mrem/h

  8. Characterization of mixed CH-TRU waste at Argonne-West

    International Nuclear Information System (INIS)

    Dwight, C.C.; Guay, K.P.; Courtney, J.C.; Higgins, P.J.

    1993-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Argonne's initial activities in the Program were described last year at Waste Management '92. Since then, additional waste has been characterized and repackaged, resulting in six bins ready for shipment to WIPP upon the initiation of the bin tests. Lessons learned from these operations are being factored in the design and installation of a new characterization facility, the Enhanced Waste Characterization Facility (EWCF). The objectives of the WIPP Experimental Test Program have also undergone change since last year leading to an accelerated effort to factor sludge sampling capability into the EWCF. Consequently, the initiation of non-sludge operations in the waste characterization chamber has been delayed to Summer 1993 while the sludge sampling modifications are incorporated into the facility. Benefits in operational flexibility, effectiveness, and efficiency and reductions in potential facility and personnel contamination and exposure are expected from the enhanced waste characterization facility within the Hot Fuel Examination Facility at Argonne-West. This paper summarizes results and lessons learned from recent characterization and repackaging efforts and future plans for characterization. It also describes design features and status of the EWCF

  9. Successful characterization of radioactive waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hughes, M.B.; Miles, G.M.

    1995-01-01

    Characterization of the low-level radioactive waste generated by forty five independent operating facilities at The Savannah River Site (SRS) experienced a slow start. However, the site effectively accelerated waste characterization based on findings of an independent assessment that recommended several changes to the existing process. The new approach included the development of a generic waste characterization protocol and methodology and the formulation of a technical board to approve waste characterization. As a result, consistent, detailed characterization of waste streams from SRS facilities was achieved in six months

  10. Low-level waste characterization plan for the WSCF Laboratory Complex

    International Nuclear Information System (INIS)

    Morrison, J.A.

    1994-01-01

    The Waste Characterization Plan for the Waste Sampling and Characterization Facility (WSCF) complex describes the organization and methodology for characterization of all waste streams that are transferred from the WSCF Laboratory Complex to the Hanford Site 200 Areas Storage and Disposal Facilities. Waste generated at the WSCF complex typically originates from analytical or radiological procedures. Process knowledge is derived from these operations and should be considered an accurate description of WSCF generated waste. Sample contribution is accounted for in the laboratory waste designation process and unused or excess samples are returned to the originator for disposal. The report describes procedures and processes common to all waste streams; individual waste streams; and radionuclide characterization methodology

  11. Development of new materials from waste electrical and electronic equipment: Characterization and catalytic application.

    Science.gov (United States)

    Souza, J P; Freitas, P E; Almeida, L D; Rosmaninho, M G

    2017-07-01

    Wastes of electrical and electronic equipment (WEEE) represent an important environmental problem, since its composition includes heavy metals and organic compounds used as flame-retardants. Thermal treatments have been considered efficient processes on removal of these compounds, producing carbonaceous structures, which, together with the ceramic components of the WEEE (i.e. silica and alumina), works as support material for the metals. This mixture, associated with the metals present in WEEE, represents promising systems with potential for catalytic application. In this work, WEEE was thermally modified to generate materials that were extensively characterized. Raman spectrum for WEEE after thermal treatment showed two carbon associated bands. SEM images showed a metal nanoparticles distribution over a polymeric and ceramic support. After characterization, WEEE materials were applied in ethanol steam reforming reaction. The system obtained at higher temperature (800°C) exhibited the best activity, since it leads to high conversions (85%), hydrogen yield (30%) and H 2 /CO ratio (3,6) at 750°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization and vitrification of Hanford radioactive high level wastes

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-01-01

    Radioactive Neutralized Current Acid Waste (NCAW) samples from the Hanford waste tanks have been chemically, radiochemically and physically characterized. The wastes were processed according to the Hanford Waste vitrification Plant (HWVP) flowsheet, and characterized after each process step. The waste glasses were sectioned and leach tested. Chemical, radiochemical and physical properties of the waste will be presented and compared to nonradioactive simulant data and the HWVP reference composition and properties

  13. WRAP Module 1 sampling strategy and waste characterization alternatives study

    Energy Technology Data Exchange (ETDEWEB)

    Bergeson, C.L.

    1994-09-30

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner.

  14. WRAP Module 1 sampling strategy and waste characterization alternatives study

    International Nuclear Information System (INIS)

    Bergeson, C.L.

    1994-01-01

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner

  15. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    Soukup, J.D.; Erpenbeck, G.J.

    1995-01-01

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  16. A strategy for analysis of TRU waste characterization needs

    International Nuclear Information System (INIS)

    Leigh, C.D.; Chu, M.S.Y.; Arvizu, J.S.; Marcinkiewicz, C.J.

    1994-01-01

    Regulatory compliance and effective management of the nation's TRU waste requires knowledge about the constituents present in the waste. With limited resources, the DOE needs a cost-effective characterization program. In addition, the DOE needs a method for predicting the present and future analytical requirements for waste characterization. Thus, a strategy for predicting the present and future waste characterization needs that uses current knowledge of the TRU inventory and prioritization of the data needs is presented

  17. DOE complex buried waste characterization assessment

    International Nuclear Information System (INIS)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m 3 of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993)

  18. Listed waste determination report. Environmental characterization

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idaho identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.

  19. Characterization of low and medium active wastes

    International Nuclear Information System (INIS)

    Saas, A.

    1993-01-01

    For several years now, research on raw or packaged waste characterization has been carried out in France. Qualitative or quantitative analysis are given of radionuclides present in already packaged waste (including badly packaged waste) or in unpackaged waste; as far as possible, evaluation of the main physico-mechanical and confinement characteristics

  20. Characterization of wastes and their recycling potentials; A case ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Key words: Solid waste, waste characterization, recycling potentials, waste scavengers. ABSTRACT: Wastes ... Waste management is the collection, transportation, processing ... wastes generated by household, commercial activities or other ...

  1. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    International Nuclear Information System (INIS)

    Joglekar, R.D.; Feltcorn, E.M.; Ortiz, A.M.

    2003-01-01

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public

  2. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    DOE Carlsbad Field Office

    2001-01-01

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to

  3. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2001-01-01

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB's will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components

  4. Characterization of radioactive mixed wastes: The scientific perspective

    International Nuclear Information System (INIS)

    Griest, W.H.; Stokely, J.R. Jr.

    1992-01-01

    This paper is concerned with the physical and chemical characterization of radioactive mixed wastes (RMW): what should be determined and how; the applications and limitations of current analytical methodologies, promising new technologies, and areas where further methodology research is needed. Constituents to be determined, sample collection, preparation, and analysis are considered. The scope concerns mainly low level and very low level RMW whose activities allow contact handling and analysis by Nuclear Regulatory Commission- or Agreement State-licensed commercial laboratories

  5. Characterization optimization for the National TRU waste system

    International Nuclear Information System (INIS)

    Basabilvazo, George T.; Countiss, S.; Moody, D.C.; Jennings, S.G.; Lott, S.A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  6. Statistical sampling applied to the radiological characterization of historical waste

    Directory of Open Access Journals (Sweden)

    Zaffora Biagio

    2016-01-01

    Full Text Available The evaluation of the activity of radionuclides in radioactive waste is required for its disposal in final repositories. Easy-to-measure nuclides, like γ-emitters and high-energy X-rays, can be measured via non-destructive nuclear techniques from outside a waste package. Some radionuclides are difficult-to-measure (DTM from outside a package because they are α- or β-emitters. The present article discusses the application of linear regression, scaling factors (SF and the so-called “mean activity method” to estimate the activity of DTM nuclides on metallic waste produced at the European Organization for Nuclear Research (CERN. Various statistical sampling techniques including simple random sampling, systematic sampling, stratified and authoritative sampling are described and applied to 2 waste populations of activated copper cables. The bootstrap is introduced as a tool to estimate average activities and standard errors in waste characterization. The analysis of the DTM Ni-63 is used as an example. Experimental and theoretical values of SFs are calculated and compared. Guidelines for sampling historical waste using probabilistic and non-probabilistic sampling are finally given.

  7. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  8. The Advantages of Fixed Facilities in Characterizing TRU Wastes

    International Nuclear Information System (INIS)

    FRENCH, M.S.

    2000-01-01

    In May 1998 the Hanford Site started developing a program for characterization of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. After less than two years, Hanford will have a program certified by the Carlsbad Area Office (CAO). By picking a simple waste stream, taking advantage of lessons learned at the other sites, as well as communicating effectively with the CAO, Hanford was able to achieve certification in record time. This effort was further simplified by having a centralized program centered on the Waste Receiving and Processing (WRAP) Facility that contains most of the equipment required to characterize TRU waste. The use of fixed facilities for the characterization of TRU waste at sites with a long-term clean-up mission can be cost effective for several reasons. These include the ability to control the environment in which sensitive instrumentation is required to operate and ensuring that calibrations and maintenance activities are scheduled and performed as an operating routine. Other factors contributing to cost effectiveness include providing approved procedures and facilities for handling hazardous materials and anticipated contingencies and performing essential evolutions, and regulating and smoothing the work load and environmental conditions to provide maximal efficiency and productivity. Another advantage is the ability to efficiently provide characterization services to other sites in the Department of Energy (DOE) Complex that do not have the same capabilities. The Waste Receiving and Processing (WRAP) Facility is a state-of-the-art facility designed to consolidate the operations necessary to inspect, process and ship waste to facilitate verification of contents for certification to established waste acceptance criteria. The WRAP facility inspects, characterizes, treats, and certifies transuranic (TRU), low-level and mixed waste at the Hanford Site in Washington state. Fluor Hanford operates the $89

  9. Sampling and characterization of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Zepeda R, C.; Monroy G, F.; Reyes A, T.; Lizcano, D.; Cruz C, A. C.

    2017-09-01

    To define the management of radioactive liquid wastes stored in 200 L drums, its isotope and physicochemical characterization is essential. An adequate sampling, that is, representative and homogeneous, is fundamental to obtain reliable analytical results, therefore, in this work, the use of a sampling mechanism that allows collecting homogenous aliquots, in a safe way and minimizing the generation of secondary waste is proposed. With this mechanism, 56 drums of radioactive liquid wastes were sampled, which were characterized by gamma spectrometry, liquid scintillation, and determined the following physicochemical properties: ph, conductivity, viscosity, density and chemical composition by gas chromatography. 67.86% of the radioactive liquid wastes contains H-3 and of these, 47.36% can be released unconditionally, since it presents activities lower than 100 Bq/g. 94% of the wastes are acidic and 48% have viscosities <50 MPa s. (Author)

  10. DOE assay methods used for characterization of contact-handled transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  11. DOE assay methods used for characterization of contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs

  12. Waste characterization methods at belgoprocess and the importance of NDA

    International Nuclear Information System (INIS)

    Botte, J.; Luycx, P.

    2003-01-01

    Waste characterization in the end cycle becomes more and more important. Several methods are available for a radiological characterization: from copying the waste producers declaration over a calculation based on known characteristics or measured values to combinations of several techniques. The decision on what technique(s) to be used will be based on several criteria. One also has to evaluate at what stage of the waste treatment process the characterization has to be performed. Recently belgoprocess has performed large efforts and investments to assure a good waste characterization. These are concentrated in studies on historical and recent waste, resulting in isotopic vectors and the purchase of several NDA devices in order to cover the whole scala of waste the company treats. The measuring results always need to be integrated with isotopic vectors. (orig.)

  13. Development of Characterization Protocol for Mixed Liquid Radioactive Waste Classification

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Syed Asraf Wafa; Wo, Y.M.; Sarimah Mahat; Mohamad Annuar Assadat Husain

    2017-01-01

    Mixed organic liquid waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclide posed specific challenges in its management. Often, this waste becomes legacy waste in many nuclear facilities and being considered as 'problematic' waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using analytical procedures involving gross alpha beta, and gamma spectrometry. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste. (author)

  14. Development of characterization protocol for mixed liquid radioactive waste classification

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Norasalwa, E-mail: norasalwa@nuclearmalaysia.gov.my [Waste Technology Development Centre, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Wafa, Syed Asraf [Radioisotop Technology and Innovation, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Wo, Yii Mei [Radiochemistry and Environment, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Mahat, Sarimah [Material Technology Group, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  15. Characterization of Wastes from Pasteurizadora Sancti Spíritus.

    Directory of Open Access Journals (Sweden)

    Yolanda Margarita Carbonell Cabarga

    2012-04-01

    Full Text Available The present work is about the characterization of wastes from Pasteurizadora Sancti Spíritus and their influence on the emission of wastes from the other companies that pour them to the same oxidation lagoons. Its objectives are the following: Initial inspection of the treatment system, study and assessment of the environmental impacts per production line, assessment of the emissions of liquid and solid wastes and their destination, identification of chemicals, fuels and lubricants, characterization of the liquid wastes during the last 20 years. In the Materials and Methods section it was carried out a study and assessment of the environmental impacts generated by the organization, as well as a description of its solid wastes. Besides, the liquid wastes were characterized during 20 years, reaching the conclusion that the wastes resulting from the productions incorporated to the treatment system such as Nela and the Meat Enterprise´s productions remain biodegradable.

  16. Waste disposal by hydrofracture and application of the technology to the management of hazardous wastes

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.; Weeren, H.O.

    1985-01-01

    A unique disposal method, involving hydrofracturing, has been used for management of liquid low-level radioactive wastes at Oak Ridge National Laboratory (ORNL). Wastes are mixed with cement and other solids and injected along bedding plane fractures into highly impermeable shale at a depth of 300 m forming a grout sheet. The process has operated successfully for 20 years and may be applicable to disposal of hazardous wastes. The cement grout represents the primary barrier for immobilization of the wastes; the hydrologically isolated injection horizon represents a secondary barrier. At ORNL work has been conducted to characterize the geology of the disposal site and to determine its relationship to the injection process. The site is structurally quite complex. Research has also been conducted on the development of methods for monitoring the extent and orientation of the grout sheets; these methods include gamma-ray logging of cased observation wells, leveling surveys of benchmarks, tiltmeter surveys, and microseismic arrays. These methods, some of which need further development, offer promise for real-time and post-injection monitoring. Initial suggestions are offered for possible application of the technology to hazardous waste management and technical and regulatory areas needing attention are addressed. 11 refs., 1 fig

  17. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    DOTSON, PATRICK WELLS; GALLOWAY, ROBERT B.; JOHNSON JR, CARL EDWARD

    1999-01-01

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  18. Characterization of radioactive waste forms. Volume 1

    International Nuclear Information System (INIS)

    Brodersen, K.; Nilsson, K.

    1989-01-01

    This document is the second yearbook for Task 3 of the European Communities 1985-89 programme of research on radioactive waste management and disposal carried out by public organizations and private firms in the Community through costsharing contracts with the Commission of the European Communities. The report, in two volumes, describes progress made in 1987 within the field of Task 3: Testing and evaluation of conditioned waste and engineered barriers. The first volume of the report covers Item 3.1 Characterization of low and medium-level radioactive waste forms and Item 3.5 Development of test methods for quality assurance. The second volume covers Item 3.2: High-level and alpha waste characterization and Item 3.3: Other engineered barriers. Item 3.4 on the round robin study will be treated in a separate report

  19. Report: new guidelines for characterization of municipal solid waste: the Portuguese case.

    Science.gov (United States)

    da Graça Madeira Martinho, Maria; Silveira, Ana Isabel; Fernandes Duarte Branco, Elsa Maria

    2008-10-01

    This report proposes a new set of guidelines for the characterization of municipal solid waste. It is based on an analysis of reference methodologies, used internationally, and a case study of Valorsul (a company that handles recovery and treatment of solid waste in the North Lisbon Metropolitan Area). In particular, the suggested guidelines present a new definition of the waste to be analysed, change the sampling unit and establish statistical standards for the results obtained. In these new guidelines, the sampling level is the waste collection vehicle and contamination and moisture are taken into consideration. Finally, focus is on the quality of the resulting data, which is essential for comparability of data between countries. These new guidelines may also be applicable outside Portugal because the methodology includes, besides municipal mixed waste, separately collected fractions of municipal waste. They are a response to the need for information concerning Portugal (e.g. Eurostat or OECD inquiries) and follow European Union municipal solid waste management policies (e.g. packaging waste recovery and recycling targets and the reduction of biodegradable waste going to landfill).

  20. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  1. Transuranic waste characterization sampling and analysis plan

    International Nuclear Information System (INIS)

    1994-01-01

    Los Alamos National Laboratory (the Laboratory) is located approximately 25 miles northwest of Santa Fe, New Mexico, situated on the Pajarito Plateau. Technical Area 54 (TA-54), one of the Laboratory's many technical areas, is a radioactive and hazardous waste management and disposal area located within the Laboratory's boundaries. The purpose of this transuranic waste characterization, sampling, and analysis plan (CSAP) is to provide a methodology for identifying, characterizing, and sampling approximately 25,000 containers of transuranic waste stored at Pads 1, 2, and 4, Dome 48, and the Fiberglass Reinforced Plywood Box Dome at TA-54, Area G, of the Laboratory. Transuranic waste currently stored at Area G was generated primarily from research and development activities, processing and recovery operations, and decontamination and decommissioning projects. This document was created to facilitate compliance with several regulatory requirements and program drivers that are relevant to waste management at the Laboratory, including concerns of the New Mexico Environment Department

  2. Uncertainty quantification applied to the radiological characterization of radioactive waste.

    Science.gov (United States)

    Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P

    2017-09-01

    This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. TWRS privatization support project waste characterization database development

    International Nuclear Information System (INIS)

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford underground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105, 241-AW-101, -103, and -105, 241 AZ-101 and -102; and 241-C-109. Sample data were assembled for sixteen radionuclides and thirty-five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created: the master data set, a subset, and an unreviewed data set. The master data set contains waste composition information for Tanks 241-AN-102 and -107, 241-AP-102 and -105, 241-AW-101; and 241-AZ-101 and -102. The subset contains only the validated analytical sample data from the master data set. The unreviewed data set contains all collected but unreviewed sample data for Tanks 241-AN-104, -105, and -106; 241-AP-104; 241-AW-103 and-105; and 241-C-109. The methodology used to review the waste characterization information was found to be an accurate, useful way to separate the invalid or questionable data from the more reliable data. In the future, this methodology should be considered when validating waste characterization information

  4. Just-in-time characterization and certification of DOE-generated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Primozic, F.J. [Benchmark Environmental Corp., Albuquerque, NM (United States); Robinson, M.A. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D&D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D&D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation.

  5. Just-in-time characterization and certification of DOE-generated wastes

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Primozic, F.J.; Robinson, M.A.

    1995-01-01

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D ampersand D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D ampersand D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation

  6. Solid waste generation and characterization in the University of Lagos for a sustainable waste management.

    Science.gov (United States)

    Adeniran, A E; Nubi, A T; Adelopo, A O

    2017-09-01

    Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Monte Carlo method to characterize radioactive waste drums

    International Nuclear Information System (INIS)

    Lima, Josenilson B.; Dellamano, Jose C.; Potiens Junior, Ademar J.

    2013-01-01

    Non-destructive methods for radioactive waste drums characterization have being developed in the Waste Management Department (GRR) at Nuclear and Energy Research Institute IPEN. This study was conducted as part of the radioactive wastes characterization program in order to meet specifications and acceptance criteria for final disposal imposed by regulatory control by gamma spectrometry. One of the main difficulties in the detectors calibration process is to obtain the counting efficiencies that can be solved by the use of mathematical techniques. The aim of this work was to develop a methodology to characterize drums using gamma spectrometry and Monte Carlo method. Monte Carlo is a widely used mathematical technique, which simulates the radiation transport in the medium, thus obtaining the efficiencies calibration of the detector. The equipment used in this work is a heavily shielded Hyperpure Germanium (HPGe) detector coupled with an electronic setup composed of high voltage source, amplifier and multiport multichannel analyzer and MCNP software for Monte Carlo simulation. The developing of this methodology will allow the characterization of solid radioactive wastes packed in drums and stored at GRR. (author)

  8. Automated quantitative micro-mineralogical characterization for environmental applications

    Science.gov (United States)

    Smith, Kathleen S.; Hoal, K.O.; Walton-Day, Katherine; Stammer, J.G.; Pietersen, K.

    2013-01-01

    Characterization of ore and waste-rock material using automated quantitative micro-mineralogical techniques (e.g., QEMSCAN® and MLA) has the potential to complement traditional acid-base accounting and humidity cell techniques when predicting acid generation and metal release. These characterization techniques, which most commonly are used for metallurgical, mineral-processing, and geometallurgical applications, can be broadly applied throughout the mine-life cycle to include numerous environmental applications. Critical insights into mineral liberation, mineral associations, particle size, particle texture, and mineralogical residence phase(s) of environmentally important elements can be used to anticipate potential environmental challenges. Resources spent on initial characterization result in lower uncertainties of potential environmental impacts and possible cost savings associated with remediation and closure. Examples illustrate mineralogical and textural characterization of fluvial tailings material from the upper Arkansas River in Colorado.

  9. Development of characterization methods applied to radioactive wastes and waste packages

    International Nuclear Information System (INIS)

    Guy, C.; Bienvenu, Ph.; Comte, J.; Excoffier, E.; Dodi, A.; Gal, O.; Gmar, M.; Jeanneau, F.; Poumarede, B.; Tola, F.; Moulin, V.; Jallu, F.; Lyoussi, A.; Ma, J.L.; Oriol, L.; Passard, Ch.; Perot, B.; Pettier, J.L.; Raoux, A.C.; Thierry, R.

    2004-01-01

    This document is a compilation of R and D studies carried out in the framework of the axis 3 of the December 1991 law about the conditioning and storage of high-level and long lived radioactive wastes and waste packages, and relative to the methods of characterization of these wastes. This R and D work has permitted to implement and qualify new methods (characterization of long-lived radioelements, high energy imaging..) and also to improve the existing methods by lowering detection limits and reducing uncertainties of measured data. This document is the result of the scientific production of several CEA laboratories that use complementary techniques: destructive methods and radiochemical analyses, photo-fission and active photonic interrogation, high energy imaging systems, neutron interrogation, gamma spectroscopy and active and passive imaging techniques. (J.S.)

  10. Characterization of radioactive waste forms. Volume 2

    International Nuclear Information System (INIS)

    Smith, D.L.; Green, T.H.

    1989-01-01

    This document is the second yearbook for Task 3 of the European Communities 1985-89 programme of research on radioactive waste management and disposal carried out by public organizations and private firms in the Community through cost-sharing contracts with the Commission of the European Communities. The report, in two volumes, describes progress made in 1987 within the field of Task 3: Testing and evaluation of conditioned waste and engineered barriers. The first volume of the report covers Item 3.1 Characterization of low and medium level radioactive waste forms and Item 3.5. Development of test methods for quality assurance. The second volume covers Item 3.2: High-level and alpha waste characterization and Item 3.3: Other engineered barriers. Item 3.4 on the round robin study will be treated in a separate report

  11. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). This experimental-waste characterization program is only one part of the WIPP Test Phase, both in the short- and long-term, to quantify and evaluate the characteristics and behavior of transuranic (TRU) wastes in the repository environment. Other parts include the bin-scale and alcove tests, drum-scale tests, and laboratory experiments. In simplified terms, the purpose of the Program is to provide chemical, physical, and radiochemical data describing the characteristics of the wastes that will be emplaced in the WIPP, while the remaining WIPP Test Phase is directed at examining the behavior of these wastes in the repository environment. 50 refs., 35 figs., 33 tabs

  12. General procedure to characterize hazardous waste contaminated with radionuclides

    International Nuclear Information System (INIS)

    Vokal, A.; Svoboda, K.; Necasova, M.

    2002-04-01

    The report is structured as follows: Overview of current status of characterization of hazardous wastes contaminated with radionuclides (HWCTR) in the Czech Republic (Legislative aspects; Categorization of HWCwR; Overview of HWCwR emerging from workplaces handling ionizing radiation sources; Mixed waste management in the Czech Republic); General procedure to characterized wastes of the HWCwR type (Information needed from the waste producer; Waste analysis plan - description of waste treatment facilities, verification of wastes, selection of waste parameters followed, selection of sampling method, selection of test methods, selection of frequency of analyses; Radiation protection plan; Non-destructive methods of verification of waste - radiography/tomography, dosimetric inspection, measuring instrumentation, methods usable for the determination of volume and surface activities of materials; Non-destructive invasive methods - internal pressure measurement and gas analysis, endoscopic examination, visual inspection; Destructive methods - sampling, current equipment at Nuclear Research Institute Rez; Identification of hazardous components in waste - chemical screening of mixed wastes; Assessment of immobilization waste matrices; Assessment of packaging; Safety analyses; QA and QC). (P.A.)

  13. Characterization of radioactive organic liquid wastes

    International Nuclear Information System (INIS)

    Hernandez A, I.; Monroy G, F.; Quintero P, E.; Lopez A, E.; Duarte A, C.

    2014-10-01

    With the purpose of defining the treatment and more appropriate conditioning of radioactive organic liquid wastes, generated in medical establishments and research centers of the country (Mexico) and stored in drums of 208 L is necessary to characterize them. This work presents the physical-chemistry and radiological characterization of these wastes. The samples of 36 drums are presented, whose registrations report the presence of H-3, C-14 and S-35. The following physiochemical parameters of each sample were evaluated: ph, conductivity, density and viscosity; and analyzed by means of gamma spectrometry and liquid scintillation, in order to determine those contained radionuclides in the same wastes and their activities. Our results show the presence of H-3 (61%), C-14 (13%) and Na-22 (11%) and in some drums low concentrations of Co-60 (5.5%). In the case of the registered drums with S-35 (8.3%) does not exist presence of radioactive material, so they can be liberated without restriction as conventional chemical wastes. The present activities in these wastes vary among 5.6 and 2312.6 B g/g, their ph between 2 and 13, the conductivities between 0.005 and 15 m S, the densities among 1.05 and 1.14, and the viscosities between 1.1 and 39 MPa. (Author)

  14. Accelerator Production of Tritium Waste Characterization and Certification Challenges

    International Nuclear Information System (INIS)

    Ades, M.J.; England, J.L.; Nowacki, P.L.; Hane, R.; Tempel, K.L.; Pitcher, E.; Cohen, H.S.

    1998-06-01

    This paper summaries the processes and methods APT used for the identification and classification of the waste streams, the characterization and certification of the waste streams, and waste minimization

  15. Tank waste remediation system characterization project quality policies. Revision 1

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  16. Characterization of low and medium level radioactive waste forms

    International Nuclear Information System (INIS)

    Sambell, R.A.J.

    1983-01-01

    The work reported was carried out during the first year of the Commission of the European Community's programme on the characterization of low and medium level waste forms. Ten reference waste forms plus others of special national interest have been identified covering PWR, BWR, GCR and reprocessing wastes. The immobilising media include the three main matrices: cement, polymers and bitumen, and a glass. Characterization is viewed as one input to quality assurance of the waste form and covers: waste-matrix compatibility, radiation effects, leaching, microbiological attack, shrinkage and swelling, ageing processes and thermal effects. The aim is a balanced programme of comparative data, predictive modelling and an undserstanding of basic mechanisms

  17. Application of digital radiography for the non-destructive characterization of radioactive waste packages

    International Nuclear Information System (INIS)

    Lierse, C.; Goebel, H.; Kaciniel, E.; Buecherl, T.; Krebs, K.

    1995-01-01

    Digital radiography (DR) using gamma-rays is a powerful tool for the non-destructive determination of various parameters which are relevant within the quality control procedure of radioactive waste packages prior to an interim storage or a final disposal. DR provides information about the waste form and the extent of filling in a typical container. It can identify internal structures and defects, gives their geometric dimensions and helps to detect non-declared inner containers, shielding materials etc. From a digital radiographic image the waste matrix homogeneity may be determined and mean attenuation coefficients as well as density values for selected regions of interest can be calculated. This data provides the basis for an appropriate attenuation correction of gamma emission measurements (gamma scanning) and makes a reliable quantification of gamma emitters in waste containers possible. Information from DR measurements are also used for the selection of interesting height positions of the object which are subsequently inspected in more detail by other non-destructive methods, e. g. by transmission computerized tomography (TCT). The present paper gives important technical specifications of an integrated tomography system (ITS) which is used to perform digital radiography as well as transmission/emission computerized tomography (TCT/ECT) on radioactive waste packages. It describes the DR mode and some of its main applications and shows typical examples of radiographs of real radioactive waste drums

  18. Characterization of Hanford tank wastes containing ferrocyanides

    International Nuclear Information System (INIS)

    Tingey, J.M.; Matheson, J.D.; McKinley, S.G.; Jones, T.E.; Pool, K.H.

    1993-02-01

    Currently, 17 storage tanks on the Hanford site that are believed to contain > 1,000 gram moles (465 lbs) of ferrocyanide compounds have been identified. Seven other tanks are classified as ferrocyanide containing waste tanks, but contain less than 1,000 gram moles of ferrocyanide compounds. These seven tanks are still included as Hanford Watch List Tanks. These tanks have been declared an unreviewed safety question (USQ) because of potential thermal reactivity hazards associated with the ferrocyanide compounds and nitrate and nitrite. Hanford tanks with waste containing > 1,000 gram moles of ferrocyanide have been sampled. Extensive chemical, radiothermical, and physical characterization have been performed on these waste samples. The reactivity of these wastes were also studied using Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis. Actual tank waste samples were retrieved from tank 241-C-112 using a specially designed and equipped core-sampling truck. Only a small portion of the data obtained from this characterization effort will be reported in this paper. This report will deal primarily with the cyanide and carbon analyses, thermal analyses, and limited physical property measurements

  19. Characterization of low level mixed waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Hepworth, E.; Montoya, A.; Holizer, B.

