WorldWideScience

Sample records for waste beer yeast

  1. Revaluation of Waste Yeast from Beer Production

    OpenAIRE

    Nicoleta Suruceanu; Sonia Socaci; Teodora Coldea; Elena Mudura

    2013-01-01

    Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, ident...

  2. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  3. Reuse of waste beer yeast sludge for biosorptive decolorization of reactive blue 49 from aqueous solution.

    Science.gov (United States)

    Wang, Baoe; Guo, Xiu

    2011-06-01

    Reactive blue 49 was removed from aqueous solution by biosorption using powder waste sludge composed of Saccharomyces cerevisiae from the beer-brewing industry. The effect of initial pH, temperature and the biosorption thermodynamics, equilibrium, kinetics was investigated in this study. It was found that the biosorption capacity was at maximum at initial pH 3, that the effect of temperature on biosorption of reactive blue 49 was only slight in relation to the large biosorption capacity (25°C, 361 mg g(-1)) according as the biosorption capacity decreased only 43 mg g(-1) at the temperature increased from 25 to 50°C. The biosorption was spontaneous, exothermic in nature and the dye molecules movements decreased slightly in random at the solid/liquid interface during the biosorption of dye on biosorbents. The biosorption equilibrium data could be described by Freundich isotherm model. The biosorption rates were found to be consistent with a pseudo-second-order kinetics model. The functional group interaction analysis between waste beer yeast sludge and reactive blue 49 by the aid of Fourier transform infrared (abbr. FTIR) spectroscopy indicated that amino components involved in protein participated in the biosorption process, which may be achieved by the mutual electrostatic adsorption process between the positively charged amino groups in waste beer yeast sludge with negatively charged sulfonic groups in reactive blue 49.

  4. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source.

    Science.gov (United States)

    Lin, Dehui; Lopez-Sanchez, Patricia; Li, Rui; Li, Zhixi

    2014-01-01

    In order to improve the use of waste beer yeast (WBY) for bacterial cellulose production by Gluconacetobacter hansenii CGMCC 3917, a two-step pre-treatment was designed. First WBY was treated by 4 methods: 0.1M NaOH treatment, high speed homogenizer, ultrasonication and microwave treatment followed by hydrolysis (121°C, 20 min) under mild acid condition (pH 2). The optimal pre-treatment conditions were evaluated by the reducing sugar yield after hydrolysis. 15% WBY treated by ultrasonication for 40 min had the highest reducing sugar yield (29.19%), followed by NaOH treatment (28.98%), high speed homogenizer (13.33%) and microwaves (13.01%). Treated WBY hydrolysates were directly supplied as only nutrient source for BC production. A sugar concentration of 3% WBY hydrolysates treated by ultrasonication gave the highest BC yield (7.02 g/L), almost 6 times as that from untreated WBY (1.21 g/L). Furthermore, the properties of the BC were as good as those obtained from the conventional chemical media. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  6. Optimization of extraction parameters for trehalose from beer waste ...

    African Journals Online (AJOL)

    ... be 103.15 μg/s; it was 15.96 times higher than microwave and 34.08 times higher than ultrasound. This demonstrated that the PEF could be regarded as a promising technique for bio-material extraction. Key words: High-intensity pulsed electric field (PEF), Beer waste brewing yeast (BWBY), Trehalose, Regression model.

  7. The Influence of Yeast Concentration in Fermentation of Beer

    OpenAIRE

    , K Pehlivani; , D Prifti

    2014-01-01

    Different factors play their role in the fermentation of beer but very important ones are temperature, C02 pressure and yeast concentration. In this work it has been studied the inşuence of the yeast concentration in the main parameters of fermentation. It has been studied the beer fermentation in three cases, with three different concentrations of yeast: First case was used the 20.0 X 106 cells/ml; Second case was used 22.0 X 106 cells/m1; Third case was used 24.0 X 10 6 cells/ml. All other ...

  8. The role of lager beer yeast in oxidative stability of model beer.

    Science.gov (United States)

    Berner, T S; Arneborg, N

    2012-03-01

    In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. Screening of 21 lager brewing yeast strains against diamide and paraquat showed that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced ageing experiments. Interestingly, the strain with the lowest oxidative stress resistance and lowest secretion of thioredoxin, as measured by Western blotting, resulted in the highest uptake of iron, as measured by inductively coupled plasma-mass spectrometry, and the slowest formation of radicals in the model beers. A more oxidative stable beer is not obtained by a more-oxidative-stress-tolerant lager brewing yeast strain, exhibiting a higher secretion of thioredoxin, but rather by a less-oxidative-stress-tolerant strain, exhibiting a higher iron uptake. To obtain lager beers with enhanced oxidative stability, yeast strains should be screened for their low oxidative stress tolerance and/or high ability to take up iron rather than for their high oxidative stress tolerance and/or high ability to secrete thioredoxin. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. Evaluation of Beer Fermentation with a Novel Yeast Williopsis saturnus

    Directory of Open Access Journals (Sweden)

    Althea Ying Hui Quek

    2016-01-01

    Full Text Available The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. °Brix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05.

  10. Mutagenizing brewing yeast strain for improving fermentation property of beer.

    Science.gov (United States)

    Liu, Zengran; Zhang, Guangyi; Sun, Yunping

    2008-07-01

    A brewing yeast mutant with perfect sugar fermentation capacity was isolated by mutagenizing the Saccharomyces pastorianus transformant, which carries an integrated glucoamylase gene and has one copy of non-functional alpha-acetolactate synthase gene. The mutant was able to utilize maltotriose efficiently, and the maltotriose fermentability in YNB-2% maltotriose medium increased from 32.4% to 72.0% after 5 d in shaking culture. The wort fermentation test confirmed that the sugar fermentation property of the mutant was greatly improved, while its brewing performances were analogous to that of the wild-type strain and the characteristic trait of shortened beer maturation period was retained. Therefore, we believe that the brewing yeast mutant would benefit the beer industry and would be useful for low caloric beer production.

  11. The role of lager beer yeast in oxidative stability of model beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Arneborg, Nils

    2012-01-01

    ageing experiments. Interestingly, the strain with the lowest oxidative stress resistance and lowest secretion of thioredoxin, as measured by Western blotting, resulted in the highest uptake of iron, as measured by inductively coupled plasma-mass spectrometry, and the slowest formation of radicals......AIMS: In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. METHODS AND RESULTS: Screening of 21 lager brewing yeast strains against diamide and paraquat showed...... that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced...

  12. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils

    2013-01-01

    BACKGROUND: It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation......, by ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. RESULTS: Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same...... alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time...

  13. Continuous beer fermentation using immobilized yeast cell bioreactor systems.

    Science.gov (United States)

    Brányik, Tomás; Vicente, António A; Dostálek, Pavel; Teixeira, José A

    2005-01-01

    Traditional beer fermentation and maturation processes use open fermentation and lager tanks. Although these vessels had previously been considered indispensable, during the past decades they were in many breweries replaced by large production units (cylindroconical tanks). These have proved to be successful, both providing operating advantages and ensuring the quality of the final beer. Another promising contemporary technology, namely, continuous beer fermentation using immobilized brewing yeast, by contrast, has found only a limited number of industrial applications. Continuous fermentation systems based on immobilized cell technology, albeit initially successful, were condemned to failure for several reasons. These include engineering problems (excess biomass and problems with CO(2) removal, optimization of operating conditions, clogging and channeling of the reactor), unbalanced beer flavor (altered cell physiology, cell aging), and unrealized cost advantages (carrier price, complex and unstable operation). However, recent development in reactor design and understanding of immobilized cell physiology, together with application of novel carrier materials, could provide a new stimulus to both research and application of this promising technology.

  14. Effects of fermentation temperature on the composition of beer volatile compounds, organoleptic quality and spent yeast density

    OpenAIRE

    Olaniran, Ademola O.; Maharaj,Yushir R; Pillay, Balakrishna

    2011-01-01

    Production of good quality beer is dependent largely on the fermentation temperature and yeast strains employed during the brewing process, among others. In this study, effects of fermentation temperatures and yeast strain type on beer quality and spent yeast density produced after wort fermentation by two commercial yeast strains were investigated. Beer samples were assessed for colour, clarity and foam head stability using standard methods, whilst the compositions and concentration of Beer ...

  15. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    Science.gov (United States)

    2013-01-01

    Background It is well known that brewer’s yeast affects the taste and aroma of beer. However, the influence of brewer’s yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer’s yeast strains with different abilities to degrade fermentable sugars were investigated. Results Beers were fermented from standard hopped wort (13° Plato) using two ale brewer’s yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Conclusion Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer. PMID:24079909

  16. The impact of different ale brewer's yeast strains on the proteome of immature beer.

    Science.gov (United States)

    Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils

    2013-09-30

    It is well known that brewer's yeast affects the taste and aroma of beer. However, the influence of brewer's yeast on the protein composition of beer is currently unknown. In this study, changes of the proteome of immature beer, i.e. beer that has not been matured after fermentation, by ale brewer's yeast strains with different abilities to degrade fermentable sugars were investigated. Beers were fermented from standard hopped wort (13° Plato) using two ale brewer's yeast (Saccharomyces cerevisiae) strains with different attenuation degrees. Both immature beers had the same alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer. These three proteins, all derived from yeast, were identified as cell wall associated proteins, that is Exg1 (an exo-β-1,3-glucanase), Bgl2 (an endo-β-1,2-glucanase), and Uth1 (a cell wall biogenesis protein). Yeast strain dependent changes in the immature beer proteome were identified, i.e. Bgl2 was present in beer brewed with KVL011, while lacking in WLP001 beer.

  17. LIVE/DEAD YEAST VIABILITY STAINING AS A TOOL FOR IMPROVING ARTISANAL PILSNER BEER PRODUCTION

    Directory of Open Access Journals (Sweden)

    Benedetta Bottari

    2014-10-01

    Full Text Available The production of an artisanal beer, made by brewers using traditional practices on a small scale, is founded on the empirical adjustment of parameters, including yeasts handling and serial repitching. The aim of this study was to monitor yeast viability during different stages of artisanal beer productions through the Live/Dead Yeast viability staining and to correlate it with fermentation dynamics in order to increase process standardization and to maintain the quality of final products. Yeast viability and fermentation activities were evaluated during seven fermentation cycles of an artisanal pilsner beer. Yeast inoculated with higher viability performed generally better in fermentation, resulting in faster sugar consumption, faster ethanol production and stability. Handling yeast and serial repitching based on Live/Dead viability measurements, could be the key way to ensure reliable manufacture of high quality beer and to improve process standardization particularly for microbreweries, where variability of production can be a challenging point.

  18. Estrogenic Activities of Food Supplements and Beers as Assessed by a Yeast Bioreporter Assay.

    Science.gov (United States)

    Omoruyi, Iyekhoetin Matthew; Pohjanvirta, Raimo

    2017-10-31

    Mounting evidence of the effects of endocrine-disrupting chemicals (EDCs) in humans has led to assaying a vast array of food items (processed or packaged) as possible sources of human exposure to estrogens. In this study, we investigated the current situation in this respect of different food supplements and beer brands. Eleven food supplements and 24 beer brands were obtained from Helsinki, Finland. Sample preparation was carried out by established methods while estrogenic activities were assessed by a yeast bioluminescent assay, using two recombinant yeast strains (Saccharomyces cerevisiae BMAEREluc/ERα and S. cerevisiae BMA64/luc). All the food supplements as well as 81% of the beer samples tested were found to be estrogenic, with estradiol equivalent concentrations of food supplements and beer brands ranging from 7.5 to 11.5 µg/ml and from below detection limits to 43.6 ng/ml, respectively. The estrogenic activities detected in beer samples were not dependent on the beer's alcoholic content, the country of production, or the size of the production brewery. The results of our study imply that both food supplements and beers can be a significant source of human exposure to estrogens. Therefore, further studies and regular surveillance are warranted.

  19. Maintaining yeast viability in continuous primary beer fermentation

    National Research Council Canada - National Science Library

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Côrte‐Real, Manuela; Vicente, António A

    2014-01-01

    .... This work was aimed at solving one of the most relevant obstacles to implementing ICT on a large scale in beer fermentations, namely the control of biomass and the maintenance of cell viability in a gas‐lift bioreactor...

  20. Influence of aeration during propagation of pitching yeast on fermentation and beer flavor.

    Science.gov (United States)

    Cheong, Chul; Wackerbauer, Karl; Kang, Soon Ah

    2007-02-01

    The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.

  1. Impact of pitching rate on yeast fermentation performance and beer flavour.

    Science.gov (United States)

    Verbelen, P J; Dekoninck, T M L; Saerens, S M G; Van Mulders, S E; Thevelein, J M; Delvaux, F R

    2009-02-01

    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the impact of the pitching rate on crucial fermentation and beer quality parameters has never been assessed systematically. In this study, five pitching rates were applied to lab-scale fermentations to investigate its impact on the yeast physiology and beer quality. The fermentation rate increased significantly and the net yeast growth was lowered with increasing pitching rate, without affecting significantly the viability and the vitality of the yeast population. The build-up of unsaturated fatty acids in the initial phase of the fermentation was repressed when higher yeast concentrations were pitched. The expression levels of the genes HSP104 and HSP12 and the concentration of trehalose were higher with increased pitching rates, suggesting a moderate exposure to stress in case of higher cell concentrations. The influence of pitching rate on aroma compound production was rather limited, with the exception of total diacetyl levels, which strongly increased with the pitching rate. These results demonstrate that most aspects of the yeast physiology and flavour balance are not significantly or negatively affected when the pitching rate is changed. However, further research is needed to fully optimise the conditions for brewing beer with high cell density populations.

  2. Net effect of wort osmotic pressure on fermentation course, yeast vitality, beer flavor, and haze.

    Science.gov (United States)

    Sigler, K; Matoulková, D; Dienstbier, M; Gabriel, P

    2009-04-01

    The net effect of increased wort osmolarity on fermentation time, bottom yeast vitality and sedimentation, beer flavor compounds, and haze was determined in fermentations with 12 degrees all-malt wort supplemented with sorbitol to reach osmolarity equal to 16 degrees and 20 degrees. Three pitchings were performed in 12 degrees/12 degrees/12 degrees, 16 degrees/16 degrees/12 degrees, and 20 degrees/20 degrees/12 degrees worts. Fermentations in 16 degrees and 20 degrees worts decreased yeast vitality measured as acidification power (AP) by a maximum of 10%, lowered yeast proliferation, and increased fermentation time. Repitching aggravated these effects. The 3rd "back to normal" pitching into 12 degrees wort restored the yeast AP and reproductive abilities while the extended fermentation time remained. Yeast sedimentation in 16 degrees and 20 degrees worts was delayed but increased about two times at fermentation end relative to that in 12 degrees wort. Third "back-to-normal" pitching abolished the delay in sedimentation and reduced its extent, which became nearly equal in all variants. Beer brewed at increased osmolarity was characterized by increased levels of diacetyl and pentanedione and lower levels of dimethylsulfide and acetaldehyde. Esters and higher alcohols displayed small variations irrespective of wort osmolarity or repitching. Increased wort osmolarity had no appreciable effect on the haze of green beer and accelerated beer clarification during maturation. In all variants, chill haze increased with repitching.

  3. Impedance technology reduces the enumeration time of Brettanomyces yeast during beer fermentation.

    Science.gov (United States)

    van Wyk, Sanelle; Silva, Filipa V M

    2016-12-01

    Brettanomyces yeasts are increasingly being used to produce lambic style beers and craft beers with unique flavors. Currently, the industry monitors Brettanomyces bruxellensis using time consuming plate counting. B. bruxellensis is a fastidious slow growing organism, requiring five days of incubation at 30°C for visible growth on agar plates. Thus, a need exists to develop a quicker, feasible method to enumerate this yeast. The aim of this study was therefore to determine the feasibility of using the 'direct' and 'indirect' impedance methods for the enumeration of B. bruxellensis in beer and to monitor the growth of the yeast during fermentation. The impedance methods were able to decrease the incubation time of beer samples containing Brettanomyces from 120 h down to 2 and 84 h for samples containing 10(7) and 10(3) cfu/mL, respectively. The 'indirect' method was more successful than the 'direct' method, presenting a smaller error and wider detection range. Overall, the 'indirect' impedance method is a viable alternative to plate counting for the enumeration of yeasts in the brewing industry because it decreases preparation and incubation times, thereby increasing throughput and decreasing the chance of contamination. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2

    DEFF Research Database (Denmark)

    Ishchuk, Olena P.; Vojvoda Zeljko, Tanja; Schifferdecker, Anna J.

    2016-01-01

    The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2...

  5. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    Science.gov (United States)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  6. Development of engineered yeast for biosorption of beer haze-active polyphenols.

    Science.gov (United States)

    Cejnar, Rudolf; Hložková, Kateřina; Jelínek, Lukáš; Kotrba, Pavel; Dostálek, Pavel

    2017-02-01

    Compared to most other alcoholic beverages, the shelf life of beer is much more limited due to its instability in the bottle. That instability is most likely to appear as turbidity (haze), even sedimentation, during storage. The haze in beer is mostly caused by colloidal particles formed by interactions between proteins and polyphenols within the beer. Therefore, beers are usually stabilized by removing at least one of these components. We developed and constructed a Saccharomyces cerevisiae strain with a proline-rich QPF peptide attached to the cell wall, using the C-terminal anchoring domain of α-agglutinin. The QPF peptide served to bind polyphenols during fermentation and, thus, to decrease their concentration. Strains displaying QPF were able to bind about twice as much catechin and epicatechin as a control strain displaying only the anchoring domain. All these experiments were done with model solutions. Depending on the concentration of yeast, uptake of polyphenols was 1.7-2.5 times higher. Similarly, the uptake of proanthocyanidins was increased by about 20 %. Since the modification of yeasts with QPF did not affect their fermentation performance under laboratory conditions, the display of QPF appears to be an approach to increase the stability of beer.