    1995-01-01

    The characterization program was conducted to maintain regulatory compliance and support ongoing waste treatment and disposal activities. The characterization team conducted a characterization review of wastes stored at the Laboratory that contain both a low-level radioactive and a hazardous component. The team addressed only those wastes generated before January 1993. The wastes reviewed, referred to as legacy wastes, had been generated before the implementation of comprehensive waste acceptance documentation procedures. The review was performed to verify existing RCRA code assignments and was required as part of the Federal Facility Compliance Agreement (FFCA). The review entailed identifying all legacy LLMW items in storage, collecting existing documentation, contacting and interviewing generators, and reviewing code assignments based upon information from knowledge of process (KOP) as allowed by RCRA. The team identified 7,546 legacy waste items in the current inventory, and determined that 4,200 required further RCRA characterization and documentation. KOP characterization was successful for accurately assigning RCRA codes for all but 117 of the 4,200 items within the scope of work. As a result of KOP interviews, 714 waste items were determined to be non-hazardous, while 276 were determined to be non-radioactive. Other wastes were stored as suspect radioactive. Many of the suspect radioactive wastes were certified by the generators as non-radioactive and will eventually be removed

  20. Early identification and characterization of waste

    International Nuclear Information System (INIS)

    Vandevelde, L.; Carchon, R.

    1998-01-01

    At the Belgian Nuclear Research Centre SCK-CEN, destructive and non-destructive analytical techniques are developed in the framework of activities related to the characterization of radioactive waste. This program aims to measure the inventory of critical key-nuclides in different waste streams and to identify and develop correlations between those isotopes. Main activities and results in 1997 are described

  1. A waste characterization monitor for low-level radioactive waste management

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.; Kupca, S.; Hippola, K.B.

    1985-06-01

    The exploitation of nuclear processes and technology for the benefit of Canadians results in the routine generation of approximately 12 000 m 3 of solid low-level radioactive waste annually. To protect the public and the environment, this waste must be isolated for the duration of its potential hazard. In Canada, current planning foresees the development and use of a range of storage and disposal facilities exhibiting differing containment capabilities. To demonstrate adequate isolation safety and to minimize overall costs, the radionuclide content of waste items must be quantified so that the radiological hazards of each waste item can be matched to the isolation capabilities of specific containment facilities. This paper describes a non-invasive, waste characterization monitor that is capable of quantifying the radionuclide content of low-level waste packages to the 9 Bq/g (250 pCi/g) level. The assay technique is based on passive gamma-ray spectroscopy where the concentration of gamma-ray emitting radionuclides in a waste item can be estimated from the analysis of the gamma-ray spectra of the item and calibrated standards

  2. Obtaining and characterizing waste from red ceramics submitted to different conditions of burning

    International Nuclear Information System (INIS)

    Gomes, N.L.; Nascimento, R.L.P do; Ferreira, H.S.; Macedo, D.A. de; Dutra, R.P.S.

    2014-01-01

    One of the present industrial wastes generated in large quantities is the residue from the burning of the clay industry products, whether for breach of these products or are outside the technical specification. In this paper an analysis of the waste products produced in the laboratory under different thermal processing conditions, with varying firing temperatures of 500, 700, 900 and 1100 ° C was performed. The residues were characterized by X-ray fluorescence, X-ray diffraction and thermal analysis. The results show that the firing conditions influence the generated phases and thermal behavior of waste, which must have specific applications for their use. (author)

  3. Management of radioactive wastes from non-power applications. The Cuban experience

    International Nuclear Information System (INIS)

    Benitez, J.C.; Salgado, M.; Jova, L.

    2001-01-01

    ; Safety analysis for Cuban long term Storage Facility; Decommissioning of small nuclear facilities; Conditioning of disused sealed sources; Management of disused high activity radioactive sources; Management of disused long-lived radioactive sources. Expert Missions in Latin-America Region. CPHR specialists have participated in some IAEA expert missions in Latin America countries, such as: Radioactive Decontamination of brachytherapy areas at Oncology Institute 'Dr. Heriberto Pieter' in Dominican Republic (1996); Radiological Characterization and Relocation of Radioactive Wastes at the INEA - Colombia (1996); Conditioning of Spent Radium Sources for Safe Long Term Storage in Colombia (1997); Review draft regulation on Waste Safety in Panama (1998); Organizers and Lecturers in the Regional Training Course on 'Management of Radioactive Waste from Nuclear Applications' (1999); Assessment of current situation on Waste Safety in Dominican Republic and to review draft regulation on Waste Safety (2000); Lecturer in Regional Training Course on Control of Discharges of Radioactive Materials related with medical and industrial applications (2000). The Cuban Radioactive Waste Management program includes all elements of an integrated system, that means laws and regulations, operating and regulating organization, systems for processing and long term storage of radioactive wastes. In parallel with the operation of these facilities, an R and D program is in progress, covering different aspects of radioactive waste management. The gained practical experience in radioactive decontamination and decommissioning of small facilities is one of the most important achievements of the nuclear programme in Cuba. (author)

  4. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  5. Municipal solid waste combustion: Fuel testing and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  6. Characterization of wastes from fission 99 Mo production

    International Nuclear Information System (INIS)

    Endo, L.S.; Dellamano, J.C.

    1992-07-01

    This work is a preliminary study on waste-streams generated in a fission 99 Mo production plant, their characterization and quantification. The study is based on a plant whose 99 Mo production process is the alkaline dissolution of U-target. The target is made of 1 g of enriched 235 U, therefore most of radionuclides present in the waste-streams are fission products. All the radionuclides inventories were estimated based on ORIGEN-2 Code. The characterization was done as a primary stage for the establishment of waste management plan, which should be subject for further study. (author)

  7. Characterization of waste from nanoenabled products

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov

    or particle number in the products. Overall, the most common product applications for ENMs are the “Health & Fitness” or “Home & Garden” sector, which was still the case, despite the increasing number of nanoproducts. The product inventories PEN CPI and The Nanodatabase are based on manufacturers’ claims...... and in a range of product applications (e.g. in cosmetics, textiles and food containers). By utilising The Nanodatabase product inventory, a method was developed for analysing the distribution of ENMs in waste, which involved the estimation of ENM fate in selected waste treatments based on their main matrix...... of nanoproducts available, the potential release of ENMs from these products would have to be understood to perform a risk assessment of these products. Since ENMs are considered possible contaminants of the solid waste, it is important to include nano-specific characterisation tests in waste characterisation...

  8. Characterization study of industrial waste glass as starting material ...

    African Journals Online (AJOL)

    In present study, an industrial waste glass was characterized and the potential to assess as starting material in development of bioactive materials was investigated. A waste glass collected from the two different glass industry was grounded to fine powder. The samples were characterized using X-ray fluorescence (XRF), ...

  9. Microstructural characterization of nuclear-waste ceramics

    International Nuclear Information System (INIS)

    Ryerson, F.J.; Clarke, D.R.

    1982-01-01

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables

  10. Municipal Solid Waste Characterization according to Different Income Levels: A Case Study

    Directory of Open Access Journals (Sweden)

    Huseyin Kurtulus Ozcan

    2016-10-01

    Full Text Available Solid waste generation and characterization are some of the most important parameters which affect environmental sustainability. Municipal solid waste (MSW characterization depends on social structure and income levels. This study aims to determine the variations in waste components within MSW mass by income levels and seasonal conditions following the analysis conducted on the characterization of solid wastes produced in the Kartal district of the province of Istanbul, which is the research area of this study. To this end, 1.9 tons of solid waste samples were collected to represent four different lifestyles (high, medium, and low income levels, and downtown in the winter and summer periods, and characterization was made on these samples. In order to support waste characterization, humidity content and calorific value analyses were also conducted and various suggestions were brought towards waste management in line with the obtained findings. According to the results obtained in the study, organic waste had the highest rate of waste mass by 57.69%. Additionally, significant differences were found in municipal solid waste components (MSWC based on income level. Average moisture content (MC of solid waste samples was 71.1% in moisture analyses. The average of calorific (heating value (HHV was calculated as 2518.5 kcal·kg−1.

  11. Characterization of Hanford waste and the role of historic modeling

    International Nuclear Information System (INIS)

    Simpson, B.C.; Eberlein, S.J.; Brown, T.M.; Brevick, C.H.; Angew, S.F.

    1996-02-01

    The tank waste characterization process is an integral part of the overall effort to identify, quantify and control the hazards associated with radioactive wastes stored in underground tanks at the Hanford Reservation. Characterization of the current waste tank contents through the use of waste sampling is only partly effective. The historic records must be exploited as much as possible. A model generates an estimate of the current contents of each tank, built up from the estimated volumes of each of the defined waste components. The model combines the best estimate of the waste stream composition for each of the major waste generating processes. All available waste transfer records were compiled and integrated to track waste tank fill history. The behavior of the waste materials in the tanks was modeled, based on general scientific principles augmented with specific measurement data. Sample analysis results were not used directly to generate any of the tank contents estimates, but were used to determine the values of variable parameters such as the solubility. By considering all available information first (including historical model estimates, surveillance data, and past sample analysis results), future sampling resources and other characterization efforts can best be spent on tanks that will provide the largest returns of information

  12. Characterization of waste streams on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Osborne-Lee, I.W.; Jackson, A.M.; Butcher, B.T. Jr.; Van Cleve, J.E. Jr.

    1987-01-01

    The Oak Ridge Reservation (ORR) plants generate solid low-level waste (LLW) that must be disposed of or stored on-site. The available disposal capacity of the current sites is projected to be fully utilized during the next decade. An LLW disposal strategy has been developed by the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program as a framework for bringing new, regulator-approved disposal capacity to the ORR. An increasing level of waste stream characterization will be needed to maintain the ability to effectively manage solid LLW by the facilities on the ORR under the new regulatory scenario. In this paper, current practices for solid LLW stream characterization, segregation, and certification are described. In addition, the waste stream characterization requirements for segregation and certification under the LLWDDD Program strategy are also examined. 6 refs., 3 figs., 4 tabs

  13. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  14. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information

  15. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  16. Characterization of marble waste for manufacture of artificial stone

    International Nuclear Information System (INIS)

    Aguiar, M.C.; Silva, A.G.P.

    2016-01-01

    This work aims to study the characterization of marble waste for the manufacture of artificial stone. The characterization of the waste was performed through X-ray fluorescence, X-ray diffraction, particle size distribution, scanning electron microscopy and confocal microscopy. The results indicated that the marble waste presents typical composition of a dolomite, calcite marble, and their minerals are: Calcite (CaCO_3) and dolomite (MgCa (CO_3)_2. The waste presented predominance of particles below 200 mesh screen. This may be interesting for the production of artificial stone better visual appearance, such as marmoglass, for example. The results indicate that the use of marble waste for production of artificial stone is feasible and environmentally friendly alternative to give a destination for this waste generated in the order of millions of tons representing serious environmental problem. (author)

  17. Identification and characterization of radioactive wastes

    International Nuclear Information System (INIS)

    RANDRIAMORA, T.H.

    2007-01-01

    As the goal of the radioactive waste management is to protect human health and the environment, without imposing excessive constraints to the future generations, this work consists with of the identification of the radioactive waste existing in Madagascar, theirs characterizations for their later conditioning and their final storage. In this work, we used a dosimeter GRAETZ X5 C and a portable spectrometer EXPLORANIUM GR 135. These apparatuses have a great advantage at the user level because of their capacity to measure the equivalent dose rate, to identify, search and locate radiocative elements. The establishment of national center for radioactive waste management for the conditioning and the storage of spent sealed sources is the best solution for radioactive waste management in Madagascar. [fr

  18. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  19. Radioisotope Characterization of HB Line Low Activity Waste

    International Nuclear Information System (INIS)

    Snyder, S.J.

    1999-01-01

    The purpose of this document is to provide a physical, chemical, hazardous and radiological characterization of Low-Level Waste (LLW) generated in HB-Line as required by the 1S Manual, Savannah River Site Waste Acceptance Criteria Manual

  20. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2009-01-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  1. Characterization and process technology capabilities for Hanford tank waste disposal

    International Nuclear Information System (INIS)

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory's (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory's extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory's radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations

  2. Geophysical methods for fracture characterization in and around potential sites for nuclear waste disposal

    International Nuclear Information System (INIS)

    Majer, E.L.; Lee, K.H.; Morrison, H.F.

    1992-08-01

    Historically, geophysical methods have been used extensively to successfully explore the subsurface for petroleum, gas, mineral, and geothermal resources. Their application, however, for site characterization, and monitoring the performance of near surface waste sites or repositories has been somewhat limited. Presented here is an overview of the geophysical methods that could contribute to defining the subsurface heterogeneity and extrapolating point measurements at the surface and in boreholes to volumetric descriptions in a fractured rock. In addition to site characterization a significant application of geophysical methods may be in performance assessment and in monitoring the repository to determine if the performance is as expected

  3. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  4. Application of ICP-MS radionuclide analysis to 'Real World' samples of Department of Energy radioactive waste

    International Nuclear Information System (INIS)

    Meeks, A.M.; Giaquinto, J.M.; Keller, J.M.

    1998-01-01

    Disposal of Department of Energy (DOE) radioactive waste into repositories such as the Waste Isolation Pilot Plant (WIPP) and the Nevada Test Site (NTS) requires characterization to ensure regulatory and transportation requirements are met and to collect information regarding chemistry of the waste for processing concerns. Recent addition of an inductively coupled plasma quadrupole mass spectrometer in a radioactive contaminated laboratory at the Oak Ridge National Laboratory (ORNL) has allowed the evaluation of advantages of using ICP-MS over traditional techniques for some of these characterization needs. The measurement of long-lived beta nuclides (i.e. 99 Tc) by ICP-MS has resulted in improved detection limits and accuracy than the traditional counting techniques as well as reducing the need for separation/purification techniques which increase personnel exposure to radiation. Using ICP-MS for the measurement of U isotopes versus the traditional Thermal Ionization Mass Spectrometer (TIMS) technique has reduced cost and time by more than half while still maintaining the needed accuracy to determine risk assessment of the waste tanks. In addition, the application of ICP-MS to ORNL waste tank characterization has provided the opportunity to estimate non-routine radionuclides (i.e. 135 Cs and 151 Sm) and non-routine metals (i.e. Li, Ti, rare earths, etc.) using a rapid low cost screening method. These application methodologies and proficiencies on ORNL waste samples are summarized throughout the paper. (author)

  5. Identification and characterization of Department of Energy special-case radioactive waste

    International Nuclear Information System (INIS)

    Williams, R.E.; Kudera, D.E.

    1990-01-01

    This paper identifies and characterizes Department of Energy (DOE) special-case radioactive wastes. Included in this paper are descriptions of the special-case waste categories and their volumes and curie contents, as well as discussions of potential methods for management of these special-case wastes. Work on extensive inventories of DOE-titled special-case waste are still in progress. All radioactive waste is characterized to determine its waste category. Some wastes may have characteristics of more than one of the major waste types. These characteristics may prevent such wastes from being managed as typical high-level, low-level, or transuranic waste. DOE has termed these wastes special-case wastes. Special-case wastes may require special management and disposal schemes. Because of these special considerations, DOE-Headquarters (HQ) required the identification of all existing and potential DOE-owned special case waste to determine future management planning and funding requirements. The inventory effort includes all commercially held, DOE-owned radioactive materials

  6. Application of geographic information systems to waste minimization efforts at the national laboratories

    International Nuclear Information System (INIS)

    Lyttle, T.W.; Smith, D.M.; Burns, M.; Weinrach, J.B.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is often difficult in part due to a lack of tools to assist the generators themselves in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This Process Waste Assessment (PWA) system is an application constructed within the Process Modeling System and currently being integrated with the InFoCAD Geographic Information System (GIS). The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation framework written using the Common Lisp Object System (CLOS). Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste stream and generation of facility profiles for materials consumption, resource utilization and worker exposure. Development activities include integration with the LANL facilities management Geographic Information System (GIS) and provisions for a Best Available Technologies (BAT) database. The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results

  7. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning

  8. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  9. Transuranic contaminated waste form characterization and data base

    International Nuclear Information System (INIS)

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described

  10. Actinide analytical program for characterization of Hanford waste

    International Nuclear Information System (INIS)

    Johnson, S.J.; Winters, W.I.

    1977-01-01

    The objective of this program has been to develop faster, more accurate methods for the concentration and determination of actinides at their maximum permissible concentration (MPC) levels in a controlled zone. These analyses are needed to characterize various forms of Hanford high rad waste and to support characterization of products and effluents from new waste management processes. The most acceptable methods developed for the determination of 239 Pu, 238 Pu, 237 Np, 241 Am, and 243 Cm employ solvent extraction with the addition of tracer isotopes. Plutonium and neptunium are extracted from acidified waste solutions into Aliquat-336. Americium and curium are then extracted from the waste solution at the same acidity into dihexyl-N,N-diethylcarbamylmethylenephosphonate (DHDECMP). After back extraction into an aqueous matrix, these actinides are electrodeposited on steel disks for alpha energy analysis. Total uranium and total thorium are also isolated by solvent extraction and determined spectrophotometrically

  11. Solid waste characterization and recycling potential for a university campus

    International Nuclear Information System (INIS)

    Armijo de Vega, Carolina; Ojeda Benitez, Sara; Ramirez Barreto, Ma. Elizabeth

    2008-01-01

    Integrated waste management systems are one of the greatest challenges for sustainable development. For these systems to be successful, the first step is to carry out waste characterization studies. In this paper are reported the results of a waste characterization study performed in the Campus Mexicali I of the Autonomous University of Baja California (UABC). The aim of this study was to set the basis for implementation of a recovery, reduction and recycling waste management program at the campus. It was found that the campus Mexicali I produces 1 ton of solid wastes per day; more than 65% of these wastes are recyclable or potentially recyclable. These results showed that a program for segregation and recycling is feasible on a University Campus. The study also showed that the local market for recyclable waste, under present conditions - number of recycling companies and amounts of recyclables accepted - can absorb all of these wastes. Some alternatives for the potentially recyclables wastes are discussed. Finally some strategies that could be used to reduce waste at the source are discussed as well

  12. Characterization of conditioned low- and intermediate-level wastes

    International Nuclear Information System (INIS)

    Alexandre, D.; Pottier, P.; Billon, A.; Bourdrez, J.; Nomine, J.C.; Tassigny, C. de

    1983-01-01

    All radioactive wastes must be conditioned to satisfy the criteria for disposal of them in the ground. In accordance with the specifications laid down by the Agence nationale pour la gestion des dechets radioactifs (French National Agency for Radioactive Waste Management - ANDRA), waste characterization records must be drawn up, with the relevant tests being carried out under approved conditions. The paper summarizes the principal results acquired in laboratories of the French Atomic Energy Commission (CEA) under the characterization programme, which was initiated by ANDRA and to which the Commission of European Communities (CEC) has contributed within the framework of its five-year indirect-action programme (1980-84). The principal aspects of these characterization tests are concerned with leaching from normal-sized packages, techniques measuring the radioisotope diffusion rate in thermosetting resins, study of the chemical forms of the radioisotopes released and assessment of the resistance of the coatings to the action of micro-organisms in the soil. (author)

  13. Characterization of granite waste for use in red ceramic

    International Nuclear Information System (INIS)

    Aguiar, M.C.; Monteiro, S.N.; Vieira, C.M.F.; Borlini, M.C.

    2011-01-01

    This work aims to study the characterization of the granite waste from the city of Santo Antonio de Padua-RJ for the use in red ceramic. The chemical, physical and morphological characterization of the waste was performed by chemical analysis, X-ray diffraction, particle size distribution, thermal analysis and scanning electron microscopy (SEM). The results indicated that this waste is a material with great potential to be used as a component of ceramic body due to its capacity to act as flux during the firing, and to improve the properties of the ceramic when is incorporate. (author)

  14. Characterization of Savannah River Plant waste glass

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria

  15. Characterization of ecofriendly polyethylene fiber from plastic bag waste

    Science.gov (United States)

    Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus

    2017-08-01

    This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.

  16. Characterization of mixed waste for shipment to TSD Facilities Program

    International Nuclear Information System (INIS)

    Chandler, K.; Goyal, K.

    1995-01-01

    In compliance with the Federal Facilities Compliance Agreement, Los Alamos National Laboratory (LANL) is striving to ship its low-level mixed waste (LLMW) off-site for treatment and disposal. In order to ship LLMW off site to a commercial facility, LANL must request exemption from the DOE Order 5820.2A requirement that LLMW be shipped only to Department of Energy facilities. Because the process of obtaining the required information and approvals for a mixed waste shipment campaign can be very expensive, time consuming, and frustrating, a well-planned program is necessary to ensure that the elements for the exemption request package are completed successfully the first time. LANL has developed such a program, which is cost- effective, quality-driven, and compliance-based. This program encompasses selecting a qualified analytical laboratory, developing a quality project-specific sampling plan, properly sampling liquid and solid wastes, validating analytical data, documenting the waste characterization and decision processes, and maintaining quality records. The products of the program are containers of waste that meet the off-site facility's waste acceptance criteria, a quality exemption request package, documentation supporting waste characterization, and overall quality assurance for the process. The primary goal of the program is to provide an avenue for documenting decisions, procedures, and data pertinent to characterizing waste and preparing it for off-site treatment or disposal

  17. Application of the iron-enriched basalt waste form for immobilizing commercial transuranic waste

    International Nuclear Information System (INIS)

    Owen, D.E.

    1981-08-01

    The principal sources of commercial transuranic (TRU) waste in the United States are identified. The physical and chemical nature of the wastes from these sources are discussed. The fabrication technique and properties of iron-enriched basalt, a rock-like waste form developed for immobilizing defense TRU wastes, are discussed. The application of iron-enriched basalt to commercial TRU wastes is discussed. Review of commercial TRU wastes from mixed-oxide fuel fabrication, light water reactor fuel reprocessing, and miscellaneous medical, research, and industrial sources, indicates that iron-enriched basalt is suitable for most types of commercial TRU wastes. Noncombustible TRU wastes are dissolved in the high temperature, oxidizing iron-enriched basalt melt. Combustible TRU wastes are immobilized in iron-enriched basalt by incinerating the wastes and adding the TRU-bearing ash to the melt. Casting and controlled cooling of the melt produces a devitrified, rock-like iron-enriched basalt monolith. Recommendations are given for testing the applicability of iron-enriched basalt to commercial TRU wastes

  18. Laboratory characterization and vitrification of Hanford radioactive high-level waste

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-05-01

    Radioactive high-level wastes generated at the Department of Energy's Hanford Site are stored in underground carbon steel tanks. Two double-shell tanks contain neutralized current acid waste (NCAW) from the reprocessing of irradiated nuclear fuel in the Plutonium and Uranium Extraction (PUREX) Plant. The tanks were sampled for characterization and waste immobilization process/product development. The high-level waste generated in PUREX was denitrated with sugar to form current acid waste (CAW). The CAW was ''neutralized'' to a pH of approximately 14 by adding sodium hydroxide to reduce corrosion of the tanks. This ''neutralized'' waste is called Neutralized Current Acid Waste. Both precipitated solids and liquids are stored in the NCAW waste tanks. The NCAW contains small amounts of plutonium and most of the fission products and americium from the irradiated fuel. NCAW also contains stainless steel corrosion products, and iron and sulfate from the ferrous sulfamate reductant used in the PUREX process. The NCAW will be retrieved, pretreated, and immobilized prior to final disposal. Pretreatment consists of water washing the precipitated NCAW solids for sulfate and soluble salts removal as a waste reduction step prior to vitrification. This waste is expected to be the first waste type to be retrieved and vitrified in the Hanford Waste Vitrification Plant (HWVP). A characterization plan was developed that details the processing of the small-volume NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical, and radiochemical properties were measured throughout these process steps. The results of nonradioactive simulant tests were used to develop appropriate pretreatment and vitrification process steps. The processing and characterization of simulants and actual NCAW tank samples are used to evaluate the operation of these processes. 3 refs., 1 fig., 4 tabs

  19. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  20. Characterization of the MVST waste tanks located at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

  1. Characterization of the MVST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ''denatured'' as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP

  2. Application of geographic information systems to waste minimization efforts at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lyttle, T.W.; Smith, D.M.; Burns, M.; Weinrach, J.B.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is often difficult in part due to a lack of tools to assist the generators themselves in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This Process Waste Assessment (PWA) system is an application constructed within the Process Modeling System and currently being integrated with the InFoCAD Geographic Information System (GIS) . The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation framework written using the Common Lisp Object System (CLOS) . Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste streams and generation of facility profiles for materials consumption, resource utilization and worker exposure. Development activities include integration with the LANL facilities management Geographic Information System (GIS) and provisions for a Best Available Technologies (BAT) database. The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results

  3. Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue

    International Nuclear Information System (INIS)

    Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

    1997-12-01

    This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues

  4. Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

    1997-12-01

    This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues.

  5. Technology applications for radioactive waste minimization

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1994-01-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry

  6. Characterization of the BVEST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-01-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  7. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  8. Real-time radiography, digital radiography, and computed tomography for nonintrusive waste drum characterization

    International Nuclear Information System (INIS)

    Martz, H.E.; Schneberk, D.J.; Roberson, G.P.

    1994-07-01

    We are investigating and developing the application of x-ray nondestructive evaluation (NDE) and gamma-ray nondestructive assay (NDA) methods to nonintrusively characterize 208-liter (55-gallon) mixed waste drums. Mixed wastes contain both hazardous and radioactive materials. We are investigating the use of x-ray NDE methods to verify the content of documented waste drums and determine if they can be used to identify hazardous and nonconforming materials. These NDE methods are also being used to help waste certification and hazardous waste management personnel at LLNL to verify/confirm and/or determine the contents of waste. The gamma-ray NDA method is used to identify the intrinsic radioactive source(s) and to accurately quantify its strength. The NDA method may also be able to identify some hazardous materials such as heavy metals. Also, we are exploring techniques to combine both NDE and NDA data sets to yield the maximum information from these nonintrusive, waste-drum characterization methods. In this paper, we report an our x-ray NDE R ampersand D activities, while our gamma-ray NDA activities are reported elsewhere in the proceedings. We have developed a data, acquisition scanner for x-ray NDE real-time radiography (RTR), as well as digital radiography transmission computed tomography (TCT) along with associated computational techniques for image reconstruction, analysis, and display. We are using this scanner and real-waste drums at Lawrence Livermore National Laboratory (LLNL). In this paper, we discuss some issues associated with x-ray imaging, describe the design construction of an inexpensive NDE drum scanner, provide representative DR and TCT results of both mock- and real-waste drums, and end with a summary of our efforts and future directions. The results of these scans reveal that RTR, DR, and CT imaging techniques can be used in concert to provide valuable information about the interior of low-level-, transuranic-, and mock-waste drums without

  9. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    International Nuclear Information System (INIS)

    Dziewinska, K.M.

    1998-01-01

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities

  10. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1990-05-01

    A comprehensive Waste Characterization Program (WCP) is in place at Chalk River Laboratories to support disposal projects. The WCP is responsible for: 1) specifying the manifests for waste shipments; 2) developing and maintaining central databases for waste inventories and analytical data; and 3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management Quality Assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems, and for maintaining a QA program for disposal operations

  11. Characterization of past and present waste streams from the 325 Radiochemistry Building

    International Nuclear Information System (INIS)

    Pottmeyer, J.A.; Weyns-Rollosson, M.I.; Dicenso, K.D.; DeLorenzo, D.S.; Duncan, D.R.

    1993-12-01

    The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site

  12. Synthesis and characterization of carboxymethyl cellulose from office waste paper: A greener approach towards waste management

    International Nuclear Information System (INIS)

    Joshi, Gyanesh; Naithani, Sanjay; Varshney, V.K.; Bisht, Surendra S.; Rana, Vikas; Gupta, P.K.

    2015-01-01

    Highlights: • Carboxymethyl cellulose (CMC) was successfully prepared from waste paper. • CMC had maximum degree of substitution (DS) 1.07. • Rheological studies of CMC (DS, 1.07) showed non-Newtonian pseudoplastic behavior. • Characterization of CMC was done by FT-IR and NMR techniques. • Morphology of prepared CMC was studied by SEM. - Abstract: In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH 2 COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH 2 COONa respectively for 3 h reaction time. The rheological characteristics of 1–3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product

  13. Assessment of remote sensing technologies to discover and characterize waste sites

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring

  14. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  15. Characterization Report Operational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada Geotechnical Sciences

    2005-01-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report - Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations

  16. Tank farm waste characterization Technology Program Plan

    International Nuclear Information System (INIS)

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved

  17. Automated robotic workcell for waste characterization

    International Nuclear Information System (INIS)

    Dougan, A.D.; Gustaveson, D.K.; Alvarez, R.A.; Holliday, M.

    1993-01-01

    The authors have successfully demonstrated an automated multisensor-based robotic workcell for hazardous waste characterization. The robot within this workcell uses feedback from radiation sensors, a metal detector, object profile scanners, and a 2D vision system to automatically segregate objects based on their measured properties. The multisensor information is used to make segregation decisions of waste items and to facilitate the grasping of objects with a robotic arm. The authors used both sodium iodide and high purity germanium detectors as a two-step process to maximize throughput. For metal identification and discrimination, the authors are investigating the use of neutron interrogation techniques

  18. Application of artificial neural networks on the characterization of radioactive waste drums

    International Nuclear Information System (INIS)

    Potiens Junior, Ademar Jose; Hiromoto, Goro

    2011-01-01

    The methodology consist of system simulation of drum-detector by Monte Carlo for obtention of counting efficiency. The obtained data were treated and a neural artificial network (RNA) were constructed for evaluation of total activity of drum. For method evaluation measurements were performed in ten position parallel to the drum axis and the results submitted to the RNA. The developed methodology showed to be effective for isotopic characterization of gamma emitter radioactive wastes distributed in a heterogeneous way in a 200 litters drum. The objective of this work as to develop a methodology of analyse for quantification and localization of radionuclides not homogeneous distributed in a 200 liters drum based on the mathematical techniques

  19. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed

  20. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  1. Data for radioactive waste management and nuclear applications

    International Nuclear Information System (INIS)

    Stewart, D.C.

    1985-01-01

    This book is a specialized handbook on the management of radioactive waste, including information applicable to related applications. It consolidates information from many sources to develop techniques for dealing with radioactive waste management and features reports and other specialized data not available in libraries. It covers physical data, chemical data, types of radioactive wastes, and data for different operations

  2. Characterization of radioactive-waste drum contents using real-time x-radiography

    International Nuclear Information System (INIS)

    Barna, B.A.; Bishoff, J.R.; Reinhardt, W.W.

    1982-01-01

    Low-level transuranic (TRU) waste is stored in a retrievable manner at the Radioactive Waste Management Complex (RWMC) operated by EG and G Idaho, Inc., for the Department of Energy. The waste, consisting of contaminated rags, paper, plastic, laboratory glassware, tools, scrap metal, wood, electrical components and parts, sludges, etc., is packed in various sized sealed containers, including 55 gallon drums. Waste which can be accurately characterized will be sent to the Waste Isolation Pilot Plant (WIPP) in New Mexico for long term storage if it is certified to meet the WIPP waste acceptance criteria. EG and G Idaho, Inc. is planning to install a real-time x-ray system designed for the automated and semi-automated examination of low-level TRU waste containers including 30, 55, and 83 gallon drums, 4 x 4 x 7 foot plywood boxes, and 4 x 5 x 6 foot metal bins during 1982. This system, designed for production, is capable of examining up to 20,000 waste containers per year using automated container handling, and features real-time x-ray imaging with a 420 kV, 10 ma constant potential source, digital image processing equipment, and video taping facilities (every container examination is required to be taped, for archival documentation). Work planned for the near future involves tests using real-time neutron radiography for waste characterization as a complement to real-time x-ray radiography. Ultimately, the NDE examinations will be combined with automated nondestructive assay (NDA) techniques for complete characterization of a given waste container's contents

  3. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  4. Characterization plan for the immobilized low-activity waste borehole

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy's (DOE's) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment

  5. In situ vitrification applications to hazardous wastes

    International Nuclear Information System (INIS)

    Liikala, S.

    1989-01-01

    In Situ Vitrification is a new hazardous waste remediation alternative that should be considered for contaminated soil matrices. According to the authors the advantages of using ISV include: technology demonstrated at field scale; applicable to a wide variety of soils and contaminants; pyrolyzer organics and encapsulates inorganics; product durable over geologic time period; no threat of harm to the public from exposure; and applications available for barrier walls and structural support. The use of ISV on a large scale basis has thus far been limited to the nuclear industry but has tremendous potential for widespread applications to the hazardous waste field. With the ever changing regulations for the disposal of hazardous waste in landfills, and the increasing positive analytical data of ISV, the process will become a powerful source for on-site treatment and hazardous waste management needs in the very near future

  6. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    International Nuclear Information System (INIS)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-01-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration

  7. TWRS privatization support project waste characterization database development. Volume 1

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford under-ground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105; 241-AW-101, -103, and -105, 241-AZ-101 and-102; and 241-C-109. Sample data were assembled for sixteen radio nuclides and thirty five chemical analytes. The characterization data were provided to Pacific Northwest National Laboratory in support of the Tank Waste Remediation Services Privatization Support Project. The purpose of this report is to present the results and document the methodology used in preparing the waste characterization information data set to support the Tank Waste Remediation Services Privatization Support Project. This report describes the methodology used in assembling the waste characterization information and how that information was validated by a panel of independent technical reviewers. Also, contained in this report are the various data sets created., the master data set, a subset, and an unreviewed data set

  8. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  9. Physical chemistry characterization of soils of the Storage Center of Radioactive Wastes

    International Nuclear Information System (INIS)

    Hernandez T, U. O.; Fernandez R, E.; Monroy G, F.; Anguiano A, J.

    2011-11-01

    Any type of waste should be confined so that it does not causes damage to the human health neither the environment and for the storage of the radioactive wastes these actions are the main priority. In the Storage Center of Radioactive Wastes the radioactive wastes generated in Mexico by non energy applications are storage of temporary way. The present study is focused in determining the physical chemistry properties of the lands of the Storage Center of Radioactive Wastes like they are: real density, ph, conductivity percentage of organic matter and percentage of humidity. With what is sought to make a characterization to verify the reaction capacity of the soils in case of a possible flight of radioactive material. The results show that there are different density variations, ph and conductivity in all the soil samples; the ph and conductivity vary with regard to the contact time between the soil and their saturation point in water, for the case of the density due to the characteristics of the same soil; for what is not possible to establish a general profile, but is necessary to know the properties of each soil type more amply. Contrary case is the content of organic matter and humidity since both are in minor proportions. (Author)

  10. Physical and chemical characterization of waste wood derived biochars.

    Science.gov (United States)

    Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt

    2015-02-01

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification

  11. Waste Characterization Data Manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge National Laboratory (ORNL) Federal Facility Agreement (FFA), Section IX.G.1. Section IX.G.1 of the FFA requires waste characterizations be conducted and provided to EPA and TDEC for all LLLW tanks that are removed from service. These waste characterizations shall include the results of sampling and analysis of the tank contents, including wastes, liquids, and sludges. This manual was first issued as ORNL/ER-80 in June 1992. The waste characterization data were extracted from ORNL reports that described tank sampling and analysis conducted in 1988 for 32 out-of-service tanks. This revision of the manual contains waste characterization data for 54 tanks, including the 32 tanks from the 1988 sampling campaign (Sects. 2.1 through 2.32) and the 22 additional tanks from a subsequent sampling campaign in 1992 and 1993 (Sects. 2.33 through 2.54). Data are presented from analyses of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls (PCBs), pesticides, radiochemical compounds, and inorganic compounds. As additional data resulting from analyses of out-of-service tank samples become available, they will be added to this manual

  12. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  13. Waste Tank Vapor Characterization Project: Annual status report for FY 1995

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Fruchter, J.S.; Huckaby, J.L.; Birn, M.B.; McVeety, B.D.; Evans, J.C. Jr.; Pool, K.H.; Silvers, K.L.; Goheen, S.C.

    1995-11-01

    This report compiles information collected during the Fiscal Year 1995 pertaining to the waste tank vapor characterization project. Information covers the following topics: project management; organic sampling and analysis; inorganic sampling and analysis; waste tank vapor data reports; and the waste tanks vapor database

  14. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380 3 corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification

  15. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    International Nuclear Information System (INIS)

    Mctaggert, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  16. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9

  17. WCATS: Waste Documentation, Course No. 8504

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Sandy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-14

    This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.

  18. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  19. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  20. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  1. Los Alamos National Laboratory transuranic waste characterization and certification program - an overview of capabilities and capacity

    International Nuclear Information System (INIS)

    Rogers, P.S.Z.; Sinkule, B.J.; Janecky, D.R.; Gavett, M.A.

    1997-01-01

    The Los Alamos National Laboratory (LANL) has full capability to characterize transuranic (TRU) waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) for its projected opening. LANL TRU waste management operations also include facilities to repackage both drums of waste found not to be certifiable for WIPP and oversized boxes of waste that must be size reduced for shipment to WIPP. All characterization activities and repackaging are carried out under a quality assurance program designed to meet Carlsbad Area Office (CAO) requirements. The flow of waste containers through characterization operations, the facilities used for characterization, and the electronic data management system used for data package preparation and certification of TRU waste at LANL are described

  2. State Waste Discharge Permit application, 100-N Sewage Lagoon

    International Nuclear Information System (INIS)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond

  3. Identification and characterization of Department of Energy special-case radioactive waste

    International Nuclear Information System (INIS)

    Williams, R.E.; Kudera, D.E.

    1990-01-01

    This paper identifies and characterizes Department of Energy (DOE) special-case radioactive wastes. Included in this paper are descriptions of the special-case waste categories and their volumes and curie contents, as well as discussions of potential methods for management of these special-case wastes. Work on extensive inventories of DOE-titled special-case waste are still in progress. 1 tab

  4. Characterization of Fernald Silo 3 Waste

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.A.

    2001-04-04

    This report summarizes characterization results for uranium residues from the Fernald Environmental Management Project (FEMP) Operable Unit (OU-4). These residues are currently stored in a one-million-gallon concrete silo, Silo 3, at the DOE Fernald Site, Ohio. Characterization of the Silo 3 waste is the first part of a three part study requested by Rocky Mountain Remedial Services (RMRS) through a Work for others Agreement, WFO-00-007, between the Westinghouse Savannah River Company (WSRC) and RMRS. Parts 2 and 3 of this effort include bench- and pilot-scale testing.

  5. Application of ICP-MS radionuclide analysis to open-quotes real worldclose quotes samples of Department of Energy Radioactive Waste

    International Nuclear Information System (INIS)

    Meeks, A.M.; Giaquinto, J.M.; Keller, J.M.

    1997-01-01

    Disposal of Department of Energy (DOE) radioactive waste into repositories such as the Waste Isolation Pilot Plant (WIPP) and the Nevada Test Site (NTS) requires characterization to ensure regulatory and transportation requirements are met. Characterization is also used to collect information regarding chemistry of the waste for processing concerns. The range of characterization typically includes radio nuclide activity, RCRA metals and organic compounds, process metals, and risk assessment. Recent addition of an inductively coupled plasma quadrupole mass spectrometer in a radioactive contaminated laboratory at the Oak Ridge National Laboratory (ORNL) has provided cost savings, time savings, reduced personnel exposure to radiation, and in some cases, improved accuracy over the traditional techniques for radionuclides, risk assessment and metals analysis. Application of ICP-MS to ORNL waste tank characterization has also provided the opportunity to estimate never-before-measured radionuclides and metals without increased cost. Data from analyses of ORNL waste tank sludges and supernates indicate the benefit of using this technique over counting techniques and Thermal Ionization Mass Spectrometry (TIMS) for analysis of fission products and U isotopics as well as the ability to estimate certain radionuclides and metals for the first time in these tanks

  6. TRU Waste Inventory Collection and Work-Off Plans for the Centralization of TRU Waste Characterization/Certification at INL - On Your Mark - Get Set

    International Nuclear Information System (INIS)

    McTaggart, J.; Lott, S.

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage of Transuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification of TRU waste from the fourteen sites, thirteen of which are sites with small quantities of TRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization of this TRU waste will avoid the cost of building treatment, characterization, certification, and shipping capabilities at each of the small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all of the small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number of waste in containers that are over-packed into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume of much of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD. (authors)

  7. Synthesis and characterization of carboxymethyl cellulose from office waste paper: A greener approach towards waste management

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gyanesh, E-mail: joshig@icfre.org [Cellulose and Paper Division, Forest Research Institute, Dehradun 248006 (India); Naithani, Sanjay [Chemistry of Forest Products Division, Institute of Wood Science & Technology, Bangalore 560003 (India); Varshney, V.K. [Chemistry Division, Forest Research Institute, Dehradun 248006 (India); Bisht, Surendra S. [Chemistry of Forest Products Division, Institute of Wood Science & Technology, Bangalore 560003 (India); Rana, Vikas; Gupta, P.K. [Cellulose and Paper Division, Forest Research Institute, Dehradun 248006 (India)

    2015-04-15

    Highlights: • Carboxymethyl cellulose (CMC) was successfully prepared from waste paper. • CMC had maximum degree of substitution (DS) 1.07. • Rheological studies of CMC (DS, 1.07) showed non-Newtonian pseudoplastic behavior. • Characterization of CMC was done by FT-IR and NMR techniques. • Morphology of prepared CMC was studied by SEM. - Abstract: In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH{sub 2}COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH{sub 2}COONa respectively for 3 h reaction time. The rheological characteristics of 1–3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product.

  8. Characterization of surrogate radioactive cemented waste: a laboratory study

    International Nuclear Information System (INIS)

    Fiset, J.F.; Lastra, R.; Bilodeau, A.; Bouzoubaa

    2011-01-01

    Portland cement is commonly used to stabilize intermediate and low level of radioactive wastes. The stabilization/solidification process needs to be well understood as waste constituents can retard or activate cement hydration. The objectives of this project were to prepare surrogate radioactive cemented waste (SRCW), develop a comminution strategy for SRCW, determine its chemical characteristics, and develop processes for long term storage. This paper emphasizes on the characterization of surrogate radioactive cemented waste. The SRCW produced showed a high degree of heterogeneity mainly due to the method used to add the solution to the host cement. Heavy metals such as uranium and mercury were not distributed uniformly in the pail. Mineralogical characterization (SEM, EDS) showed that uranium is located around the rims of hydrated cement particles. In the SRCW, uranium occurs possibly in the form of a hydrated calcium uranate.The SEM-EDS results also suggest that mercury occurs mainly in the form of HgO although some metallic mercury may be also present as a result of partial decomposition of the HgO. (author)

  9. Physical sampling for site and waste characterization

    International Nuclear Information System (INIS)

    Bonnough, T.L.

    1994-01-01

    Physical sampling plays a basic role in site and waste characterization program effort. The term ''physical sampling'' used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ''physical sampling'' broadly to include measurements of physical conditions such as temperature, wind conditions, and pH which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measuring of physical conditions taken in association with sample collecting

  10. 1QCY17 Saltstone waste characterization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-25

    In the first quarter of calendar year 2017, a salt solution sample was collected from Tank 50 on January 16, 2017 in order to meet South Carolina (SC) Regulation 61-107.19 Part I C, “Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements” and the Saltstone Disposal Facility Class 3 Landfill Permit. The Savannah River National Laboratory (SRNL) was requested to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and subsequent characterization.

  11. The Rocky Flats Plant Waste Stream and Residue Identification and Characterization Program (WSRIC): Progress and achievements

    International Nuclear Information System (INIS)

    Ideker, V.L.

    1994-01-01

    The Waste Stream and Residue Identification and Characterization (WSRIC) Program, as described in the WSRIC Program Description delineates the process knowledge used to identify and characterize currently-generated waste from approximately 5404 waste streams originating from 576 processes in 288 buildings at Rocky Flats Plant (RFP). Annual updates to the WSRIC documents are required by the Federal Facilities Compliance Agreement between the US Department of Energy, the Colorado Department of Health and the Environmental Protection Agency. Accurate determination and characterization of waste is a crucial component in RFP's waste management strategy to assure compliance with Resource Conservation and Recovery Act (RCRA) storage and treatment requirements, as well as disposal acceptance criteria. The WSRIC Program was rebaselined in September 1992, and serves as the linchpin for documenting process knowledge in RFP's RCRA operating record. Enhancements to the WSRIC include strengthening the waste characterization rationale, expanding WSRIC training for waste generators, and incorporating analytical information into the WSRIC building books. These enhancements will improve credibility with the regulators and increase waste generators' understanding of the basis for credible waste characterizations

  12. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  13. Resource Conservation and Recovery Act: Part B, Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revison 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements.

  14. Characterization of acid tar waste from benzol purification | Danha ...

    African Journals Online (AJOL)

    The use of concentrated sulphuric acid to purify benzene, toluene and xylene produces acidic waste known as acid tar. The characterization of the acid tar to determine the composition and physical properties to device a way to use the waste was done. There were three acid tars two from benzene (B acid tar), toluene and ...

  15. Plasma technologies: applications to waste processing

    International Nuclear Information System (INIS)

    Fauchais, P.

    2007-01-01

    Since the 1990's, plasma technologies have found applications in the processing of toxic wastes of military and industrial origin, like the treatment of contaminated solids and low level radioactive wastes, the decontamination of soils etc.. Since the years 2000, this development is becoming exponential, in particular for the processing of municipal wastes and the recovery of their synthesis gas. The advantage of thermal plasmas with respect to conventional combustion techniques are: a high temperature (more than 6000 K), a pyrolysis capability (CO formation instead of CO 2 ), about 90% of available energy above 1500 K (with respect to 23% with flames), a greater energy density, lower gas flow rates, and plasma start-up and shut-down times of only few tenth of seconds. This article presents: 1 - the present day situation of thermal plasmas development; 2 - some general considerations about plasma waste processing; 3 - the plasma processes: liquid toxic wastes, solid wastes (contaminated soils and low level radioactive wastes, military wastes, vitrification of incinerators fly ash, municipal wastes processing, treatment of asbestos fibers, treatment of chlorinated industrial wastes), metallurgy wastes (dusts, aluminium slags), medical and ship wastes, perspectives; 4 -conclusion. (J.S.)

  16. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  17. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  18. A new approach to characterize very-low-level radioactive waste produced at hadron accelerators

    International Nuclear Information System (INIS)

    Zaffora, Biagio; Magistris, Matteo; Chevalier, Jean-Pierre; Luccioni, Catherine; Saporta, Gilbert; Ulrici, Luisa

    2017-01-01

    Radioactive waste is produced as a consequence of preventive and corrective maintenance during the operation of high-energy particle accelerators or associated dismantling campaigns. Their radiological characterization must be performed to ensure an appropriate disposal in the disposal facilities. The radiological characterization of waste includes the establishment of the list of produced radionuclides, called “radionuclide inventory”, and the estimation of their activity. The present paper describes the process adopted at CERN to characterize very-low-level radioactive waste with a focus on activated metals. The characterization method consists of measuring and estimating the activity of produced radionuclides either by experimental methods or statistical and numerical approaches. We adapted the so-called Scaling Factor (SF) and Correlation Factor (CF) techniques to the needs of hadron accelerators, and applied them to very-low-level metallic waste produced at CERN. For each type of metal we calculated the radionuclide inventory and identified the radionuclides that most contribute to hazard factors. The methodology proposed is of general validity, can be extended to other activated materials and can be used for the characterization of waste produced in particle accelerators and research centres, where the activation mechanisms are comparable to the ones occurring at CERN. - Highlights: • We developed a radiological characterization process for radioactive waste produced at particle accelerators. • We used extensive numerical experimentations and statistical analysis to predict a complete list of radionuclides in activated metals. • We used the new approach to characterize and dispose of more than 420 t of very-low-level radioactive waste.

  19. Materials characterization center workshop on the irradiation effects in nuclear waste forms

    International Nuclear Information System (INIS)

    Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

    1981-01-01

    The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, 244 Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined

  20. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1988-01-01

    In the last five years, Chalk River Nuclear Laboratories (CRNL) placed 17,000 m 3 of wastes into storage (excluding contaminated soil and fill). Almost half of the waste was generated off-site. CRNL is now developing IRUS, an Intrusion Resistant Underground Structure, and the IST, an Improved Sand Trench, to replace storage with safe, permanent disposal. IRUS will be used to dispose of wastes with radiologically hazardous lifetimes between 150 and 500 years duration and the IST will be used for wastes with radiologically hazardous lifetimes of less than 150 years. A comprehensive Waste Characterization Program (WCP) is in place to support disposal projects. The WCP is responsible for (1) specifying the manifests for waste shipments; (2) developing and maintaining central databases for waste inventories and analytical data; and (3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management quality assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems and for maintaining a QA program for disposal operations

  1. Solid waste characterization in Ketao, a rural town in Togo, West Africa.

    Science.gov (United States)

    Edjabou, Maklawe Essonanawe; Møller, Jacob; Christensen, Thomas H

    2012-07-01

    In Africa the majority of solid waste data is for big cities. Small and rural towns are generally neglected and waste data from these areas are often unavailable, which makes planning a proper solid waste management difficult. This paper presents the results from two waste characterization projects conducted in Kétao, a rural town in Togo during the rainy season and the dry season in 2010. The seasonal variation has a significant impact on the waste stream. The household waste generation rate was estimated at 0.22 kg person(-1) day(-1) in the dry season and 0.42 in the rainy season. Likewise, the waste moisture content was 4% in the dry season while it was 33-63% in the rainy season. The waste consisted mainly of soil and dirt characterized as 'other' (41%), vegetables and putrescibles (38%) and plastic (11%). In addition to these fractions, considerable amounts of material are either recycled or reused locally and do not enter the waste stream. The study suggests that additional recycling is not feasible, but further examination of the degradability of the organic fraction is needed in order to assess whether the residual waste should be composed or landfilled.

  2. Characterization of low and medium-level radioactive waste forms. Final report - 2nd Programme 1980-84

    International Nuclear Information System (INIS)

    Pottier, P.E.; Glasser, F.P.

    1986-01-01

    The European Communities Second R and D Programme 1980-84 'Management and Disposal of Radioactive Waste (Shared cost action)' included a closely coordinated research activity for the 'Characterization of low and medium-level radioactive waste forms'. This report summarizes the main results obtained during the five years of the programme by laboratories in seven European countries participating in the coordinated RandD efforts. Ten reference waste forms have been selected, based on the most important types of low and medium-level waste arisings and the three commonly used immobilization matrices: cement, bitumen and polymers. The investigated properties were mainly: waste-matrix compatibility, radiation effects, leaching behaviour, leached radionuclides speciation, microbiological resistance and thermal as well as mechanical properties. Extensive experimental results relevant for the qualification of waste products and for application in performance analysis are presented in this final report. The main conclusions are drawn for the confinement properties of these different waste forms. These conclusions have also shown the necessity of selecting several other reference waste forms for the continuation of this RandD action now being launched in the Third EC Programme 1985-89

  3. Analysis of SRP waste streams for waste tank certification

    International Nuclear Information System (INIS)

    Coleman, C.J.

    1989-01-01

    The Savannah River Plant (SRP) will apply for certification from the State of South Carolina to operate the SRP High-Level Waste Tanks. The permit application will be submitted as a RCRA Part B, Volume 16, entitled ''RCRA Part B Application For the F and H-Area Radioactive Waste Farm.'' RCRA regulations require that influent and effluent streams of hazardous waste sites be characterized to obtain an operating permit. The Waste Management Technology Department requested ADD to determine 21 components (including pH and weight percent solids) in the current influent streams to SRP High-Level Waste Tanks. The analyses will be used to supplement existing data on the composition of High-Level Waste. Effluent streams, which will feed Saltstone and the DWPF, will be analyzed when they are produced. This report contains the data obtained from analyzing key influent streams to SRP High-Level Waste Tanks. The precision of the data and the analytical methods that were used are also discussed

  4. Development and characterization of cermet forms for radioactive waste

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1979-01-01

    Cermets designed to isolate high-level wastes in a solid form are a composite consisting of various ceramic phase particles uniformly dispersed in and microencapsulated by an iron-nickel base alloy matrix. The metal matrix provides this waste form with many advantageous features including excellent thermal conductivity and mechanical strength. These cermets are formed by first dissolving the waste in molten urea, precipitating and calcining all the constituents, compacting the calcine, and sintering and reduction to form the final product. The exact formulation of cermets through additions to the waste is designed to fix most of the fission products in stable, leach resistant ceramic phases which are subsequently microencapsulated by an alloy matrix. The alloy matrix, which is derived primarily from the waste itself and includes the reducible fission and activation products from the waste, can be compositionally adjusted through additions to optimize its corrosion resistance under conditions existing in various disposal environments. The processes by which cermets are formed include several new and unique materials preparation options that are being developed to permit engineering scale-up and to be compatible with remote operations. Cermets formed by alternate processing methods are being characterized. Initially, cermet samples were prepared using a laboratory scale, batch process developed for the preparation of special ceramics having high compositional uniformity and excellent sinterability. The modification of this batch process to one suitable for scale-up and remote operation is the subject of this paper. Cermet characterization is also discussed

  5. Biological tracer for waste site characterization

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.

    1995-01-01

    Remediating hazardous waste sites requires detailed site characterization. In groundwater remediation, characterizing the flow paths and velocity is a major objective. Various tracers have been used for measuring groundwater velocity and transport of contaminants, colloidal particles, and bacteria and nutrients. The conventional techniques use dissolved solutes, dyes. and gases to estimate subsurface transport pathways. These tracers can provide information on transport and diffusion into the matrix, but their estimates for groundwater flow through fractured regions are very conservative. Also, they do not have the same transport characteristics as bacteria and suspended colloid tracers, both of which must be characterized for effective in-place remediation. Bioremediation requires understanding bacterial transport and nutrient distribution throughout the acquifer, knowledge of contaminants s mobile colloidal particles is just essential

  6. Characterization of waste ceramic process for lost wax casting for employment as pozzolan

    International Nuclear Information System (INIS)

    Machado, C.F.; Moravia, W.G.

    2012-01-01

    There are about 30 companies of Lost Wax Casting in Brazil, and each one of them disposes around 50 to 100 tons of waste ceramic shell monthly. This work is concerned in the physical, chemical and microstructural characterization to evaluated the reactivity of this material. It was analyzed also the environmental risk of the material. The tests were made with a ceramic shell ground to evaluate the aspect of sustainable waste. In the physical characterization of the waste the density, specific surface area and distribution of the particle size were analyzed. In the chemical characterization, the powder was subjected to essays of fluorescence and pozzolanic activity. As for microstructural characterization scanning electron microscopy and Xray diffraction were carried out. The analysis of results shows that the ceramic shell powder is classified as non-inert waste, II-A Class, with density of 2,59 g/cm³. (author)

  7. Materials characterization center workshop on compositional and microstructural analysis of nuclear waste materials. Summary report

    International Nuclear Information System (INIS)

    Daniel, J.L.; Strachan, D.M.; Shade, J.W.; Thomas, M.T.

    1981-06-01

    The purpose of the Workshop on Compositional and Microstructural Analysis of Nuclear Waste Materials, conducted November 11 and 12, 1980, was to critically examine and evaluate the various methods currently used to study non-radioactive, simulated, nuclear waste-form performance. Workshop participants recognized that most of the Materials Characterization Center (MCC) test data for inclusion in the Nuclear Waste Materials Handbook will result from application of appropriate analytical procedures to waste-package materials or to the products of performance tests. Therefore, the analytical methods must be reliable and of known accuracy and precision, and results must be directly comparable with those from other laboratories and from other nuclear waste materials. The 41 participants representing 18 laboratories in the United States and Canada were organized into three working groups: Analysis of Liquids and Solutions, Quantitative Analysis of Solids, and Phase and Microstructure Analysis. Each group identified the analytical methods favored by their respective laboratories, discussed areas needing attention, listed standards and reference materials currently used, and recommended means of verifying interlaboratory comparability of data. The major conclusions from this workshop are presented

  8. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  9. Low and intermediate radioactive waste characterization using MICROSHIELD 5 code

    International Nuclear Information System (INIS)

    Mateescu, Silvia; Pantazi, Doina; Stanciu, Marcela

    2002-01-01

    Low and intermediate radioactive gaseous, liquid and solid waste produced at Cernavoda Nuclear Power Plant must be known from the point of view of contained radionuclide activity, during all steps of their processing, storage and transport, to ensure the nuclear safety of radioactive waste management. As the waste activity changes by radioactive decay and nuclear transmutation, the evolution in time of these sources is necessary to be assess, for the purpose of biological shielding determination at any time. On the other hand, during the transport of waste package at the repository, the external dose rates must meet the national and international requirements concerning radioactive materials transportation on public roads. In this paper, a calculation methodology for waste characterization based on external exposure rate measurement and on sample analysis results is presented. The time evolution of waste activity, as well as the corresponding shielding at different moments of management process, has been performed using MICROSHIELD-5 code. The spent resins proceeded from systems for clean-up and purification of cooling water and moderator, water from spent fuel storage bays, etc. have been analyzed. In this paper an example of spent ionic resins characterization, using the MICROSHIELD 5 code, is presented. (authors)

  10. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  11. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  12. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  13. Phenotypic and genotypic characterization of clinically relevant bacteria isolated from dental waste and waste workers' hands, mucosas and coats.

    Science.gov (United States)

    Tagliaferri, T L; Vieira, C D; de Carvalho, M A R; Ladeira, L C D; Magalhães, P P; de Macêdo Farias, L; Dos Santos, S G

    2017-10-01

    Infectious wastes are potential sources of pathogenic micro-organisms, which may represent a risk to the professionals who manage them. In this study, we aimed to characterize the infectious bacteria present in dental waste and waste workers. The dental waste produced over 24 h was collected and waste workers were sampled by swabbing. Isolate resistance profiles were characterized by Vitek ® and PCR and biofilm formation by Congo Red agar, string test and microtitre assay. To assess similarity between the waste and the workers' samples, a random amplified polymorphic DNA test was used. Twenty-eight bacteria were identified as clinically relevant. The most frequent gene was bla TEM present in five Gram-negative micro-organisms, and one bla SHV in Klebsiella pneumoniae. All Pseudomonas aeruginosa were positive to extracellular polymeric substances formation, except one isolated from a worker. Klebsiella pneumoniae had negative results for the string test. Pseudomonas aeruginosa showed better adherence at 25°C after 48 h of incubation and K. pneumonia had the best biofilm formation at the same temperature, after 24 h. The similarity between P. aeruginosa recovered from dental waste and from workers was low, however, it is important to note that a pathogen was found on a worker's hands and that improvements in biosafety are required. Infectious dental waste can contain clinically relevant bacteria with important resistance and biofilm profiles. These micro-organisms could be transmitted to waste workers, other professionals and patients if the principles of biosafety measures are neglected. To our knowledge, no study has ever evaluated the microbial characterization and the potential contamination risk of dental infectious waste and waste handlers. The presence of clinically relevant bacteria in the hands and nasal mucosa of waste workers highlights the need for studies in this field to clarify the risk of these pathogens in dental healthcare services, and to

  14. The Advancement of Public Awareness, Concerning TRU Waste Characterization, Using a Virtual Document

    International Nuclear Information System (INIS)

    West, T. B.; Burns, T. P.; Estill, W. G.; Riggs, M. J.; Taggart, D. P.; Punjak, W. A.

    2002-01-01

    Building public trust and confidence through openness is a goal of the DOE Carlsbad Field Office for the Waste Isolation Pilot Plant (WIPP). The objective of the virtual document described in this paper is to give the public an overview of the waste characterization steps, an understanding of how waste characterization instrumentation works, and the type and amount of data generated from a batch of drums. The document is intended to be published on a web page and/or distributed at public meetings on CDs. Users may gain as much information as they desire regarding the transuranic (TRU) waste characterization program, starting at the highest level requirements (drivers) and progressing to more and more detail regarding how the requirements are met. Included are links to: drivers (which include laws, permits and DOE Orders); various characterization steps required for transportation and disposal under WIPP's Hazardous Waste Facility Permit; physical/chemical basis for each characterization method; types of data produced; and quality assurance process that accompanies each measurement. Examples of each type of characterization method in use across the DOE complex are included. The original skeleton of the document was constructed in a PowerPoint presentation and included descriptions of each section of the waste characterization program. This original document had a brief overview of Acceptable Knowledge, Non-Destructive Examination, Non-Destructive Assay, Small Quantity sites, and the National Certification Team. A student intern was assigned the project of converting the document to a virtual format and to discuss each subject in depth. The resulting product is a fully functional virtual document that works in a web browser and functions like a web page. All documents that were referenced, linked to, or associated, are included on the virtual document's CD. WIPP has been engaged in a variety of Hazardous Waste Facility Permit modification activities. During the

  15. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    International Nuclear Information System (INIS)

    Fox, K. M.; Edwards, T. B.

    2016-01-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  16. Transuranic contaminated waste form characterization and data base

    International Nuclear Information System (INIS)

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report

  17. Transuranic contaminated waste form characterization and data base

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report.