  7. Construction of dextrin and isomaltose-assimilating brewer's yeasts for production of low-carbohydrate beer.

    Science.gov (United States)

    Park, Jin-Yeong; Lee, Ja-Yeon; Choi, Seung-Hyun; Ko, Hyun-Mi; Kim, Il-Chul; Lee, Hwanghee Blaise; Bai, Suk

    2014-08-01

    Most Saccharomyces spp. cannot degrade or ferment dextrin, which is the second most abundant carbohydrate in wort for commercial beer production. Dextrin-degrading brewer's bottom and top yeasts expressing the glucoamylase gene (GAM1) from Debaryomyces occidentalis were developed to produce low-carbohydrate (calorie) beers. GAM1 was constitutively expressed in brewer's yeasts using a rDNA-integration system that contained yeast CUP1 gene coding for copper resistance as a selective marker. The recombinants secreted active glucoamylase, displaying both α-1,4- and α-1,6-debranching activities, that degraded dextrin and isomaltose and consequently grew using them as sole carbon source. One of the recombinant strains expressing GAM1 hydrolyzed 96 % of 2 % (w/v) dextrin and 98 % of 2 % (w/v) isomaltose within 5 days of growth. Growth, substrate assimilation, and enzyme activity of these strains were characterized.

  8. Functional genomics of beer-related physiological processes in yeast

    NARCIS (Netherlands)

    Hazelwood, L.A.

    2009-01-01

    Since the release of the entire genome sequence of the S. cerevisiae laboratory strain S288C in 1996, many functional genomics tools have been introduced in fundamental and application-oriented yeast research. In this thesis, the applicability of functional genomics for the improvement of yeast in

  9. Influence of yeast strain, priming solution and temperature on beer bottle conditioning.

    Science.gov (United States)

    Marconi, Ombretta; Rossi, Serena; Galgano, Fernanda; Sileoni, Valeria; Perretti, Giuseppe

    2016-09-01

    Recently, there has been a significant increase in the number of microbreweries. Usually, craft beers are bottle conditioned; however, few studies have investigated beer refermentation. One of the objectives of this study was to evaluate the impacts of different experimental conditions, specifically yeast strain, priming solution and temperature, on the standard quality attributes, the volatile compounds and the sensory profile of the bottle-conditioned beer. The other aim was to monitor the evolution of volatile compounds and amino acids consumption throughout the refermentation process to check if it is possible to reduce the time necessary for bottle conditioning. The results indicate that the volatile profile was mainly influenced by the strain of yeast, and this may have obscured the possible impacts of the other parameters. Our results also confirm that the two yeast strains showed different metabolic activity, particularly with respect to esters production. Moreover, we found the Safbrew S-33® strain when primed with Siromix® and refermented at 30 °C yielded the fastest formation of higher alcohols while maintaining low production of off-flavours. These results suggest a formulation that may reduce the time needed for bottle conditioning without affecting the quality of the final beer which may simultaneously improve efficiency and economic profits. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Proteins influencing foam formation in wine and beer: the role of yeast.

    Science.gov (United States)

    Blasco, Lucía; Viñas, Miquel; Villa, Tomás G

    2011-06-01

    This review focuses on the role of proteins in the production and maintenance of foam in both sparkling wines and beer. The quality of the foam in beer but especially in sparkling wines depends, among other factors, on the presence of mannoproteins released from the yeast cell walls during autolysis. These proteins are hydrophobic, highly glycosylated, and their molecular masses range from 10 to 200 kDa--characteristics that allow mannoproteins to surround and thus stabilize the gas bubbles of the foam. Both the production and stabilization of foam also depend on other proteins. In wine, these include grape-derived proteins such as vacuolar invertase; in beer, barley-derived proteins, such as LTP1, protein Z, and hordein-derived polypeptides, are even more important in this respect than mannoproteins.

  12. Phytase-active yeasts from grain-based food and beer.

    Science.gov (United States)

    Nuobariene, L; Hansen, A S; Jespersen, L; Arneborg, N

    2011-06-01

    To screen yeast strains isolated from grain-based food and beer for phytase activity to identify high phytase-active strains. The screening of phytase-positive strains was carried out at conditions optimal for leavening of bread dough (pH 5·5 and 30°C), in order to identify strains that could be used for the baking industry. Two growth-based tests were used for the initial testing of phytase-active strains. Tested strains belonged to six species: Saccharomyces cerevisiae, Saccharomyces pastorianus, Saccharomyces bayanus, Kazachstania exigua (former name Saccharomyces exiguus), Candida krusei (teleomorph Issachenkia orientalis) and Arxula adeninivorans. On the basis of initial testing results, 14 strains were selected for the further determination of extracellular and intracellular (cytoplasmic and/or cell-wall bound) phytase activities. The most prominent strains for extracellular phytase production were found to be S. pastorianus KVL008 (a lager beer strain), followed by S. cerevisiae KVL015 (an ale beer strain) and C. krusei P2 (isolated from sorghum beer). Intracellular phytase activities were relatively low in all tested strains. Herein, for the first time, beer-related strains of S. pastorianus and S. cerevisiae are reported as phytase-positive strains. The high level of extracellular phytase activity by the strains mentioned previously suggests them to be strains for the production of wholemeal bread with high content of bioavailable minerals. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  13. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles.

    Science.gov (United States)

    Lauterbach, Alexander; Usbeck, Julia C; Behr, Jürgen; Vogel, Rudi F

    2017-01-01

    Brewing yeasts of the genus Saccharomyces are either available from yeast distributor centers or from breweries employing their own "in-house strains". During the last years, the classification and characterization of yeasts of the genus Saccharomyces was achieved by using biochemical and DNA-based methods. The current lack of fast, cost-effective and simple methods to classify brewing yeasts to a beer type, may be closed by Matrix Assisted Laser Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) upon establishment of a database based on sub-proteome spectra from reference strains of brewing yeasts. In this study an extendable "brewing yeast" spectra database was established including 52 brewing yeast strains of the most important types of bottom- and top-fermenting strains as well as beer-spoiling S. cerevisiae var. diastaticus strains. 1560 single spectra, prepared with a standardized sample preparation method, were finally compared against the established database and investigated by bioinformatic analyses for similarities and distinctions. A 100% separation between bottom-, top-fermenting and S. cerevisiae var. diastaticus strains was achieved. Differentiation between Alt and Kölsch strains was not achieved because of the high similarity of their protein patterns. Whereas the Ale strains show a high degree of dissimilarity with regard to their sub-proteome. These results were supported by MDS and DAPC analysis of all recorded spectra. Within five clusters of beer types that were distinguished, and the wheat beer (WB) cluster has a clear separation from other groups. With the establishment of this MALDI-TOF MS spectra database proof of concept is provided of the discriminatory power of this technique to classify brewing yeasts into different major beer types in a rapid, easy way, and focus brewing trails accordingly. It can be extended to yeasts for specialty beer types and other applications including wine making or baking.

  14. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    Science.gov (United States)

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  15. Production of freeze-dried yeast culture for the brewing of traditional sorghum beer, tchapalo.

    Science.gov (United States)

    N'Guessan, Florent K; Coulibaly, Hermann W; Alloue-Boraud, Mireille W A; Cot, Marlène; Djè, Koffi Marcellin

    2016-01-01

    Freeze-drying is a well-known dehydration method widely used to preserve microorganisms. In order to produce freeze-dried yeast starter culture for the brewing purpose of African sorghum beer, we tested protective agents (sucrose, glucose, glycerol) in combination with support materials (millet, maize, sorghum, and cassava flours) at 1:1 ratio (v/v). The yeast strains Saccharomyces cerevisiae F 12-7 and Candida tropicalis C 0-7 previously isolated from sorghum beer were used in a mixed culture at a ratio of 2:1 (C. tropicalis/S. cerevisiae). After the freeze-drying, the residual water contents were between 0.78 -2.27%, 0.55 -4.09%, and 0.40-2.61%, respectively, with sucrose, glucose and glycerol. The dried yeasts viabilities were between 4.0% and 10.6%. Among the protective agents used, sucrose was found to be the best protectant giving cell viabilities of 8.4-10.6%. Considering the support materials, millet flour was the best support after drying. When the freeze-dried yeast powders were stored at 4°C and room temperature (25-28°C) for up to 3 months, the survival rates were the highest with cassava flour as the support material.

  16. Technological steps and yeast biomass as factors affecting the lipid content of beer during the brewing process.

    Science.gov (United States)

    Bravi, Elisabetta; Perretti, Giuseppe; Buzzini, Pietro; Della Sera, Rolando; Fantozzi, Paolo

    2009-07-22

    Knowledge of lipid content and composition in the brewing process enables the quality control of the final product. Lipids have a beneficial effect on yeast growth during fermentation as well as deleterious effects on end-product quality. The lipid content of a beer affects its ability to form a stable head of foam and plays an important role in beer staling. Lipid oxidation during wort production is of great interest because of its effect on beer quality: both lipids and their oxidation products are known to have adverse effects on beer flavor, whereas interactions between lipids and protein films stabilizing the gas bubbles are thought to cause the collapse of foam. In this background, the aim of this research was the characterization of the lipid content during a brewing process for evaluating the influence of both technological steps and yeast biomass in the lipid composition of beer. Lipid contents and their fatty acid profile were evaluated in brewing raw materials, wort, and beer. A high-resolution gas chromatography-flame ionization detector (HRGC-FID) system was used for fatty acid determination in lipid extracts. The results of the present study highlighted that the main technological steps influencing the lipid content in brewing byproduct and beer were clarification in a whirlpool and filtration. Moreover, the presence of metabolically active yeast cells (used as starter culture) were found to have a great influence on the fatty acids composition of lipids.

  17. [Effects of knockout ECM25/YJL201W gene in brewing yeast on beer flavor stability].

    Science.gov (United States)

    Zhang, Yixin; Li, Qi; Shen, Wei; Xie, Yan; Gu, Guoxian

    2008-08-01

    The ECM25 deletion mutant of industrial brewing yeast, G03/a, was constructed by replacing the ECM25 gene with the kanMX gene. The transformant was verified to be genetically stable. The PCR analysis showed that ECM25 gene in the G-03/a was deleted. Under aerobic conditions of ll degrees C and 28 degrees C, compared with the host strain G-03, the excretive glutathione concentration of G-03/a increased by 21.4% and 14.7%, respectively. Strains G-03 and G-03/a were inoculated in flasks and cultivated continuously for 4 generations. Compared with the host strain G-03, the glutathione concentration in the main fermentation broth and final beer of strain G-03/a increased by 32.1% and 13.8%, the stability index (SI) increased by 7.7% and 5.3%, respectively, and the flavor resistance staling value (RSV value) in final beer increased by 45.0%. During EBC fermentation, the glutathione concentration in the main fermentation broth of strain G-03/a increased by 34.0%, compared with the host strain G-03. Furthermore, no significant difference in routine fermentation parameters was found. The strain G-03/a is proved to be an excellent anti-staling brewing yeast to improve beer flavor stability.

  18. Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability.

    Science.gov (United States)

    Wang, Jin-jing; Xu, Wei-na; Li, Xin'er; Li, Jia; Li, Qi

    2014-06-01

    The flavor stability during storage is very important to the freshness and shelf life of beer. However, beer fermented with a yeast strain which is prone to autolyze will significantly affect the flavor of product. In this study, the gene encoding β-1,3-glucan synthetase catalytic subunit (fks1) of the lager yeast was destroyed via self-clone strategy. β-1,3-glucan is the principle cell wall component, so fks1 disruption caused a decrease in β-1,3-glucan level and increase in chitin level in cell wall, resulting in the increased cell wall thickness. Comparing with wild-type strain, the mutant strain had 39.9 and 63.41 % less leakage of octanoic acid and decanoic acid which would significantly affect the flavor of beer during storage. Moreover, the results of European Brewery Convention tube fermentation test showed that the genetic manipulation to the industrial brewing yeast helped with the anti-staling ability, rather than affecting the fermentation ability. The thiobarbituric acid value reduced by 65.59 %, and the resistant staling value increased by 26.56 %. Moreover, the anti-staling index of the beer fermented with mutant strain increased by 2.64-fold than that from wild-type strain respectively. China has the most production and consumption of beer around the world, so the quality of beer has a significant impact on Chinese beer industry. The result of this study could help with the improvement of the quality of beer in China as well as around the world.

  19. Modeling of saccharide utilization in primary beer fermentation with yeasts immobilized in calcium alginate.

    Science.gov (United States)

    Smogrovicová, D; Dömmny, Z; Svitel, J

    2001-05-01

    Immobilized beer fermentation was studied using an industrial bottom-fermenting yeast strain Saccharomyces cerevisiae. The yeast cells were immobilized in 2.5% calcium alginate gel and used for brewing in a five-vessel cascade reactor. The fermentation was performed at 15 degrees C at various flow rates. A nonstructured mathematical model was developed to simulate the performance of continuous primary fermentation of lager beer. The model was based on the following variables: maltose, maltotriose, glucose, fructose, ethanol, and cell concentration. Experimental values of these variables were determined in samples taken at regular intervals. For experimental data fitting a nonlinear regression was used. Substrate consumption was characterized by specific substrate consumption rate and saturation constant. The values of these two parameters were optimized for all four substrates. Inhibition effects of substrates and product were analyzed using various inhibition patterns. Only the inhibition effect of maltose on maltose consumption was clearly identified. A good-fitting relationship for maltose inhibition was found, and inhibition constants were calculated.

  20. Kinetic analysis of beer primary fermentation using yeast cells immobilized by ceramic support adsorption and alginate gel entrapment.

    Science.gov (United States)

    Zhang, Yongming; Kennedy, John F; Knill, Charles J; Panesar, Parmjit S

    2006-01-01

    Yeast cells were immobilized by absorption onto porous ceramic support and evaluated for continuous beer primary fermentation using a bioreactor in comparison to yeast cells immobilized by entrapment in calcium alginate gel. The effects of temperature and flow rate as a function of reaction/fermentation time on fermentation rate were investigated. The fermentation reaction (in terms of loss of total soluble solids in the beer wort as a function of time) was first-order with half-lifes in the range of approximately 9-11 hours at approximately 10-12 degrees C at beer wort linear flow rates of approximately 0.8-1.6 cm/minute for ceramic support, compared with approximately 16 hours for Ca-alginate gel, the former support matrix being more efficient and demonstrating greater potential for future commercial application.

  1. Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer

    NARCIS (Netherlands)

    Iersel, van M.F.M.; Brouwer-Post, E.; Rombouts, F.M.; Abee, T.

    2000-01-01

    Production of alcohol-free beer by limited fermentation is optimally performed in a packed-bed reactor. This highly controllable system combines short contact times between yeast and wort with the reduction of off-flavors to concentrations below threshold values. In the present study, the influence

  2. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Fernanda Bovo

    2015-06-01

    Full Text Available This study aimed to verify the in vitro ability of beer fermentation residue (BFR containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1 from a citrate-phosphate buffer solution (CPBS. BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p 0.05 from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  3. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1.

    Science.gov (United States)

    Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes

    2015-06-01

    This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.

  4. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2.

    Science.gov (United States)

    Ishchuk, Olena P; Vojvoda Zeljko, Tanja; Schifferdecker, Anna J; Mebrahtu Wisén, Sofia; Hagström, Åsa K; Rozpędowska, Elżbieta; Rørdam Andersen, Mikael; Hellborg, Linda; Ling, Zhihao; Sibirny, Andrei A; Piškur, Jure

    2016-01-01

    The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2), which support both the yeast's autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known "point" CEN elements, and their biological activity is retained within ~900-1300 bp DNA segments. CEN1 and CEN2 have features of both "point" and "regional" centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE) next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy) or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast's enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches.

  5. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2.

    Directory of Open Access Journals (Sweden)

    Olena P Ishchuk

    Full Text Available The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype. This study isolates two novel centromeric loci (CEN1 and CEN2, which support both the yeast's autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known "point" CEN elements, and their biological activity is retained within ~900-1300 bp DNA segments. CEN1 and CEN2 have features of both "point" and "regional" centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast's enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches.

  6. Identification of bottom-fermenting yeast genes expressed during lager beer fermentation.

    Science.gov (United States)

    Yoshida, Satoshi; Hashimoto, Kaori; Shimada, Emiko; Ishiguro, Tatsuji; Minato, Toshiko; Mizutani, Satoru; Yoshimoto, Hiroyuki; Tashiro, Kosuke; Kuhara, Satoru; Kobayashi, Osamu

    2007-07-01

    It has been proposed that bottom-fermenting yeast strains of Saccharomyces pastorianus possess at least two types of genomes. Sequences of genes of one genome [S. cerevisiae (Sc)-type] have been found to be highly homologous (more than 90% identity) to S. cerevisiae S288C sequences, while those of the other [Lager (Lg)-type] are less so. To identify and discriminate Lg-type from Sc-type genes expressed during lager beer fermentation, normalized cDNA libraries were constructed and analysed. From approximately 22 000 ESTs, 3892 Sc-type and 2695 Lg-type ORFs were identified. Expression patterns of Sc- and Lg-type genes did not correlate with particular cell functions in KEGG classification system. Moreover, 405 independent clones were isolated that have no significant homology with sequences in the S288C database, suggesting that they include the bottom-fermenting yeast-specific (BFY) genes. Most of BFY genes have significant homology with the S. bayanus genome. Copyright (c) 2007 John Wiley & Sons, Ltd.

  7. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    Science.gov (United States)

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality.

  8. Polarimetric Determination of Starch in Raw Materials and Discharged Waste from Beer Production

    Directory of Open Access Journals (Sweden)

    Anca Farcas

    2013-11-01

    Full Text Available Brewer’s spent grain (BGS is a by-product of thebrewing process, consisting of the solid fraction of barley malt remainingafter separation of worth. In this research, raw materials and discharged waste from beer production were evaluated on the basis of starch content, using Ewers polarimetric method.

  9. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials.

    Science.gov (United States)

    Brányik, Tomás; Silva, Daniel P; Vicente, António A; Lehnert, Radek; e Silva, João B Almeida; Dostálek, Pavel; Teixeira, José A

    2006-12-01

    Despite extensive research carried out in the last few decades, continuous beer fermentation has not yet managed to outperform the traditional batch technology. An industrial breakthrough in favour of continuous brewing using immobilized yeast could be expected only on achievement of the following process characteristics: simple design, low investment costs, flexible operation, effective process control and good product quality. The application of cheap carrier materials of by-product origin could significantly lower the investment costs of continuous fermentation systems. This work deals with a complete continuous beer fermentation system consisting of a main fermentation reactor (gas-lift) and a maturation reactor (packed-bed) containing yeast immobilized on spent grains and corncobs, respectively. The suitability of cheap carrier materials for long-term continuous brewing was proved. It was found that by fine tuning of process parameters (residence time, aeration) it was possible to adjust the flavour profile of the final product. Consumers considered the continuously fermented beer to be of a regular quality. Analytical and sensorial profiles of both continuously and batch fermented beers were compared.

  10. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts.

    Science.gov (United States)

    Piddocke, Maya P; Kreisz, Stefan; Heldt-Hansen, Hans Peter; Nielsen, Kristian Fog; Olsson, Lisbeth

    2009-09-01

    High-gravity brewing, which can decrease production costs by increasing brewery yields, has become an attractive alternative to traditional brewing methods. However, as higher sugar concentration is required, the yeast is exposed to various stresses during fermentation. We evaluated the influence of high-gravity brewing on the fermentation performance of the brewer's yeast under model brewing conditions. The lager brewer's strain Weihenstephan 34/70 strain was characterized at three different gravities by adding either glucose or maltose syrups to the basic wort. We observed that increased gravity resulted in a lower specific growth rate, a longer lag phase before initiation of ethanol production, incomplete sugar utilization, and an increase in the concentrations of ethyl acetate and isoamyl acetate in the final beer. Increasing the gravity by adding maltose syrup as opposed to glucose syrup resulted in more balanced fermentation performance in terms of higher cell numbers, respectively, higher wort fermentability and a more favorable flavor profile of the final beer. Our study underlines the effects of the various stress factors on brewer's yeast metabolism and the influence of the type of sugar syrups on the fermentation performance and the flavor profile of the final beer.

  11. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The impact of different ale brewer’s yeast strains on the proteome of immature beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Jacobsen, Susanne; Arneborg, Nils

    2013-01-01

    alcohol and protein concentrations. Immature beer and unfermented wort proteins were analysed by 2-DE and compared in order to determine protein changes arising from fermentation. Distinct protein spots in the beer and wort proteomes were identified using Matrix-assisted laser desorption-ionization time......-of-flight mass spectrometry (MALDI-TOF-MS) and MS/MS and revealed common beer proteins, such as lipid transfer proteins (LTP1 and LTP2), protein Z and amylase-protease inhibitors. During fermentation, two protein spots, corresponding to LTP2, disappeared, while three protein spots were exclusively found in beer...

  13. In situ production of human β defensin-3 in lager yeasts provides bactericidal activity against beer-spoiling bacteria under fermentation conditions.

    Science.gov (United States)

    James, T C; Gallagher, L; Titze, J; Bourke, P; Kavanagh, J; Arendt, E; Bond, U

    2014-02-01

    To examine the use of a natural antimicrobial peptide, human β-defensin-3 (HBD3), as a means of preventing spoilage from bacterial contamination in brewery fermentations and in bottled beer. A chemically synthesised HBD3 peptide was tested for bactericidal activity against common Gram-positive and Gram-negative beer-spoiling bacteria, including species of Lactobacillus, Pediococcus and Pectinatus. The peptide was effective at the μmol l(-1) range in vitro, reducing bacterial counts by 95%. A gene construct encoding a secretable form of HBD3 was integrated into the genome of the lager yeast Saccharomyces pastorianus strain CMBS-33. The integrated gene was expressed under fermentation conditions and was secreted from the cell into the medium, but a significant amount remains associated with yeast cell surface. We demonstrate that under pilot-scale fermentation conditions, secreted HBD3 possesses bactericidal activity against beer-spoiling bacteria. Furthermore, when added to bottled beer, a synthetic form of HBD3 reduces the growth of beer-spoiling bacteria. Defensins provide prophylactic protection against beer-spoiling bacteria under brewing conditions and also in bottled beer. The results have direct application to the brewing industry where beer spoilage due to bacterial contamination continues to be a major problem in breweries around the world. © 2013 The Society for Applied Microbiology.

  14. Biomaterials from beer manufacture waste for bone growth scaffolds

    OpenAIRE

    Martín-Luengo, María Ángeles

    2011-01-01

    Agricultural wastes are a source of renewable raw materials (RRM), with structures that can be tailored for the use envisaged. Here, theyhave proved to be good replacement candidates for use as biomaterials for the growth of osteoblasts in bone replacement therapies. Their preparation is more cost effective than that of materials presentlyin use with the added bonus of converting a low-cost waste into a value-added product. Due to their origin these solids are ecomaterials.

  15. Capillary electrophoresis with laser-induced fluorescence detection for studying amino acid uptake by yeast during beer fermentation.

    Science.gov (United States)

    Turkia, Heidi; Sirén, Heli; Penttilä, Merja; Pitkänen, Juha-Pekka

    2015-01-01

    The amino acid composition of cultivation broth is known to affect the biomass accumulation, productivity, and vitality of yeast during cultivation. A separation method based on capillary electrophoresis with laser-induced fluorescence (LIF) detection was developed for the determination of amino acid consumption by Saccharomyces cerevisiae during beer fermentation. Intraday relative standard deviations were less than 2.1% for migration times and between 2.9% and 9.9% for peak areas. Interday relative standard deviations were less than 2.5% for migration times and between 4.4% and 18.9% for peak areas. The quantification limit was even as low as 62.5 pM which equals to below attomole level detection. The method was applied to study the rate of amino acid utilization during beer fermentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Diversity of yeasts involved in the fermentation of tchoukoutou, an opaque sorghum beer from Benin

    NARCIS (Netherlands)

    Kayode, A.P.P.; Vieira-Dalode, G.; Linnemann, A.R.; Kotchoni, S.O.; Hounhouigan, A.J.D.; Boekel, van M.A.J.S.; Nout, M.J.R.

    2011-01-01

    Opaque sorghum beers are traditional alcoholic beverages in several African countries. Known as tchoukoutou in Benin, the beer is often obtained from an uncontrolled fermentation. It is consumed in an actively fermenting state and has a sour taste. The present study characterized and identified the

  17. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast.

    Science.gov (United States)

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Vicente, António A

    2014-03-01

    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.

  18. Biomaterials from beer manufacture waste for bone growth scaffolds

    OpenAIRE

    Martin Luengo, M.A.; Yates, M.; Ramos Gomez, Milagros; Saez Rojo, E.; Martinez Serrano, Alberto; Gonzalez Gil, L.; Ruiz Hitzky, E.

    2011-01-01

    Agricultural wastes are a source of renewable raw materials (RRM), with structures that can be tailored for the use envisaged. Here, they have proved to be good replacement candidates for use as biomaterials for the growth of osteoblasts in bone replacement therapies. Their preparation is more cost effective than that of materials presently in use with the added bonus of converting a low-cost waste into a value-added product. Due to their origin these solids are ecomaterials. In this study, s...

  19. Physiological analysis of yeast cells by flow cytometry during serial-repitching of low-malt beer fermentation.

    Science.gov (United States)

    Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki

    2007-05-01

    At the end of beer brewing fermentation, yeast cells are collected and repitched for economical reasons. Although it is generally accepted that the physiological state of inoculated yeast cells affects their subsequent fermentation performance, the effect of serial-repitching on the physiological state of such yeast cells has not been well clarified. In this study, the fermentation performance of yeast cells during serial-repitching was investigated. After multiple repitchings, the specific growth rate and maximum optical density (OD(660)) decreased, and increases in isoamyl alcohol, which causes an undesirable flavor, and residual free amino acid nitrogen (FAN) concentrations were observed. The physiological state of individual cells before inoculation was characterized by flow cytometry using the fluorescent dyes dehydrorhodamine 123 (DHR) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (OXN). The fluorescence intensities of DHR, an indicator of reactive oxygen species (ROSs), and OXN, which indicates membrane potential, gradually increased as the number of serial-repitching cycles increased. Fluorescence intensity correlated strongly with cell growth. The subsequent fermentation performance can be predicted from this correlation.

  20. Decrease in hydrogen sulfide content during the final stage of beer fermentation due to involvement of yeast and not carbon dioxide gas purging.

    Science.gov (United States)

    Oka, Kaneo; Hayashi, Teruhiko; Matsumoto, Nobuya; Yanase, Hideshi

    2008-09-01

    We observed a rapid decrease in hydrogen sulfide content in the final stage of beer fermentation that was attributed to yeast and not to the purging of carbon dioxide (CO(2)) gas. The well known immature off-flavor in beer due to hydrogen sulfide (H(2)S) behavior during beer fermentation was closely investigated. The H(2)S decrease occurred during the final stage of fermentation when the CO(2)-evolution rate was extremely small and there was a decrease in the availability of fermentable sugars, suggesting that the exhaustion of fermentable sugars triggered the decrease in H(2)S. An H(2)S-balance analysis suggested that the H(2)S decrease might have been caused due to sulfide uptake by yeast. Further investigation showed that the time necessary for H(2)S to decrease below the sensory threshold was related to the number of suspended yeast cells. This supported the hypothesis that yeast cells contributed to the rapid decrease in H(2)S during the final stage of beer fermentation.

  1. Brewing Beer in the Laboratory: Grain Amylases and Yeast's Sweet Tooth

    Science.gov (United States)

    Gillespie, Blake; Deutschman, William A.

    2010-01-01

    Brewing beer provides a straightforward and robust laboratory counterpart to classroom discussions of fermentation, a staple of the biochemistry curriculum. An exercise is described that provides several connections between lecture and laboratory content. Students first extract fermentable carbohydrates from whole grains, then ferment these with…

  2. Yeast physiology and flavour formation during production of alcohol-free beer

    NARCIS (Netherlands)

    Iersel, van M.

    1999-01-01

    Production of alcohol-free beer is performed with immobilized cells of Saccharomyces cerevisiae var. uvarum . In the reactor, combined stress factors such as low temperature (0-4°C) and anaerobic conditions limit cell

  3. Identification of yeasts during alcoholic fermentation of tchapalo, a traditional sorghum beer from Côte d'Ivoire.

    Science.gov (United States)

    N'guessan, Kouadio Florent; Brou, Kouakou; Jacques, Noémie; Casaregola, Serge; Dje, Koffi Marcellin

    2011-05-01

    This study investigated the diversity and dynamics of yeasts involved in alcoholic fermentation of a traditional sorghum beer from Côte d'Ivoire, tchapalo. A total of 240 yeast strains were isolated from fermenting sorghum wort inoculated with dry yeast from two geographic regions of Côte d'Ivoire (Abidjan and Bondoukou). Initial molecular identification to the species level was carried out using RFLP of PCR-amplified internal transcribed spacers of rDNA (ITS1-5.8S-ITS2). Ten different profiles were obtained from the restriction of PCR products with the three endonucleases HaeIII, CfoI and HinfI. Sequence analysis of the D1/D2 domain of the 26S rDNA and the ACT1 gene allowed us to assign these groups to six different species: Saccharomyces cerevisiae-like, Candida tropicalis, Pichia kudriavzevii, Pichia kluyveri, Kodamaea ohmeri and Meyerozyma caribbica. The most frequent species associated with tchapalo fermentation was S. cerevisiae-like (87.36%), followed by C. tropicalis (5.45%) and M. caribbica (2.71%). S. cerevisiae-like strains were diploid heterozygotes and exhibited three to four nucleotides divergence from the type strain in the D1/D2 domain and several indels in the more discriminant sequence of the intron of the ACT1 gene. During the process, the yeast species isolated and their frequencies varied according to the geographic origin of the dry yeast. The occurrence of some species was sporadic and only two non-Saccharomyces species were found in the final product.

  4. Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C.

    Science.gov (United States)

    Smukowski Heil, Caiti; Burton, Joshua N; Liachko, Ivan; Friedrich, Anne; Hanson, Noah A; Morris, Cody L; Schacherer, Joseph; Shendure, Jay; Thomas, James H; Dunham, Maitreya J

    2018-01-01

    Interspecific hybridization is a common mechanism enabling genetic diversification and adaptation; however, the detection of hybrid species has been quite difficult. The identification of microbial hybrids is made even more complicated, as most environmental microbes are resistant to culturing and must be studied in their native mixed communities. We have previously adapted the chromosome conformation capture method Hi-C to the assembly of genomes from mixed populations. Here, we show the method's application in assembling genomes directly from an uncultured, mixed population from a spontaneously inoculated beer sample. Our assembly method has enabled us to de-convolute four bacterial and four yeast genomes from this sample, including a putative yeast hybrid. Downstream isolation and analysis of this hybrid confirmed its genome to consist of Pichia membranifaciens and that of another related, but undescribed, yeast. Our work shows that Hi-C-based metagenomic methods can overcome the limitation of traditional sequencing methods in studying complex mixtures of genomes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    Directory of Open Access Journals (Sweden)

    Edward D. Kerr

    2016-08-01

    Full Text Available Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  6. [Improvement of beer anti-staling capability by genetically modifying industrial brewing yeast with high glutathione content].

    Science.gov (United States)

    Jiang, Kai; Li, Qi; Gu, Guo-Xian

    2007-11-01

    Based on homologous recombination, recombinant plasmid pRKG was constructed by replacing the internal fragment of 18S rDNA of pRJ-5 with a copy of gamma-glutamylcysteine synthetase gene (GSH1) from the industrial brewing yeast strain G03 and a copy of G418 resistance gene (Kan) used as the dominant selection marker respectively. The fragment 18s rDNA::( Kan-GSH1) obtained through the PCR reaction was integrated to the chromosomal DNA of G03 strain, and recombinants were screened by G418 resistance. It was shown that the GSH content of beer fermented with the recombinant strain SG1 was 16.6% higher than that of G03, and no significant difference in routine fermentation parameters was found. To test the genetic stability, strains SG1 was inoculated into flasks and transfered continuously 5 times. The intracellular glutathione content of strain kept constant basically. It is an instructive attempt of genetically modifing industrial brewing yeast, as GSH1 was obtained from the host itself.

  7. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin.

    Science.gov (United States)

    Capozzi, Vittorio; Makhoul, Salim; Aprea, Eugenio; Romano, Andrea; Cappellin, Luca; Sanchez Jimena, Ana; Spano, Giuseppe; Gasperi, Flavia; Scampicchio, Matteo; Biasioli, Franco

    2016-04-12

    In light of the increasing attention towards "green" solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.

  8. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin

    Directory of Open Access Journals (Sweden)

    Vittorio Capozzi

    2016-04-01

    Full Text Available In light of the increasing attention towards “green” solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS, a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs. Two ethanol-related peaks (m/z 65.059 and 75.080 described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.

  9. Identification and Characterization of Yeast Isolates from Pharmaceutical Waste Water

    Directory of Open Access Journals (Sweden)

    Marjeta Recek

    2002-01-01

    Full Text Available In order to develop an efficient an system for waste water pretreatment, the isolation of indigenous population of microorganisms from pharmaceutical waste water was done. We obtained pure cultures of 16 yeast isolates that differed slightly in colony morphology. Ten out of 16 isolates efficiently reduced COD in pharmaceutical waste water. Initial physiological characterization failed to match the 10 yeast isolates to either Pichia anomala or Pichia ciferrii. Restriction analysis of rDNA (rDNA-RFLP using three different restriction enzymes: HaeIII, MspI and CfoI, showed identical patterns of the isolates and Pichia anomala type strain. Separation of chromosomal DNAs of yeast isolates by the pulsed field gel electrophoresis revealed that the 10 isolates could be grouped into 6 karyotypes. Growth characteristics of the 6 isolates with distinct karyotypes were then studied in batch cultivation in pharmaceutical waste water for 80 hours.

  10. Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth.

    Science.gov (United States)

    Khattak, Waleed Ahmad; Kang, Minkyung; Ul-Islam, Mazhar; Park, Joong Kon

    2013-06-01

    A number of hydrolyzing enzymes that are secreted from malt during brewing, including cell wall-hydrolyzing, saccharide-hydrolyzing, protein-degrading, lipid-hydrolyzing, and polyphenol and thiol-hydrolyzing enzymes, are expected to exist in an active form in waste from beer fermentation broth (WBFB). In this study, the existence of these enzymes was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, after which enzyme extract was partially purified through a series of purification steps. The hydrolyzing enzyme activity was then measured under various conditions at each purification step using carboxymethyl cellulose as a substrate. The best hydrolyzing activities of partially purified enzymes were found at pH 4.5 and 50 °C in a citrate buffer system. The enzymes showed highest thermal stability at 30 °C when exposed for prolonged time. As the temperature increased gradually from 25 to 70 °C, yeast cells in the chemically defined medium with enzyme extract lost their cell wall and viability earlier than those without enzyme extract. Cell wall degradation and the release of cell matrix into the culture media at elevated temperature (45-70 °C) in the presence of enzyme extract were monitored through microscopic pictures. Saccharification enzymes from malt were relatively more active in the original WBFB than supernatant and diluted sediments. The presence of hydrolyzing enzymes from malt in WBFB is expected to play a role in bioethanol production using simultaneous saccharification and fermentation without the need for additional enzymes, nutrients, or microbial cells via a cell-free enzyme system.