  18. Field test results for radioactive waste drum characterization with Waste Inspection Tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1997-11-01

    This paper summarizes the design, fabrication, factory testing, evaluation and demonstration of waste inspection tomography (WIT). WIT consists of a self-sufficient, mobile semi-trailer for Non-Destructive Evaluation and Non-Destructive Assay (NDE/NDA) characterization of nuclear waste drums using X-ray and gamma-ray tomographic techniques. The 23-month WIT Phase I initial test results include 2 MeV Digital Radiography (DR), Computed Tomography (CT), Anger camera imaging, Single Photon Emission Computed Tomography (SPECT), Gamma-Ray Spectroscopy, Collimated Gamma Scanning (CGS), and Active and Passive Computed Tomography (A&PCT) using a 1.4 mCi source of {sup 166}Ho. These techniques were initially demonstrated on a 55-gallon phantom drum with three simulated waste matrices of combustibles, heterogeneous metals, and cement using check sources of gamma active isotopes. Waste matrix identification, isotopic identification, and attenuation-corrected gamma activity determination were all demonstrated nondestructively and noninvasively. Preliminary field tests results with nuclear waste drums are summarized. WIT has inspected drums with 0 to 20 grams plutonium 239. The minimum measured was 0.131 gram plutonium 239 in cement. 8 figs.

  19. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  20. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    International Nuclear Information System (INIS)

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact

  1. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    International Nuclear Information System (INIS)

    Channell, J.K.; Walker, B.A.

    2000-01-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations

  2. Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-04-01

    The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ( 233 U and 235 U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ( 239 Pu and 241 Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  3. A review of mechanochemistry applications in waste management

    International Nuclear Information System (INIS)

    Guo Xiuying; Xiang Dong; Duan Guanghong; Mou Peng

    2010-01-01

    Mechanochemistry is defined to describe the chemical and physicochemical transformation of substances during the aggregation caused by the mechanical energy. Mechanochemical technology has several advantages, such as simple process, ecological safety and the possibility of obtaining a product in the metastable state. It potentially has a prospective application in pollution remediation and waste management. Therefore, this paper aims to give an overall review of the mechanochemistry applications in waste management and the related mechanisms. Based on our study, the modification of fly ash and asbestos-containing wastes (ACWs) can be achieved by mechanochemical technology. Waste metal oxides can be transformed into easily recyclable sulfide by mechanochemical sulfidization. Besides, the waste plastics and rubbers, which are usually very difficult to be recycled, can also be recycled by mechanochemical technology.

  4. Characterization of materials for waste-canister compatibility studies

    International Nuclear Information System (INIS)

    McCoy, H.E.; Mack, J.E.

    1981-10-01

    Sample materials of 7 waste forms and 15 potential canister materials were procured for compatibility tests. These materials were characterized before being placed in test, and the results are the main topic of this report. A test capsule was designed for the tests in which disks of a single waste form were contacted with duplicate samples of canister materials. The capsules are undergoing short-term tests at 800 0 C and long-term tests at 100 and 300 0 C

  5. A literature survey for the ultrasound use in the radioactive waste characterization

    International Nuclear Information System (INIS)

    Tessaro, Ana Paula Gimenes; Vicente, Roberto

    2013-01-01

    This paper presents the outcomes of a literature survey of reports on the use of ultrasound methods in the characterization of radioactive wastes. This research is motivated by the necessity to characterize radioactive wastes constituted of ion exchange resins and activated charcoal beds generated at the nuclear research reactor IEA-R1 and that are stored in twenty one 200 L-drum sat the Waste Management Department. These two waste types come from the water polishing system of the nuclear reactor where they are used to remove impurities as fission and activation products from the water. After same time in the water treatment system, these two adsorbents are unable to keep the water quality and are then replaced becoming radioactive waste. Previous work determined the concentration of radio isotopes in dried samples of the adsorbents. As the water content varies largely among different drums, it is necessary to determine the water content of each individual drum for the total activity to be calculated. Ultrasound imaging was thought as an appropriate tool as a characterization method. The different acoustic impedances of liquids and solid salter the propagation of the sound wave sand can disclose the content of the waste packages. (author)

  6. A literature survey for the ultrasound use in the radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the outcomes of a literature survey of reports on the use of ultrasound methods in the characterization of radioactive wastes. This research is motivated by the necessity to characterize radioactive wastes constituted of ion exchange resins and activated charcoal beds generated at the nuclear research reactor IEA-R1 and that are stored in twenty one 200 L-drum sat the Waste Management Department. These two waste types come from the water polishing system of the nuclear reactor where they are used to remove impurities as fission and activation products from the water. After same time in the water treatment system, these two adsorbents are unable to keep the water quality and are then replaced becoming radioactive waste. Previous work determined the concentration of radio isotopes in dried samples of the adsorbents. As the water content varies largely among different drums, it is necessary to determine the water content of each individual drum for the total activity to be calculated. Ultrasound imaging was thought as an appropriate tool as a characterization method. The different acoustic impedances of liquids and solid salter the propagation of the sound wave sand can disclose the content of the waste packages. (author)

  7. Proceedings of the tenth annual DOE low-level waste management conference: Session 5: Waste characterization and quality assurance

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains six papers on various aspects of low-level radioactive waste management. Topics include quality assurance programs; source terms; waste characterization programs; and DOE's information network modifications. Individual papers were processed separately for the data base

  8. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  9. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  10. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    International Nuclear Information System (INIS)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P.; Courtney, J.C.; Duff, M.J.

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m 3 (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein

  11. Characterization system for Germanium detectors dedicated to gamma spectroscopy applied to nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roccaz, J.; Portella, C.; Saurel, N. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2009-07-01

    CEA-Valduc produces some radioactive waste (mainly alpha emitters). Legislation requires producers to sort their waste by activity and type of isotopes, and to package them in order to forward them to the appropriate reprocessing or storage facility. Our lab LMDE (laboratory for measurements on nuclear wastes and valuation) is in charge of the characterization of the majority of waste produced by CEA-Valduc. Among non-destructive methods to characterize a radioactive object, gamma-spectroscopy is one of the most efficient. We present to this conference the method we use to characterize nuclear waste and the system we developed to characterize our germanium detectors. The goal of this system is to obtain reliable numerical models of our detectors and calculate their efficiency curves. Measurements are necessary to checks models and improve them. These measurements are made on a bench using pinpoint sources ({sup 133}Ba, {sup 152}Eu) from 60 keV to 1500 keV, with distances from 'on contact' to a few meters from the diode and variable angles between the source and the detector axis. We have demonstrated that we are able to obtain efficiency curves

  12. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  13. Supplement analysis of transuranic waste characterization and repackaging activities at the Idaho National Engineering Laboratory in support of the Waste Isolation Pilot Plant test program

    International Nuclear Information System (INIS)

    1991-03-01

    This supplement analysis has been prepared to describe new information relevant to waste retrieval, handling, and characterization at the Idaho National Engineering Laboratory (INEL) and to evaluate the need for additional documentation to satisfy the National Environmental Policy Act (NEPA). The INEL proposes to characterize and repackage contact-handled transuranic waste to support the Waste Isolation Pilot Plant (WIPP) Test Phase. Waste retrieval, handling and processing activities in support of test phase activities at the WIPP were addressed in the Supplemental Environmental Impact Statement (SEIS) for the WIPP. To ensure that test-phase wastes are properly characterized and packaged, waste containers would be retrieved, nondestructively examined, and transported from the Radioactive Waste Management Complex (RWMC) to the Hot-Fuel Examination Facility for headspace gas analysis, visual inspections to verify content code, and waste acceptance criteria compliance, then repackaging into WIPP experimental test bins or returned to drums. Following repackaging the characterized wastes would be returned to the RWMC. Waste characterization would help DOE determine WIPP compliance with US Environmental Protection Agency regulations governing disposal of transuranic waste and hazardous waste. Additionally, this program supports onsite compliance with Resource Conservation and Recovery Act (RCRA) requirements, compliance with the terms of the No-Migration Variance at WIPP, and provides data to support future waste shipments to WIPP. This analysis will help DOE determine whether there have been substantial changes made to the proposed action at the INEL, or if preparation of a supplement to the WIPP Final Environmental Impact Statement (DOE, 1980) and SEIS (DOE, 1990a) is required. This analysis is based on current information and includes details not available to the SEIS

  14. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2014-01-01

    Data for the composition of municipal solid waste is a critical basis for any assessment of waste technologies and waste management systems. The detailed quantification of waste fractions is absolutely needed for a better technological development of waste treatment. The current waste composition...... comparability to characterize municipal solid waste. This methodology was applied to residual waste collected from 1,442 households in three municipalities in Denmark. The main fractions contributing to the residual household waste were food waste and miscellaneous waste. Statistical analysis suggested...... of standardised and commonly accepted waste characterization methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. The purpose of this study was to introduce a consistent methodology that reduces uncertainties and ensures data...

  15. Guidelines for the characterization of wastes from medical facilities

    International Nuclear Information System (INIS)

    Ortiz, M.T.; Sainz, C. Correa

    2002-01-01

    The waste generated in medicine may be managed following conventional routes or via the Spanish National Radioactive Waste Management (ENRESA), depending on their residual activity. Radiological characterisation may, however, be a complex process, due to the wide variety of wastes existing, as regards activity, isotopes, presentation, physical form, difficulties in handling, etc. The main objective here is to establish general methods for the assessment of activity, applicable to the largest possible number of medical practices involving radioactive material and, therefore, potentially generating wastes. This report has been drawn up out by a working group on wastes from radioactive facilities, belonging to the Spanish Radiological Protection Society and sponsored by ENRESA

  16. Application of EPA regulations to low-level radioactive waste

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Piciulo, P.L.

    1985-01-01

    The survey reported here was conducted with the intent of identifying categories of low-level radioactive wastes which would be classified under EPA regulations 40 CFR Part 261 as hazardous due to the chemical properties of the waste. Three waste types are identified under these criteria as potential radioactive mixed wastes: wastes containing organic liquids; wastes containing lead metal; and wastes containing chromium. The survey also indicated that certain wastes, specific to particular generators, may also be radioactive mixed wastes. Ultimately, the responsibility for determining whether a facility's wastes are mixed wastes rest with the generator. However, the uncertainties as to which regulations are applicable, and the fact that no legal definition of mixed wastes exists, make such a determination difficult. In addition to identifying mixed wastes, appropriate methods for the management of mixed wastes must be defined. In an ongoing study, BNL is evaluating options for the management of mixed wastes. These options will include segregation, substitution, and treatments to reduce or eliminate chemical hazards associated with the wastes listed above. The impacts of the EPA regulations governing hazardous wastes on radioactive mixed waste cannot be assessed in detail until the applicability of these regulations is agreed upon. This issue is still being discussed by EPA and NRC and should be resolved in the near future. Areas of waste management which may affect generators of mixed wastes include: monitoring/tracking of wastes before shipment; chemical testing of wastes; permits for treatment of storage of wastes; and additional packaging requirements. 3 refs., 1 fig., 2 tabs

  17. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). DOE plans to conduct experiments in the WIPP during a Test Phase of approximately 5 years. These experiments will be conducted to reduce the uncertainties associated with the prediction of several processes (e.g., gas generation) that may influence repository performance. The results of the experiments will be used to assess the ability of the WIPP to meet regulatory requirements for the long-term protection of human health and the environment from the disposal of TRU wastes. 37 refs., 25 figs., 18 tabs

  18. Low-Level Burial Grounds Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1989-01-01

    The single dangerous waste permit identification number issued to the Hanford Site by the US Environmental Protection Agency and the Washington State Department of Ecology is US Environmental Protection Agency/State Identification Number WA 7890008967. This identification number encompasses a number of waste management units within the Hanford Site. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as co-operator of the Low-Level Burial Grounds, the waste management unit addressed by this permit application. The Low-Level Burial Grounds Dangerous Waste Permit Application consists of both a Part A and a Part B Permit Application. The original Part A, submitted in November 1985, identified landfills, retrievable storage units, and reserved areas. An explanation of subsequent Part A revisions is provided at the beginning of the Part A section. Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology

  19. Repeated application of organic waste affects soil organic matter composition

    DEFF Research Database (Denmark)

    Peltre, Clément; Gregorich, Edward G.; Bruun, Sander

    2017-01-01

    Land application of organic waste is an important alternative to landfilling and incineration because it helps restore soil fertility and has environmental and agronomic benefits. These benefits may be related to the biochemical composition of the waste, which can result in the accumulation...... of different types of carbon compounds in soil. The objective of this study was to identify and characterise changes in soil organic matter (SOM) composition after repeated applications of organic waste. Soil from the CRUCIAL field experiment in Denmark was sampled after 12 years of annual application...... that there was accumulation in soil of different C compounds for the different types of applied organic waste, which appeared to be related to the degree to which microbial activity was stimulated and the type of microbial communities applied with the wastes or associated with the decomposition of applied wastes...

  20. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites

    Science.gov (United States)

    Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen

    2017-10-01

    In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.

  1. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  2. TWRS privatization support waste characterization database development. Volume 2

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1995-11-01

    This appendix contains the radionuclide and chemical analyte subset data tables. These data tables contain all of the validated waste characterization information collected for the TWRS Privatization Support Project

  3. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. [Argonne National Lab., Idaho Falls, ID (United States); Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States); Duff, M.J. [Consolidated Technical Services, Inc., Walkersville, MD (United States)

    1992-02-01

    Argonne National Laboratory is participating in the Department of Energy`s Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  4. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. (Argonne National Lab., Idaho Falls, ID (United States)); Courtney, J.C. (Louisiana State Univ., Baton Rouge, LA (United States)); Duff, M.J. (Consolidated Technical Services, Inc., Walkersville, MD (United States))

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  5. Novel Activated Carbons from Agricultural Wastes and their Characterization

    Directory of Open Access Journals (Sweden)

    S. Karthikeyan

    2008-01-01

    Full Text Available Solid waste disposal has become a major problem in India, Either it has to be disposed safely or used for the recovery of valuable materials as agricultural wastes like turmeric waste, ferronia shell waste, jatropha curcus seed shell waste, delonix shell waste and ipomea carnia stem. Therefore these wastes have been explored for the preparation of activated carbon employing various techniques. Activated carbons prepared from agricultural solid wastes by chemical activation processes shows excellent improvement in the surface characteristics. Their characterization studies such as bulk density, moisture content, ash content, fixed carbon content, matter soluble in water, matter soluble in acid, pH, decolourising power, phenol number, ion exchange capacity, ion content and surface area have been carried out to assess the suitability of these carbons as absorbents in the water and wastewater. For anionic dyes (reactive, direct, acid a close relationship between the surface area and surface chemical groups of the modified activated carbon and percentage of dye removal by adsorption can be observed. Cationic dyes large amount of surface chemical groups present in the sample (mainly carboxylic, anhydrides, lactones and phenols etc. are good anchoring sites for adsorption. The present study reveals the recovery of valuable adsorbents from readily and cheaply available agriculture wastes.

  6. Characterization of low and medium-level radioactive waste forms. Joint annual progress report 1982

    International Nuclear Information System (INIS)

    Vejmelka, P.; Sambell, R.A.J.

    1984-01-01

    The work reported was carried out during the second year of the Commission of the European Communities programme on the characterization of low and medium-level waste forms. Ten reference waste forms plus others of special national interest have been identified covering PWR, BWR, GCR and reprocessing wastes. The immobilizing media include the three main matrices: cement, polymers and bitumen, and a glass. Characterization is viewed as one input to quality assurance of the waste form and covers: waste-matrix compatibility, radiation effects, leaching, microbiological attack, shrinkage and swelling, ageing processes and thermal effects. The aim is a balanced programme of comparative data, predictive modelling and an understanding of basic mechanisms

  7. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    This review is an exposure on the various ways that solar energy can be harnessed for numerous waste treatment processes. Almost all forms of waste treatment require energy which is scarcely available considering the global energy crisis. The objective of this study is to enumerate the solar energy applications in waste ...

  8. Development of robotics technology for remote characterization and remediationof buried waste

    International Nuclear Information System (INIS)

    Noakes, M.W.; Richardson, B.S.; Burks, B.L.; Sandness, G.R.

    1992-01-01

    Detection, characterization, and excavation of buried objects and materials are important steps in the restoration of subsurface disposal sites. The US Department of Energy (DOE), through its Buried Waste Robotics Program, is developing a Remote Characterization System (RCS) to address the needs of remote subsurface characterization and, in a joint program with the US Army, is developing a teleoperated excavator. Development of the RCS is based on recent DOE remote characterization testing and demonstrations performed at Oak Ridge National Laboratory and Idaho National Engineering Laboratory. The RCS, which will be developed and refined over a two- to three-year period, is designed to (1) increase safety by removing on-site personnel from hazardous areas, (2) remotely acquire real-time data from multiple sensors, (3) increase cost-effectiveness and productivity by partial automation of the data collection process and by gathering and evaluating data from multiple sensors in real time, and (4) reduce costs for other waste-related development programs through joint development efforts and reusable standardized subsystems. For retrieval of characterized waste, the Small Emplacement Excavator, an existing US Army backhoe that is being converted to teleoperated control, will be used to demonstrate the feasibility of retrofitting commercial equipment for high-performance remote operations

  9. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    International Nuclear Information System (INIS)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions

  10. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  11. Advanced robotics handling and controls applied to Mixed Waste characterization, segregation and treatment

    International Nuclear Information System (INIS)

    Grasz, E.; Huber, L.; Horvath, J.; Roberson, P.; Wilhelmsen, K.; Ryon, R.

    1994-11-01

    At Lawrence Livermore National Laboratory under the Mixed Waste Operations program of the Department of Energy Robotic Technology Development Program (RTDP), a key emphasis is developing a total solution to the problem of characterizing, handling and treating complex and potentially unknown mixed waste objects. LLNL has been successful at looking at the problem from a system perspective and addressing some of the key issues including non-destructive evaluation of the waste stream prior to the materials entering the handling workcell, the level of automated material handling required for effective processing of the waste stream objects (both autonomous and tele-operational), and the required intelligent robotic control to carry out the characterization, segregation, and waste treating processes. These technologies were integrated and demonstrated in a prototypical surface decontamination workcell this past year

  12. Transuranic waste form characterization and data base. Executive summary

    International Nuclear Information System (INIS)

    1980-01-01

    The Transuranic Waste Form Characterization and Data Base (Volume 1) provides a wide range of information from which a comprehensive data base can be established and from which standards and criteria can be developed for the present NRC waste management program. Supplementary information on each of the areas discussed in Volume 1 is presented in Appendices A through K (Volumes 2 and 3). The structure of the study (Volume 1) is outlined and appendices of Volumes 2 and 3 correlate with each main section of the report. The Executive Summary reviews the sources, quantities, characteristics and treatment of transuranic wastes in the United States. Due to the variety of potential treatment processes for transuranic wastes, the end products for long-term storage may have corresponding variations in quantities and characteristics

  13. Deriving a site characterization program from applicable regulations

    International Nuclear Information System (INIS)

    Voegele, M.D.; Younker, J.L.; Alexander, D.H.

    1988-01-01

    The process of deriving a site characterization program from the applicable regulations was approached by the DOE through the use of two basic organizing principles. One organizing principle is a hierarchical structure of questions about regulatory criteria related to the acquisition of site data. This set of questions is called an issues hierarchy, and it provides a topical organizing framework for developing a site characterization program. The second basic organizing principle used by the DOE and its contractors to develop a site characterization program is called performance allocation. For each issue in the issues hierarchy, a resolution strategy is developed. These strategies involve the identification of elements of the disposal system that are relevant to isolation and containment of waste or to radiological safety. It is then possible to identify performance measures and information needed from the site characterization program. This information, coupled with information about confidence in existing data and the confidence required in the data to be obtained, allows the development of testing strategies for field programs

  14. Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha.

    Science.gov (United States)

    Vega-Castro, Oscar; Contreras-Calderon, Jose; León, Emilson; Segura, Almir; Arias, Mario; Pérez, León; Sobral, Paulo J A

    2016-08-10

    Agro-industrial waste can be the production source of biopolymers such as polyhydroxyalkanoates. The aim of this study was to produce and characterize Polyhydroxyalkanoates produced from pineapple peel waste fermentation processes. The methodology includes different pineapple peel waste fermentation conditions. The produced biopolymer was characterized using FTIR, GC-MS and NMR. The best fermentation condition for biopolymer production was obtained using pH 9, Carbon/Nitrogen 11, carbon/phosphorus 6 and fermentation time of 60h. FTIR analyzes showed PHB group characteristics, such as OH, CH and CO. In addition, GC-MS showed two monomers with 4 and 8 carbons, referred to PHB and PHBHV. H(1) NMR analysis showed 0.88-0.97 and 5.27ppm signals, corresponding to CH3 and CH, respectively. In conclusion, polyhydroxyalkanoate production from pineapple peels waste is an alternative for the treatment of waste generated in Colombia's fruit industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization of solid wastes from kraft pulp industry for ceramic materials development purposes

    International Nuclear Information System (INIS)

    Rodrigues, L.R.; Francisco, M.A.C.O.; Sagrillo, V.P.D.; Louzada, D.M.; Entringer, J.M.S.

    2016-01-01

    The Kraft pulp industry generates a large amount of solid wastes. Due this large quantity, the target of this study is characterize inorganic solid wastes, dregs, grits and lime mud, from the step of reagents recovery of Kraft process, aiming evaluate the potentiality of their use as alternative raw material on development of ceramic materials. Initially, the wastes were dried and ground, then they were subjected to the following characterization techniques: pH analysis, particle size analysis, X ray fluorescence, X ray diffraction, differential thermal analysis and thermogravimetric analysis and scanning electron microscopy. According to the results, it may be concluded that these wastes could be used as raw material in production of red ceramic and luting materials. (author)

  16. In situ chemical characterization of waste sludges using FTIR-based fiber optic sensors

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Jeppson, D.W.; Lockrem, L.L.; Blewett, G.R.

    1994-02-01

    The characterization of unknown mixed wastes is a mandatory step in today's climate of strict environmental regulations. Cleaning up the nuclear and chemical wastes that have accumulated for 50 years at the Hanford Site is the largest single cleanup task in the United States today. The wastes are stored temporarily in carbon steel single- and double-shell tanks that are buried in tank farms at the Site. In the 1950s, a process to scavenge radioactive cesium and other soluble radionuclides in the wastes was developed to create additional tank space for waste storage. This scavenging process involved treatment of the wastes with alkali cyanoferrates and nickel sulfate to precipitate 137 Cs in the presence of nitrate oxidant. Recent safety issues have focused on the stability of cyanoferrate-bearing wastes with large quantities of nitrates and nitrites. Nitrate has been partially converted to nitrite as a result of radiolysis during more than 35 years of storage. The major safety issue is the possibility of the presence of local hot spots enriched in 137 Cs and 90 Sr that under optimum conditions can self-heat causing dry out and a potential runaway reaction of the cyanoferrates with the nitrates/nitrites). For waste tank safety, accurate data of the concentration and distribution of cyanoferrates in the tanks are needed. Because of the extensive sampling required and the highly restricted activities allowed in the tank farms, simulated tank wastes are used to provide an initial basis for identifying and quantifying realistic concerns prior to waste remediation. Fiber optics provide a tool for the remote and in situ characterization of hazardous and toxic materials. This study is focused on near-infrared (NIR) and mid-infrared (MIR) fiber optic sensors for in situ chemical characterization of Hanford Site waste sludges

  17. Characterization on incineration residue of radioactive solid wastes

    International Nuclear Information System (INIS)

    Katoh, Kiyoshi; Hirayama, Katsuyoshi; Kato, Akira.

    1989-01-01

    Characterization was carried out on incineration residue discharged from the radioactive solid waste incineration unit (capacity, 100 kg/h) in use at the Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI) to obtain basic data for investigating solidification methods of the residue. The characterized residue was taken from furnace and a primary ceramic filter of the incineration unit which incinerates combustible solid wastes generated at JAERI and the outside organizations. Items of characterization involve a particle size distribution, misplaced materials content, ignition loss, chemical composition and radioactivity of nuclides in the ash. As the results, the size of ash sampled from the furnace distributed a wide range, with about 35∼60 % of ash smaller than 5 mm and about 10∼25 % of massive one larger than 30 mm (max. size: ∼130 mm). The ignition loss was 2∼3 %. The chemical compositions of the ash were mainly SiO 2 , Fe 2 O 3 , CaO and Al 2 O 3 . The specific activities of the ash were about 0.4∼4 x 10 3 Bq/g, and principal contaminants were 60 Co and 137 Cs. (author)

  18. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization

    Science.gov (United States)

    de Brito, Jorge; Veiga, Rosário

    2018-01-01

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation. PMID:29558418

  19. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization

    Directory of Open Access Journals (Sweden)

    Catarina Brazão Farinha

    2018-03-01

    Full Text Available The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.

  20. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization.

    Science.gov (United States)

    Farinha, Catarina Brazão; de Brito, Jorge; Veiga, Rosário; Fernández, J M; Jiménez, J R; Esquinas, A R

    2018-03-20

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.

  1. Assessment of remote sensing technologies to discover and characterize waste sites

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once sites and problems have been located and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated wastes in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirements for long-term monitoring

  2. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the low-level liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Hanford Site Maps, road evaluation for the grout treatment facility, Department of Ecology certificate of non-designation for centralia fly ash, double-shell tank waste compositional modeling, laboratory analysis reports for double-shell tank waste, stored in tanks 241-AN-103, 241-AN-106, and 241-AW-101, grout vault heat transfer results for M-106 grout formulation, test results for extraction procedure toxicity testing, test results for toxicity testing of double-shell tank grout, pilot-scale grout production test with a simulated low-level waste, characterization of simulated low-level waste grout produced in a pilot-scale test, description of the procedure for sampling nonaging waste storage tanks, description of laboratory procedures, grout campaign waste composition verification, variability in properties of grouted phosphate/sulfate N-reactor waste, engineering drawings, description of operating procedures, equipment list--transportable grout equipment, grout treatment facility--tank integrity assessment plan, long-term effects of waste solutions on concrete and reinforcing steel, vendor information, grout disposal facilities construction quality assurance plan, and flexible membrane liner/waste compatibility test results

  3. Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  4. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.

    Science.gov (United States)

    Rollinson, Andrew N; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.

  5. Studies on site characterization methodologies for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Ju; Guo Yonghai; Chen Weiming

    2008-01-01

    This paper presents the final achievement of the project 'Studies of Site-specific Geological Environment for High Level Waste Disposal and Performance Assessment Methodology, Part Ⅰ: Studies on Site Characterization Methodologies for High Level Radioactive Waste Disposal', which is a 'Key Scientific and Technological Pre-Research Project for National Defense' during 2001-2005. The study area is Beishan area, Gansu Province, NW China--the most potential site for China's underground research laboratory and high level radioactive waste repository. The boreholes BS01, BS2, BS03 and BS04 drilled in fractured granite media in Beishan are used to conduct comprehensive studies on site characterization methodologies, including: bore hole drilling method, in situ measurement methods of hydrogeological parameters, underground water sampling technology, hydrogeochemical logging method, geo-stress measurement method, acoustic borehole televiewer measurement method, borehole radar measurement method, fault stability evaluation methods and rock joint evaluation method. The execution of the project has resulted in the establishment of an 'Integrated Methodological System for Site Characterization in Granite Site for High Level Radioactive Waste Repository' and the 8 key methodologies for site characterization: bore hole drilling method with minimum disturbance to rock mass, measurement method for hydrogeological parameters of fracture granite mass, in situ groundwater sampling methods from bore holes in fractured granite mass, fracture measurement methods by borehole televiewer and bore radar system, hydrogeochemical logging, low permeability measurement methods, geophysical methods for rock mass evaluation, modeling methods for rock joints. Those methods are comprehensive, advanced, innovative, practical, reliable and of high accuracy. The comprehensive utilization of those methods in granite mass will help to obtain systematic parameters of

  6. Waste Characterization Facility at the Idaho National Engineering Laboratory. Environmental Assessment

    International Nuclear Information System (INIS)

    1995-02-01

    DOE has prepared an Environmental Assessment (EA) on the proposed construction and operation of a Waste Characterization Facility (WCF) at INEL. This facility is needed to examine and characterize containers of transuranic (TRU) waste to certify compliance with transport and disposal criteria; to obtain information on waste constituents to support proper packaging, labeling, and storage; and to support development of treatment and disposal plans for waste that cannot be certified. The proposed WCF would be constructed at the Radioactive Waste Management Complex (RWMC). In accordance with the Council on Environmental Quality (CEQ) requirements in 40 CFR Parts 1500-1508, the EA examined the potential environmental impacts of the proposed WCF and discussed potential alternatives. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, and CEQ regulations at 40 CFR 1508.18 and 1508.27. Therefore, an Environmental Impact Statement is not required, and DOE is issuing this Finding of No Significant Impact

  7. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations

  8. Waste Tank Safety Screening Module: An aspect of Hanford Site tank waste characterization

    International Nuclear Information System (INIS)

    Hill, J.G.; Wood, T.W.; Babad, H.; Redus, K.S.

    1994-01-01

    Forty-five (45) of the 149 Hanford single-shell tanks have been designated as Watch-List tanks for one or more high-priority safety issues, which include significant concentrations of organic materials, ferrocyanide salts, potential generation of flammable gases, high heat generation, criticality, and noxious vapor generation. While limited waste characterization data have been acquired on these wastes under the original Tri-Party Agreement, to date all of the tank-by-tank assessments involved in these safety issue designations have been based on historical data rather than waste on data. In response to guidance from the Defense Nuclear Facilities Safety Board (DNFSB finding 93-05) and related direction from the US Department of Energy (DOE), Westinghouse Hanford Company, assisted by Pacific Northwest Laboratory, designed a measurements-based screening program to screen all single-shell tanks for all of these issues. This program, designated the Tank Safety Screening Module (TSSM), consists of a regime of core, supernatant, and auger samples and associated analytical measurements intended to make first-order discriminations of the safety status on a tank-by-tank basis. The TSSM combines limited tank sampling and analysis with monitoring and tank history to provide an enhanced measurement-based categorization of the tanks relative to the safety issues. This program will be implemented beginning in fiscal year (FY) 1994 and supplemented by more detailed characterization studies designed to support safety issue resolution

  9. Hanford facility dangerous waste permit application, general information portion

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report)

  10. Assessment of LANL transuranic waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; McCance, C.H.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    This report presents the findings that resulted from the evaluation of the Los Alamos National Laboratory (LANL) TRU Waste Characterization Procedures, conducted to determine their compliance with applicable DOE requirements. The driving requirements for the procedures appear to be contained in DOE Order 5820.2A; specific reference is made to Chapter II of that document. In addition, the WIPP-WAC sets forth specific waste forms and establishes the basis for LANL's TRU Waste Acceptance Criteria; any characterization plan must utilize procedures that address the requirements of the WIPP-WAC in order to ensure compliance with it. The purpose of the characterization procedures is to provide details to waste generators and/or waste certifiers regarding how the characterization plan is implemented for the gathering of analytical and/or knowledge-of-process information to allow certification of the waste. An annotated outline was developed from those criteria found in Sections 4.0 and 5.0 of the WIPP-WAC. The annotated outline of elements that should be addressed in characterization procedures is provided

  11. High-level waste characterization at West Valley: Progress report for the period 1982-1985

    International Nuclear Information System (INIS)

    Rykken, L.E.