  11. Fermentation performance of lager yeast in high gravity beer fermentations with different sugar supplementations.

    Science.gov (United States)

    Lei, Hongjie; Xu, Huaide; Feng, Li; Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming

    2016-11-01

    The effects of glucose, sucrose and maltose supplementations on the fermentation performance and stress tolerance of lager yeast (Saccharomyces pastorianus) during high gravity (18°P) and very high gravity (24°P) fermentations were studied. Results showed that throughout 18°P wort fermentation, fermentation performance of lager yeast was significantly improved by glucose or sucrose supplementation, compared with maltose supplementation, especially for sucrose supplementation increasing wort fermentability and ethanol production by 6% and 8%, respectively. However, in the later stage of 24°P wort fermentation, fermentation performance of lager yeast was dramatically improved by maltose supplementation, which increased wort fermentability and ethanol production by 14% and 10%, respectively, compared with sucrose supplementation. Furthermore, higher HSP12 expression level and more intracellular trehalose accumulation in yeast cells were observed by maltose supplementation with increase of the wort gravity from 18°P to 24°P, indicating higher stress response of yeast cells. The excretion of Gly and Ala, and the absorption of Pro in the later stage of fermentation were promoted by maltose supplementation. In addition, with increase of the wort gravity from 18°P to 24°P, higher alcohols level was decreased with maltose supplementation, while esters formation was increased significantly with glucose supplementation. This study suggested that the choice of optimal fermentable sugars maintaining better fermentation performance of lager yeast should be based on not only strain specificity, but also wort gravity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation.

    Science.gov (United States)

    Khattak, Waleed Ahmad; Khan, Taous; Ha, Jung Hwan; Ul-Islam, Mazhar; Kang, Min-Kyung; Park, Joong Kon

    2013-10-10

    Malt hydrolyzing enzymes and yeast glycolytic and fermentation enzymes in the waste from beer fermentation broth (WBFB) were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A new 'one-pot consecutive batch strategy' was developed for efficient bio-ethanol production by simultaneous saccharification and fermentation (SSF) using WBFB without additional enzymes, microbial cells, or carbohydrates. Bio-ethanol production was conducted in batches using WBFB supernatant in the first phase at 25-67°C and 50rpm, followed by the addition of 3% WBFB solid residue to the existing culture broth in the second phase at 67°C. The ethanol production increased from 50 to 102.5g/L when bare supernatant was used in the first phase, and then to 219g ethanol/L in the second phase. The amount of ethanol obtained using this strategy was almost equal to that obtained using the original WBFB containing 25% solid residue at 33°C, and more than double that obtained when bare supernatant was used. Microscopic and gel electrophoresis studies revealed yeast cell wall degradation and secretion of cellular material into the surrounding medium. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) supported the existence of enzymes in WBFB involved in bioethanol production at elevated temperatures. The results of this study will provide insight for the development of new strategies for biofuel production. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Analysis of the effect of inoculum characteristics on the first stages of a growing yeast population in beer fermentations by means of an individual-based model.

    Science.gov (United States)

    Ginovart, M; Prats, C; Portell, X; Silbert, M

    2011-01-01

    The yeast Saccharomyces cerevisiae has a limited replicative lifespan. The cell mass at division is partitioned unequally between a larger, old parent cell and a smaller, new daughter cell. Industrial beer fermentations maintain and reuse yeast. At the end of fermentation a portion of the yeast is 'cropped' from the vessel for 'serial repitching'. Harvesting yeast may select a population with an imbalance of young and aged individuals, but the output of any bioprocess is dependent on the physiology of each single cell in the population. Unlike continuous models, individual-based modelling is an approach that considers each microbe as an individual, a unique and discrete entity, with characteristics that change throughout its life. The aim of this contribution is to explore, by means of individual-based simulations, the effects of inoculum size and cell genealogical age on the dynamics of virtual yeast fermentation, focussing on: (1) the first stages of population growth, (2) the mean biomass evolution of the population, (3) the rate of glucose uptake and ethanol production, and (4) the biomass and genealogical age distributions. The ultimate goal is to integrate these results in order to make progress in the understanding of the composition of yeast populations and their temporal evolution in beer fermentations. Simulation results show that there is a clear influence of these initial features of the inocula on the subsequent growth dynamics. By contrasting both the individual and global properties of yeast cells and populations, we gain insight into the interrelation between these two types of data, which helps us to deal with the macroscopic behaviour observed in experimental research.

  14. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation

    OpenAIRE

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-01-01

    Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as t...

  15. Brewing and volatiles analysis of three tea beers indicate a potential interaction between tea components and lager yeast

    OpenAIRE

    Rong, Lei; Peng, Li-Juan; Ho, Chi-Tang; Yan, Shou He; Meurens, Marc; Zhang, Zheng-Zhu; Li, Da-Xiang; Wan, Xiao-Chun; Bao, Guan-Hu; Gao, Xue-Ling; Ling, Tie-Jun

    2016-01-01

    Green tea, oolong tea and black tea were separately introduced to brew three kinds of tea beers. A model was designed to investigate the tea beer flavour character. Comparison of the volatiles between the sample of tea beer plus water mixture (TBW) and the sample of combination of tea infusion and normal beer (CTB) was accomplished by triangular sensory test and HS-SPME GC–MS analysis. The PCA of GC–MS data not only showed a significant difference between volatile features of each TBW and CTB...

  16. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation.

    Science.gov (United States)

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-03-04

    Two mathematical models were developed for studying the effect of main fermentation temperature (TMF), immobilized cell mass (MIC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.

  17. Encapsulation of brewing yeast in alginate/chitosan matrix: lab-scale optimization of lager beer fermentation

    Science.gov (United States)

    Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi

    2014-01-01

    Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512

  18. Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor.

    Science.gov (United States)

    Wang, Jinjing; Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2010-11-01

    Glutathione in beer works as the main antioxidant compounds which correlates with beer flavor stability. High residual sugars in beer contribute to major non-volatile components which correlate to high caloric content. In this work, Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and Scharomycopsis fibuligera ALP1 gene encoding alpha-amylase were co-expressed in industrial brewing yeast strain Y31 targeting at alpha-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), and new recombinant strain TY3 was constructed. The glutathione content from the fermentation broth of TY3 increased to 43.83 mg/l compared to 33.34 mg/l from Y31. The recombinant strain showed high alpha-amylase activity and utilized more than 46% of starch after 5 days growing on starch as sole carbon source. European Brewery Convention tube fermentation tests comparing the fermentation broth of TY3 and Y31 showed that the flavor stability index increased to 1.3 fold and residual sugar concentration were reduced by 76.8%, respectively. Due to the interruption of ILV2 gene and ADH2 gene, the amounts of off-flavor compounds diacetyl and acetaldehyde were reduced by 56.93% and 31.25%, comparing with the amounts of these from Y31 fermentation broth. In addition, as no drug-resistance genes were introduced to new recombinant strain, consequently, it should be more suitable for use in beer industry because of its better flavor stability and other beneficial characteristics.

  19. The Chemistry of Beer Instability

    Science.gov (United States)

    Stewart, Graham G.

    2004-01-01

    Brewing of beer, one of the oldest biotechnology industries was one of the earliest processes to be undertaken on commercial basis. Biological instability involves contamination of bacteria, yeast, or mycelia fungi and there is always a risk in brewing that beer can become contaminated by micro-organisms.

  20. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts

    DEFF Research Database (Denmark)

    Piddocke, Maya Petrova; kreisz, Stefan; Heldt-Hansen, Hans Peter

    2009-01-01

    resulted in a lower specific growth rate, a longer lag phase before initiation of ethanol production, incomplete sugar utilization, and an increase in the concentrations of ethyl acetate and isoamyl acetate in the final beer. Increasing the gravity by adding maltose syrup as opposed to glucose syrup...

  1. Attraction of Bactrocera cucurbitae and B.dorsalis(Diptera: Tephritidae) to beer waste and other protein sources laced with ammonium acetate

    Science.gov (United States)

    It is known that adult tephritid fruit fly females require protein sources for adequate egg production and that ammonia and its derivatives serve as volatile cues to locate protein-rich food. The attractiveness of beer waste and the commercially available baits Nulure, Buminal, and Bugs 4 Bugs Fruit...

  2. ISOLATION AND IDENTIFICATION OF AMYLASE PRODUCING YEASTS IN ‘TELLA’ (ETHIOPIAN LOCAL BEER AND THEIR AMYLASE CONTRIBUTION FOR ‘TELLA’ PRODUCTION

    Directory of Open Access Journals (Sweden)

    Berhanu Andualem

    2013-08-01

    Full Text Available ‘Tella’ is local beer which is used in most part of Ethiopia. It is made from cereals, such as barley, wheat, maize and other crops. Rhamnus prinoides is also used to provide a special aroma and flavor as well as antiseptic agent. The objective of this study is to determine the contribution of amylases from tella yeast isolates and compare with the role of amylase from malt. House hold ‘tella’ samples were collected and plated on starch agar and then amylase positive isolates of yeast were identified by folding iodine solution over the starch agar. Amylase assay and activities were investigated by standard methods and compared with amylase from malt. According to this study, the activity of amylases which was extracted from yeast isolates was very low and may have no contribution in the conversion of starch into fermentable sugars. Thus, it is better to avoid such organisms from ‘tella’ fermentation in order to discriminate unwanted bio-products. In conclusion, the substrates and ingredients should be sterilized and introduced into the fermentation system aseptically.

  3. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  4. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant. © 2015 Institute of Food Technologists®

  5. Biopolymers production with carbon source from the wastes of a beer brewery industry

    Science.gov (United States)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  6. The use of chitooligosaccharide in beer brewing for protection against beer-spoilage bacteria and its influence on beer performance.

    Science.gov (United States)

    Zhao, Xue; Yu, Zhimin; Wang, Ting; Guo, Xuan; Luan, Jing; Sun, Yumei; Li, Xianzhen

    2016-04-01

    To identify a biological preservative that can protect beer from microbial contamination, which often results in the production of turbidity and off-flavor. The antimicrobial activity of a chitooligosaccharide against beer-spoilage bacteria and its effect on the fermentation performance of brewer's yeast was studied. Chitooligosaccharide with an average 2 kDa molecular weight was the best at inhibiting all tested beer-spoilage bacteria. The application of chitooligosaccharide in the brewing process did not influence the fermentation of brewer's yeast. The change in beer performance induced by the contamination of Lactobacillus brevis could be effectively controlled by application of chitooligosaccharide in the beer brewing process. The experimental data suggested that chitooligosaccharide should be an excellent preservative to inhibit beer-spoilage bacteria in the brewing process and in the end product.

  7. Fundamentals of beer and hop chemistry

    OpenAIRE

    De Keukeleire, Denis

    2000-01-01

    Beer brewing is an intricate process encompassing mixing and further elaboration of four essential raw materials, including barley malt, brewing water, hops and yeast. Particularly hops determine to a great extent typical beer qualities such as bitter taste, hoppy flavour, and foam stability. Conversely, hop-derived bitter acids account for an offending lightstruck flavour, which is formed on exposure of beer to light. These various processes are presented in detail, while due emphasis is pla...

  8. Beer volatile compounds and their application to low-malt beer fermentation.

    Science.gov (United States)

    Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki

    2008-10-01

    Low-malt beers, in which the amount of wort is adjusted to less than two-thirds of that in regular beer, are popular in the Japanese market because the flavor of low-malt beer is similar to that of regular beer but the price lesser than that of regular beer. There are few published articles about low-malt beer. However, in the production process, there are many similarities between low-malt and regular beer, e.g., the yeast used in low-malt beer fermentation is the same as that used for regular beer. Furthermore, many investigations into regular beer are applicable to low-malt beer production. In this review, we focus on production of volatile compounds, and various studies that are applicable to regular and low-malt beer. In particular, information about metabolism of volatile compounds in yeast cells during fermentation, volatile compound measurement and estimation methods, and control of volatile compound production are discussed in this review, which concentrates on studies published in the last 5-6 years.

  9. Beer and beer compounds: physiological effects on skin health.

    Science.gov (United States)

    Chen, W; Becker, T; Qian, F; Ring, J

    2014-02-01

    Beer is one of the earliest human inventions and globally the most consumed alcoholic beverage in terms of volume. In addition to water, the 'German Beer Purity Law', based on the Bavarian Beer Purity Law from 1516, allows only barley, hops, yeasts and water for beer brewing. The extracts of these ingredients, especially the hops, contain an abundance of polyphenols such as kaempferol, quercetin, tyrosol, ferulic acid, xanthohumol/isoxanthohumol/8-prenylnaringenin, α-bitter acids like humulone and β-bitter acids like lupulone. 8-prenylnaringenin is the most potent phytoestrogen known to date. These compounds have been shown to possess various anti-bacterial, anti-inflammatory, anti-oxidative, anti-angiogenic, anti-melanogenic, anti-osteoporotic and anti-carcinogenic effects. Epidemiological studies on the association between beer drinking and skin disease are limited while direct evidence of beer compounds in clinical application is lacking. Potential uses of these substances in dermatology may include treatment of atopic eczema, contact dermatitis, pigmentary disorders, skin infections, skin ageing, skin cancers and photoprotections, which require an optimization of the biostability and topical delivery of these compounds. Further studies are needed to determine the bioavailability of these compounds and their possible beneficial health effects when taken by moderate beer consumption. © 2013 European Academy of Dermatology and Venereology.

  10. Cost Benefit Waste for Possible Energy Use in the Beer Factory

    Directory of Open Access Journals (Sweden)

    Ángel Amado Recio-Recio

    2016-06-01

    Full Text Available Existing problems resulting from the shortage of fossil fuels and the environmental degradation caused by their use has become vital to the use of renewable energies to replace these fuels. This need is reflected in the objective 87 of the Guidelines for Economic and Social Policy of the Party and the Revolution adopted at the Sixth Congress of the PCC. This paper aims at a theoretical experimental study aimed for the future utilization of waste (biomass for energy purposes, residue derived from the brewing, in Cuban industries. The cost-benefit analysis to select the best variant of three possible is used. The result showed choose the variant: use biogas for saving fuel oil in boilers, with a term of payback of three years.

  11. Yeast mixture of liquid beer and cassava pulp with rice straw for the growth of dairy heifers.

    Science.gov (United States)

    Kamphayae, Sukanya; Kumagai, Hajime; Butcha, Patima; Ritruechai, Viroj; Udchachon, Supachai

    2017-03-01

    This study was conducted to determine the effects of mixtures of liquid brewer's yeast (LBY) and cassava pulp (CVP) with rice straw (RS) on feed intake, digestibility, rumen fermentation, and growth of dairy heifers. Sixteen Holstein crossbred heifers (13.8 ± 1.6 months old, 210 ± 23 kg body weight (BW)) were randomly allocated to four feeding treatments with four replications, which were 0:0:100 (RS), 0:70:30 (0%LBY), 20:50:30 (20%LBY), and 50:20:30 (50%LBY), respectively, for LBY/CVP/RS on a fresh matter basis. The heifers were offered conventional concentrate at 1.5% initial body weight daily and fed the treatment diets ad libitum. Average daily gain and feed intake were not significantly different among the treatments. The heifers fed 50%LBY had the highest crude protein (CP) intake and DM, OM, and CP digestibility (P < 0.05). The ruminal pH did not differ significantly among treatments, while NH3-N was the highest (P < 0.05) in 50%LBY. Total volatile fatty acid (VFA) concentrations and the molar proportion of each VFA were not significantly different among the treatments. Blood urea nitrogen concentrations of 50%LBY were the highest among the treatments (P < 0.05). The results indicated that 50%LBY improved CP digestibility.

  12. Fundamentals of beer and hop chemistry

    Directory of Open Access Journals (Sweden)

    Denis De Keukeleire

    2000-02-01

    Full Text Available Beer brewing is an intricate process encompassing mixing and further elaboration of four essential raw materials, including barley malt, brewing water, hops and yeast. Particularly hops determine to a great extent typical beer qualities such as bitter taste, hoppy flavour, and foam stability. Conversely, hop-derived bitter acids account for an offending lightstruck flavour, which is formed on exposure of beer to light. These various processes are presented in detail, while due emphasis is placed on state-of-the-art hop technology, which provides brewers with efficient means to control bitterness, foam, and light-stability thereby allowing for the production of beers with consistent quality.

  13. Chromium(VI)-resistant yeast isolated from a sewage treatment plant receiving tannery wastes.

    Science.gov (United States)

    Baldi, F; Vaughan, A M; Olson, G J

    1990-01-01

    A Cr(VI)-resistant yeast, designated strain DBVPG 6502, was isolated from a sewage treatment plant receiving wastes from tannery industries in Italy. The strain was tentatively identified as a species of Candida based on morphological and physiological analyses. This strain was highly resistant to Cr(VI) when compared with eight other yeast species, growing at Cr(VI) concentrations of up to 500 micrograms/ml (10 mM). This resistance was constitutive. The Cr(VI)-resistant yeast did not reduce Cr(VI) to Cr(III) species under aerobic conditions. The yeast showed very little accumulation of Cr(VI). Consequently, the mechanism of resistance of the yeast to Cr(VI) appears to involve reduced accumulation of Cr, as has been shown in Cr(VI)-resistant bacteria. Images PMID:2339879

  14. Determination and fractionation of metals in beer – a review

    OpenAIRE

    Pohl, Pawel

    2008-01-01

    Abstract Major, minor and trace metals are important in beer fermentation since they supply the appropriate environment for yeast growth and have the influence on yeast metabolism. A real concern is the content of Cu and Fe, which are involved in beer conditioning and ageing through reactions resulting in formation of reactive oxygen species. The reactive oxygen species readily oxidize organic compounds present in beer, changing the quality of foaming and the flavor stability of be...

  15. Process integration and waste heat recovery in Lithuanian and Danish industry. Case study: Beer Brewery `Vilniaus Tauras`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Potential energy savings measures in Vilniaus Tauras Brewery are described in the report. Process Integration theories and methods and more conventional energy saving approaches have been put into use. The brewery is placed in Vilnius and is the fifth largest in Lithuania. It produces 20 million litre of beer per year. The production equipment is very old, and the buildings are not appropriate for modern beer production. Reconstruction is planned in the near future if new investors can be found. Compared with Danish breweries it is only considered to be a small production. Carlsberg`s two largest breweries in Denmark (Valby and Fredericia) produces around 350 mill. litre/year each. (au)

  16. Influence of Freeze-Dried Yeast Starter Cultures on Volatile Compounds of Tchapalo, a Traditional Sorghum Beer from Côte d’Ivoire

    Directory of Open Access Journals (Sweden)

    Wahauwouélé Hermann Coulibaly

    2016-12-01

    Full Text Available The production of the Ivorian sorghum beer known as tchapalo remains more or less an empirical process. The use of starter cultures was therefore suggested as the appropriate approach to alleviate the problems of variations in organoleptic quality and microbiological stability. In this study, we evaluated the capacity of S. cerevisiae and C. tropicalis to produce sorghum beer as freeze-dried starter in mixed or pure cultures. Beers produced with mixed freeze-dried cultures of S. cerevisiae F12-7 and C. tropicalis C0-7 showed residual sugars and ethanol contents similar to beers obtained with S. cerevisiae F12-7 pure culture, but the total sum of organic acids analyzed was the highest with the mixed culture (15.71 g/L. Higher alcohols were quantitatively the largest group of volatile compounds detected in beers. Among these compounds, 2-phenyl ethanol, a higher alcohol that  plays an important role in beer flavor, was highly produced with the mixed culture (10,174.8 µg/L than with the pure culture (8749.9 µg/L.

  17. Sensitization to beer ingredients in Chinese individuals with beer allergy: a clinical study of 20 cases.

    Science.gov (United States)

    Song, Zhiqiang; Chen, Wenchieh; Huang, Xiuying; Zhou, Xiaofang; Luo, Jie; Wang, Huan; Darsow, Ulf; Becker, Thomas; Qian, Fei; Hao, Fei; Ring, Johannes

    2014-01-01

    Rare case reports of allergic reactions to beer have been published, but the nature of the eliciting substances in beer ingredients is often unknown. It was the aim of this study to identify sensitization patterns against various beer ingredients in Chinese individuals with beer allergy. Twenty-seven Chinese individuals with a clear-cut history of beer allergy were prescreened to answer a specific questionnaire related to the history and symptoms of beer allergy. Twenty individuals underwent allergy diagnostics with different food allergens and extracts of beer ingredients using the skin prick test (SPT) and the open oral provocation test (OPT) with beer. Fifteen patients (75%) showed positive reactions to one or more beer ingredients. Of these, 9 individuals, reactive to sorghum and/or sorghum malt also showed positive reactions to other ingredients. Seventeen individuals showed variable symptoms after the OPT. Cutaneous erythema and urticaria were the most common symptoms and usually persisted for over 2 h. There were no significant differences in SPT reactivity to beer ingredients between male and female individuals. Single patients reacted to barley, hops or yeast. Sensitization to sorghum and/or sorghum malt was the most common finding in Chinese individuals with beer allergy.

  18. Saccharomyces species in the Production of Beer

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2016-12-01

    Full Text Available The characteristic flavour and aroma of any beer is, in large part, determined by the yeast strain employed and the wort composition. In addition, properties such as flocculation, wort fermentation ability (including the uptake of wort sugars, amino acids, and peptides, ethanol and osmotic pressure tolerance together with oxygen requirements have a critical impact on fermentation performance. Yeast management between fermentations is also a critical brewing parameter. Brewer’s yeasts are mostly part of the genus Saccharomyces. Ale yeasts belong to the species Saccharomyces cerevisiae and lager yeasts to the species Saccharomyces pastorianus. The latter is an interspecies hybrid between S. cerevisiae and Saccharomyces eubayanus. Brewer’s yeast strains are facultative anaerobes—they are able to grow in the presence or absence of oxygen and this ability supports their property as an important industrial microorganism. This article covers important aspects of Saccharomyces molecular biology, physiology, and metabolism that is involved in wort fermentation and beer production.

  19. Beer identity in Denmark

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Martens, M.

    2006-01-01

    In this study a sensory profiling and a consumer test including 10 commercially Danish beers were conducted. The 10 beer samples covered four types of beer namely; lager, strong lager, ale and wheat beer, representing both new and more established beers on the Danish market. A trained panel consi...

  20. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    Science.gov (United States)

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (pproducts and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Innovations in the brewing industry: light beer.

    Science.gov (United States)

    Blanco, Carlos A; Caballero, Isabel; Barrios, Rosa; Rojas, Antonio

    2014-09-01

    The demand for light beers has led brewers to innovate by developing light beer. However, these products are not widely accepted in Europe compared to North America and Australasia because of their lack of fullness in the taste and low bitterness compared with conventional beer. The lower levels of some important compounds, present in light beer, can explain these features since they are responsible for the characteristics of the beer. These include alcohol soluble proteins, oligosaccharides, glycerol, polyphenols, iso-α-acids, fusel alcohols and trihydroxy fatty acids. Light beer is produced by several methods, the most commonly used is the addition of glucoamylase to the wort before or during fermentation. This enzyme metabolizes residual carbohydrates (mainly dextrins) transforming them into fermentable sugars and reducing the caloric and alcohol content in this type of beer. Recently pilot studies have been carried out with genetically engineered yeast strains in which amylolytic genes are introduced into the yeast genome in order to metabolize carbohydrate residues. When introducing amylolytic genes, a better fermentability occurs although the fullness of flavor still becomes reduced.

  2. Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates

    OpenAIRE

    Mussatto, Solange I.; Machado, Ercília M. S.; Carneiro, Lívia M.; Teixeira,J. A.

    2012-01-01

    Significant amounts of wastes are generated by the coffee industry, among of which, coffee silverskin (CS) and spent coffee grounds (SCG) are the most abundantly generated during the beans roasting and instant coffee preparation, respectively. This study evaluated the sugars metabolism and production of ethanol by three different yeast strains (Saccharomyces cerevisiae, Pichia stipitis and Kluyveromyces fragilis) when cultivated in sugar rich hydrolysates produced by acid hydrolysis of CS and...

  3. The effect of wort aeration on fermentation, maturation and volatile components of beer produced on an industrial scale

    National Research Council Canada - National Science Library

    Kucharczyk, Krzysztof; Tuszyński, Tadeusz

    2017-01-01

    The aim of the study was to determine the effect of the initial beer wort aeration on the process of fermentation, maturation, content of the volatile components of beer and abundance and vitality of yeast biomass...

  4. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    Science.gov (United States)

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  5. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus. S.roseus was able to use most of waste substrates, the best production of ergosterol (8.9 mg/g d.w. and beta-carotene (4.33 mg/g d.w. was obtained in medium with crushed pasta hydrolyzed by mixed enzyme from Phanerochaetae chrysosporium. Regardless very high production of carotenes and ergosterol, S.roseus is probably not suitable for industrial use because of relatively low biomass production.

  6. Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates.

    Science.gov (United States)

    Ha, Jung Hwan; Shah, Nasrullah; Ul-Islam, Mazhar; Park, Joong Kon

    2011-08-10

    The potential of the waste from beer fermentation broth (WBFB) for the production of bio-ethanol using a simultaneous saccharification and fermentation process without any extra additions of saccharification enzymes, microbial cells or carbohydrate was tested. The major microbial cells in WBFB were isolated and identified. The variations in compositions of WBFB with stock time were investigated. There was residual activity of starch hydrolyzing enzymes in WBFB. The effects of reaction modes e.g. static and shaking on bio-ethanol production were studied. After 7 days of cultivation using the supernatant of WBFB at 30 °C the ethanol concentration reached 103.8 g/L in shaking culture and 91.5 g/L in static culture. Agitation experiments conducted at a temperature-profile process in which temperature was increased from 25 to 67 °C shortened the simultaneous process time. The original WBFB was more useful than the supernatant of WBFB in getting the higher concentration of ethanol and reducing the fermentation time. From this whole study it was found that WBFB is a cheap and suitable source for bio-ethanol production. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Retail beer market. Opportunities for beer category

    OpenAIRE

    Caldová, Marie

    2015-01-01

    My bachelors thesis deals with design of better utilization of sales space in traditional retail formats. I focus on the beer category . I describe the basic principles of retailing. I imagine the food retailing division according to the company Pilsner Urquell. I mention all the legal requirements for the labeling of beer products. I mention the beer category share in total sales in the retail market . I describe the main beer producers who are active on the Czech market. The main topic is t...

  8. Beer Snobs Do Exist: Estimation of Beer Demand by Type

    OpenAIRE

    Toro-González, Daniel; McCluskey, Jill J.; Mittelhammer, Ron C

    2014-01-01

    Although mass-produced beers still represent the vast majority of U.S. beer sales, there has been a significant growth trend in the craft beer segment. This study analyzes the demand for beer as a differentiated product and estimates own-price, cross-price, and income elasticities for beer by type: craft beer, mass-produced beer, and imported beer. We verify that beer is a normal good with a considerably inelastic demand and also find that the cross-price elasticity across types of beer is cl...

  9. The fermentation kinetics and physicochemical properties of special beer with addition of Prokupac grape variety

    Directory of Open Access Journals (Sweden)

    Veljović Mile

    2015-01-01

    Full Text Available Over the last decade, the market of special beers with improved healthy function and/or with new refreshing taste has significantly increased. One of the possible solutions enables grape and mixing beer with bioactive component responsible for well known health promoting action of red wine. The influence of the addition of Prokupac grape on the physicochemical properties and the fermentation kinetics of the grape beer were studied and results were compared with control lager beer. The effect of grape addition on the activity of yeast was also studied. Original extract, alcohol content, degree of fermentation, fermentation rate and yeast growth were significantly higher in beers with grapes as a consequence of higher concentration of simple sugars in grapes compared with pure wort. Based on the CIELab chromatic parameters the color of grape beer samples was yellow with certain proportion of redness, while the control beer was purely yellow. The increase in the concentration of grape mash affects the reduction of lightness and yellowness of beers, while the redness of samples was directly proportional with grape quantity. The phenolic content and antioxidant capacity of grape beers was remarkably higher compared with control beer, which indicates that the grape beer is a better source of natural antioxidants than regular lager beer. [Projekat Ministarstva nauke Republike Srbije, br. 46001

  10. Acid and Volatiles of Commercially-Available Lambic Beers

    Directory of Open Access Journals (Sweden)

    Katherine Thompson Witrick

    2017-10-01

    Full Text Available Lambic beer is the oldest style of beer still being produced in the Western world using spontaneous fermentation. Gueuze is a style of lambic beer prepared by mixing young (one year and older (two to three years beers. Little is known about the volatiles and semi-volatiles found in commercial samples of gueuze lambic beers. SPME was used to extract the volatiles from nine different brands of lambic beer. GC-MS was used for the separation and identification of the compounds extracted with SPME. The pH and color were measured using standard procedures. A total of 50 compounds were identified in the nine brands. Seventeen of the 50 compounds identified have been previously identified. The compounds identified included a number of different chemical groups such as acids, alcohols, phenols, ketones, aldehydes, and esters. Ethyl acetate, 4-ethylphenol, and 4-ethylguaiacol are known by-products of the yeast, Brettanomyces, which is normally a spoilage microorganism in beer and wine, but important for the flavor characteristics of lambic beer. There were no differences in pH, but there were differences in color between the beer samples.

  11. Analysis of beers from an 1840s' shipwreck.

    Science.gov (United States)

    Londesborough, John; Dresel, Michael; Gibson, Brian; Juvonen, Riikka; Holopainen, Ulla; Mikkelson, Atte; Seppänen-Laakso, Tuulikki; Viljanen, Kaarina; Virtanen, Hannele; Wilpola, Arvi; Hofmann, Thomas; Wilhelmson, Annika

    2015-03-11

    Two bottles of beer from an about 170-year-old shipwreck (M1 Fö 403.3) near the Åland Islands in the Baltic Sea were analyzed. Hop components and their degradation compounds showed that the bottles contained two different beers, one more strongly hopped than the other. The hops used contained higher levels of β-acids than modern varieties and were added before the worts were boiled, converting α-acids to iso-α-acids and β-acids to hulupones. High levels of organic acids, carbonyl compounds, and glucose indicated extensive bacterial and enzyme activity during aging. However, concentrations of yeast-derived flavor compounds were similar to those of modern beers, except that 3-methylbutyl acetate was unusually low in both beers and 2-phenylethanol and possibly 2-phenylethyl acetate were unusually high in one beer. Concentrations of phenolic compounds were similar to those in modern lagers and ales.

  12. Odorant polyfunctional thiols issued from bottle beer fermentation

    OpenAIRE

    Nizet, Sabrina; Gros, Jacques; Collin, Sonia; XII Weurman flavour research symposium

    2011-01-01

    Bottle refermentation which imparts beer effervescence and resistance against infection and oxidation is also known to improve flavor profile and stability. By this process, some stale off-flavors exhaled by aldehydes (trans-2-nonenal, 3-methylthiopropionaldehyde, 3- methylbutanal ..) are reduced into alcohols (1, 2). Unfortunately, yeast esterases can also strongly affect the beer fruity character by hydrolyzing isoamyl acetate, ethyl hexanoate and ethyl octanoate (1, 2). Thio...

  13. Immature Flavor of Beer by Hydrogen Sulfide and its Exclusion

    OpenAIRE

    高橋, 俊明; タカハシ, トシアキ; TOSHIAKI, TAKAHASHI

    1993-01-01

    In the brewing industry, bottom fermeting brewer's yeast has produced hydrogen sulfide during the primary fermentation process. Hydrogen sulfide has given the unpleasant immature flavor such as rotten egg into the primary or secondary fermenting liquor. However, in the normaly produced final beer the immature flavor has disappeared in general. In spite of the above mentioned fact, sometimes the immature flavor based on the hydrogen sulfide have found in final beer during the imperfect control...

  14. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview.

    Science.gov (United States)

    Pérez-Bibbins, B; Torrado-Agrasar, A; Salgado, J M; Oliveira, R Pinheiro de Souza; Domínguez, J M

    2015-06-01

    Lees are the wastes generated during the fermentation and aging processes of different industrial activities concerning alcoholic drinks such as wine, cider and beer. They must be conveniently treated to avoid uncontrolled dumping which causes environmental problems due to their high content of phenols, pesticides, heavy metals, and considerable concentrations of nitrogen, phosphate and potassium as well as high organic content. The companies involved must seek alternative environmental and economic physicochemical and biological treatments for their revalorization consisting in the recovery or transformation of the components of the lees into high value-added compounds. After describing the composition of lees and market of wine, beer and cider industries in Spain, this work aims to review the recent applications of wine, beer and cider lees reported in literature, with special attention to the use of lees as an endless sustainable source of nutrients and the production of yeast extract by autolysis or cell disruption. Lees and/or yeast extract can be used as nutritional supplements with potential exploitation in the biotechnological industry for the production of natural compounds such as xylitol, organic acids, and biosurfactants, among others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of Nitrogen Supplementation on Yeast (Candida utilis Biomass Production by Using Pineapple (Ananas comosus Waste Extracted Medium

    Directory of Open Access Journals (Sweden)

    Rosma, A.

    2007-01-01

    Full Text Available Pineapple waste medium was used to cultivate yeast, Candida utilis. It served as the sole carbon and energy source for the yeast growth. However, pineapple waste media contain very little nitrogen (0.003-0.015% w/v. Various nitrogen sources were incorporate and their effects on biomass, yield and productivity were studied. Significant (p<0.05 increment on biomass production was observed when nitrogen supplement (commercial yeast extract, peptone, ammonium dihydrogen phosphate, ammonium sulphate and potassium nitrate was added into fermentation medium. Commercial yeast extract, Maxarome® which increased 55.2% of biomass production at 0.09% (w/v nitrogen content, is the most suitable among the selected organic source. On the other hand, ammonium dihydrogen phosphate at 0.09% (w/v nitrogen content is comparable inorganic source which enhanced 53.7% of production. Total nitrogen content of each treatment at 0.05% (w/v showed that nitrogen supplied was not fully utilized as substrate limitation in the fermentation medium.

  17. Multi-objective process optimisation of beer fermentation via dynamic simulation

    OpenAIRE

    Rodman, Alistair; Gerogiorgis, Dimitrios

    2016-01-01

    Fermentation is an essential step in beer brewing: when yeast is added to hopped wort, sugars released from the grain during germination are fermented into ethanol and higher alcohols. To study, simulate and optimise the beer fermentation process, accurate models of the chemical system are required for dynamic simulation of key component concentrations. Since the entire beer production process is a highly complex series of chemical reactions with the presence of over 600 species, many of the ...

  18. Cocoa pulp in beer production: Applicability and fermentative process performance

    OpenAIRE

    Nunes, Cassiane da Silva Oliveira; de Carvalho, Giovani Brand?o Mafra; da Silva, Mar?lia Lord?lo Cardoso; da Silva, Gerv?sio Paulo; Bruna Aparecida Souza MACHADO; Uetanabaro, Ana Paula Trovatti

    2017-01-01

    This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cacha?a (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of f...

  19. A biotechnological valorization and treatment of olive mill waste waters by selected yeast strains

    Directory of Open Access Journals (Sweden)

    Mouncif, M.

    1995-12-01

    Full Text Available Olive mill waste waters were diluted to 1/10, supplied with 2% urea and inoculated with yeast strains. 20 yeast strains isolated from Olive Mill Waste (OMW water were screened for their biomass production, GOD reduction and polyphenols bioconversión activities. Pure cultures of yeasts were realized in 100 ml erlen-meyer flasks. 50 ml cultures were used and the flasks were incubated at room temperature (22°G on a shaker. Biomass production, COD (chemical oxygen demand reduction and Polyphenols bioconversión were followed up in the inoculated OMW waters. Results showed that the urea supply improve significantly the biomass production relatively to the control. This reached in some assays 2.06% expressed as g of biomass dry weight per 100 mL of OMW water. Polyphenols removal was estimated to around 50% and the COD was decreased from 54.14 g/Kg to 21.56 g/Kg. This aerobic treatment lead to the biomass production and also to a pretreated efluent by the COD and the removal of the methanization inhibiting polyphenolic compounds.