    1986-01-01

    This is a report on the work that was carried out at West Valley under the Waste Characterization Program. This Program covered a number of tasks in support of the design of facilities for the pretreatment and final encapsulation of the high level waste stored at West Valley. In particular, necessary physical, chemical, and radiological characterization of high-level reprocessing waste stored in two vaulted underground tanks was carried out over the period 1982 to 1985. 21 refs., 77 figs., 28 tabs

  12. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  13. CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION

    Science.gov (United States)

    Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...

  14. KEY ELEMENTS OF CHARACTERIZING SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE INSOLUBLES THROUGH SAMPLING AND ANALYSIS

    International Nuclear Information System (INIS)

    Reboul, S; Barbara Hamm, B

    2007-01-01

    Characterization of HLW is a prerequisite for effective planning of HLW disposition and site closure performance assessment activities. Adequate characterization typically requires application of a combination of data sources, including process knowledge, theoretical relationships, and real-waste analytical data. Consistently obtaining high quality real-waste analytical data is a challenge, particularly for HLW sludge insolubles, due to the inherent complexities associated with matrix heterogeneities, sampling access limitations, radiological constraints, analyte loss mechanisms, and analyte measurement interferences. Understanding how each of these complexities affects the analytical results is the first step to developing a sampling and analysis program that provides characterization data that are both meaningful and adequate. A summary of the key elements impacting SRS HLW sludge analytical data uncertainties is presented in this paper, along with guidelines for managing each of the impacts. The particular elements addressed include: (a) sample representativeness; (b) solid/liquid phase quantification effectiveness; (c) solids dissolution effectiveness; (d) analyte cross contamination, loss, and tracking; (e) dilution requirements; (f) interference removal; (g) analyte measurement technique; and (h) analytical detection limit constraints. A primary goal of understanding these elements is to provide a basis for quantifying total propagated data uncertainty

  15. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    Science.gov (United States)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral

  16. Physico-chemical characterization of slag waste coming from GICC thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, A.; Aineto, M.; Iglesias, I. [Laboratory of Applied Mineralogy, Universidad de Castilla-La Mancha, Ciudad Real Madrid (Spain); Romero, M.; Rincon, J.Ma. [The Glass-Ceramics Laboratory, Insituto Eduardo Torroja de Ciencias de la Construccion, CSIC, c/Serrano Galvache s/n, 28033, Madrid (Spain)

    2001-09-01

    The new gas installations of combined cycle (GICC) thermal power plants for production of electricity are more efficient than conventional thermal power plants, but they produce a high quantity of wastes in the form of slags and fly ashes. Nowadays, these by-products are stored within the production plants with, until now, no applications of recycling in other industrial processes. In order to evaluate the capability of these products for recycling in glass and ceramics inductory, an investigation for the full characterization has been made by usual physico-chemical methods such as: chemical analysis, mineralogical analysis by XRD, granulometry, BET, DTA/TG, heating microscopy and SEM/EDX.

  17. Role of statistics in characterizing nuclear waste package behavior

    International Nuclear Information System (INIS)

    Bowen, W.M.

    1984-11-01

    The characterization of nuclear waste package behavior is primarily based on the outcome of laboratory tests, where components of a proposed waste package are either individually or simultaneously subjected to simulated repository conditions. At each step of a testing method, both controllable and uncontrollable factors contribute to the overall uncertainty in the final outcome of the test. If not dealt with correctly, these sources of uncertainty could obscure or distort important information that might otherwise be gleaned from the test data. This could result in misleading or erroneous conclusions about the behavior characteristic being studied. It could also preclude estimation of the individual contributions of the major sources of uncertainty to the overall uncertainty. Statistically designed experiments and sampling plans, followed by correctly applied statistical analysis and estimation methods will yield the most information possible for the time and resources spent on experimentation, and they can eliminate the above concerns. Conclusions reached on the basis of such information will be sound and defensible. This presentation is intended to emphasize the importance of correctly applied, theoretically sound statistical methodology in characterizing nuclear waste package behavior. 8 references, 1 table

  18. Role of statistics in characterizing nuclear waste package behavior

    International Nuclear Information System (INIS)

    Bowen, W.M.

    1984-01-01

    The characterization of nuclear waste package behavior is primarily based on the outcome of laboratory tests, where components of a proposed waste package are either individually or simultaneously subjected to simulated repository conditions. At each step of a testing method, both controllable and uncontrollable factors contribute to the overall uncertainty in the final outcome of the test. If not dealt with correctly, these sources of uncertainty could obscure or distort important information that might otherwise be gleaned form the test data. This could result in misleading or erroneous conclusions about the behavior characteristic being studied. It could also preclude estimation of the individual contributions of the major sources of uncertainty to the overall uncertainty. Statistically designed experiments and sampling plans, followed by correctly applied statistical analysis and estimation methods will yield the most information possible for the time and resources spent on experimentation, and they can eliminate the above concerns. Conclusions reached on the basis of such information will be sound and defensible. This presentation is intended to emphasize the importance of correctly applied, theoretically sound statistical methodology in characterizing nuclear waste package behavior

  19. Application of Epoxy Based Coating Instacote on Waste Tank Tops

    International Nuclear Information System (INIS)

    Pike, J.A.

    1998-01-01

    This evaluation examines the compatibility of coating Instacote with existing High-Level Waste facilities and safety practices. No significant incompatibilities are identified. The following actions need to be completed as indicated when applying Instacote on waste tank tops:(1) Prior to application in ITP facilities, the final product should be tested for chemical resistance to sodium tetraphenylborate solutions or sodium titanate slurries.(2) Any waste contaminated with Part A or B that can not be removed by the vendor such as for radiological contamination, HLW must hold the waste until HLW completes a formal assessment of the waste, disposal criteria, and impact.(3) Prior to the start of any application of the coating, each riser needs to be evaluated for masking and masking applied if needed.(4) At the conclusion of an application actual total weight of material applied to a waste tank needs to documented and sent to the tank top loading files for reference purposes.(5) Verify that the final product contains less than 250 ppm chloride

  20. Miniaturized robotically deployed sensor systems for in-situ characterization of hazardous waste

    International Nuclear Information System (INIS)

    Fischer, G.J.

    1996-01-01

    A series of ''MiniLab'' end effectors are currently being designed for robotic deployment in hazardous areas such as waste storage tanks at Idaho National Engineering Laboratories (INEL) and Oak Ridge National Laboratory (ORNL). These MiniLabs will be the first ever multichannel hazardous waste characterization end effectors deployed in underground high level waste storage tanks. They consist of a suite of chemical, radiological, and physical properties sensors integrated into a compact package mounted on the end of a robotic arm and/or vehicle. Most of the sensors are commercially available thus reducing the overall cost of design and maintenance. Sensor configurations can be customized depending on site/customer needs. This paper will address issues regarding the cost of field sampling verses MiniLab in-situ measurements and a brief background of the Light Duty utility Arm (LDUA) program. Topics receiving in depth attention will include package size parameters/constraints, design specifications, and investigations of currently available sensor technology. Sensors include radiological, gas, chemical, electrolytic, visual, temperature, and ranging. The effects of radiation on the life of the systems/sensors will also be discussed. Signal processing, control, display, and data acquisition methods will be described. The paper will conclude with an examination of possible applications for MiniLabs

  1. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 appendices covering engineering drawings and operating procedures

  2. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constitutents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 Appendices covering engineering drawings and operating procedures

  3. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 14 Appendices. Topics include Engineering Drawings, Maps, Roads, Toxicity Testing, and Pilot-Scale Testing

  4. Possible applications for municipal solid waste fly ash.

    Science.gov (United States)

    Ferreira, C; Ribeiro, A; Ottosen, L

    2003-01-31

    The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.

  5. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  6. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  7. Radiological Characterization Methodology for INEEL-Stored Remote-Handled Transuranic (RH TRU) Waste from Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Kuan, P.; Bhatt, R.N.

    2003-01-01

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-based characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits

  8. APPLICATION OF CHEMICAL METHODS TO THE SOLID WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    C. P. Bulimaga

    2008-12-01

    Full Text Available The present article is a synthesis analysis of application of chemical methods for the development of technologies of hazardous waste management. Here are offered some technologies of neutralization of the waste containing hexacyanofferates, galvanic wastes and those with contain of vanadium, which are collected at Power Thermoelectric Plants.

  9. Characterization of Old Nuclear Waste Packages Coupling Photon Activation Analysis and Complementary Non-Destructive Techniques

    International Nuclear Information System (INIS)

    Carrel, Frederick; Coulon, Romain; Laine, Frederic; Normand, Stephane; Sari, Adrien; Charbonnier, Bruno; Salmon, Corine

    2013-06-01

    Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The characterization becomes crucial particularly for waste packages produced at the beginning of the French nuclear industry. For the latter, available information is often incomplete and some key parameters are sometimes missing (content of the package, alpha-activity, fissile mass...) In this case, the use of non-destructive methods, both passive and active, is an appropriate solution to characterize nuclear waste packages and to obtain all the information of interest. In this article, we present the results of a complete characterization carried out on the TE 1060 block, which is a nuclear waste package produced during the 1960's in Saclay. This characterization is part of the DEMSAC (Dismantling of Saclay's facilities) project (ICPE part). It has been carried out in the SAPHIR facility, located in Saclay and housing a linear electron accelerator. This work enables to show the great interest of active methods (photon activation analysis and high-energy imaging) as soon as passive techniques encounter severe limitations. (authors)

  10. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification

  11. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  12. Preliminary assessment of RTR and visual characterization for selected waste categories

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1992-01-01

    The first transuranic (TRU) waste shipped to the Waste Isolation Pilot Plant (WIPP) will be for the WIPP Experimental Program. The purpose of the Experimental Program is to determine the gas generation rates and potential for gas generation by the waste after it has been permanently stored at the WIPP. The first phase of these tests will be performed at WIPP with test bins that have been filled and sealed in accordance with the test plan for bin scale tests. A second phase of the testing, the Alcove Test, will involve drummed waste placed in sealed rooms within WIPP. A preliminary test was conducted at the Rocky Flats Plant (RFP) to evaluate potential methods for use in the characterization of waste. The waste material types to be identified were as defined in the bin-scale test plan -- Cellulosics, Plastic, Rubber, Corroding Metal/Steel, Corroding Metal/Aluminum, Non-corroding Metal, Solid Inorganic, Inorganic Sludges, other organics and Cements. A total of 19 drums representing eleven different waste types (Rocky Flats Plant -- Identification Description Codes (IDC)) and seven different TRUCON Code materials were evaluated. They included Dry Combustibles, Wet Combustibles, Plastic, light Metal, Glass (Non-Raschig Ring). Raschig Rings, M g O crucibles, HEPA Filters, Insulation, Leaded Dry Box Gloves, and Graphite. These Identification Description Codes were chosen because of their abundance on plant, as well as the variability in drum loading techniques. The goal of this test was to evaluate the effectiveness of RTR inspection and visual inspection as characterization methods for waste. In addition, gas analysis of the head space was conducted to provide an indication of the types of gas generated

  13. Nuclear waste management. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  14. Mobile/portable transuranic waste characterization systems at Los Alamos National Laboratory and a model for their use complex-wide

    International Nuclear Information System (INIS)

    Derr, E.D.; Harper, J.R.; Zygmunt, S.J.; Taggart, D.P.; Betts, S.E.

    1997-01-01

    Los Alamos National Laboratory has implemented mobile and portable characterization and repackaging systems to characterize TRU waste in storage for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. These mobile systems are being used to characterize and repackage waste to meet the full requirements of the WIPP Waste Acceptance Criteria (WAC) and the WIPP Characterization Quality Assurance Program Plan (QAPP). Mobile and portable characterization and repackaging systems are being used to supplement the capabilities and throughputs of existing facilities. Utilization of mobile systems is a key factor that is enabling LANL to: (1) reduce its TRU waste work-off schedule from 36 years to 8.5 years; (2) eliminate the need to construct a $70M+ TRU waste characterization facility; (3) have waste certified for shipment to WIPP when WIPP opens; (4) continue to ship TRU waste to WIPP at the rate of 5000 drums per year; and, (5) reduce overall costs by more than $200M. Aggressive implementation of mobile and portable systems throughout the DOE complex through a centralized-distributed services model will result in similar advantages complex-wide

  15. Mobile/portable transuranic waste characterization systems at Los Alamos National Laboratory and a model for their use complex-wide

    International Nuclear Information System (INIS)

    Derr, E.D.; Harper, J.R.; Zygmunt, S.J.; Taggart, D.P.; Betts, S.E.

    1997-01-01

    Los Alamos National Laboratory (LANL) has implemented mobile and portable characterization and repackaging systems to characterize transuranic (TRU) waste in storage for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. These mobile systems are being used to characterize and repackage waste to meet the full requirements of the WIPP Waste Acceptance Criteria (WAC) and the WIPP Characterization Quality Assurance Program Plan (QAPP). Mobile and portable characterization and repackaging systems are being used to supplement the capabilities and throughputs of existing facilities. Utilization of mobile systems is a key factor that is enabling LANL to (1) reduce its TRU waste work-off schedule from 36 years to 8.5 years; (2) eliminate the need to construct a $70M+ TRU waste characterization facility; (3) have waste certified for shipment to WIPP when WIPP opens; (4) continue to ship TRU waste to WIPP at the rate of 5000 drums per year; and (5) reduce overall costs by more than $200M. Aggressive implementation of mobile and portable systems throughout the Department of Energy complex through a centralized-distributed services model will result in similar advantages complex-wide

  16. Characterization of INEL compactible wastes, compactor options study, and recommendations

    International Nuclear Information System (INIS)

    Gillins, R.L.; Larsen, M.M.; Aldrich, W.C.

    1986-03-01

    This report provides the results of a detailed characterization and evaluation of low-level radioactive waste generated at the Idaho National Engineering Laboratory (INEL) and an evaluation of compactors available commercially. The results of these evaluations formed the basis for a study of compactor options suitable for compacting INEL-generated low-level waste. Seven compactor options were evaluated. A decision analysis performed on the results of the compactor option study and cost analysis showed that a 200-ton box compactor and a 5000-ton box supercompactor were the best options for an INEL compaction facility other than the RWMC. Two compactor locations were considered: WERF and CPP. The WERF location is recommended on the basis of existing facilities to house the compactor and store the waste, the presence of a trained waste-handling staff, and the desirability of maintaining a single location for processing INEL-generated low-level waste

  17. Application of visible spectroscopy in waste sorting

    Science.gov (United States)

    Spiga, Philippe; Bourely, Antoine

    2011-10-01

    Today, waste recycling, (bottles, papers...), is a mechanical operation: the waste are crushed, fused and agglomerated in order to obtain new manufactured products (e.g. new bottles, clothes ...). The plastics recycling is the main application in the color sorting process. The colorless plastics recovered are more valuable than the colored plastics. Other emergent applications are in the paper sorting, where the main goal is to sort dyed paper from white papers. Up to now, Pellenc Selective Technologies has manufactured color sorting machines based on RGB cameras. Three dimensions (red, green and blue) are no longer sufficient to detect low quantities of dye in the considered waste. In order to increase the efficiency of the color detection, a new sorting machine, based on visible spectroscopy, has been developed. This paper presents the principles of the two approaches and their difference in terms of sorting performance, making visible spectroscopy a clear winner.

  18. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments

  19. Characterization of Class A low-level radioactive waste 1986--1990. Volume 3: Main report -- Part B

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information.

  20. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators will be shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  1. Characterization of low-level waste from the industrial sector, and near-term projection of waste volumes and types

    International Nuclear Information System (INIS)

    MacKenzie, D.R.

    1988-01-01

    A telephone survey of low-level waste generators has been carried out in order to make useful estimates of the volume and nature of the waste which the generators are shipping for disposal when the compacts and states begin operating new disposal facilities. Emphasis of the survey was on the industrial sector, since there has been little information available on characteristics of industrial LLW. Ten large industrial generators shipping to Richland, ten shipping to Barnwell, and two whose wastes had previously been characterized by BNL were contacted. The waste volume shipped by these generators accounted for about two-thirds to three-quarters of the total industrial volume. Results are given in terms of the categories of LLW represented and of the chemical characteristics of the different wastes. Estimates by the respondents of their near-term waste volume projections are presented

  2. In situ vitrification: Application to buried waste

    International Nuclear Information System (INIS)

    Callow, R.A.; Thompson, L.E.

    1991-01-01

    Two in situ vitrification field tests were conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification is a technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form and is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate buried waste structures found at Idaho National Engineering Laboratory. In particular, these tests were designed as part of a treatability study to provide essential information on field performance of the process under conditions of significant combustible and metal wastes, and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology provided valuable operational control for successfully processing the high metal content waste. The results indicate that in situ vitrification is a feasible technology for application to buried waste. 2 refs., 5 figs., 2 tabs

  3. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P.

    2015-01-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  4. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P., E-mail: godiva@cdtn.br, E-mail: mouraor@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  5. Composition, production rate and characterization of Greek dental solid waste.

    Science.gov (United States)

    Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos

    2018-05-01

    The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Licence applications for low and intermediate level waste predisposal facilities: A manual for operators

    International Nuclear Information System (INIS)

    2009-07-01

    This publication covers all predisposal waste management facilities and practices for receipt, pretreatment (sorting, segregation, characterization), treatment, conditioning, internal relocation and storage of low and intermediate level radioactive waste, including disused sealed radioactive sources. The publication contains an Annex presenting the example of a safety assessment for a small radioactive waste storage facility. Facilities dealing with both short lived and long lived low and intermediate level waste generated from nuclear applications and from operation of small nuclear research reactors are included in the scope. Processing and storage facilities for high activity disused sealed sources and sealed sources containing long lived radionuclides are also covered. The publication does not cover facilities processing or storing radioactive waste from nuclear power plants or any other industrial scale nuclear fuel cycle facilities. Disposal facilities are excluded from the scope of this publication. Authorization process can be implemented in several stages, which may start at the site planning and the feasibility study stage and will continue through preliminary design, final design, commissioning, operation and decommissioning stages. This publication covers primarily the authorization needed to take the facility into operation

  7. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  8. 76 FR 33277 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2011-06-08

    ... disposal of TRU radioactive waste. As defined by the WIPP Land Withdrawal Act (LWA) of 1992 (Pub. L. 102... certification of the WIPP's compliance with disposal regulations for TRU radioactive waste [63 Federal Register... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central...

  9. Performance allocation traceable to regulatory criteria as applied to site characterization work at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Deju, R.A.; Babad, H.; Bensky, M.S.; Jacobs, G.K.

    1983-01-01

    The Basalt Waste Isolation Project has developed a method for defining in detail the work required to demonstrate the feasibility of emplacing and providing for the safe isolation of nuclear wastes in a repository in the deep basalts at the Hanford Site near Richland, Washington. Criteria analysis allows the identification of areas of significant technical uncertainty or controversy that can be highlighted as issues. A preliminary analysis has been conducted, which, by identifying key radionuclides and allocating performance among the multiple barriers in a repository constructed in a basalt, allows the design and development testing activities at the Basalt Waste Isolation Project to be put into perspective. Application of sophisticated uncertainty analysis techniques will allow refinements in the analysis to be made and to further guide characterization and testing activities. Preliminary results suggest that a repository constructed in basalt will provide for the safe isolation of nuclear wastes in a cost-effective and reliable manner with a high degree of confidence

  10. Sampling and characterization of radioactive liquid wastes; Muestreo y caracterizacion de desechos liquidos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Zepeda R, C.; Monroy G, F.; Reyes A, T.; Lizcano, D. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Cruz C, A. C., E-mail: carla.zepeda@inin.gob.mx [SEP, Instituto Tecnologico de Orizaba, Av. Oriente 9, Col. Emiliano Zapata, 94320 Orizaba, Veracruz (Mexico)

    2017-09-15

    To define the management of radioactive liquid wastes stored in 200 L drums, its isotope and physicochemical characterization is essential. An adequate sampling, that is, representative and homogeneous, is fundamental to obtain reliable analytical results, therefore, in this work, the use of a sampling mechanism that allows collecting homogenous aliquots, in a safe way and minimizing the generation of secondary waste is proposed. With this mechanism, 56 drums of radioactive liquid wastes were sampled, which were characterized by gamma spectrometry, liquid scintillation, and determined the following physicochemical properties: ph, conductivity, viscosity, density and chemical composition by gas chromatography. 67.86% of the radioactive liquid wastes contains H-3 and of these, 47.36% can be released unconditionally, since it presents activities lower than 100 Bq/g. 94% of the wastes are acidic and 48% have viscosities <50 MPa s. (Author)

  11. The waste originating from nuclear energy peaceful applications and its management

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1997-05-01

    This work presents the waste originating from nuclear energy and its management. It approaches the following main topics: nature and classification of the wastes; security requirements to the waste management; state of the art related to the wastes derivates of the uses of the nuclear energy; wastes in the fuel cycle; wastes of the industrial, medical and research and development applications; costs of the waste management

  12. Determination and use of scaling factors for waste characterization in nuclear power plants

    International Nuclear Information System (INIS)

    2009-01-01

    of nuclear power plants, the SF technique is also applicable to other situations where it is desirable to infer the activity of DTM nuclides from easy to make measurements, such as for research reactors, nuclear fuel manufacturing plants, nuclear fuel reprocessing plants, decommissioning waste, historical waste, contaminated land, etc. In each case, the technique employed is similar, but consideration must be given to the unique aspects of the situation, such as the radionuclides of concern. Development of SFs in Member States has been based on analysis of representative waste streams and/or on theoretical calculations and modelling of radionuclide production and transport mechanisms. There is general consensus among Member States that the results derived from the application of SFs must be reasonable without being overly conservative. For example, if the estimate of a DTM nuclide is overly conservative (i.e. too high), it may prematurely result in the radionuclide capacity or authorized limit of a repository being 'expended' before the repository is physically full. The acceptable degree of conservatism will vary depending on the application. Many Member States use the same set of key nuclides and apply similar sampling and analysis strategies. There is also an indication that Member States operating similar nuclear facilities (e.g. the same design of nuclear power plant) may be able to pool their data to develop common SFs for certain radionuclides and waste streams. This is especially useful for Member States with smaller nuclear programmes that may not be able on their own to support a large sampling and analysis programme to develop their own SFs or who lack the technical infrastructure to perform the complex measurements required. The experience compiled from Member States indicates that the development and use of SFs is a widely accepted practice by waste generators, facility operators and regulators in many countries. While the details and scope of SF

  13. Progress in Low and Intermediate Level Operational Waste Characterization and Preparation for Disposal at Ignalina NPP

    International Nuclear Information System (INIS)

    Poskas, P.; Adomaitis, J. E.; Ragaisis, V.

    2003-01-01

    In Lithuania about 70-80% of all electricity is generated at a single power station, Ignalina NPP, which has two RBMK-1500 type reactors. Units 1 and 2 will be closed by 2005 and 2010, respectively, taking into account the conditions of the long-term substantial financial assistance rendered by the European Union, G-7 countries and other states as well as international institutions. The Government approved the Strategy on Radioactive Waste Management. Objectives of this strategy are to develop the radioactive waste management infrastructure based on modern technologies and provide for the set of practical actions that shall bring management of radioactive waste in Lithuania in compliance with radioactive waste management principles of IAEA and with good practices in force in European Union Member States. SKB-SWECO International-Westinghouse Atom Joint Venture with participation of Lithuanian Energy Institute has prepared a reference design of a near surface repository for short-lived low and intermediate level waste. This reference design is applicable to the needs in Lithuania, considering its hydro-geological, climatic and other environmental conditions and is able to cover the expected needs in Lithuania for at least thirty years ahead. Development of waste acceptance criteria is in practice an iterative process concerning characterization of existing waste, repository development, safety and environmental impact assessment etc. This paper describes the position in Lithuania with regard to the long-term management of low and intermediate level waste in the absence of finalized waste acceptance criteria and a near surface repository

  14. Characterization of toxic waste produced in PYMES manufacturing detergents

    International Nuclear Information System (INIS)

    Campuzano, Silvia; Camacho, Judith Elena; Alvarez, Alicia

    2006-01-01

    From the protection of the environment, the problem of the residuals squatter a main place in the environmental administration; presently study a test pilot was standardized, to characterize the toxic waste generated in the production of detergents, to standardize methods of chemical valuation and microbiological of polluted waters that allow later on to apply methods of biological purification and processes of bio-treatment of residuals, the project macro of handling of toxic waste it was addressed this way in small and medium companies producers of detergents. The presence settled down of toxic in the studied waste, represented in surfactants significant amounts, phenols, hydrocarbons, fat and phosphates and the decrease of its quantity in front of the action of bacteria, situation that allowed concluding that the approach to the biotransformation process could be carried out

  15. Waste form development and characterization in pyrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.

    1998-01-01

    Electrometallurgical treatment is a compact, inexpensive method that is being developed at Argonne National Laboratory to deal with spent nuclear fuel, primarily metallic and oxide fuels. In this method, metallic nuclear fuel constituents are electrorefined in a molten salt to separate uranium from the rest of the spent fuel. Oxide and other fuels are subjected to appropriate head end steps to convert them to metallic form prior to electrorefining. The treatment process generates two kinds of high-level waste--a metallic and a ceramic waste. Isolation of these wastes has been developed as an integral part of the process. The wastes arise directly from the electrorefiner, and waste streams do not contain large quantities of solvent or other process fluids. Consequently, waste volumes are small and waste isolation processes can be compact and rapid. This paper briefly summarizes waste isolation processes then describes development and characterization of the two waste forms in more detail

  16. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    International Nuclear Information System (INIS)

    Behrens, R.G.; Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J.

    1995-09-01

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO 2 PuO 2-x , and Pu 4 O 7 phases, of about 1μm or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 μm to liberate the plutonium from the surrounding inert matrix

  17. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag

    NARCIS (Netherlands)

    Gao, X.; Yuan, B.; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    In this paper, the feasibility of using two solid wastes in alkali activated slag composites as construction and building materials is evaluated. One waste is the municipal solid waste incineration (MSWI) bottom ash, and the other one is fine granite powder from aggregate manufacturing. These two

  18. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    International Nuclear Information System (INIS)

    Noy, M.; Johnson, S.G.; Moschetti, T.L.

    1997-01-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions

  19. Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Hameed Ullah

    2017-01-01

    Full Text Available Chemical syntheses involve either hazardous reactants or byproducts which adversely affect the environment. It is, therefore, desirable to develop synthesis processes which either do not involve hazardous reactants or consume all the reactants giving no byproducts. We have synthesized CuO nanoparticles (NPs adhering to some of the principles of green chemistry. The CuO NPs have been synthesized exploiting extracts of vegetable wastes, that is, Cauliflower waste and Potatoes and Peas peels. The extracts were aimed to work as capping agents to get control over the microstructure and morphology of the resulting CuO NPs. The green synthesized CuO NPs were characterized to explore the microstructure, morphology, optical bandgaps, and photocatalytic performances. XRD revealed that the CuO NPs of all the samples crystallized in a single crystal system, that is, monoclinic. However, the morphologies and the optical bandgaps energies varied as a function of the extract of vegetable waste. Similarly, the CuO NPs obtained through different extracts have shown different photocatalytic activities. The CuO NPs produced with extract of Cauliflower have shown high degradation of MB (96.28% compared to obtained with Potatoes peels (87.37% and Peas peels (79.11%.

  20. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    Science.gov (United States)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-07-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  1. Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Smitha Rajesh

    2014-01-01

    Full Text Available The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET and polyvinylpyrrolidone (PVP is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP, molecular weight cut-off (MWCO, and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.

  2. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  3. Develonment of novel organic extractants for applications in various radioactive waste remedistion

    International Nuclear Information System (INIS)

    Mowafy, E. A.; El-Naggar, I.A.; Shalash, A.M.

    2004-01-01

    A major goal of our research program is to develop some new amides as extractants for various waste treatments. Heterocyclic amides have been recently employed successfully as extractants for lanthanide and actinide cations and also some fission products from strongly acidic media. Many of these heterocyclic amides extractants have been synthesized in our laboratory and characterized by different techniques. Their synthesis has been improved. By optimization of the formula, it is possible to use aliphatic diluents without third-phase formation in contact with nitric or hydrochloric acids. One of the most interesting applications of amides is their use as extractants in nuclear field. main advantages of these new extractants are ease of synthesis compared with phosphorus compounds, high chemical and radiolytic stability and complete incineration which leads to smaller amounts of radioactive waste. Studies concerning the utilization of these new synthesized reagents for uranium and thorium were explored

  4. 77 FR 11112 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2012-02-24

    ... debris waste from the FB-Line at SRS. This waste was generated by glovebox operations, decontamination... summary category group solids (S3000) or soils and gravel (S4000) is characterized for WIPP disposal; and...

  5. Application to transfer radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-01-01

    All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS

  6. Characterization of low and intermediate level cemented waste forms

    International Nuclear Information System (INIS)

    Koester, R.; Vejmelka, P.; Brunner, H.; Ganser, B.