    Aguas residuales de la molturación de la aceituna se diluyeron en la proporción 1/10, se le añadió un 2% de urea y se inoculó con cepas de levaduras. 20 cepas de levaduras aisladas de aguas residuales de la molturación de la aceituna (OMW se seleccionaron por su producción de biomasa, reducción DQO y actividades de bioconversión de polifenoles. Se llevaron a cabo cultivos puros de levaduras en matraces erlenmeyer de 100 mi. Se tomaron 50 ml de cultivos y los matraces se incubaron a temperatura ambiente (22°C en un agitador. Se siguió la producción de biomasa, la reducción de DQO (demanda química de oxígeno y la bioconversión de polifenoles en las aguas residuales de la aceituna. Los resultados mostraron que el suministro de urea mejoró significativamente la producción de biomasa en relación al control. Esta alcanzó en algunos ensayos el 2.06% expresado como g de peso seco de biomasa por 100 ml de

  20. Beer Drinking Nations. The Determinants of Global Beer Consumption

    OpenAIRE

    Swinnen, Jo; Colen, Liesbeth

    2011-01-01

    In this paper we analyze the evolution of beer consumption between countries and over time. Historically, there have been major changes in beer consumption in the world. In recent times, per capita consumption has decreased in traditional ' beer drinking nations' while it increased strongly in emerging economies. Recently, China has overtaken the US as the largest beer economy. A quantitative empirical analysis shows the relationship between income and beer consumption has an inverse U-shape....

  1. Beer potomania: a case report

    OpenAIRE

    Bhattarai, Nimesh; Kafle, Poonam; Panda, Mukta

    2010-01-01

    A syndrome of hyponatraemia associated with excessive beer drinking was first recognised in 1971. This syndrome has been referred to as beer potomania. Dilutional hyponatraemia occurs due to excessive consumption of an exclusive beer diet which is poor in salt and protein. We report a case of beer potomania who improved dramatically with introduction of solute load, with no subsequent neurological sequelae.

  2. The "Green" Root Beer Laboratory

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  3. Beer and wort proteomics.

    Science.gov (United States)

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro

    2014-01-01

    Proteome analysis provides a way to identify proteins related to the quality traits of beer. A number of protein species in beer and wort have been identified by two-dimensional gel electrophoresis combined with enzyme digestion such as trypsin, followed by mass spectrometry analyses and/or liquid chromatography mass/mass spectrometry. In addition, low molecular weight polypeptides in beer have been identified by the combination of non-enzyme digestion and mass analyses. These data sets of various molecular weight polypeptides (i.e., proteomes) provide a platform for analyzing protein functions in beer. Several novel proteins related to beer quality traits such as foam stability and haze formation have been identified by analyzing these proteomes. Some of the proteins have been applied to the development of efficient protein or DNA markers for trait selection in malting barley breeding. In this chapter, recent proteome studies of beer and wort are reviewed, and the methods and protocols of beer and wort proteome analysis are described.

  4. Bioprocess Intensification of Beer Fermentation Using Immobilised Cells

    Science.gov (United States)

    Verbelen, Pieter J.; Nedović, Viktor A.; Manojlović, Verica; Delvaux, Freddy R.; Laskošek-Čukalović, Ida; Bugarski, Branko; Willaert, Ronnie

    Beer production with immobilised yeast has been the subject of research for approximately 30 years but has so far found limited application in the brewing industry, due to engineering problems, unrealised cost advantages, microbial contaminations and an unbalanced beer flavor (Linko et al. 1998; Brányik et al. 2005; Willaert and Nedović 2006). The ultimate aim of this research is the production of beer of desired quality within 1-3 days. Traditional beer fermentation systems use freely suspended yeast cells to ferment wort in an unstirred batch reactor. The primary fermentation takes approximately 7 days with a subsequent secondary fermentation (maturation) of several weeks. A batch culture system employing immobilization could benefit from an increased rate of fermentation. However, it appears that in terms of increasing productivity, a continuous fermentation system with immobilization would be the best method (Verbelen et al. 2006). An important issue of the research area is whether beer can be produced by immobilised yeast in continuous culture with the same characteristic as the traditional method.

  5. 27 CFR 28.147 - Return of beer or beer concentrate.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Return of beer or beer... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Removal of Beer and Beer Concentrate...-Trade Zone § 28.147 Return of beer or beer concentrate. Beer or beer concentrate removed without payment...

  6. Flavor-active esters: adding fruitiness to beer.

    Science.gov (United States)

    Verstrepen, Kevin J; Derdelinckx, Guy; Dufour, Jean-Pierre; Winderickx, Joris; Thevelein, Johan M; Pretorius, Isak S; Delvaux, Freddy R

    2003-01-01

    As they are responsible for the fruity character of fermented beverages, volatile esters constitute an important group of aromatic compounds in beer. In modern high-gravity fermentations, which are performed in tall cylindroconical vessels, the beer ester balance is often sub-optimal, resulting in a clear decrease in beer quality. Despite the intensive research aimed at unravelling the precise mechanism and regulation of ester synthesis, our current knowledge remains far from complete. However, a number of factors that influence flavor-active ester production have already been described, including wort composition, wort aeration and fermentor design. A thoughtful adaptation of these parameters allows brewers to steer ester concentrations and thus to control the fruity character of their beers. This paper reviews the current knowledge of the biochemistry behind yeast ester synthesis and discusses the different factors that allow ester formation to be controlled during brewery fermentation.

  7. Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production

    NARCIS (Netherlands)

    Rijswijck, van Irma M.H.; Wolkers - Rooijackers, Judith C.M.; Abee, Tjakko; Smid, Eddy J.

    2017-01-01

    Increasing interest in new beer types has stimulated the search for approaches to extend the metabolic variation of brewers’ yeast. Therefore, we tested two approaches using non-conventional yeast to create a beer with lower ethanol content and a complex aroma bouquet. First, the mono-culture

  8. Optimal Control of Beer Fermentation Process Using Differential ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Optimal Control of Beer Fermentation Process. 753. SHEHU, MD; JIYA, M; ELEBUTE, KO; AHMED, HO. Table 1: Description of State Parameter Used in the Model. Parameters. Description. Unit. µ. Ethanol production rate. 1 h− γ. Specific rate of latent fermentation. 1 h− α. Specific yeast settling down rate. /g l δ. Ethyl acetate ...

  9. EFFECT OF SOME TECHNOLOGICAL FACTORS ON THE CONTENT OF ACETALDEHYDE IN BEER

    Directory of Open Access Journals (Sweden)

    Gunka Jonkova

    2010-10-01

    Full Text Available The purpose of this work was to examine the influence of the temperature, the pitching rate of yeast and wort composition (Free Amino Nitrogen on the content of acetaldehyde in beer. It is known, that higher fermentation temperatures stimulate the formation of acetaldehyde, as well as the higher rate of acetaldehyde reduction, leading to lower concentrations in the final beer. Beer produced with increased pitching rate of yeast (26 and 35 × 10[sup]6[/sup] cells•mL[sup]-1[/sup], contains lower quantities of acetaldehyde as compared to the control beer. Lower content of α-amino nitrogen in result of substitution of 5 to 10�0of the malt with rice, sugar or a combination of both does not lead to considerable differences in the acetaldehyde concentration in beer.

  10. Screening of yeasts for the production of 2-phenylethanol (rose aroma) in organic waste-based media.

    Science.gov (United States)

    Chreptowicz, K; Sternicka, M K; Kowalska, P D; Mierzejewska, J

    2017-12-09

    In this study, we isolated 28 yeast strains from samples of plant material and fermented food and evaluated the possibility of efficient production of 2-phenylethanol (2-PE) in the organic waste-based media supplemented with l-phenylalanine (l-Phe). We used whey, a by-product from milk processing, as a base for media, and either glucose or three by-products from sugar beet processing as a fermentable carbon source. Ten newly isolated yeast strains were capable of producing over 2 g l-1 2-PE through the l-Phe biotransformation in a batch mode in standard medium. Among them, we selected eight strains producing 2-PE in a range of 1·17-3·28 g l-1 in 72 h batch cultures in shaking flasks in whey-based media. The strains were assigned to five species of Meyerozyma caribbica, Metschnikowia chrysoperlae, Meyerozyma guilliermondii, Pichia fermentans and Saccharomyces cerevisiae. While S. cerevisiae is known to be a promising producer of 2-PE, the four latter species are poorly studied on this application. Results presented here are better than other reported values for batch cultures of unmodified yeast strains. Therefore, it seems that whey and by-products from sugar beet processing might be a good feedstock for 2-PE bioproduction. 2-Phenylethanol (2-PE) is an alcohol with a pleasant rosy scent, which is commonly used in the food, fragrance and cosmetic industries as an aroma compound and preservative. Promising sources of 2-PE are yeasts, but still the biotechnological route has not been economically competitive to chemical synthesis. Thus, the first challenging goal to develop biotechnological production of 2-PE is the identification of highly productive yeasts and cheap feedstock. This study demonstrates for the first time the promising production of 2-PE by selected yeasts in organic waste-based media. This could pave the way for development of a cheaper method of 2-PE bioproduction. © 2017 The Society for Applied Microbiology.

  11. Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry.

    Science.gov (United States)

    Morgunov, Igor G; Kamzolova, Svetlana V

    2015-08-01

    In this study, physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry were studied by an investigation of growth dynamics, the consumption of glycerol, and the fatty acid fractions from waste as well as by measuring the activities of enzymes involved in the metabolism of waste. It was shown that Y. lipolytica realizes concurrent uptake of glycerol and the fatty acid fractions during conversion of glycerol-containing waste, although glycerol was utilized at a higher rate than fatty acids. Under optimal feeding of glycerol-containing waste by portions of 20 g l(-1), the citric acid production and the ratio between citric acid and isocitric acid depended on the strain used. It was revealed that wild strain Y. lipolytica VKM Y-2373 produced citrate and isocitrate with a ratio of 1.7:1, while the mutant strain Y. lipolytica NG40/UV7 synthesized presumably citric acid (122.2 g l(-1)) with a citrate-to-isocitrate ratio of 53:1 and the yield of 0.95 g g(-1).

  12. Intensified fractionation of brewery yeast waste for the recovery of invertase using aqueous two-phase systems.

    Science.gov (United States)

    De León-González, Grecia; González-Valdez, José; Mayolo-Deloisa, Karla; Rito-Palomares, Marco

    2016-11-01

    The potential recovery of high-value products from brewery yeast waste confers value to this industrial residue. Aqueous two-phase systems (ATPS) have demonstrated to be an attractive alternative for the primary recovery of biological products and are therefore suitable for the recovery of invertase from this residue. Sixteen different polyethylene glycol (PEG)-potassium phosphate ATPS were tested to evaluate the effects of PEG molecular weight (MW) and tie-line length (TLL) upon the partition behavior of invertase. Concentrations of crude extract from brewery yeast waste were then varied in the systems that presented the best behaviors to intensify the potential recovery of the enzyme. Results show that the use of a PEG MW 400 g mol(-1) system with a TLL of 45.0% (w/w) resulted in an invertase bottom phase recovery with a purification factor of 29.5 and a recovery yield of up to 66.2% after scaling the system to a total weight of 15.0 g. This represents 15.1 mg of invertase per mL of processed bottom phase. With these results, a single-stage ATPS process for the recovery of invertase is proposed. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  13. Cocoa pulp in beer production: Applicability and fermentative process performance.

    Directory of Open Access Journals (Sweden)

    Cassiane da Silva Oliveira Nunes

    Full Text Available This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52, belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil, and a commercial strain of ale yeast (Safale S-04 Belgium were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.

  14. Cocoa pulp in beer production: Applicability and fermentative process performance.

    Science.gov (United States)

    Nunes, Cassiane da Silva Oliveira; de Carvalho, Giovani Brandão Mafra; da Silva, Marília Lordêlo Cardoso; da Silva, Gervásio Paulo; Machado, Bruna Aparecida Souza; Uetanabaro, Ana Paula Trovatti

    2017-01-01

    This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.

  15. Cocoa pulp in beer production: Applicability and fermentative process performance

    Science.gov (United States)

    de Carvalho, Giovani Brandão Mafra; da Silva, Gervásio Paulo

    2017-01-01

    This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis. PMID:28419110

  16. Beer foam physics

    NARCIS (Netherlands)

    Ronteltap, A.D.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and

  17. Silicon in beer and brewing.

    Science.gov (United States)

    Casey, Troy R; Bamforth, Charles W

    2010-04-15

    It has been claimed that beer is one of the richest sources of silicon in the diet; however, little is known of the relationship between silicon content and beer style and the manner in which beer is produced. The purpose of this study was to measure silicon in a diversity of beers and ascertain the grist selection and brewing factors that impact the level of silicon obtained in beer. Commercial beers ranged from 6.4 to 56.5 mg L(-1) in silicon. Products derived from a grist of barley tended to contain more silicon than did those from a wheat-based grist, likely because of the high levels of silica in the retained husk layer of barley. Hops contain substantially more silicon than does grain, but quantitatively hops make a much smaller contribution than malt to the production of beer and therefore relatively less silicon in beer derives from them. During brewing the vast majority of the silicon remains with the spent grains; however, aggressive treatment during wort production in the brewhouse leads to increased extraction of silicon into wort and much of this survives into beer. It is confirmed that beer is a very rich source of silicon. (c) 2010 Society of Chemical Industry.

  18. A Large Set of Newly Created Interspecific Saccharomyces Hybrids Increases Aromatic Diversity in Lager Beers

    Science.gov (United States)

    Mertens, Stijn; Steensels, Jan; Saels, Veerle; De Rouck, Gert; Aerts, Guido

    2015-01-01

    Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, “Saaz” and “Frohberg.” This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma. PMID:26407881

  19. 27 CFR 25.231 - Finished beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Finished beer. 25.231... OF THE TREASURY LIQUORS BEER Beer Purchased From Another Brewer § 25.231 Finished beer. (a) A brewer may obtain beer in barrels and kegs, finished and ready for sale from another brewer. The purchasing...

  20. 27 CFR 27.60 - Beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Beer. 27.60 Section 27.60... TREASURY LIQUORS IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER General Requirements Marking and Labeling of Wines and Beer § 27.60 Beer. All imported beer is required to be released from customs custody...

  1. Rhodosporidiobolus geoffroeae sp. nov., a basidiomycetous yeast isolated from the waste deposit of the attine ant Acromyrmex lundii.

    Science.gov (United States)

    Masiulionis, Virginia E; Pagnocca, Fernando C

    2017-04-01

    A novel basidiomycetous yeast was isolated from the waste deposit of the attine ant Acromyrmex lundii (Hymenoptera: Formicidae). The field colony was located in Santurce town, Santa Fe province, Argentina. The description of the novel species was based on strain LLU043T. Analysis of the D1/D2 domains of the LSU rRNA gene sequences in GenBank demonstrated that strain LLU043T, belongs to the Rhodosporidiobolus clade and is closely related to Rhodosporidiobolus lusitaniae and Rhodosporidioboluscolostri with 97 % similarity to the two species. The novel species differs from R. lusitaniae and R. colostri in some physiological characteristics such as the lack of assimilation of cellobiose, salicin, succinate, citrate and ethylamine. The name Rhodosporidiobolus geoffroeae sp. nov. is proposed, with LLU043T (=CBS 12828T=CBMAI 1618T) as the type strain.

  2. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  3. 27 CFR 28.320 - Loss of beer and beer concentrate in transit.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Loss of beer and beer... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Losses Beer and Beer Concentrate § 28.320 Loss of beer and beer concentrate in transit. (a) Losses not requiring inspection. When...

  4. Flavour-active wine yeasts

    OpenAIRE

    Cordente, Antonio G.; Curtin, Christopher D.; Varela, Cristian; Pretorius, Isak S.

    2012-01-01

    The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can infl...

  5. Immobilized cell technology in beer brewing: Current experience and results

    Directory of Open Access Journals (Sweden)

    Leskošek-Čukalov Ida J.

    2005-01-01

    Full Text Available Immobilized cell technology (ICT has been attracting continual attention in the brewing industry over the past 30 years. Some of the reasons are: faster fermentation rates and increased volumetric productivity, compared to those of traditional beer production based on freely suspended cells, as well as the possibility of continuous operation. Nowadays, ICT technology is well established in secondary fermentation and alcohol- free and low-alcohol beer production. In main fermentation, the situation is more complex and this process is still under scrutiny on both the lab and pilot levels. The paper outlines the most important ICT processes developed for beer brewing and provides an overview of carrier materials, bioreactor design and examples of their industrial applications, as well as some recent results obtained by our research group. We investigated the possible applications of polyvinyl alcohol in the form of LentiKats®, as a potential porous matrices carrier for beer fermentation. Given are the results of growth studies of immobilized brewer's yeast Saccharomyces uvarum and the kinetic parameters obtained by using alginate microbeads with immobilized yeast cells and suspension of yeast cells as controls. The results indicate that the immobilization procedure in LentiKat® carriers has a negligible effect on cell viability and growth. The apparent specific growth rate of cells released in medium was comparable to that of freely suspended cells, implying preserved cell vitality. A series of batch fermentations performed in shaken flasks and an air-lift bioreactor indicated that the immobilized cells retained high fermentation activity. The full attenuation in green beer was reached after 48 hours in shaken flasks and less than 24 hours of fermentation in gas-lift bioreactors.

  6. Estrogenic effects of leachates from industrial waste landfills measured by a recombinant yeast assay and transcriptional analysis in Japanese medaka.

    Science.gov (United States)

    Kamata, Ryo; Shiraishi, Fujio; Nakajima, Daisuke; Kageyama, Shiho

    2011-01-25

    In Japan, the leachates from 'stable type' landfills for industrial wastes are not controlled, and this has given rise to concerns about the possible pollution of surrounding environmental waters, especially by endocrine disrupting chemicals leaching from plastic and rubber wastes. To accurately assess the estrogenic potential of the landfill leachates by both in vitro and in vivo approaches, we confirmed gene-transcriptional responses in recombinant yeast cells and in Japanese medaka fish to estrogenic compounds, and applied these transcription assays to leachate samples. The yeast carrying the estrogen receptor (ER) of medaka and an ER-mediated response pathway responded to both the natural estrogen, 17β-estradiol (E2), and an industrial compound, bisphenol A (BPA), and the effective concentration of BPA was about 2.0×10(3) times that of E2. Transcripts of all genes coding for precursors of yolk protein, vitellogenin (vtg1 and vtg2), and precursors of egg envelope subunit proteins, choriogenins (chgh and chgl), increased in a concentration dependent manner in the livers of male medaka exposed to BPA or E2, and, except for chgh, reached peaks at exposure times of 48h. Although many fish in control groups did not have vtg transcripts, the incidence of vtg transcriptions also increased in a concentration dependent manner with exposure. The minimum effective concentrations of BPA at 48h were 0.5mg/L for chgh and vtg2, 2mg/L for vtg1 and 4mg/L for chgl, while those of E2 were 10ng/L for chgh and chgl and 30ng/L for vtg1 and vtg2. All leachates sampled at 3 landfill sites exerted in vitro estrogenic action. The E2 equivalent of the most potent leachate was 375ng/L for the yeast ER assay. This leachate sample significantly increased the transcripts of chgh, vtg1 and vtg2, but not chgl, in the medaka. In addition, chemical analysis showed that bisphenol A, 4-tert-octylphenol and 4-nonylphenol were the main contributors to the estrogenicity of the leachates. This study

  7. Determination of free fatty acids in beer wort.

    Science.gov (United States)

    Bravi, Elisabetta; Benedetti, Paolo; Marconi, Ombretta; Perretti, Giuseppe

    2014-05-15

    The importance of free fatty acids (FFAs) in wort has been known for a long time because of their influence on beer quality and yeast metabolism. Lipids have a beneficial effect on yeast growth during fermentation as well as negative effects on beer quality. Lipids content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the ratio of unsaturated and saturated fatty acids seems to be related to gushing problems. A novel, simple, and reliable procedure for quantitative analysis of FFAs in wort was developed and validated. The determination of FFAs in wort was achieved via liquid-liquid cartridge extraction, purification of FFA fraction by solid phase extraction, boron trifluoride in methanol methylation, and injection into GC-FID system. The proposed method has high accuracy (<0.3%, expressed as the bias), high precision (<1.2%, RSD), and recoveries ranging from 74% to 98%. The method was tested on two different wort samples (9° and 12° Plato). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 100 Years Jubilee for the discovery of the enzymes in yeast

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1997-01-01

    The work by Prof. E. Buchner 100 years ago which led to the discovery of the enzymes in yeast for brewing beer is reviewed.......The work by Prof. E. Buchner 100 years ago which led to the discovery of the enzymes in yeast for brewing beer is reviewed....

  9. PRODUKSI PEPTON DARI LIMBAH INDUSTRI BIR DENGAN PAPAIN UNTUK MEDIUM PERTUMBUHAN BAKTERI [Production Of Peptone From Waste Beer Industry Using Papain for Bacterial Growth Medium

    Directory of Open Access Journals (Sweden)

    Rahman1

    2004-08-01

    Full Text Available peptone. Papain with activity of 691.5 units based on casein substrat was used in this experiment. Results showed that optimum conditions for hydrolysis processes were as follows : substrate concentration 3.2%, papain concentration 0.4%, temperature 60-70OC, pH 6.0, hydrolysis time 5 hours. With 5 liter fermentation jar as much as 3.8 liter of hydrolyzate could be produced with 19.23% of peptone. The resulting peptone had the following characteristics : solubility 90.7%, N-amino 3.25%, N-total 11.23%, protein 70.19%, water 5.5% and ash 7.9%. This peptone gave the same effectivity for bacterial growth as that fron commercial Bacto peptone and Yeast extract to support the bacterial growth

  10. Metal Content and Stable Isotope Determination in Some Commercial Beers from Romanian Markets

    Directory of Open Access Journals (Sweden)

    Cezara Voica

    2015-01-01

    Full Text Available Characterization of beer samples is of interest because their compositions affect the taste and stability of beer and, also, consumer health. In this work, the characterizations of 20 Romanian beers were performed by mean of Inductively Coupled Plasma Mass Spectrometry (ICP-MS and Isotope Ratio Mass Spectrometry (IRMS in order to trace heavy metals and isotopic content of them. Major, minor, and trace metals are important in beer fermentation since they supply the appropriate environment for yeast growth and influence yeast metabolism. Beside this, the presence of the C4 plants in the brewing process was followed. Our study has shown that the analyzed beers indicated the presence of different plant types used in brewing: C3, C3-C4 mixtures, and also C4, depending on producers. Also the trace metal content of each sample is presented and discussed in this study. A comparison of the beers quality manufactured by the same producer but bottled in different type of packaging like glass, dose, or PET was made; our results show that no compositional differences among the same beer type exist.

  11. Tune That Beer! Listening for the Pitch of Beer

    Directory of Open Access Journals (Sweden)

    Felipe Reinoso Carvalho

    2016-11-01

    Full Text Available We report two experiments designed to assess the key sensory drivers underlying people’s association of a specific auditory pitch with Belgian beer. In particular, we assessed if people would rely mostly on the differences between beers in terms of their relative alcohol strength, or on the contrast between the most salient taste attributes of the different beers. In Experiment 1, the participants rated three bitter beers (differing in alcohol content, using a narrow range of pitch choices (50–500 Hz. The results revealed that the beers were all rated around the same pitch (Mean = 232 Hz, SD = 136 Hz. In Experiment 2, a wider range of pitch choices (50–1500 Hz, along with the addition of a much sweeter beer, revealed that people mostly tend to match beers with bitter-range profiles at significantly lower pitch ranges when compared to the average pitch of a much sweeter beer. These results therefore demonstrate that clear differences in taste attributes lead to distinctly different matches in terms of pitch. Having demonstrated the robustness of the basic crossmodal matching, future research should aim to uncover the basis for such matches and better understand the perceptual effects of matching/non-matching tones on the multisensory drinking experience.

  12. Phenotypic characters of yeasts isolated from kpete-kpete, a ...

    African Journals Online (AJOL)

    USER

    2015-07-08

    Jul 8, 2015 ... Key words: Sorghum beer, tchoukoutou, kpete-kpete, yeast, Saccharomyces cerevisiae. INTRODUCTION. Fermented .... Physicochemical and microbiological characteristics of the traditional starter kpete-kpete. Samples origin. Yeasts ... Phenotypic characteristics of yeasts isolates. Results (Table 2) show ...

  13. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock.

    Science.gov (United States)

    Cheirsilp, Benjamas; Suwannarat, Warangkana; Niyomdecha, Rujira

    2011-07-01

    A mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was performed to enhance lipid production from industrial wastes. These included effluent from seafood processing plant and molasses from sugar cane plant. In the mixed culture, the yeast grew faster and the lipid production was higher than that in the pure cultures. This could be because microalga acted as an oxygen generator for yeast, while yeast provided CO(2) to microalga and both carried out the production of lipids. The optimal conditions for lipid production by the mixed culture were as follows: ratio of yeast to microalga at 1:1; initial pH at 5.0; molasses concentration at 1%; shaking speed at 200 rpm; and light intensity at 5.0 klux under 16:8 hours light and dark cycles. Under these conditions, the highest biomass of 4.63±0.15 g/L and lipid production of 2.88±0.16 g/L were obtained after five days of cultivation. In addition, the plant oil-like fatty acid composition of yeast and microalgal lipids suggested their high potential for use as biodiesel feedstock. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Free Beer and Engaging Tools

    DEFF Research Database (Denmark)

    Degn Johansson, Troels

    dimension, and which makes possible the exchange of values to and from these dimensions as well as that of art. In the paper, this context of meaning is constructed in terms of a complex chain of analogies by means of which amateur beer production and beer consumption becomes an expression of the belief...

  15. Genetics of Yeasts

    Science.gov (United States)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  16. Evaluation of Beer Fermentation with a Novel Yeast
Williopsis saturnus

    Science.gov (United States)

    Quek, Althea Ying Hui

    2016-01-01

    Summary The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. oBrix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05. PMID:28115897

  17. Evaluation of Beer Fermentation with a Novel Yeast
Williopsis saturnus.

    Science.gov (United States)

    Liu, Shao-Quan; Quek, Althea Ying Hui

    2016-12-01

    The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. (o)Brix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05.

  18. Importance of tetrahydroiso alpha-acids to the microbiological stability of beer.

    Science.gov (United States)

    Caballero, Isabel; Agut, Montserrat; Armentia, Alicia; Blanco, Carlos A

    2009-01-01

    While beer provides a very stable microbiological environment, a few niche microorganisms are capable of growth in malt, wort, and beer. The production of off-flavors and development of turbidity in the packaged product are due to the growth and metabolic activity of wild yeast, certain lactic acid bacteria (LAB) and anaerobic Gram-negative bacteria. Beer also contains bitter hop compounds, which are toxic to Gram-positive and Gram-negative bacteria, and contribute to preventing the spoilage of this beverage. In the boiling process, the hop alpha-acids (humulones) are isomerized into iso alpha-acids. These products are responsible for the bitter taste of beer, but they also play an essential role in enhancing foam stability. Antibacterial activity of iso alpha-acids and their hydrogenated derivates (rhoiso alpha-acids and tetrahydroiso alpha-acids) in MRS broth and beer have been evaluated against different LAB (Lactobacillus and Pediococcus) for the determination of their beer-stabilizing capabilities. Besides this, we have determined the minimum inhibitory concentration and the bacteriostatic effect of each compound against Pediococcus. We found that tetrahydroiso alpha-acids (added directly to beer during production processes) are the compounds that present the greatest antibacterial activity against the main agents implicated in beer spoilage.

  19. Fermentation Process Simulation of Homebrewing Beer

    Directory of Open Access Journals (Sweden)

    Garduño-García A.

    2014-04-01

    Full Text Available The goal of the current research was to study the behavior of the fermentation process of home-made beer using a mathematical dynamic model. The model contains the rates of change of the concentration state variables of glucose, maltose and maltotriose. An output variable is the ethanol concentration and an auxiliary variable is the biomass (yeast concentration. The model was programmed in the Matlab-Simulink environment, and for its numerical integration Dormand-Prince method of fourth order with a variable integration step size and a relative tolerance of was used. In order to know which model parameters are more important, a local sensitivity analysis was carried out. Furthermore, an experiment was performed to produce home-made beer at constant temperature (21°C. Fourteen experimental units (fermenters with the same initial conditions were implemented. Using the experimental results the model was calibrated by nonlinear least squares and differential evolution algorithms. According to the statistics bias (BIAS, correlation coefficient (r, squared root of mean squared error (RMSE, mean absolute error (MAE and the efficiency of modeling (EF, a good fit between the model predictions and measurements were found after the model parameters estimation.

  20. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  1. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    NARCIS (Netherlands)

    Rijswijck, van Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces pastorianus. Recently, there is an

  2. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    Science.gov (United States)

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L-1, reaching 80% and 100% inhibition at 10 mg L-1 and 50 mg L-1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  3. Beer, Breast Feeding, and Folklore

    Science.gov (United States)

    MENNELLA, JULIE A.; BEAUCHAMP, GARY K.

    2009-01-01

    Beer consumption by nursing women altered the sensory qualities of their milk and the behavior of their infants during breast-feeding in the short term. The infants consumed significantly less milk during the 4-hr testing sessions in which their mothers drank alcoholic beer compared to when the mothers drank nonalcoholic beer; this decrease in milk intake was not due to a decrease in the number of times the babies fed. Although the infants consumed less of the alcohol-flavored milk, the mothers believed their infants had ingested enough milk, reported that they experienced a letdown during nursing, and felt they had milk remaining in their breasts at the end of the majority of feedings. Moreover, the mothers terminated the feeds the same percentage of time on both testing days. The mechanism by which the consumption of alcoholic beer by lactating women decreases milk intake by their nurslings remains to be determined. PMID:8293892

  4. Evaluating MT systems with BEER

    Directory of Open Access Journals (Sweden)

    Stanojević Miloš

    2015-10-01

    Full Text Available We present BEER, an open source implementation of a machine translation evaluation metric. BEER is a metric trained for high correlation with human ranking by using learning-to-rank training methods. For evaluation of lexical accuracy it uses sub-word units (character n-grams while for measuring word order it uses hierarchical representations based on PETs (permutation trees. During the last WMT metrics tasks, BEER has shown high correlation with human judgments both on the sentence and the corpus levels. In this paper we will show how BEER can be used for (i full evaluation of MT output, (ii isolated evaluation of word order and (iii tuning MT systems.

  5. Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery

    Directory of Open Access Journals (Sweden)

    Ketinny Camargo de Castro

    2017-05-01

    Full Text Available ABSTRACT This study investigated the biosorption of the anionic textile dyes: Reactive Red 239 (RR239, Reactive Black B (RBB and Direct Blue 85 (DB85 according to pH, biomass dosage, contact time and dye concentration onto waste beer yeast slurry. The kinetics and isotherm of the removal of dyes were also studied. The equilibrium of biosorption reaction was reached after 30 min for the reactive dyes and after 60 min for the direct dye. Optimum decolorization was observed at pH 2 and 0.63 g/L of biomass dosage. The kinetic data of the three dyes were better described by the pseudo second-order model. The adsorption process followed the Langmuir isotherm model and the biosorption capacity being estimated to be 152.9, 162.7 and 139.2 mg/g for RR239, RBB and DB85, respectively. Our findings indicated that the waste beer yeast slurry was an attractive low-cost biosorbent for the removal of anionic textile dyes from aqueous solution.

  6. The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation.

    Science.gov (United States)

    Spitaels, Freek; Wieme, Anneleen D; Janssens, Maarten; Aerts, Maarten; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2015-08-01

    The microbiota involved in lambic beer fermentations in an industrial brewery in West-Flanders, Belgium, was determined through culture-dependent and culture-independent techniques. More than 1300 bacterial and yeast isolates from 13 samples collected during a one-year fermentation process were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry followed by sequence analysis of rRNA and various protein-encoding genes. The bacterial and yeast communities of the same samples were further analyzed using denaturing gradient gel electrophoresis of PCR-amplified V3 regions of the 16S rRNA genes and D1/D2 regions of the 26S rRNA genes, respectively. In contrast to traditional lambic beer fermentations, there was no Enterobacteriaceae phase and a larger variety of acetic acid bacteria were found in industrial lambic beer fermentations. Like in traditional lambic beer fermentations, Saccharomyces cerevisiae, Saccharomyces pastorianus, Dekkera bruxellensis and Pediococcus damnosus were the microorganisms responsible for the main fermentation and maturation phases. These microorganisms originated most probably from the wood of the casks and were considered as the core microbiota of lambic beer fermentations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Lager Yeast Comes of Age

    Science.gov (United States)

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  8. Optimisation of Lab-Scale Continuous Alcohol-Free Beer Production

    Czech Academy of Sciences Publication Activity Database

    Lehnert, R.; Novák, Pavel; Macieira, F.; Kuřec, M.; Teixeira, J.A.; Brányik, T.

    2009-01-01

    Roč. 27, č. 4 (2009), s. 267-275 ISSN 1212-1800 Institutional research plan: CEZ:AV0Z40720504 Keywords : alcohol-free beer * continuous reactor * immobilised yeast Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.602, year: 2009

  9. The microbial diversity of traditional spontaneously fermented lambic beer.

    Directory of Open Access Journals (Sweden)

    Freek Spitaels

    Full Text Available Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.

  10. The microbial diversity of traditional spontaneously fermented lambic beer.

    Science.gov (United States)

    Spitaels, Freek; Wieme, Anneleen D; Janssens, Maarten; Aerts, Maarten; Daniel, Heide-Marie; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-01-01

    Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.

  11. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  12. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  13. Proteomics, peptidomics, and immunogenic potential of wheat beer (Weissbier).

    Science.gov (United States)

    Picariello, Gianluca; Mamone, Gianfranco; Cutignano, Adele; Fontana, Angelo; Zurlo, Lucia; Addeo, Francesco; Ferranti, Pasquale

    2015-04-08

    Wheat beer is a traditional light-colored top-fermenting beer brewed with at least 50% malted (e.g., German Weissbier) or unmalted (e.g., Belgian Witbier) wheat (Triticum aestivum) as an adjunct to barley (Hordeum vulgare) malt. For the first time, we explored the proteome of three Weissbier samples, using both 2D electrophoresis (2DE)-based and 2DE-free strategies. Overall, 58 different gene products arising from barley, wheat, and yeast (Saccharomyces spp.) were identified in the protein fraction of a representative Weissbier sample analyzed in detail. Analogous to all-barley-malt beers (BMB), barley and wheat Z-type serpins and nonspecific lipid transfer proteins dominated the proteome of Weissbier. Several α-amylase/trypsin inhibitors also survived the harsh brewing conditions. During brewing, hundreds of peptides are released into beer. By liquid chromatography-electrospray tandem mass spectrometry (LC-ESI MS/MS) analysis, we characterized 167 peptides belonging to 44 proteins, including gliadins, hordeins, and high- and low-molecular-weight glutenin subunits. Because of the interference from the overabundant yeast-derived peptides, we identified only a limited number of epitopes potentially triggering celiac disease. However, Weissbier samples contained 374, 372, and 382 ppm gliadin-equivalent peptides, as determined with the competitive G12 ELISA, which is roughly 10-fold higher than a lager BMB (41 ppm), thereby confirming that Weissbier is unsuited for celiacs. Western blot analysis demonstrated that Weissbier also contained large-sized prolamins immunoresponsive to antigliadin IgA antibodies from the pooled sera of celiac patients (n = 4).

  14. Mycotoxin profiling of 1000 beer samples with a special focus on craft beer

    NARCIS (Netherlands)

    Peters, Jeroen; Dam, van Ruud; Doorn, van Ronald; Katerere, David; Berthiller, Franz; Haasnoot, Willem; Nielen, Michel W.F.

    2017-01-01

    Currently beer is booming, mainly due to the steady rise of craft breweries worldwide. Previous surveys for occurrence of mycotoxins in beer, were mainly focussed on industrial produced beer. The present survey reports the presence of mycotoxins in craft beer and how this compares to industrial

  15. Phenotypic characters of yeasts isolated from kpete-kpete , a ...

    African Journals Online (AJOL)

    ... on their phenotypic characters and their assimilation profiles, 49 yeasts were isolated and found to belong to five genera with seven species. Seventy one percent (71%) of the isolates were identified as Saccharomyces cerevisiae. Key words: Sorghum beer, tchoukoutou, kpete-kpete, yeast, Saccharomyces cerevisiae.