    1985-01-01

    The main objective of the characterization work was to establish source term formulations for the cemented waste forms as input for safety analysis. For the operation phase of a repository radionuclide mobilization from the waste packages via the gas phase, caused by mechanical or thermal impact has to be considered. For this reason, besides laboratory tests, experiments with inactive full scale samples were performed to determine quantitatively the activity release from the waste packages under defined thermal and mechanical stresses. In order to evaluate source terms for the mobilization of relevant radionuclides via the liquid phase as a function of time due to leaching and corrosion, detailed experimental work with simulated inactive and dopted laboratory samples and with inactive full scale samples was performed. The experimental work was accompanied by theoretical investigations to establish an improved basis for long term predictions. (orig./PW)

  7. Hanford Waste Vitrification Plant quality assurance program description: Overview and applications

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1990-12-01

    This document describes the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository. The Hanford Waste Vitrification Plant Quality Assurance Program is comprised of this Quality Assurance Program Description as well as the associated contractors' quality assurance programs. The objective of this Quality Assurance Program Description is to provide the Hanford Waste Vitrification Plant Project participants with guidance and direction for program implementation while satisfying the US Department of Energy Office of Civilian Radioactive Waste Management needs in repository licensing activities with regard to canistered waste forms. To accomplish this objective, this description will be prepared in three parts: Part 1 - Overview and applications document; Part 2 - Development and qualification of the canistered waste form; Part 3 - Production of canistered waste forms. Part 1 describes the background, strategy, application, and content of the Hanford Waste Vitrification Plant Quality Assurance Program. This Quality Assurance Program Description, when complete, is designed to provide a level of confidence in the integrity of the canistered waste forms. 8 refs

  8. Development of radiometric methods for radioactive waste characterization

    International Nuclear Information System (INIS)

    Tessaro, Ana Paula Gimenes

    2015-01-01

    The admission of radioactive waste in a final repository depends among other things on the knowledge of the radioisotopic inventory of the waste. To obtain this information it is necessary make the primary characterization of the waste so that it is composition is known, to guide the next steps of radioactive waste management. Filter cartridges that are used in the water polishing system of IEA-R1 research reactor is one of these wastes. The IEA-R1 is a pool-type research reactor, operating between 2 and 5 MW that uses water as coolant, moderator and biological shield. Besides research, it is used for production of radioisotopes and irradiation of samples with neutron and gamma beams. It is located in the Nuclear and Energy Research Institute at the University of Sao Paulo campus. The filter cartridges are used to retain particles that are suspended in the cooling water. When filters become saturated and are unable to maintain the flow within the established limits, they are replaced and disposed of as radioactive waste. After a period of decay, they are sent to the Radioactive Waste Management Department. The aim of this work is to present the studies to determine the activity of gamma emitters present in the cartridge filters. The activities were calculated using the dose rates measured with hand held detectors, after the ratios of the emission rates of photons were evaluated by gamma spectrometry, by the Point Kernel method, which correlates the activity of a source with dose rates at various distances. The method described can be used to determine routinely the radioactive inventory of these filters, avoiding the necessity of destructive radiochemical analysis, or the necessity of calibrating the geometry of measurement. (author)

  9. Performance evaluation and operational experience with a semi-automatic monitor for the radiological characterization of low-level wastes

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.

    1987-03-01

    Chalk River Nuclear Laboratories (CRNL) have undertaken a Waste Disposal Project to co-ordinate the transition from the current practice of interim storage to permanent disposal for low-level radioactive wastes (LLW). The strategy of the project is to classify and segregate waste segments according to their hazardous radioactive lifetimes and to emplace them in disposal facilities engineered to isolate and contain them. To support this strategy, a waste characterization program was set up to estimate the volume and radioisotope inventories of the wastes managed by CRNL. A key element of the program is the demonstration of a non-invasive measurement technique for the isotope-specific characterization of solid LLW. This paper describes the approach taken at CRNL for the non-invasive assay of LLW and the field performance and early operational experience with a waste characterization monitor to be used in a waste processing facility

  10. Performance evaluation and operational experience with a semi-automatic monitor for the radiological characterization of low-level wastes

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.

    1987-01-01

    Chalk River Nuclear Laboratories (CRNL) have undertaken a Waste Disposal Project to co-ordinate the transition from the current practice of interim storage to permanent disposal for low-level radioactive wastes (LLW). The strategy of the project is to classify and segregate waste segments according to their hazardous radioactive lifetimes and to emplace them in disposal facilities engineered to isolate and contain them. To support this strategy, a waste characterization program was set up to estimate the volume and radioisotope inventories of the wastes managed by CRNL. A key element of the program is the demonstration of a non-invasive measurement technique for the isotope-specific characterization of solid LLW. This paper describes the approach taken at CRNL for the non-invasive assay of LLW and the field performance and early operational experience with a waste characterization monitor to be used in a waste processing facility

  11. Life cycle assessment on food waste and its application in China

    Science.gov (United States)

    Gao, Si; Bao, Jingling; Liu, Xiaojie; Stenmarck, Asa

    2018-01-01

    Food waste causes tremendous problems in terms of environment and economy, twined with big social influence, thus studies on food waste are essential and meanwhile very complicated According to Food and Agriculture Organization of the United Nations (FAO), 1.3 billion ton/year of food are wasted globally, which has a total carbon footprint of 4.4 GtCO2 eq per year with a cost of USD 411 billion. According to statistics, China has roughly 195 million tons food waste per year, which is huge. Life Cycle Assessment (LCA), which is an internationally standardized method by ISO for assessment of product and process, has been applied in food sectors to evaluate the different environmental influence, energy use etc. This paper analyzed some of the LCA application on the different parts of the food supply chain (production, post-harvest handling, the storage and transportation, processing, the retail, and consumption) where food waste is generated and on the food waste disposal stage, looked into what has been studied in the context of China, and gave recommendations for LCA application for Chinese food waste problems: 1) More application of LCA on food waste should be made on the early stage of the food cycle rather than just the kitchen waste; 2) Besides global warming potentials, other environmental influences should be studied more at the same time; 3) Food waste treatment can be studied using LCA broadly considering mixture with other substrates and using different recycling methods; 4) LCA based on a local context with local data/inventory are strongly needed; 5) further more detailed studies to support an elevated food waste management, such as food waste profile can be developed.

  12. Waste sampling and characterization facility (WSCF)

    International Nuclear Information System (INIS)

    1994-10-01

    The Waste Sampling and Characterization Facility (WSCF) complex consists of the main structure (WSCF) and four support structures located in the 600 Area of the Hanford site east of the 200 West area and south of the Hanford Meterology Station. WSCF is to be used for low level sample analysis, less than 2 mRem. The Laboratory features state-of-the-art analytical and low level radiological counting equipment for gaseous, soil, and liquid sample analysis. In particular, this facility is to be used to perform Resource Conservation and Recovery Act (RCRA) of 1976 and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 sample analysis in accordance with U.S. Environmental Protection Agency Protocols, room air and stack monitoring sample analysis, waste water treatment process support, and contractor laboratory quality assurance checks. The samples to be analyzed contain very low concentrations of radioisotopes. The main reason that WSCF is considered a Nuclear Facility is due to the storage of samples at the facility. This maintenance Implementation Plan has been developed for maintenace functions associate with the WSCF

  13. Characterization of radioactive organic liquid wastes; Caracterizacion de desechos liquidos organicos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, I.; Monroy G, F.; Quintero P, E.; Lopez A, E.; Duarte A, C., E-mail: ivonne-arce@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    With the purpose of defining the treatment and more appropriate conditioning of radioactive organic liquid wastes, generated in medical establishments and research centers of the country (Mexico) and stored in drums of 208 L is necessary to characterize them. This work presents the physical-chemistry and radiological characterization of these wastes. The samples of 36 drums are presented, whose registrations report the presence of H-3, C-14 and S-35. The following physiochemical parameters of each sample were evaluated: ph, conductivity, density and viscosity; and analyzed by means of gamma spectrometry and liquid scintillation, in order to determine those contained radionuclides in the same wastes and their activities. Our results show the presence of H-3 (61%), C-14 (13%) and Na-22 (11%) and in some drums low concentrations of Co-60 (5.5%). In the case of the registered drums with S-35 (8.3%) does not exist presence of radioactive material, so they can be liberated without restriction as conventional chemical wastes. The present activities in these wastes vary among 5.6 and 2312.6 B g/g, their ph between 2 and 13, the conductivities between 0.005 and 15 m S, the densities among 1.05 and 1.14, and the viscosities between 1.1 and 39 MPa. (Author)

  14. Identification and Characterization of Yeast Isolates from Pharmaceutical Waste Water

    Directory of Open Access Journals (Sweden)

    Marjeta Recek

    2002-01-01

    Full Text Available In order to develop an efficient an system for waste water pretreatment, the isolation of indigenous population of microorganisms from pharmaceutical waste water was done. We obtained pure cultures of 16 yeast isolates that differed slightly in colony morphology. Ten out of 16 isolates efficiently reduced COD in pharmaceutical waste water. Initial physiological characterization failed to match the 10 yeast isolates to either Pichia anomala or Pichia ciferrii. Restriction analysis of rDNA (rDNA-RFLP using three different restriction enzymes: HaeIII, MspI and CfoI, showed identical patterns of the isolates and Pichia anomala type strain. Separation of chromosomal DNAs of yeast isolates by the pulsed field gel electrophoresis revealed that the 10 isolates could be grouped into 6 karyotypes. Growth characteristics of the 6 isolates with distinct karyotypes were then studied in batch cultivation in pharmaceutical waste water for 80 hours.

  15. Vendors search for viscosity sensors for in situ tank waste characterization

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-01-01

    This report documents the search results in identifying manufacturers who can develop viscosity sensors for in situ to waste characterization. Six companies were found that have in-process viscometers

  16. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  17. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  18. Application of SYNROC to high-level defense wastes

    International Nuclear Information System (INIS)

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phase in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100 0 C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY81

  19. 77 FR 73054 - Application for a License To Export Radioactive Waste

    Science.gov (United States)

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., October 25, 2012, XW020, radioactive 1178 pounds disposal by the 11006061. waste in the (approximately...

  20. Optimized application of systems engineering to nuclear waste repository projects

    International Nuclear Information System (INIS)

    Miskimin, P.A.; Shepard, M.

    1986-01-01

    The purpose of this presentation is to describe a fully optimized application of systems engineering methods and philosophy to the management of a large nuclear waste repository project. Knowledge gained from actual experience with the use of the systems approach on two repository projects is incorporated in the material presented. The projects are currently evaluating the isolation performance of different geologic settings and are in different phases of maturity. Systems engineering methods were applied by the principal author at the Waste Isolation Pilot Plant (WIPP) in the form of a functional analysis. At the Basalt Waste Isolation Project (BWIP), the authors assisted the intergrating contractor with the development and application of systems engineering methods. Based on this experience and that acquired from other waste management projects, an optimized plan for applying systems engineering techniques was developed. The plan encompasses the following aspects: project organization, developing and defining requirements, assigning work responsibilities, evaluating system performance, quality assurance, controlling changes, enhancing licensability, optimizing project performance, and addressing regulatory issues. This information is presented in the form of a roadmap for the practical application of system engineering principles to a nuclear waste repository project

  1. Purification and Characterization of α-Amylase from Waste Bread ...

    African Journals Online (AJOL)

    M.Irshad

    2012-04-24

    Apr 24, 2012 ... The objective of this study was to purify and characterize the α-amylase for industrial perspective. The production of α-amylase through solid-state fermentation by Ganoderma tsuage was investigated by using waste bread as substrates. Production parameters were optimized as 2 mL of inoculum size,.

  2. Technological Proposals for Recycling Industrial Wastes for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Isabel Romero-Hermida

    2014-08-01

    Full Text Available A two-fold objective is proposed for this research: removing hazardous and unpleasant wastes and mitigating the emissions of green house gasses in the atmosphere. Thus, the first aim of this work is to identify, characterize and recycle industrial wastes with high contents of calcium or sodium. This involves synthesizing materials with the ability for CO2 sequestration as preliminary work for designing industrial processes, which involve a reduction of CO2 emissions. In this regard, phosphogypsum from the fertilizer industry and liquid wastes from the green olive and bauxite industries have been considered as precursors. Following a very simple procedure, Ca-bearing phosphogypsum wastes are mixed with Na-bearing liquid wastes in order to obtain a harmless liquid phase and an active solid phase, which may act as a carbon sequestration agent. In this way, wastes, which are unable to fix CO2 by themselves, can be successfully turned into effective CO2 sinks. The CO2 sequestration efficiency and the CO2 fixation power of the procedure based on these wastes are assessed.

  3. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  4. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  5. Characterization of mixed waste for sorting and inspection using non-intrusive methods

    International Nuclear Information System (INIS)

    Roberson, G.P.; Ryon, R.W.; Bull, N.L.

    1994-12-01

    Characterization of mixed wastes (that is, radioactive and otherwise hazardous) requires that all hazardous, non-conforming, and radioactive materials be identified, localized, and quantified. With such information, decisions can be made regarding whether the item is treatable or has been adequately treated. Much of the required information can be gained without taking representative samples and analyzing them in a chemistry laboratory. Non-intrusive methods can be used to provide this information on-line at the waste treatment facility. Ideally, the characterization would be done robotically, and either automatically or semi-automatically in order to improve efficiency and safety. For the FY94 Mixed Waste Operations (MWO) project, a treatable waste item is defined as a homogeneous metal object that has external radioactive or heavy metal hazardous contamination. Surface treatment of some kind would therefore be the treatment method to be investigated. The authors developed sorting and inspection requirements, and assessed viable non-intrusive techniques to meet these requirements. They selected radiography, computed tomography and X-ray fluorescence. They have characterized selected mock waste items, and determined minimum detectable amounts of materials. They have demonstrated the efficiency possible by integrating radiographic with tomographic data. Here, they developed a technique to only use radiographic data where the material is homogeneous (fast), and then switching to tomography in those areas where heterogeneity is detected (slower). They also developed a tomographic technique to quantify the volume of each component of a mixed material. This is useful for such things as determining ash content. Lastly, they have developed a document in MOSAIC, an Internet multi-media browser. This document is used to demonstrate the ability to share data and information world-wide

  6. Management and hazardous waste characterization in Central for Isotop and Radiation Application based on potential dangers

    International Nuclear Information System (INIS)

    Niken Hayudanti Anggarini; Megi Stefanus; Prihatiningsih

    2014-01-01

    Separating and storing hazardous waste have been done based on the physical, chemical, and based on potential dangers due to safety hazardous waste temporary storage warehouse. From the results of data collection in 2014 found that the most dominant hazardous waste is organic liquid waste which reaches 61 %, followed by inorganic liquid waste 33 % while organic solid waste and inorganic solid waste has a small portion. When viewed from potential danger, flammable liquid waste has the greatest volume percentage it is 47 % and is followed by a corrosive liquid waste 26 %, while the liquid waste that has not been identified is quite large, which is 9 %. From the highest hazard potential data, hazardous waste storage warehouse is required to have good air circulation and waste storage shelf protected from direct solar heat. Cooperation of lab workers and researchers are also indispensable in providing identification of each waste generated to facilitate the subsequent waste management. (author)

  7. Application of microwaves for incinerating waste shell moulds and cores

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-08-01

    Full Text Available In the paper, investigation results of microwave heating application for incinerating waste shell moulds and cores made of moulding sands with thermosetting resins are presented. It was found that waste shell cores or shell moulds left after casting, separated from moulding sand, can be effectively incinerated. It was evidenced that microwave heating allows effective control of this process and its results. Incineration of waste moulds and cores made of commercial grades of resin-coated moulding sand using microwave heating was found to be an effective way of their utilisation. It was determined that the optimum burning time of these wastes (except those insufficiently disintegrated and not mixed with an activating agent is maximum 240 s at the used magnetron power of 650 W. It was noticed that proper disintegration of the wastes and use of suitable additives to intensify the microwave heating process guarantee significant reduction of the process time and its full stabilisation. Application of microwave heating for incinerating waste shell moulds and cores ensure substantial and measurable economic profits due to shorter process time and lower energy consumption.

  8. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  9. Potential application of biodrying to treat solid waste

    Science.gov (United States)

    Zaman, Badrus; Oktiawan, Wiharyanto; Hadiwidodo, Mochtar; Sutrisno, Endro; Purwono; Wardana, Irawan Wisnu

    2018-02-01

    The generation of solid waste around the world creates problems if not properly managed. The method of processing solid waste by burning or landfill is currently not optimal. The availability of land where the final processing (TPA) is critical, looking for a new TPA alternative will be difficult and expensive, especially in big cities. The processing of solid waste using bio drying technology has the potential to produce renewable energy and prevention of climate change. Solid waste processing products can serve as Refuse Derived Fuel (RDF), reduce water content of solid waste, meningkatkan kualitas lindi and increase the amount of recycled solid waste that is not completely separated from home. Biodrying technology is capable of enhancing the partial disintegration and hydrolysis of macromolecule organic compounds (such as C-Organic, cellulose, hemicellulose, lignin, total nitrogen). The application of biodrying has the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2), methane (CH4), and dinitrooksida (N2O). These gases cause global warming.

  10. Multivariate methods in nuclear waste remediation: Needs and applications

    International Nuclear Information System (INIS)

    Pulsipher, B.A.

    1992-05-01

    The United States Department of Energy (DOE) has developed a strategy for nuclear waste remediation and environmental restoration at several major sites across the country. Nuclear and hazardous wastes are found in underground storage tanks, containment drums, soils, and facilities. Due to the many possible contaminants and complexities of sampling and analysis, multivariate methods are directly applicable. However, effective application of multivariate methods will require greater ability to communicate methods and results to a non-statistician community. Moreover, more flexible multivariate methods may be required to accommodate inherent sampling and analysis limitations. This paper outlines multivariate applications in the context of select DOE environmental restoration activities and identifies several perceived needs

  11. Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

    2009-03-09

    .A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  12. Characterization of e-waste: an inventory from households and the ...

    African Journals Online (AJOL)

    Characterization of e-waste: an inventory from households and the recycling sector in south eastern Nigeria. ... This proffers stakeholders, more especially the regulatory agencies, with a guide in predicting seasonally generated WEEE as well as appropriate approaches adopted as sustainable management strategies.

  13. Synthesis and characterization of carboxymethyl cellulose from office waste paper: a greener approach towards waste management.

    Science.gov (United States)

    Joshi, Gyanesh; Naithani, Sanjay; Varshney, V K; Bisht, Surendra S; Rana, Vikas; Gupta, P K

    2015-04-01

    In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH2COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH2COONa respectively for 3h reaction time. The rheological characteristics of 1-3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Characterization of the solid waste stream of the Tohono O'odham nation.

    Science.gov (United States)

    Wolf, Ann Marie A; Spitz, Anna H; Olson, Gary; Závodská, Anita; Algharaibeh, Mamoun

    2003-04-01

    The Tohono O'odham Nation's Solid Waste Management Program (SWMP) and the Sonora Environmental Research Institute, Inc. (SERI) completed a waste characterization study for the Tohono O'odham Nation (the Nation) to aid in the development of an effective waste management plan. The Nation has recently switched from open dumping and burning of waste to collection in dumpsters and transportation to regulated landfills. The study indicated that members of the Nation produce approximately one-third of the average amount of municipal solid waste produced per person per day in the United States. Far fewer hazardous materials and yard trimmings are found in the waste stream than is the U.S. average. Source reduction options are limited because much of the residential waste comes from packaging materials. Recycling opportunities exist but are hampered by the long distance to markets, which forces the Nation to look at innovative ways of utilizing materials on site. An education program focusing on the traditional O'odham lifestyle has been implemented to help reduce solid waste generation while improving people's health and the environment.

  15. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    International Nuclear Information System (INIS)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J.V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-01-01

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing

  16. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  17. Electrokinetic applications for environmental restoration, waste volume reduction, and contaminant containment systems

    International Nuclear Information System (INIS)

    Lomasney, H.L.; Lomasney, C.A.

    1996-01-01

    In the US and all over the world, following over 50 years of nuclear arms production operations, the magnitude of resultant environmental damage is only beginning to surface. The US Department of Energy estimates that by the year 2070, the total volume of high-level waste, transuranic waste, low-level waste, and low-level mixed waste, generated as a result of past and current nuclear activities, will exceed 20 million cubic meters. In Russia, it is reported that more than 30% of all groundwater is contaminated with agricultural and industrial chemical waste. Government agencies today are faced with the responsibility of developing technologies that are suitable for dealing with severe environmental contamination and accumulating waste inventories. In response to this demand, applications of electrokinetics have emerged in the field of environmental waste management as alternatives for environmental decontamination and ecological protection. Electrokinetics involves the movement of charged species under the influence of an applied electric field and is applicable in several areas of environmental waste management, including cleanup of soil and groundwater, barrier detection, and emergency or protective fencing. The worldwide interest in this technology has steadily escalated over the past decade. Today, state-of-the-art applications of electrokinetics have been demonstrated in the US, The Netherlands, Russia, The Ukraine, and India. This paper addresses the latest advances in the various applications of this technology as well as the most significant breakthroughs in the history of electrokinetics

  18. Review of biotechnology applications to nuclear waste treatment

    International Nuclear Information System (INIS)

    Ashley, N.V.; Roach, D.J.W.

    1990-01-01

    This paper gives an overview of the feasibility of the application of biotechnology to nuclear waste treatment. Many living and dead organisms accumulate heavy metals and radionuclides. The controlled use of this phenomenon forms the basis for the application of biotechnology to the removal of radionuclides from nuclear waste streams. An overview of biotechnology areas, namely the use of biopolymers and biosorption using biomass applicable to the removal of radionuclides from industrial nuclear effluents is given. The potential of biomagnetic separation technology, genetic engineering and monoclonal antibody technology is also to be examined. The most appropriate technologies to develop for radionuclide removal in the short term appear to be those based on biosorption of radionuclides by biomass and the use of modified and unmodified biopolymers in the medium term. (author)

  19. Development and characterization of solidified forms for high-level wastes: 1978. Annual report

    International Nuclear Information System (INIS)

    Ross, W.A.; Mendel, J.E.

    1979-12-01

    Development and characterization of solidified high-level waste forms are directed at determining both process properties and long-term behaviors of various solidified high-level waste forms in aqueous, thermal, and radiation environments. Waste glass properties measured as a function of composition were melt viscosity, melt electrical conductivity, devitrification, and chemical durability. The alkali metals were found to have the greatest effect upon glass properties. Titanium caused a slight decrease in viscosity and a significant increase in chemical durability in acidic solutions (pH-4). Aluminum, nickel and iron were all found to increase the formation of nickel-ferrite spinel crystals in the glass. Four multibarrier advanced waste forms were produced on a one-liter scale with simulated waste and characterized. Glass marbles encapsulated in a vacuum-cast lead alloy provided improved inertness with a minimal increase in technological complexity. Supercalcine spheres exhibited excellent inertness when coated with pyrolytic carbon and alumina and put in a metal matrix, but the processing requirements are quite complex. Tests on simulated and actual high-level waste glasses continue to suggest that thermal devitrification has a relatively small effect upon mechanical and chemical durabilities. Tests on the effects radiation has upon waste forms also continue to show changes to be relatively insignificant. Effects caused by decay of actinides can be estimated to saturate at near 10 19 alpha-events/cm 3 in homogeneous solids. Actually, in solidified waste forms the effects are usually observed around certain crystals as radiation causes amorphization and swelling of th crystals

  20. Environmental characterization foundry sands used in sanitary landfills

    International Nuclear Information System (INIS)

    Domingues, L.G.F.; Ferreira, G.C.S.; Pires, M.S.G.; Teixeira, I.; Carnin, R.; Sarro, W.S.

    2016-01-01

    The national solid waste policy recommends reducing solid waste generation and reusing them in different applications. Preliminary studies show that the foundry sand generated from cast metal parts undercut, has excellent applicability in grain size stabilization of soils for geotechnical functions, and therefore, should not be discarded as waste. This study aimed at environmental characterization of two lots of waste foundry sand (WFS), from different industries, to the particle size stabilization of a clayey soil for use in coverage of solid waste in landfills. The methodology included physicochemical characterization tests (grain size, permeability, XRF and heavy metals) and environmental (NBR 10004: 2004, NBR 10005: 2004, NBR 10006: 20004 and acute toxicity with Vibrio fischeri). The results prove the environmental viability of using these lots of WFS as functional material in the composition of landfills. (author)

  1. Characterizing the environmental impact of metals in construction and demolition waste.

    Science.gov (United States)

    Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben

    2018-05-01

    Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.

  2. Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

  3. Characterization of municipal solid waste from the main landfills of Havana city.

    Science.gov (United States)

    Espinosa Lloréns, Ma Del C; Torres, Matilde López; Alvarez, Haydee; Arrechea, Alexis Pellón; García, Jorge Alejandro; Aguirre, Susana Díaz; Fernández, Alejandro

    2008-01-01

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vías landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.

  4. Characterization of municipal solid waste from the main landfills of Havana city

    International Nuclear Information System (INIS)

    Espinosa Llorens, Ma. del C; Lopez Torres, Matilde; Alvarez, Haydee; Pellon Arrechea, Alexis; Garcia, Jorge Alejandro; Diaz Aguirre, Susana; Fernandez, Alejandro

    2008-01-01

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vias landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana

  5. Site characterization plan: Conceptual design report, Volume 2: Chapters 4-9: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    This document presents a description of a prospective geologic repository for high-level radioactive waste to support the development of the Site Characterization Plan for the Yucca Mountain site. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases (site and properties of the waste package), design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. 147 refs., 145 figs., 83 tabs

  6. Site characterization data for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic conditions in SWSA-6 for use in further studies related to assessing compliance with 5820.2. Burial operations in SWSA-6 began in 1969 on a limited scale, and full operation was initiated in 1973. Since that time, ca. 29,100 m 3 of low-level waste containing ca. 251,000 Ci of activity has been buried in SWSA-6. No transuranic waste has been disposed of in SWSA-6; rather this waste is retrievably stored in SWSA-5. Estimates of the remaining usable space in SWSA-6 vary; however, in 1982 sufficient useful land was reported for about 10 more years of operation. Analysis of the information available on SWSA-6 indicates that more information is required to evaluate the surface water hydrology, the geology at depths below the burial trenches, and the nature and extent of soils within the site. Also, a monitoring network will be required to allow detection of potential contaminant movement in groundwater. Although these are the most obvious needs, a number of specific measurements must be made to evaluate the spatial heterogeneity of the site and to provide background information for geohydrological modeling. Some indication of the nature of these measurements is included

  7. 78 FR 45578 - Application For a License to Export Radioactive Waste

    Science.gov (United States)

    2013-07-29

    ... NUCLEAR REGULATORY COMMISSION Application For a License to Export Radioactive Waste Pursuant to 10..., 2013, radioactive waste authorized for disposal by the XW021, 11006101. as contaminated export will not original secondary waste exceed quantities generators, as resulting from imported in required or the...

  8. Characterization and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    International Nuclear Information System (INIS)

    Fiskum, Sandra K.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hubler, Timothy L.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; Lumetta, Gregg J.; MacFarlan, Paul J.; McNamara, Bruce K.; Peterson, Reid A.; Sinkov, Sergey I.; Snow, Lanee A.; Swoboda, Robert G.

    2008-01-01

    This report describes processing and analysis results of boehmite waste type (Group 5) and insoluble high Cr waste type (Group 6). The sample selection, compositing, subdivision, physical and chemical characterization are described. Extensive batch leach testing was conducted to define kinetics and leach factors of selected analytes as functions of NaOH concentration and temperature. Testing supports issue M-12 resolution for the Waste Treatment Plant

  9. Characterization and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hubler, Timothy L.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; Lumetta, Gregg J.; MacFarlan, Paul J.; McNamara, Bruce K.; Peterson, Reid A.; Sinkov, Sergey I.; Snow, Lanee A.; Swoboda, Robert G.

    2008-07-10

    This report describes processing and analysis results of boehmite waste type (Group 5) and insoluble high Cr waste type (Group 6). The sample selection, compositing, subdivision, physical and chemical characterization are described. Extensive batch leach testing was conducted to define kinetics and leach factors of selected analytes as functions of NaOH concentration and temperature. Testing supports issue M-12 resolution for the Waste Treatment Plant.

  10. Marble waste characterization as a desulfurizing slag component for steel

    International Nuclear Information System (INIS)

    Coleti, J.L.; Grillo, F.F.; Tenorio, J.A.S.; De Oliveira, J.R.

    2014-01-01

    The current steel market requires from steel plants better quality of its products. As a result, steel plants need to search for improvements and costs reduction in its process. Hence, the residue of marble containing significant quantities of calcium and magnesium carbonates, raw materials of steel refining slag, was characterized in order to replace the conventional lime used. Therefore, it will be possible to reduce the cost and volume of waste produced by the ornamental rock industry. The following methods were applied to test the waste potential: SEM with EDS, x-ray diffraction, x-ray fluorescence (EDX), Thermogravimetry (TG) and analysis of surface area and particle size by the BET method using dispersion leisure. The results indicated the feasibility of waste as raw material in the composition of desulfurizing slags. (author)

  11. Characterization of different types of ceramic waste and its incorporation to the cement paste

    International Nuclear Information System (INIS)

    Cunha, G.A.; Evangelista, A.C.J.; Almeida, V.C. de

    2009-01-01

    The porcelain tike is a product resulting from the technological development of ceramic plating industry. Its large acceptation by the consumer market is probably linked with certain properties, such as low porosity, high mechanical resistance, facility in maintenance, besides being a material of modern and versatile characteristics. The aim of this work was characterizing the different ceramic wastes (enameled and porcelain tike) and evaluating its influence on the mechanical behavior in cement pastes. The wastes were characterized through the determination of its chemical composition, size particle distribution and X-ray diffraction. Cement pastes + wastes were prepared in 25% and 50% proportions and glue time determination, water absorption and resistance to compression assays were taken. The results indicate that although the wastes don't show any variation in the elementary chemical composition, changes in the cement paste behavior related to the values of resistance to compression were observed. (author)

  12. Application of membrane technologies for liquid radioactive waste processing

    International Nuclear Information System (INIS)

    2004-01-01

    Membrane separation processes have made impressive progress since the first synthesis of membranes almost 40 years ago. This progress was driven by strong technological needs and commercial expectations. As a result the range of successful applications of membranes and membrane processes is continuously broadening. In addition, increasing application of membrane processes and technologies lies in the increasing variations of the nature and characteristics of commercial membranes and membrane apparatus. The objective of the report is to review the information on application of membrane technologies in the processing of liquid radioactive waste. The report covers the various types of membranes, equipment design, range of applications, operational experience and the performance characteristics of different membrane processes. The report aims to provide Member States with basic information on the applicability and limitations of membrane separation technologies for processing liquid radioactive waste streams

  13. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  14. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  15. Characterization of the atmospheric pathway at hazardous waste sites

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.

    1988-10-01

    Evaluation of potential health effects for populations surrounding hazardous waste sites requires consideration of all potential contaminant transport pathways through groundwater, surface water, and the atmosphere. A comprehensive pathway model that includes emission, dispersion, and deposition computations has been developed as a component of the Remedial Action Priority System (RAPS). RAPS is designed to assess the relative potential risks associated with hazardous and radioactive mixed-waste disposal sites. The atmospheric component includes optional volatilization and suspension emission routines. Atmospheric transport, dispersion, and deposition are computed using relatively standard modeling techniques expanded to incorporate topographical influences. This sector-averaged Gaussian model accounts for local channeling, terrain heights, and terrain roughness effects. Long-term total deposition is computed for the terrain surrounding the hazardous waste site. An example is given of applications at a US Department of Energy site, where atmospheric emissions are potentially important. The multiple applications of RAPS have provided information on the relative importance of different constitutent transport pathways from a potential population risk basis. Our results show that the atmospheric pathway is often equally as important as other pathways such as groundwater and direct soil ingestion. 6 refs., 3 figs., 4 tabs

  16. Applicability of Activated Carbon to Treatment of Waste Containing Iodine-Labeled Compounds

    International Nuclear Information System (INIS)

    Gad, H.M.H.; El-Mouhty, N.R.A.; Aly, H.F.

    2008-01-01

    The applicability of activated carbon prepared from sawdust (SD) by one-step chemical activation process using H 3 PO 4 (H) to treatment of aqueous waste contaminated with iodine-labeled prolactin (I-PRL) has been investigated. Treatment processes were performed under the varying conditions; contact time, temperature, carbon type, carbon dosage, and different particle size of activated carbon (SDH). Effect of aqueous waste volume has been investigated to calculate the batch factor (V/M) and the distribution coefficient (K d ). The used activated carbon (SDH) was characterized by N 2 adsorption, FTIR, density, ph, point of zero charge ph p zc, moisture and ash content. Methylene blue (MB) and iodine number was calculated by adsorption from solution. In order to investigate the mechanism of sorption and potential rate controlling steps, pseudo first- and second-order equations, intra particle diffusion equation and the Elovich equation have been used to test experimental data. Kinetic analysis of the four models has been carried out for system variables in order to assess which model provides the best fit predicted data with experimental results. 7 M NaOH can be used for regeneration of spent SDH activated carbon with the efficiency of 99.6% and the regenerated carbon can be reused for five cycles effectively. The prospect of applying the SDH activated carbon prepared from agricultural by-product, sawdust, to treatment of aqueous waste contaminated with I-PRL appears promising and is considered highly applicable because of its high adsorption capacity, available at low cost, easily regenerated and reused

  17. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.

    2006-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  18. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.; JOCHEN; PREVETTE

    2007-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  19. Sampling and characterization of mixed wastes at the U.S. Department of Energy Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Baldwin, C.E.; Stakebake, J.L.

    1995-01-01

    The Rocky Flats Environmental Technology Site is a government-owned, contractor-operated facility that is part of the US Department of Energy (DOE) complex. This plant was originally designed and built as a manufacturing facility for the production of nuclear weapons components. Currently, efforts are focused on the treatment and disposal of residues and wastes that were products of these production activities. Federal regulations prohibit the land disposal of untreated radioactive hazardous waste in the same manner as non-radioactive or non-hazardous wastes. A strategy has been developed for achieving compliance with Federal regulations through a process of characterization and treatment. This paper describes the strategy and the methodology used for characterizing radioactive and chemically hazardous wastes. Characterization of four waste forms (fluid-bed incinerator ash, uranium oxide, solidified sludge, and combustibles) is discussed and the results available are presented

  20. Characterization of a Fe-based alloy system for an AFCI metallic waste form - 16134

    International Nuclear Information System (INIS)

    Williamson, Mark J.; Sindelar, Robert L.

    2009-01-01

    The AFCI waste management program aims to provide a minimum volume stable waste form for high level radioactive waste from the various process streams. The AFCI Integrated Waste Management Strategy document has identified a Fe-Zr metallic waste form (MWF) as the baseline alloy for disposal of Tc metal, undissolved solids, and TRUEX fission product wastes. Several candidate alloys have been fabricated using vacuum induction melting to investigate the limits of waste loading as a function of Fe and Zr content. Additional melts have been produced to investigate source material composition. These alloys have been characterized using SEM/EDS and XRD. Phase assemblage and specie partitioning of Re metal (surrogate for Tc) and noble metal FP elements into the phases is reported. (authors)

  1. Hanford facility dangerous waste permit application, general information portion. Revision 3

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1997-01-01

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy's contractors are identified as ''co-operators'' and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ''operator'' elsewhere in the application is not meant to conflict with the contractors' designation as co-operators but rather is based on the contractors' contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  2. Hanford facility dangerous waste permit application, general information portion. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  3. IGRIS for characterizing low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Peters, C.W. [Nuclear Diagnostic Systems, Springfield, VA (United States); Swanson, P.J. [Concord Associates, Knoxville, TN (United States)

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  4. Characterization and analysis of medical solid waste in Osun State ...

    African Journals Online (AJOL)

    This paper reports the study of quantum and characterization of medica solid wastes generated by healthcare facilities in Osun State. The work involved administration of a questionnaire and detailed studies conducted on facilities selected on the basis of a combination of purposive and random sampling methods.

  5. Collecting and identifying the radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, C. GH.

    2001-01-01

    The procedure 'Collecting and identifying the radioactive waste' applied by the Radioactive Waste Management Department, STDR, complies with the requirements of the competent authority concerning the radioactive source management. One of the most important tasks, requiring the application of this procedure, is collecting and identification of 'historical wastes' for which a complete book keeping does not exist from different reasons. The chapter 1 presents the procedure's goal and the chapter 2 defines the applicability field. Chapter 3 enlists the reference documents while the chapter 4 gives the definitions and abbreviations used in the procedure. Chapter 5 defines responsibilities of the operators implied in collecting, identification and characterization of the radioactive wastes, the producers of the radioactive wastes being implied. Chapter 6 gives the preliminary conditions for applying the procedure. Among these, the transport, collecting, processing, storing and characterization costs are implied, as well as the compliance with technical and different other condition. The procedure structure is presented in the chapter 7. In collecting radioactive wastes, two situations are possible: 1- the producer is able to prepare the wastes for transport and to deliver them to STDR; 2 - the wastes are received from the producer by a delegate STDR operator, properly and technically prepared. The producer must demonstrate by documents the origin and possession, analysis bulletins specifying, the radionuclides activity and measurement date, physical state and, in addition, for spent radiation sources, the series/number of the container and producer. In case the producer is not able to display all this information, the wastes are taken into custody by the STDR labs in view of their analysis. A record in writing is completed specifying the transfer of radioactive wastes from the producer to the STDR, a record which is sent to the national authority in charge with the

  6. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  7. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  8. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...... energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized...

  9. Chemical Equilibrium Modeling of Hanford Waste Tank Processing: Applications of Fundamental Science

    International Nuclear Information System (INIS)

    Felmy, Andrew R.; Wang, Zheming; Dixon, David A.; Hess, Nancy J.

    2004-01-01

    The development of computational models based upon fundamental science is one means of quantitatively transferring the results of scientific investigations to practical application by engineers in laboratory and field situations. This manuscript describes one example of such efforts, specifically the development and application of chemical equilibrium models to different waste management issues at the U.S. Department of Energy (DOE) Hanford Site. The development of the chemical models is described with an emphasis on the fundamental science investigations that have been undertaken in model development followed by examples of different waste management applications. The waste management issues include the leaching of waste slurries to selective remove non-hazardous components and the separation of Sr90 and transuranics from the waste supernatants. The fundamental science contributions include: molecular simulations of the energetics of different molecular clusters to assist in determining the species present in solution, advanced synchrotron research to determine the chemical form of precipitates, and laser based spectroscopic studies of solutions and solids.

  10. Application and research of special waste plasma disposal technology

    International Nuclear Information System (INIS)

    Lan Wei

    2007-12-01

    The basic concept of plasma and the principle of waste hot plasma disposal technology are simply introduced. Several sides of application and research of solid waste plasma disposal technology are sumed up. Compared to the common technology, the advantages of waste hot plasma disposal technology manifest further. It becomes one of the most prospective and the most attended high tech disposal technology in particular kind of waste disposal field. The article also simply introduces some experiment results in Southwest Institute of Physics and some work on the side of importation, absorption, digestion, development of foreign plasma torch technology and researching new power sources for plasma torch. (authors)

  11. Assessment of application of selected waste for production of biogas

    Science.gov (United States)

    Pawlita-Posmyk, Monika; Wzorek, Małgorzata

    2017-10-01

    Recently, the idea of biogas production has become a popular topic in Poland. Biogas is a valuable source of renewable energy with a potential application in electricity and heat production. Numerous types of technological solutions of biogas production are closely linked to the availability of substrates in the area, as well as their quantity and their properties. The paper presents the assessment of application in biogas production selected wastes such as communal and household sewage sludge and waste from a paper production in Opole region (Poland). The annual productions of methane, biogas and electricity were estimated. Chosen physico-chemical properties important in fermentation process were taken into consideration in the assessment. The highest value of potential energy was obtained using waste from the paper industry but the most appropriate parameters for this process has sewage sludge from the municipal sewage treatment plant. The use of sewage sludge from domestic and municipal sewage and waste from the paper industry creates the opportunity to reduce the amount of waste materials.

  12. Hanford facility dangerous waste permit application, PUREX storage tunnels

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997

  13. Liquid effluent retention facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix to the Liquid Effluent Retention Facility Dangerous Waste Permit Application contains pumps, piping, leak detection systems, geomembranes, leachate collection systems, earthworks and floating cover systems

  14. Design and application of environmentally effective concrete with usage of chrysotile-cement waste

    OpenAIRE

    Egorova Lada; Semenov Vyacheslav; Pligina Anna; Askhadullin Aizat

    2016-01-01

    Construction is resource-demanding industry, characterized by a large volume of waste. Particularly chrysotile cement waste obtained both in production and in dismantling over age chrysotile-cement products: corrugated asbestos boards and flat sheets, chrysotile-cement tubes. We propose to use dry chrysotile-cement waste as recycled aggregate for concrete. Based on developed compositions and identified properties of heavy concrete with chrysotile-cement waste introduce this technology to the ...

  15. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  16. Application of neural networks to waste site screening

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Garrett, M.; Kraft, T.; Hilton, J.; VanHammersveld, M.

    1993-02-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach consists primarily of drilling boreholes near contaminated sites and chemically analyzing the extracted physical samples and processing the data. This is expensive and time consuming. The feasibility of using neural network techniques to reduce the cost of waste site screening was investigated. Two neural network techniques, gradient descent back propagation and fully recurrent back propagation were utilized. The networks were trained with data received from Westinghouse Hanford Corporation. The results indicate that the network trained with the fully recurrent technique shows satisfactory generalization capability. The predicted results are close to the results obtained from a mathematical flow prediction model. It is possible to develop a new tool to predict the waste plume, thus substantially reducing the number of the bore sites and samplings. There are a variety of applications for this technique in environmental site screening and remediation. One of the obvious applications would be for optimum well siting. A neural network trained from the existing sampling data could be utilized to decide where would be the best position for the next bore site. Other applications are discussed in the report

  17. Vitrification development plan for US Department of Energy mixed wastes

    International Nuclear Information System (INIS)

    Peters, R.; Lucerna, J.; Plodinec, M.J.

    1993-10-01

    This document is a general plan for conducting vitrification development for application to mixed wastes owned by the US Department of Energy. The emphasis is a description and discussion of the data needs to proceed through various stages of development. These stages are (1) screening at a waste site to determine which streams should be vitrified, (2) waste characterization and analysis, (3) waste form development and treatability studies, (4) process engineering development, (5) flowsheet and technical specifications for treatment processes, and (6) integrated pilot-scale demonstration. Appendices provide sample test plans for various stages of the vitrification development process. This plan is directed at thermal treatments which produce waste glass. However, the study is still applicable to the broader realm of thermal treatment since it deals with issues such as off-gas characterization and waste characterization that are not necessarily specific to vitrification. The purpose is to provide those exploring or considering vitrification with information concerning the kinds of data that are needed, the way the data are obtained, and the way the data are used. This will provide guidance to those who need to prioritize data needs to fit schedules and budgets. Knowledge of data needs also permits managers and planners to estimate resource requirements for vitrification development

  18. Site characterization information needs for a high-level waste geologic repository

    International Nuclear Information System (INIS)

    Gupta, D.C.; Nataraja, M.S.; Justus, P.S.

    1987-01-01

    At each of the three candidate sites recommended for site characterization for High-Level Waste Geologic Repository development, the DOE has proposed to conduct both surface-based testing and in situ exploration and testing at the depths that wastes would be emplaced. The basic information needs and consequently the planned surface-based and in situ testing program will be governed to a large extent by the amount of credit taken for individual components of the geologic repository in meeting the performance objectives and siting criteria. Therefore, identified information to be acquired from site characterization activities should be commensurate with DOE's assigned performance goals for the repository system components on a site-specific basis. Because of the uncertainties that are likely to be associated with initial assignment of performance goals, the information needs should be both reasonably and conservatively identified

  19. Characterization of radioactive waste forms. Progress report for 1986 Volume 1

    International Nuclear Information System (INIS)

    Glasser, F.P.; McCulloch, C.

    1988-01-01

    The Council of Ministers of the European Communities adopted the third five-year EC programme of research on radioactive waste management and disposal in March 1985. It was recognized that the inevitable production of radioactive waste required perfecting and demonstrating systems for managing the waste produced by the nuclear industry, ensuring at the various stages the best possible protection of man and the environment. Task 3 of the programme 'evaluation of conditioned waste and qualification of engineered barriers' is subdivided into five sections. This book, in two volumes, is a compilation of reports on the progress achieved in four of the sections during 1986, the first year of the third programme. Volume 1 is concerned with Sections 1 and 5, 'Research on low -and medium- active waste' and 'Quality control methods'. Volume 2 covers Section 2 'HLW form characterization' and Section 3 'Other engineered barriers'. Section 4 'Development of standard test methods' is not included in this edition, as results from an interlaboratory round robin test now in progress will only be available for inclusion for the year 1988

  20. Characterization of radioactive waste forms. Progress report for 1986 Volume 2

    International Nuclear Information System (INIS)

    Reed, D.L.; Mallinson, L.G.

    1988-01-01

    The Council of Ministers of the European Communities adopted the third five-year EC programme of research on radioactive waste management and disposal in March 1985. It was recognized that the inevitable production of radioactive waste required perfecting and demonstrating systems for managing the waste produced by the nuclear industry, ensuring at the various stages the best possible protection of man and the environment. Task 3 of the programme 'evaluation of conditioned waste and qualification of engineered barriers' is subdivided into five sections. This book, in two volumes, is a compilation of reports on the progress achieved in four of the sections during 1986, the first year of the third programme. Volume 1 is concerned with Sections 1 and 5, 'Research on low-and medium- active waste' and 'Quality control methods'. Volume 2 covers Section 2 'HLW form characterization' and Section 3 'Other engineered barriers' Section 4 'Development of standard test methods' is not included in this edition, as results from an interlaboratory round robin test now in progress will only be available for inclusion for the year 1988

  1. Greater-than-Class C low-level radioactive waste characterization. Appendix D-3: Characterization of greater-than-Class C low-level radioactive waste from other generators

    International Nuclear Information System (INIS)

    Fish, L.W.

    1994-09-01

    The Other Generators category includes all greater-than-Class C low-level radioactive waste (GTCC LLW) that is not generated or held by nuclear utilities or sealed sources licensees or that is not stored at Department of Energy facilities. To determine the amount of waste within this category, 90 LLW generators were contacted; 13 fit the Other Generators category. Based on information received from the 13 identified Other Generators, the GTCC LLW Management Program was able to (a) characterize the nature of industries in this category, (b) estimate the 1993 inventory of Other Generator waste for high, base, and low cases, and (c) project inventories to the year 2035 for high, base, and low cases. Assumptions were applied to each of the case estimates to account for generators who may not have been identified in this study

  2. Site characterization plan:

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  3. R ampersand D activities at DOE applicable to mixed waste

    International Nuclear Information System (INIS)

    Erickson, M.D.; Devgun, J.S.; Brown, J.J.; Beskid, N.J.

    1991-01-01

    The Department of Energy (DOE) has established the Office of Environmental Restoration and Waste Management. Within the new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing and evaluation (RDDT ampersand E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Because of US governmental activities dating back to the Manhattan project, mixed radioactive and hazardous waste is an area of particular concern to DOE. The OTD is responsible for a number of R ampersand D activities aimed at improving capabilities to characterize, control, and properly dispose of mixed waste. These activities and their progress to date will be reviewed. In addition, needs for additional R ampersand D on managing mixed waste will be presented. 5 refs., 2 tabs

  4. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    Science.gov (United States)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving

  5. Low-level tank waste simulant data base

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1996-04-01

    The majority of defense wastes generated from reprocessing spent N- Reactor fuel at Hanford are stored in underground Double-shell Tanks (DST) and in older Single-Shell Tanks (SST) in the form of liquids, slurries, sludges, and salt cakes. The tank waste remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. This report discusses three principle topics: the need for and basis for selecting target or reference LLW simulants, tanks waste analyses and simulants that have been defined, developed, and used for the GDP and activities in support of preparing and characterizing simulants for the current LLW vitrification project. The procedures and the data that were generated to characterized the LLW vitrification simulants were reported and are presented in this report. The final section of this report addresses the applicability of the data to the current program and presents recommendations for additional data needs including characterization and simulant compositional variability studies

  6. Handling and processing of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    2001-01-01

    The main objective of this report is to provide technical information and reference material on different steps and components of radioactive waste management for staff in establishments that use radionuclides and in research centres in Member States. It provides technical information on the safe handling, treatment, conditioning and storage of waste arising from the various activities associated with the production and application of radioisotopes in medical, industrial, educational and research facilities. The technical information cited in this report consists mainly of processes that are commercialised or readily available, and can easily be applied as they are or modified to solve specific waste management requirements. This report covers the sources and characteristics of waste and approaches to waste classification, and describes the particular processing steps from pretreatment until storage of conditioned packages

  7. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  8. Challenges of characterization of radioactive waste with High composition variability and their consequences measurement methodology

    International Nuclear Information System (INIS)

    Lexa, D.

    2014-01-01

    Radioactive waste characterization is a key step in every nuclear decommissioning project. It normally relies on a combination of facility operational history with results of destructive and non-destructive analysis. A particularly challenging situation arises when historical waste from a nuclear research facility is to be characterized, meaning little or no radiological information is available and the composition of the waste is highly variable. The nuclide vector concept is of limited utility, resulting in increased requirements placed on both the extent and performance of destructive and non-destructive analysis. Specific challenges are illustrated on an example of the decommissioning project underway at the Joint Research Center of the European Commission in Ispra. (author)

  9. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    Science.gov (United States)

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  10. Characterization the radioactive waste with a view to its possible declassification

    International Nuclear Information System (INIS)

    Domenech, Aidee; Cornejo Diaz, Nestor

    1998-01-01

    In the present work the currents are characterized the waste that take place in the medicine and the investigation and the possibilities are valued for to declassify some at they starting from the estimate give levels dispensation derived for different radionuclides

  11. QA in the characterization of a low-level waste disposal site

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1989-01-01

    This paper discusses the implementation of the quality assurance program for the site characterization phase of the Texas low-level radioactive waste disposal facility. The author's thought on implementation of a program with a comparison to the California plan are presented

  12. Active and passive computed tomography mixed waste focus area final report

    International Nuclear Information System (INIS)

    Becker, G K; Camp, D C; Decman, D J; Jackson, J A; Martz, H E; Roberson, G P.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy s (DOE) mixed-waste, low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user or customer technology selection. The active and passive computed tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory (LLNL) has developed the active and passive computed tomography (A ampersand XT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of their classification-low level, transuranic or mixed. Mixed waste contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that

  13. Waste disposal by hydrofracture and application of the technology to the management of hazardous wastes

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.; Weeren, H.O.

    1985-01-01

    A unique disposal method, involving hydrofracturing, is used for management of liquid low-level radioactive wastes at Oak Ridge National Laboratory (ORNL). Wastes are mixed with cement and other solids and injected along bedding plane fractures into highly impermeable shale at a depth of 300 m forming a grout sheet. The process has operated successfully for 20 years and may be applicable to disposal of hazardous wastes. The cement grout represents the primary barrier for immobilization of the wastes; the hydrologically isolated injection horizon represents a secondary barrier. Research is also conduced on the development of methods for monitoring the extend and orientation of the grout sheets; these methods include gamma-ray logging of cased observation wells, leveling surveys of benchmarks, tiltmeter surveys, and microseismic arrays

  14. Nuclear waste management. Quarterly progress report, January-March, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comp.)

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  15. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    Science.gov (United States)

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  16. Monte-Carlo Application for Nondestructive Nuclear Waste Analysis

    Science.gov (United States)

    Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.

    2014-06-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum

  17. Roles of Historical Photography in Waste Site Characterization, Closure, and Remediation

    International Nuclear Information System (INIS)

    Mackey, H.

    1998-07-01

    Over 40,000 frames of vertical historical photography from 1938 to 1996 and over 10,000 frames of oblique photography from 1981 to 1991 of the 777-square kilometer Savannah River Site in south central South Carolina were reviewed, cataloged, and referenced utilizing ARCView and associated ArcInfo tools. This allows environmental reviews of over 400 potential waste units on the SRS to be conducted in a rapid fashion to support preparation of work plans, characterization, risk assessments, and closure of the waste units in a more cost effective manner

  18. Characterization of past and present solid waste streams from the plutonium finishing plant

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.; Mayancsik, B.A. [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I. [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  19. Characterization of past and present solid waste streams from the plutonium finishing plant

    International Nuclear Information System (INIS)

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE)

  20. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    Energy Technology Data Exchange (ETDEWEB)

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  1. State Waste Discharge Permit application: 200-E Powerhouse Ash Pit

    Energy Technology Data Exchange (ETDEWEB)

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  2. Establishment of a facility for intrusive characterization of transuranic waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Foster, B.D.; Musick, R.G.; Pedalino, J.P.; Cowley, J.L.; Karney, C.C.; Kremer, J.L.

    1998-01-01

    This paper describes design and construction, project management, and testing results associated with the Waste Examination Facility (WEF) recently constructed at the Nevada Test Site (NTS). The WEF and associated systems were designed, procured, and constructed on an extremely tight budget and within a fast track schedule. Part 1 of this paper focuses on design and construction activities, Part 2 discusses project management of WEF design and construction activities, and Part 3 describes the results of the transuranic (TRU) waste examination pilot project conducted at the WEF. In Part 1, the waste examination process is described within the context of Waste Isolation Pilot Plant (WIPP) characterization requirements. Design criteria are described from operational and radiological protection considerations. The WEF engineered systems are described. These systems include isolation barriers using a glove box and secondary containment structure, high efficiency particulate air (HEPA) filtration and ventilation systems, differential pressure monitoring systems, and fire protection systems. In Part 2, the project management techniques used for ensuring that stringent cost/schedule requirements were met are described. The critical attributes of these management systems are described with an emphasis on team work. In Part 3, the results of a pilot project directed at performing intrusive characterization (i.e., examination) of TRU waste at the WEF are described. Project activities included cold and hot operations. Cold operations included operator training, facility systems walk down, and operational procedures validation. Hot operations included working with plutonium contaminated TRU waste and consisted of waste container breaching, waste examination, waste segregation, data collection, and waste repackaging

  3. Hanford Facility Dangerous Waste Permit Application, 222-S Laboratory Complex

    International Nuclear Information System (INIS)

    WILLIAMS, J.F.

    2000-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the 222-S Laboratory Complex (this document, DOE/RL-91-27). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the 222-S Laboratory Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this 222-S Laboratory Complex permit application documentation is current as of August 2000

  4. Physical and chemical characterization of borosilicate glasses containing Hanford high-level wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Palmer, R.A.

    1980-10-01

    Scouting studies are being performed to develop and evaluate silicate glass forms for immobilization of Hanford high-level wastes. Detailed knowledge of the physical and chemical properties of these glasses is required to assess their suitability for long-term storage or disposal. Some key properties to be considered in selecting a glass waste form include leach resistance, resistance to radiation, microstructure (includes devitrification behavior or crystallinity), homogeneity, viscosity, electrical resistivity, mechanical ruggedness, thermal expansion, thermal conductivity, density, softening point, annealing point, strain point, glass transformation temperature, and refractive index. Other properties that are important during processing of the glass include volatilization of glass and waste components, and corrosivity of the glass on melter components. Experimental procedures used to characterize silicate waste glass forms and typical properties of selected glass compositions containing simulated Hanford sludge and residual liquid wastes are presented. A discussion of the significance and use of each measured property is also presented

  5. Sampling and analysis plan for ORNL filter press cake waste from the Liquid and Gaseous Waste Operations Department

    International Nuclear Information System (INIS)

    Bartling, M.H.; Bayne, C.K.; Cunningham, G.R.

    1994-09-01

    This document defines the sampling and analytical procedures needed for the initial characterization of the filter press cake waste from the Process Waste Treatment Plant (PWTP) at the Oak Ridge National Laboratory (ORNL). It is anticipated that revisions to this document will occur as operating experience and sample results suggest appropriate changes be made. Application of this document will be controlled through the ORNL Waste Management and Remedial Action Division. The sampling strategy is designed to ensure that the samples collected present an accurate representation of the waste process stream. Using process knowledge and preliminary radiological activity screens, the filter press cake waste is known to contain radionuclides. Chemical characterization under the premise of this sampling and analysis plan will provide information regarding possible treatments and ultimately, disposal of filter press cake waste at an offsite location. The sampling strategy and analyses requested are based on the K-25 waste acceptance criteria and the Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements [2, NVO-325, Rev. 1]. The sampling strategy will demonstrate that for the filter press cake waste there is (1) an absence of RCRA and PCBs wastes, (2) an absence of transuranic (TRU) wastes, and (3) a quantifiable amount of radionuclide activity

  6. Performance Demonstration Program Plan for the WIPP Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-02-01

    The Performance Demonstration Program is designed to ensure that compliance with the Quality Assurance Objective, identified in the Quality Assurance Program Plan for the WIPP Experimental-Waste Characterization Program (QAPP), is achieved. This Program Plan is intended for use by the WPO to assess the laboratory support provided for the characterization of WIPP TRU waste by the storage/generator sites. Phase 0 of the Performance Demonstration Program encompasses the analysis of headspace gas samples for inorganic and organic components. The WPO will ensure the implementation of this plan by designating an independent organization to coordinate and provide technical oversight for the program (Program Coordinator). Initial program support, regarding the technical oversight and coordination functions, shall be provided by the USEPA-ORP. This plan identifies the criteria that will be used for the evaluation of laboratory performance, the responsibilities of the Program Coordinator, and the responsibilities of the participating laboratories. 5 tabs

  7. Characterization methodology for re-using marble slurry in industrial applications

    Science.gov (United States)

    Marras, Graziella; Careddu, Nicola; Peretti, Roberto; Bortolussi, Augusto

    2017-04-01

    In the effort towards waste minimization and circular economy, natural stone waste is one of the foremost parameter to turn scientific community attention. At this time, calcium carbonate has a great importance in industrial fields and currently there is the necessity of appreciate the potential value of marble waste and convert it into marketable products. A large amount of residues is produced in ornamental stone sector with different dimension and particle size. The research focused on marble slurry, recovered at the end of the treatment plant in the filter-press section. The aim of this paper is to propose a defined way to characterize marble slurry, primarily composed of micronized particles, in order to obtain useful data to make a comparison with market specifications. In particular the proposed characterization methodology follows the indicated steps: Leaching test (TCLP) - Grain size distribution and bulk density - Mineralogical analyses - X-Ray diffraction - Chemical analysis - Loss on ignition - SEM determination - Colorimetric and bright analysis. Marble slurry samples, collected by different dimension stone treatment plants in Orosei marble district (Sardinia - Italy), were analyzed by physical, mineralogical and chemical determinations and the obtained data were evaluated for compatibility with the CaCO3 specifications required by a definite industrial sector, seeing as how CaCO3 product specifications vary depending on the utilization. The importance of this investigation is to characterize completely the "waste" that must apply for further uses and to identify the feasibility to substitute marketable micronized CaCO3 with marble slurry. Further goal is to enhance the environmental advantages of re-using stone waste by reducing marble waste landfills and by applying raw material substitution, in accordance with regulatory requirements, thus pursuing the objective to convert natural stone waste into by-product with a renewed environmental and economic

  8. Characterization and concentration of manganese ore waste

    International Nuclear Information System (INIS)

    Lima, Rosa Malena Fernandes; Pereira, Eder Esper; Reis, Erica Linhares; Silva, Glaucia Regina da

    2010-01-01

    In this work is presented the tests results of characterization and concentration by gravity and flotation methods carried out with a manganese sample waste. By optical microscopy, SEM/EDS and X-ray diffractometry were identified the Mn minerals spessartite (20%), tephroite (15%), rhodonite (5%), rhodochrosite and carbonates minerals (29%), opaque minerals and others (16%), micaceus minerals (6%) and quartz (4%). It was obtained Mn metallurgical recovery of 58% with Mn concentrate contents varying from 30 to 32.5%. The concentrates SiO_2 contents of flotation were until 1.5% smaller than those contents of gravity method concentrates. (author)

  9. Hanford Facility dangerous waste permit application, general information

    International Nuclear Information System (INIS)

    1993-05-01

    The current Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, number DOE/RL-91-28) and a treatment, storage, and/or disposal Unit-Specific Portion, which includes documentation for individual TSD units (e.g., document numbers DOE/RL-89-03 and DOE/RL-90-01). Both portions consist of a Part A division and a Part B division. The Part B division consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. Documentation contained in the General Information Portion (i.e., this document, number DOE/RL-91-28) is broader in nature and applies to all treatment, storage, and/or disposal units for which final status is sought. Because of its broad nature, the Part A division of the General Information Portion references the Hanford Facility Dangerous Waste Part A Permit Application (document number DOE/RL-88-21), a compilation of all Part A documentation for the Hanford Facility

  10. Characterization, quantification and management of China's municipal solid waste in spatiotemporal distributions: A review.