  16. 27 CFR 28.282 - Beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Beer. 28.282 Section 28.282 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... Beer. When beer has been laden on board the aircraft for use as supplies, the customs officer shall...

  17. Detecting Beer Intake by Unique Metabolite Patterns.

    Science.gov (United States)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian; Bech, Lene; Lund, Erik; Dragsted, Lars Ove

    2016-12-02

    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., N-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption.

  18. Replacement of Fishmeal by Single Cell Protein Derived from Yeast Grown on Date (Phoenix dactylifera) Industry Waste in the Diet of Nile Tilapia (Oreochromis niloticus) Fingerlings

    KAUST Repository

    Al-Hafedh, Yousef S.

    2013-10-02

    Isonitrogenous and isocaloric diets (32% protein, 4.3 Kcal/g) were formulated to replace fishmeal by single cell protein (SCP) from two yeasts, Saccharomyces cerevisiae and Candida utilis, grown on date (Phoenix dactylifera) processing waste in diets for two size groups (avg 15.39 g and 25.14 g) of juvenile Nile tilapia (Oreochromis niloticus). A control diet (T1) with fishmeal and six experimental diets (S1, S2, and S3 with S. cerevisiae, and C1, C2, and C3 with C. utilis) each containing 11.6%, 23.2%, and 34.2% yeast as SCP were prepared to replace 25%, 50%, and 75% of fishmeal, respectively. Tilapia fed on the control and experimental diets (S1, S2, C1, C2) with 25% and 50% replacement of fishmeal showed better growth and feed utilization. Fish fed on diets S3 and C3 (75% fishmeal replacement) had significantly (p < 0.05) poorer growth suggesting that yeast SCP can replace up to 50% of fishmeal in juvenile tilapia diets. © 2013 Copyright Taylor and Francis Group, LLC.

  19. Beer multinationals supporting Africa's development?

    NARCIS (Netherlands)

    J.C.A.C. van Wijk (Jeroen); H. Kwakkenbos (Herma)

    2011-01-01

    markdownabstractThis paper addresses the question how partnerships include smallholders into sorghum-beer supply chains. Introduction Restrictions on the import of barley malt by the Nigerian government in the 1980s have facilitated an import substitution strategy that is now widely adopted

  20. Determination of free fatty acids in beer.

    Science.gov (United States)

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources.

    Science.gov (United States)

    Santamauro, Fabio; Whiffin, Fraeya M; Scott, Rod J; Chuck, Christopher J

    2014-03-04

    The yeast Metschnikowia pulcherrima, previously utilised as a biological control agent, was evaluated for its potential to produce lipids for biofuel production. Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH and to produce natural antimicrobial compounds. Although not previously classified as oleaginous, a combination of low temperature and restricted nutrient availability triggered high levels of oil production in M. pulcherrima cultures. This regime was designed to trigger the sporulation process but prevent its completion to allow the accumulation of a subset of a normally transitional, but oil-rich, 'pulcherrima' cell type. This approach resulted in yields of up to 40% lipid, which compares favourably with other oleaginous microbes. We also demonstrate that M. pulcherrima metabolises glycerol and a diverse range of other sugars, suggesting that heterogeneous biomass could provide a suitable carbon source. M. pulcherrima also grows well in a minimal media containing no yeast extract. Finally, we demonstrate the potential of the yeast to produce lipids inexpensively on an industrial scale by culturing the yeast in a 500 L, open air, tank reactor without any significant contamination. The production of antimicrobial compounds coupled to efficient growth at low temperature and pH enables culture of this oleaginous yeast in inexpensive, non-sterile conditions providing a potential route to economic biofuel production.

  2. Beer as a sports drink? Manipulating beer's ingredients to replace lost fluid.

    Science.gov (United States)

    Desbrow, Ben; Murray, Daniel; Leveritt, Michael

    2013-12-01

    To investigate the effect of manipulating the alcohol and sodium content of beer on fluid restoration following exercise. Seven male volunteers exercised on a cycle ergometer until 1.96 ± 0.25% body mass (mean±SD) was lost. Participants were then randomly allocated a different beer to consume on four separate occasions. Drinks included a low-alcohol beer (2.3% ABV; LightBeer), a low-alcohol beer with 25 mmol×L-1 of added sodium (LightBeer+25), a full-strength beer (4.8% ABV; Beer), or a full-strength beer with 25 mmol×L-1 of added sodium (Beer+25). Volumes consumed were equivalent to 150% of body mass loss during exercise and were consumed over a 1h period. Body mass and urine samples were obtained before and hourly for 4 hr after beverage consumption. Significantly enhanced net fluid balance was achieved following the LightBeer+25 trial (-1.02 ±0.35 kg) compared with the Beer (-1.59±0.32 kg) and Beer+25 (-1.64 ±0.28 kg) treatments. Accumulated urine output was significantly lower in the LightBeer+25 trial (1477±485 ml) compared with the Beer+25 (2101± 482 ml) and Beer (2175 ±372 ml) trials. A low alcohol beer with added sodium offers a potential compromise between a beverage with high social acceptance and one which avoids the exacerbated fluid losses observed when consuming full strength beer.

  3. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  4. 27 CFR 25.24 - Storage of beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage of beer. 25.24... OF THE TREASURY LIQUORS BEER Location and Use of Brewery § 25.24 Storage of beer. (a) Taxpaid beer. Beer of a brewer's own production on which the tax has been paid or determined may not be stored in the...

  5. 27 CFR 25.211 - Beer returned to brewery.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Beer returned to brewery..., DEPARTMENT OF THE TREASURY LIQUORS BEER Beer Returned to Brewery § 25.211 Beer returned to brewery. (a) General. Beer, produced in the United States, on which the brewer has paid or determined the tax may be...

  6. 27 CFR 25.295 - Record of unsalable beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Record of unsalable beer..., DEPARTMENT OF THE TREASURY LIQUORS BEER Records and Reports § 25.295 Record of unsalable beer. A brewer having unsalable beer in packages or tanks in the brewery may destroy, recondition, or use the beer as...

  7. 27 CFR 26.106 - Marking containers of beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Marking containers of beer... Liquors and Articles in Puerto Rico Beer § 26.106 Marking containers of beer. Containers of beer of Puerto... brewer; the serial number, capacity, and size of the container; the kind of beer; and the serial number...

  8. Beer as a Teaching Aid in the Classroom and Laboratory

    Science.gov (United States)

    Korolija, Jasminka N.; Plavsic, Jovica V.; Marinkovic, Dragan; Mandic, Ljuba M.

    2012-01-01

    Beer was chosen as a teaching tool to maximize students' class participation and systemize and enhance their knowledge of chemistry. Viewing beer as a complex mixture allowed the students to learn how to directly apply their chemistry knowledge. Before the "Beer Unit" students were instructed to research beer and acquire data on beer composition…

  9. 27 CFR 25.206 - Removal of beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Removal of beer. 25.206... OF THE TREASURY LIQUORS BEER Removals Without Payment of Tax Beer for Personal Or Family Use § 25.206 Removal of beer. Beer made under § 25.205 may be removed from the premises where made for personal or...

  10. Physicochemical characterization of the yeast cells and the waste lignocellulosic particles in the immobilization process for ethanol production

    DEFF Research Database (Denmark)

    Agudelo-Escobar, Lina María; Mussatto, Solange I.; Peñuela, Mariana

    2017-01-01

    Ethanol is one of the leading alternative fuels. Efforts have increased the development of technologies for producing ethanol efficiently and economically. The continuous fermentation using yeast cells immobilized in low‐cost materials is presented as an excellent alternative. We used four...

  11. Bioconversion of hemicellulosic materials into ethanol by yeast, Pichia kudriavzevii 2-KLP1, isolated from industrial waste.

    Science.gov (United States)

    Elahi, Amina; Rehman, Abdul

    2018-01-11

    In the present work, a yeast strain Pichia kudriavzevii was identified on the basis of 18S rDNA, showing maximum growth at 30°C and pH 7.0. Among all the complex polysaccharides used, wheat bran proved to be the best substrate as indicated by the maximum growth of the yeast strain. The yeast isolate was capable of producing xylanase both intra- and extra-cellularly, the dominant form being extracellular. The maximum enzyme activity was determined at pH 5.0 and at 50°C. Na + , Mg 2+ and Fe 2+ presence caused a substantial increase in enzyme activity while a slight decrease (4.5%) was observed in the presence of Mn 2+ , Zn 2+ and Cu 2+ . Pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities were assayed to confirm the presence of the ethanol pathway and PDC activity was much more pronounced (73%) compared to ADH activity (51%). The yeast strain can be employed to utilize hemicellulose containing agroindustrial residues for ethanol production. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Consumers' perception of novel beers

    DEFF Research Database (Denmark)

    Giacalone, Davide

    to many consumers. After a decade of growth, the Danish craft brewing segment is rapidly reaching maturity, and a higher degree of consumer orientation seems to be needed for continuing success. The aim of this PhD project was to investigate some of the key aspects of consumers’ perception of novel beers...... industry. More generally, this work makes a number of original contributions to our understanding of determinants of consumers’ perception of novel food and beverages, as well as methodological advances in the use of consumers as subjects in sensory and consumer research......., and ways in which these can be considered to inform product development decisions. Sensory insights into how consumers perceive a new beer are paramount. As craft breweries rarely have access to traditional sensory analysis (in the form of a trained panel), the first part of the project has examined...

  13. The genetic manipulation of the yeast Saccharomyces cerevisiae with the aim of converting polysaccharide-rich agricultural crops and industrial waste to single-cell protein and fuel ethanol

    Directory of Open Access Journals (Sweden)

    I. S. Pretorius

    1994-07-01

    Full Text Available The world’s problem with overpopulation and environmental pollution has created an urgent demand for alternative protein and energy sources. One way of addressing these burning issues is to produce single-cell protein (for food and animal feed supplements and fuel ethanol from polysaccharide-rich agricultural crops and industrial waste by using baker’s yeast.

  14. The genetic manipulation of the yeast Saccharomyces cerevisiae with the aim of converting polysaccharide-rich agricultural crops and industrial waste to single-cell protein and fuel ethanol

    OpenAIRE

    I. S. Pretorius

    1994-01-01

    The world’s problem with overpopulation and environmental pollution has created an urgent demand for alternative protein and energy sources. One way of addressing these burning issues is to produce single-cell protein (for food and animal feed supplements) and fuel ethanol from polysaccharide-rich agricultural crops and industrial waste by using baker’s yeast.

  15. Brewing the Recipe for Beer Brand Equity

    OpenAIRE

    Cristina Calvo Porral; Normand Bourgault; Domingo Calvo Dopico

    2013-01-01

    This research study aims to analyze the sources and consequences of beverages’ Brand Equity, and more specifically, the beer Brand Equity in a Sothern European mature market. For this purpose, based on the customer-based Aaker’s Brand Equity model, we developed an empirical study, using structural equation modeling (SEM) in order to assess how beer Brand Equity stems from in the brewery industry and to analyze its consequences in consumer behavior. Our findings suggest that the beer brand ima...

  16. Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Iersel, van M.F.M.; Dieren, van B.; Rombouts, F.M.; Abee, T.

    1999-01-01

    Production of alcohol-free beer by limited fermentation is optimally performed in a packed-bed reactor operating in downflow. This ensures a highly controllable system with optimal reactor design. In the present study, we report on changes in the physiology of immobilized yeast cells in the reactor.

  17. Beer consumption among hazardous drinkers during pregnancy.

    Science.gov (United States)

    Rayburn, William F; Meng, Chen; Rayburn, Brittany B; Proctor, Brandi; Handmaker, Nancy S

    2006-02-01

    The objective of this study was to examine the prevalence of beer consumption among hazardous drinkers in our pregnant patient population. This prospective clinic-based cohort study involved women who were surveyed during their first prenatal visit. Hazardous drinking was identified on alcohol surveys as frequent or binge drinking habits with related consequences. Participants completed initial and postpartum interviews about the quantity, frequency, and type (beer, wine, liquor, and/or combinations) of alcoholic beverages consumed before and after pregnancy recognition. Of the total 4,494 patients who completed the survey, 203 (4.52%) met criteria for hazardous drinking, met study eligibility criteria, and completed the interviews. Beer was consumed most often (n = 151, 74.4%) and in greater quantities than wine (P Beer continued to be consumed by 52.3% women after pregnancy recognition. Although abstinence for prolonged periods was common during pregnancy, beer was consumed more than wine and liquor per drinking episode (2.7 versus 0.9 drinking units per drinking day; P = .002) indicating a binging pattern. Very few switched to drinking either a light beer (n = 6) or a nonalcoholic beer (n = 1). Beer is the most consumed among women with hazardous drinking habits before and after pregnancy awareness. Focusing on binge beer drinking is worthwhile during routine prenatal questioning. II-2.

  18. New trends in beer flavour compound analysis.

    Science.gov (United States)

    Andrés-Iglesias, Cristina; Montero, Olimpio; Sancho, Daniel; Blanco, Carlos A

    2015-06-01

    As the beer market is steadily expanding, it is important for the brewing industry to offer consumers a product with the best organoleptic characteristics, flavour being one of the key characteristics of beer. New trends in instrumental methods of beer flavour analysis are described. In addition to successfully applied methods in beer analysis such as chromatography, spectroscopy, nuclear magnetic resonance, mass spectrometry or electronic nose and tongue techniques, among others, sample extraction and preparation such as derivatization or microextraction methods are also reviewed. © 2014 Society of Chemical Industry.

  19. New lager yeast strains generated by interspecific hybridization.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  20. Development of aromatic hop compounds and bitterness in beer during room temperature- and cold storage based on three different hopping methods

    OpenAIRE

    Torgals, Ann Elisabeth

    2015-01-01

    The main objective of this study was to determine whether storage temperature or hopping method had influence on the aroma and bitterness in beer. The focus was set on the aroma that comes from hops, and not from yeast. The secondary objective to this study was to explore the development of the alcohol, CO2 and bitterness in the beer after priming and bottling. The thesis’ main perspective is that of home brewers, and to some extent that of microbreweries. Beer was brewed with 100 % pilsn...

  1. A comparison between brewing beer and making wine

    OpenAIRE

    Alemany Bonastre, Jordi

    2004-01-01

    This project tries to explain the brewing process with the purpose to brew a small quantity of beer, at the same time analyses different characteristics of the beer and raw materials to determine the quality of the beer. These characteristics are: carbon dioxide, nitrogen, phosphates, alcohol and diacetyl content, bitterness, calcium, color, pH, and real extract. The characteristics of the beer are compared among a normal commercial beer, our beer and the values in the bibliography. The...

  2. Novel starters for old processes: use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale.

    Science.gov (United States)

    Marongiu, Antonella; Zara, Giacomo; Legras, Jean-Luc; Del Caro, Alessandra; Mascia, Ilaria; Fadda, Costantino; Budroni, Marilena

    2015-01-01

    The deliberate inoculation of yeast strains isolated from food matrices such as wine or bread, could allow the transfer of novel properties to beer. In this work, the feasibility of the use of baker's yeast strains as starters for craft beer production has been evaluated at laboratory and brewery scale. Nine out of 12 Saccharomyces cerevisiae strains isolated from artisanal sourdoughs metabolized 2 % maltose, glucose and trehalose and showed growth rates and cell populations higher than those of the brewer's strain Safbrew-S33. Analysis of allelic variation at 12 microsatellite loci clustered seven baker's strains and Safbrew-S33 in the main group of bread isolates. Chemical analyses of beers produced at a brewery scale showed significant differences among the beers produced with the baker's strain S38 or Safbrew-S33, while no significant differences were observed when S38 or the brewer's strain Safbrew-F2 was used for re-fermentation. The sensory profile of beers obtained with S38 or the brewer's yeasts did not show significant differences, thus suggesting that baker's strains of S. cerevisiae could represent a reservoir of biodiversity for the selection of starter strains for craft beer production.

  3. Monitoring of metabolites and by-products in a down-scaled industrial lager beer fermentation

    OpenAIRE

    Sjöström, Fredrik

    2013-01-01

    The sugar composition of the wort and how these sugars are utilised by the yeast affects the organoleptic properties of the beer. To monitor the saccharides in the wort before inoculation and during fermentation is important in modern brewing industry. Reducing the duration of the brewing process is valuable and can be achieved by reducing the fermentation time by an increase in temperature. However, this must be done without changing the quality and characteristics of the end product, anothe...

  4. Consumers' perception of novel beers

    DEFF Research Database (Denmark)

    Giacalone, Davide

    to many consumers. After a decade of growth, the Danish craft brewing segment is rapidly reaching maturity, and a higher degree of consumer orientation seems to be needed for continuing success. The aim of this PhD project was to investigate some of the key aspects of consumers’ perception of novel beers...... industry. More generally, this work makes a number of original contributions to our understanding of determinants of consumers’ perception of novel food and beverages, as well as methodological advances in the use of consumers as subjects in sensory and consumer research....

  5. Primary souring: A novel bacteria-free method for sour beer production.

    Science.gov (United States)

    Osburn, Kara; Amaral, Justin; Metcalf, Sara R; Nickens, David M; Rogers, Cody M; Sausen, Christopher; Caputo, Robert; Miller, Justin; Li, Hongde; Tennessen, Jason M; Bochman, Matthew L

    2018-04-01

    In the beverage fermentation industry, especially at the craft or micro level, there is a movement to incorporate as many local ingredients as possible to both capture terroir and stimulate local economies. In the case of craft beer, this has traditionally only encompassed locally sourced barley, hops, and other agricultural adjuncts. The identification and use of novel yeasts in brewing lags behind. We sought to bridge this gap by bio-prospecting for wild yeasts, with a focus on the American Midwest. We isolated 284 different