    Science.gov (United States)

    Gu, Binxian; Jiang, Suqin; Wang, Haikun; Wang, Zibo; Jia, Renfu; Yang, Jie; He, Sheng; Cheng, Rong

    2017-03-01

    Municipal Solid Waste (MSW) is a heterogeneous waste stream, which is harmful for human health and the ecological environment if it is not well managed. Based on results from different authors by analyzing the generation, physical components and management of MSW from different cities, this paper presents an overview of the temporal trends and spatial variation characterization of MSW generation and its physical components in China. Total MSW generation has increased from 31,320 thousand tons in 1980 to 178,602 thousand tons in 2014, and MSW generation per capita has also increased from 448.3g to 653.2g. The distribution of MSW generation is mostly concentrated in the coastal southeastern region, as well as large point sources of more than 200 thousand tons per year are mostly distributed in Jiangsu, Zhejiang, Shandong, Hebei and Guangdong provinces. The review shows that the largest proportion of food waste, plastics and paper is 61.2% (54.2-65.9%, 95% CI), 9.8% (7.2-14.0%, 95% CI), 9.6% (6.7-12.3%, 95% CI), respectively, in 2014; the best estimates of other waste were as follows: 3.1% textile, 2.1% glass, 1.1% metal, 1.8% wood and grass, 1.3% rubber and leather, 1.8% ceramic, 2.5% ash, 1.2% hazardous waste, and 4.5% miscellaneous. To better manage China's MSW, several possible and appropriate solutions (e.g., concentrating on key regions, intensifying source separation, promoting green lifestyle, and establishing specialized regulations and policies) should be adopted, which might facilitate the application of China's 13th Five, and identify gaps in our knowledge of MSW management subject. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization and handling solutions through development and adaptation of available technologies

    International Nuclear Information System (INIS)

    Michel, W.S.; Frazee, C.

    1998-01-01

    The Department of Energy (DOE) faces unique challenges in characterizing and handling its mixed wastes. Mixed waste is low-level or transuranic (TRU) contaminated wastes containing Resource Conservation and Recovery Act (RCRA) hazardous materials. Characterization and material handling technologies will be required to solve pretreatment and disposal needs, and to meet transportation requirements. The Mixed Waste Focus Area (MWFA) will fund the development and demonstration of characterization and material handling technologies to ensure the availability to support the DOE mixed waste needs. The MWFA will be evaluating commercially available and laboratory developed technologies for applicability in meeting these needs. Improved systems will be developed, on the commercial or laboratory side, as needed to address unmet needs. Studies/demonstrations are taking place this year to evaluate the capabilities of existing systems and identify technology gaps. Calls for proposals will be made to both industry and laboratory to identify work to address those gaps. Prioritization of applicable proposals will take place and activities funded appropriately to address characterization and material handling needs

  12. Investigation into the Application of Construction and Demolition Waste in Urban Roads

    Directory of Open Access Journals (Sweden)

    Youyun Li

    2017-01-01

    Full Text Available The recycling and reuse of waste materials is a topic of global concern and great international interest for those interested in sustainable development and protecting the environment. In recent decades, global production of construction and demolition waste (C&D waste has significantly increased and became a worldwide problem. This research proposes to evaluate the feasibility of using aggregate from recycled C&D waste for urban road embankment applications based on the Sanhuan road construction project in eastern Xi’an. An extensive suite of laboratory and field compaction tests were carried out to determine the physical properties and engineering characteristics of the C&D waste. The effect of curing on the strength of the C&D waste was investigated using unconfined compression strength (UCS, California bearing ratio (CBR, and deflection tests. The results show that the C&D waste has the characteristics of high strength and significant stability after simple treatment and further suggest that the use of these materials for paving urban road embankments is feasible. This study is of value for the reasonable and effective promotion of using C&D waste recycled materials in road subgrade applications.

  13. Annual report on the development and characterization of solidified forms for nuclear wastes, 1979

    International Nuclear Information System (INIS)

    Chick, L.A.; McVay, G.L.; Mellinger, G.B.; Roberts, F.P.

    1980-12-01

    Development and characterization of solidified nuclear waste forms is a major continuing effort at Pacific Northwest Laboratory. Contributions from seven programs directed at understanding chemical composition, process conditions, and long-term behaviors of various nuclear waste forms are included in this report. The major findings of the report are included in extended figure captions that can be read as brief technical summaries of the research, with additional information included in a traditional narrative format. Waste form development proceeded on crystalline and glass materials for high-level and transuranic (TRU) wastes. Leaching studies emphasized new areas of research aimed at more basic understanding of waste form/aqueous solution interactions. Phase behavior and thermal effects research included studies on crystal phases in defense and TRU waste glasses and on liquid-liquid phase separation in borosilicate waste glasses. Radiation damage effects in crystals and glasses from alpha decay and from transmutation are reported

  14. Application of geophysical methods for fracture characterization

    International Nuclear Information System (INIS)

    Lee, K.H.; Majer, E.L.; McEvilly, T.V.; California Univ., Berkeley, CA; Morrison, H.F.; California Univ., Berkeley, CA

    1990-01-01

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs

  15. The development of an expert system for the characterization of waste assay data

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, S.; Hodges, J.; Sparrow, C. [Mississippi State Univ., Mississippi State, MS (United States)] [and others

    1997-11-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs.

  16. The development of an expert system for the characterization of waste assay data

    International Nuclear Information System (INIS)

    Bridges, S.; Hodges, J.; Sparrow, C.

    1997-01-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs

  17. Characterization of Moroccan coal waste: valorization in the elaboration of the Portland clinker

    Directory of Open Access Journals (Sweden)

    Belkheiri D.

    2014-04-01

    Full Text Available Coal exploited in the mine of Jerada (northeast of Morocco was accompanied by large quantities of waste. The purpose of this work is to characterize this waste with the aim of its use as a material for civil engineering. Mineral and chemical investigations on this waste in the raw state, and at different temperature of heat treatments, were carried out by various methods: X-ray fluorescence, X-ray diffraction, infrared spectroscopy. These analyzes showed that the studied waste, contain essentially a mineral part formed by silica and various clays, as well as coal’s residues. The thermal investigation of waste, by differential scanning calorimetry (DSC, revealed an exothermic phenomenon attributed to the combustion of coal residues. Other phenomena were noted on the thermograms due to the mineral part transformations. In this analysis a comparison was also made with pure coal. These characteristics of coal waste encourage studying its development in reducing energy consumption in the Portland cement manufacture. Mixtures of waste with limestone or with raw cement materials were studied, and the resulting products were analyzed by different methods.

  18. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington Site. Main report and Appendices A through D

    International Nuclear Information System (INIS)

    1983-03-01

    On November 12, 1982, the US Department of Energy submitted to the US Nuclear Regulatory Commission the Site Characterization Report for the Basalt Waste Isolation Project (DOE/RL 82-3). The Basalt Waste Isolation Project is located on DOE's Hanford Reservation in the State of Washington. NUREG-0960 contains the detailed analysis, by the NRC staff, of the site characterization report. Supporting technical material is contained in Appendices A through W

  19. Nuclear-waste-management. Quarterly progress report, July-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1981-12-01

    Progress reports and summaries are presented for the following: high-level waste process development, alternate waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and fuel pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  20. Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  1. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    Science.gov (United States)

    Bouqbis, Laila; Werner Koyro, Hans; Kammann, Claudia; Zohra Ainlhout, Lalla Fatima; Boukhalef, Laila; Cherif Harrouni, Moulay

    2018-05-01

    Over two-thirds of Morocco can be classified as semiarid, arid and desert with low and variable rainfalls. While the country is subject to frequent drought, groundwater resources are predominantly consume by irrigated agriculture leading to the depletion of water resources and degradation of soil quality. Application of bio-resources wastes to soils after pyrolysis process is well documented to help retain water and nutrients in soils. In this study, three bio-resources wastes derived from argan shells, wood chip, a blend of paper sludge and wheat husks are characterized for physical and chemical properties. To determine the potential impact of salt stress and toxic substances the second part of this study focused on the effect these bio-resources wastes have on germination of salad and barley respectively. The three bio-resources obtained from different biomass showed some unique properties compared to the soil, such as high electrical conductivity (EC), high content of K, Na and Mg, low content of heavy metals. Moreover, the water holding capacities increased with increasing application of bio-resources wastes. Concerning the phytotoxic tests, no negative effect was observed neither for salad (Lactuca sativa L.) nor for barley (Hordeum vulgare) indicating that the three bio-resources could be safely used for agriculture. Collectively, the use of these bio-resources wastes as a soil amendment is anticipated to increase both water and nutrient and could provide the potential for a better plant growth mainly in semiarid, arid and desert climatic conditions like the case of Morocco in which the agricultural practices reserve a majority of the water resources to be used for irrigation.

  2. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    Directory of Open Access Journals (Sweden)

    Bouqbis Laila

    2018-01-01

    Full Text Available Over two-thirds of Morocco can be classified as semiarid, arid and desert with low and variable rainfalls. While the country is subject to frequent drought, groundwater resources are predominantly consume by irrigated agriculture leading to the depletion of water resources and degradation of soil quality. Application of bio-resources wastes to soils after pyrolysis process is well documented to help retain water and nutrients in soils. In this study, three bio-resources wastes derived from argan shells, wood chip, a blend of paper sludge and wheat husks are characterized for physical and chemical properties. To determine the potential impact of salt stress and toxic substances the second part of this study focused on the effect these bio-resources wastes have on germination of salad and barley respectively. The three bio-resources obtained from different biomass showed some unique properties compared to the soil, such as high electrical conductivity (EC, high content of K, Na and Mg, low content of heavy metals. Moreover, the water holding capacities increased with increasing application of bio-resources wastes. Concerning the phytotoxic tests, no negative effect was observed neither for salad (Lactuca sativa L. nor for barley (Hordeum vulgare indicating that the three bio-resources could be safely used for agriculture. Collectively, the use of these bio-resources wastes as a soil amendment is anticipated to increase both water and nutrient and could provide the potential for a better plant growth mainly in semiarid, arid and desert climatic conditions like the case of Morocco in which the agricultural practices reserve a majority of the water resources to be used for irrigation.

  3. WEEE directive application: vitrification of e-waste

    International Nuclear Information System (INIS)

    Silva, A.C.; Pidone, L.; Mello-Castanho, S.R.H.

    2011-01-01

    The aim of the WEEE directive is the electrical and electronic equipment waste (e-waste) mitigation and reduce life-cycle-end environmental impact of the this kind of equipment. Currently applied to electrical and electronic equipment manufacturers and distributors in European Union, it's Pigovian principle based, where the person that place potentially polluting products at the environment, is also legal and financial responsible for the resultant life-cycle-end pollution. This policy is a worldwide trend, and implies a growing demand in the search for new proper waste disposal technological solutions. In this context of broad spectrum, are also entered the medical equipment that make use of electronic devices. This study aims to obtain glasses which can be used as a product of commercial value containing up to 40% by mass of hospital apparatus e-waste. The residues were previously crushed and calcined. Copper and iron aventurine glass were prepared through the modification of the basic composition of soda-lime-borosilicate glass. After the melting temperature of 1300°C, the glasses were characterized by FT-IR and XRD. The chemical stability was evaluated by hydrolytic attack test. The glasses showed a high chemistry and environmental stability, like commercial soda-lime glass, in addition the obtained material present attractive appearance, allowing its use in decoration or architecture products. (author)

  4. Site characterization plan:

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs

  5. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  6. Characterization of household waste in Greenland

    International Nuclear Information System (INIS)

    Eisted, Rasmus; Christensen, Thomas H.

    2011-01-01

    The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.

  7. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    International Nuclear Information System (INIS)

    Dodge, Robert L.; Montoya, Andy M.

    2003-01-01

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste

  8. Waste reduction at the Savannah River Site

    International Nuclear Information System (INIS)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities

  9. Hanford facility dangerous waste Part A, Form 3, and Part B permit application documentation for the Central Waste Complex (WA7890008967) (TSD: TS-2-4)

    International Nuclear Information System (INIS)

    Saueressig, D.G.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998

  10. Application of thermal technologies for processing of radioactive waste

    International Nuclear Information System (INIS)

    2006-12-01

    The primary objective of this publication is to provide an overview of the various thermal technologies for processing various solid, liquid, organic and inorganic radioactive waste streams. The advantages, limitations and operating experience of various thermal technologies are explained. This publication also goes beyond previous work on thermal processes by addressing the applicability of each technology to national or regional nuclear programmes of specific relative size (major advanced programmes, small to medium programmes, and emerging programmes with other nuclear applications). The most commonly used thermal processing technologies are reviewed, and the key factors influencing the selection of thermal technologies as part of a national waste management strategy are discussed. Accordingly, the structure and content of this publication is intended to assist decision-makers, regulators, and those charged with developing such strategies to identify and compare thermal technologies for possible inclusion in the mix of available, country-specific waste management processes. This publication can be used most effectively as an initial cutting tool to identify whether any given technology will best serve the local waste management strategy in terms of the waste generated, technical complexity, available economic resources, environmental impact considerations, and end product (output) of the technology. If multiple thermal technologies are being actively considered, this publication should be instrumental in comparing the technologies and assisting the user to reach an informed decision based on local needs, economics and priorities. A detailed set of conclusions is provided in Section 7

  11. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    International Nuclear Information System (INIS)

    HILL, J.S.

    2000-01-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone

  12. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-01-01

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita -1 day -1 . Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

  13. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico.

    Science.gov (United States)

    Gómez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-07-01

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita(-1) day(-1). Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

  14. 40 CFR 266.203 - Standards applicable to the transportation of solid waste military munitions.

    Science.gov (United States)

    2010-07-01

    ... transportation of solid waste military munitions. 266.203 Section 266.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the transportation of solid waste military munitions. (a) Criteria for hazardous waste...

  15. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Science.gov (United States)

    2010-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  16. Treatability study of absorbent polymer waste form for mixed waste treatment

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-01-01

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment

  17. Characterization of natural fiber from agricultural-industrial residues

    International Nuclear Information System (INIS)

    Prado, Karen S.; Spinace, Marcia A.S.

    2011-01-01

    Natural fibers show great potential for application in polymer composites. However, instead of the production of inputs for this purpose, an alternative that can also minimize solid waste generation is the use of agro-industrial waste for this purpose, such as waste-fiber textiles, rice husks residues and pineapple crowns. In this work the characterization of these three residues and evaluate their properties in order to direct the application of polymer composites. Was analyzed the moisture, density, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis of the fibers. The results show that the use of these wastes is feasible both from an environmental standpoint and because its properties suitable for this application. (author)

  18. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    International Nuclear Information System (INIS)

    Loomis, G.G.; Miller, C.M.; Giansiracusa, J.A.; Kimmel, R.; Prewett, S.V.

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test

  19. Evaluation of low-level radioactive waste characterization and classification programs of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Taie, K.R.

    1994-01-01

    The West Valley Demonstration Project (WVDP) is preparing to upgrade their low-level radioactive waste (LLW) characterization and classification program. This thesis describes a survey study of three other DOE sites conducted in support of this effort. The LLW characterization/classification programs of Oak Ridge National Laboratory, Savannah River Site, and Idaho National Engineering Laboratory were critically evaluated. The evaluation was accomplished through tours of each site facility and personnel interviews. Comparative evaluation of the individual characterization/classification programs suggests the WVDP should purchase a real-time radiography unit and a passive/active neutron detection system, make additional mechanical modifications to the segmented gamma spectroscopy assay system, provide a separate building to house characterization equipment and perform assays away from waste storage, develop and document a new LLW characterization/classification methodology, and make use of the supercompactor owned by WVDP

  20. Management of radioactive waste from non-power applications in the Netherlands

    International Nuclear Information System (INIS)

    Codee, H.D.K.

    2002-01-01

    Radioactive waste results from the use of radioactive materials in hospitals, research establishments, industry and nuclear power plants. The Netherlands forms a good example of a country with a small and in the near future ending nuclear power programme. The radioactive waste from non-power applications therefore strongly influences the management choices. A dedicated waste management company COVRA, the Central Organisation for Radioactive Waste manages all radioactive waste produced in the Netherlands. For the small volume, but broad spectrum of radioactive waste, a management system was developed based on the principle to isolate, to control and to monitor the waste. Long-term storage is an important element in this management strategy. It is not seen as a 'wait and see' option but as a necessary step in the strategy that will ultimately result in final removal of the waste. Since the waste will remain retrievable for a long time new technologies and new disposal options can be applied when available and feasible. (author)

  1. RA radiological characterization database application

    International Nuclear Information System (INIS)

    Steljic, M.M; Ljubenov, V.Lj. . E-mail address of corresponding author: milijanas@vin.bg.ac.yu; Steljic, M.M.)

    2005-01-01

    Radiological characterization of the RA research reactor is one of the main activities in the first two years of the reactor decommissioning project. The raw characterization data from direct measurements or laboratory analyses (defined within the existing sampling and measurement programme) have to be interpreted, organized and summarized in order to prepare the final characterization survey report. This report should be made so that the radiological condition of the entire site is completely and accurately shown with the radiological condition of the components clearly depicted. This paper presents an electronic database application, designed as a serviceable and efficient tool for characterization data storage, review and analysis, as well as for the reports generation. Relational database model was designed and the application is made by using Microsoft Access 2002 (SP1), a 32-bit RDBMS for the desktop and client/server database applications that run under Windows XP. (author)

  2. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    Science.gov (United States)

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  3. Application of glove box robotics to hazardous waste management

    International Nuclear Information System (INIS)

    Dennison, D.K.; Hurd, R.L.; Merrill, R.D.; Reitz, T.C.

    1995-02-01

    Lawrence Livermore Laboratory (LLNL) is developing a semi-automated system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM developed gantry robot with a special glove box enclosure designed to protect the operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely using the robot in a telerobotic mode for one-of-a-kind functions and in an autonomous mode for repetitive type operations. The system will initially be used in conjunction with a portable gas system designed to capture any gaseous phase tritium released into the glove box. This paper presents the objectives of this program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  4. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    International Nuclear Information System (INIS)

    Thompson, C.J.; Ballinger, M.Y.; Damberg, E.G.; Riley, R.G.

    1997-07-01

    Pacific Northwest National Laboratory's Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe)

  5. Characterization and energy potential of food waste from catering service in Hangzhou, China.

    Science.gov (United States)

    Guo, Xiao-Hui; Sun, Fa-Qian; Sun, Ying-Jun; Lu, Hao-Hao; Wu, Wei-Xiang

    2014-08-01

    Safe disposal of food waste is becoming an impending issue in China with the rapid increase of its production and the promotion of environmental awareness. Food waste from catering services in Hangzhou, China, was surveyed and characterized in this study. A questionnaire survey involving 632 units across the urban districts showed that 83.5% of the food waste was not properly treated. Daily food waste production from catering units was estimated to be 1184.5 tonnes. The ratio of volatile solid to total solid, easily biodegradable matter (including crude fat, crude protein and total starch) content in total solid and the ratio of total organic carbon to nitrogen varied in ranges of 90.1%-93.9%, 60.9%-72.1%, and 11.9-19.9, respectively. Based on the methane yield of 350 mL g VS(-1) in anaerobic batch tests, annual biogas energy of 1.0 × 10(9) MJ was estimated to be recovered from the food waste. Food waste from catering services was suggested to be an attractive clean energy source by anaerobic digestion. © The Author(s) 2014.

  6. Radioactive waste from non-power applications in Sweden

    International Nuclear Information System (INIS)

    Haegg, Ann-Christin; Lindbom, Gunilla; Persson, Monica

    2001-01-01

    Full text: The system for handling of radioactive waste from the Nuclear Fuel Cycle in Sweden is well established and has been in use for many years. Radioactive waste from other sources is not always handled as rigorously. The Swedish Radiation Protection Institute, SSI has identified the issue and therefore initiated a study with the aim to achieve a sufficient system for handling and disposal of radioactive waste from all sources of radioactive waste. In this paper we discuss some of the sources of radioactive waste and the specific problems they represent. We give a brief description on how they are regulated and handled today and identify some interesting issues. Conventional industry, hospitals, research and education: In the conventional industry the use of different types of radioactive sources is common. The size and type of radioactive source depends on the application (from some megaBq up to thousands of terraBq). The radioactive waste from hospitals, research institutions and pharmaceutical or bio-technical industries consists mainly of very short-lived radionuclides. Also most sealed sources used in the medical field contains short-lived radionuclides. According to the Swedish Radiation Protection Act a licence is needed for the use of sealed sources exceeding 50 kiloBq. For hospitals and research institutes the SSI issues one license covering all radioactive sources below 500 megaBq up to a summary limit depending on the application. All sources with activity exceeding 500 megaBq require a separate license. SSI has issued about 2500 licences. For each licence an annual fee is paid to the SSI. When the radioactive source has fulfilled its purpose the licensee is obliged to inform the SSI that the source is no longer in use and show a certificate from the recognised waste facility. Not until this has been done the licensee is released from its responsibilities. SSI has issued regulations on Radioactive Waste Not Associated with Nuclear Energy. These

  7. Generation and collection of restaurant waste: Characterization and evaluation at a case study in Italy.

    Science.gov (United States)

    Tatàno, Fabio; Caramiello, Cristina; Paolini, Tonino; Tripolone, Luca

    2017-03-01

    Because restaurants (as a division of the hospitality sector) contribute to the generation of commercial and institutional waste, thus representing both a challenge and an opportunity, the objective of the present study was to deepen the knowledge of restaurant waste in terms of the qualitative and quantitative characteristics of waste generation and the performance achievable by the implementation of a separate collection scheme. In this study, the generated waste was characterized and the implemented separate collection was evaluated at a relevant case study restaurant in a coastal tourist area of Central Italy (Marche Region, Adriatic Sea side). The qualitative (compositional) characterization of the generated total restaurant waste showed considerable incidences of, in decreasing order, food (28.2%), glass (22.6%), paper/cardboard (19.1%), and plastic (17.1%). The quantitative (parametric) characterization of the generated restaurant waste determined the unit generation values of total waste and individual fractions based on the traditional employee and area parameters and the peculiar meal parameter. In particular, the obtained representative values per meal were: 0.72kgmeal -1 for total waste, and ranging, for individual fractions, from 0.20 (for food) to 0.008kgmeal -1 (for textile). Based on the critical evaluation of some of the resulting unit waste generation values, possible influences of restaurant practices, conditions, or characteristics were pointed out. In particular, food waste generation per meal can likely be limited by: promoting and using local, fresh, and quality food; standardizing and limiting daily menu items; basing food recipes on consolidated cooking knowledge and experience; and limiting plate sizes. The evaluation of the monthly variation of the monitored separate collection, ranging from an higher level of 52.7% to a lower level of 41.4%, indicated the following: a reduction in the separate collection level can be expected at times of

  8. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  9. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-01-01

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities

  10. The Characterization of Filtration Waste Solidified Product from Baghouse Filter of the Incineration Process

    International Nuclear Information System (INIS)

    Sutoto

    2000-01-01

    To increase of the safety, quality and to easy maintenance of the incinerator media of bag house filter, coating of the surface filter media by CaCO 3 powder were done. In the incinerator process, the CaCO 3 powder will scrub of fly ash as secondary waste. And finally, both of the secondary waste and CaCO 3 will immobilized by cement matrix. The research has an objective to study and characterizing of the CaCO 3 as secondary waste on their cemented product. The research were done on block samples with content of CaCO 3 and the properties characterized by compressive strength and density. From this research known that on their solidified, each quantity of CaCO 3 will be impact to decreasing of the quality cementation product. The optimum formula for solidification of bag house filter scrubbed is CaCO 3 : cement: water is 3 : 10 : 7. (author)

  11. Management of radioactive wastes with regard to radioisotope application

    International Nuclear Information System (INIS)

    1989-01-01

    The report contains the abstracts of lectures held for the instruction of members of developing countries concerned with waste processing from isotope applications in research, medicine and industry. (HP)

  12. Development and characterization of new high-level waste form containing LiCl KCl eutectic salts for achieving waste minimization from pyroprocessing

    International Nuclear Information System (INIS)

    Cho, Yong Zun; Kim, In Tae; Park, Hwan Seo; Ahn, Byeung Gil; Eun, Hee Chul; Son, Seock Mo; Ah, Su Na

    2011-12-01

    The purpose of this project is to develop new high level waste (HLW) forms and fabrication processes to dispose of active metal fission products that are removed from electrorefiner salts in the pyroprocessing based fuel cycle. The current technology for disposing of active metal fission products in pyroprocessing involves non selectively discarding of fission product loaded salt in a glass-bonded sodalite ceramic waste form. Selective removal of fission products from the molten salt would greatly minimize the amount of HLW generated and methods were developed to achieve selective separation of fission products during a previous I NERI research project (I NERI 2006 002 K). This I NERI project proceeds from the previous project with the development of suitable waste forms to immobilize the separated fission products. The Korea Atomic Energy Research Institute (KAERI) has focused primarily on developing these waste forms using surrogate waste materials, while the Idaho National Laboratory (INL) has demonstrated fabrication of these waste forms using radioactive electrorefiner salts in hot cell facilities available at INL. Testing and characterization of these radioactive materials was also performed to determine the physical, chemical, and durability properties of the waste forms

  13. Characterization of marble waste for manufacture of artificial stone; Caracterizacao de residuo de marmore para fabricacao de rocha artificial

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, M.C.; Silva, A.G.P., E-mail: maricostalonga2@gmail.com [Universidade Estadual do Norte Fluminense (UENF/LAMAV), Campos dos Goytacazes, RJ (Brazil). Laboratorio de Materiais Avancados; Gadioli, M.C.B. [Centro de Tecnologia Mineral (CETEM/NR-ES), Cachoeiro de Itapemirim, ES (Brazil)

    2016-07-01

    This work aims to study the characterization of marble waste for the manufacture of artificial stone. The characterization of the waste was performed through X-ray fluorescence, X-ray diffraction, particle size distribution, scanning electron microscopy and confocal microscopy. The results indicated that the marble waste presents typical composition of a dolomite, calcite marble, and their minerals are: Calcite (CaCO{sub 3}) and dolomite (MgCa (CO{sub 3}){sub 2}. The waste presented predominance of particles below 200 mesh screen. This may be interesting for the production of artificial stone better visual appearance, such as marmoglass, for example. The results indicate that the use of marble waste for production of artificial stone is feasible and environmentally friendly alternative to give a destination for this waste generated in the order of millions of tons representing serious environmental problem. (author)

  14. A risk-based focused decision-management approach for justifying characterization of Hanford tank waste. June 1996, Revision 1; April 1997, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; Gephart, R.E.; Hunter, V.L.; Janata, J.; Morgan, L.G.

    1997-12-31

    This report describes a disciplined, risk-based decision-making approach for determining characterization needs and resolving safety issues during the storage and remediation of radioactive waste stored in Hanford tanks. The strategy recommended uses interactive problem evaluation and decision analysis methods commonly used in industry to solve problems under conditions of uncertainty (i.e., lack of perfect knowledge). It acknowledges that problem resolution comes through both the application of high-quality science and human decisions based upon preferences and sometimes hard-to-compare choices. It recognizes that to firmly resolve a safety problem, the controlling waste characteristics and chemical phenomena must be measurable or estimated to an acceptable level of confidence tailored to the decision being made.

  15. A risk-based focused decision-management approach for justifying characterization of Hanford tank waste. June 1996, Revision 1; April 1997, Revision 2

    International Nuclear Information System (INIS)

    Colson, S.D.; Gephart, R.E.; Hunter, V.L.; Janata, J.; Morgan, L.G.

    1997-01-01

    This report describes a disciplined, risk-based decision-making approach for determining characterization needs and resolving safety issues during the storage and remediation of radioactive waste stored in Hanford tanks. The strategy recommended uses interactive problem evaluation and decision analysis methods commonly used in industry to solve problems under conditions of uncertainty (i.e., lack of perfect knowledge). It acknowledges that problem resolution comes through both the application of high-quality science and human decisions based upon preferences and sometimes hard-to-compare choices. It recognizes that to firmly resolve a safety problem, the controlling waste characteristics and chemical phenomena must be measurable or estimated to an acceptable level of confidence tailored to the decision being made

  16. Characterization of the material produced using marble waste and reagents aiminig production of rock wool

    International Nuclear Information System (INIS)

    Rodrigues, Girley Ferreira; Espinosa, Denise Crocce Romano; Tenorio, Jorge Alberto Soares; Alves, Joner Oliveira

    2010-01-01

    The aim of this work was to characterize materials produced from the mixture of marble waste and chemical reagents. The materials were homogenized, melted and cooled in order to obtain materials with similar characteristics of rock wools. The batch was poured in a water-filled recipient and also in a Herty viscometer at three temperatures. Samples of produced materials were characterized by X-ray diffraction, scanning electron microscopy and differential thermal analysis. Results of this study indicate that it is possible the incorporation of marble waste in the production process of rock wool, replacing approximately 15% of the raw material used to fabricate this material. This process represents a technological breakthrough since it allows the reuse of marble waste, and also represents a possible decrease in rock wool production cost, which is a material with a growing market as thermo acoustic insulator. (author)

  17. Application of concrete to the treatment and disposal of radioactive waste in Japan

    International Nuclear Information System (INIS)

    Maki, Yasuro; Ohnuma, Hiroshi

    1992-01-01

    The paper presents the present state of application of concrete to treatment, storage and disposal of low level radioactive waste in Japan. In the 2nd section, the electric power supply and the kinds and volumes of radioactive waste from nuclear power plants in Japan are described. In the 3rd section, the applications of concrete to the treatment of radioactive waste are described. These are solidification with cement and containers made by various mortars and concretes. The application of concrete to disposal structures are presented in the 4th section; these are research on the durabity of concrete under disposal site condition, research on the filling the concrete pit with 200 l drum packed cement solidified wastes by prepacked concreting methods, and so on. And this section describes also the outlines of the low level radioactive disposal system at the Rokkasho site. (orig./DG)

  18. Application countermeasures of non-incineration technologies for medical waste treatment in China.

    Science.gov (United States)

    Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong

    2013-12-01

    By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.

  19. Hanford facility dangerous waste permit application, 242-A evaporator

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, 'operating' treatment, storage, and/or disposal units, such as the 242-A Evaporator (this document, DOE/RL-90-42)

  20. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW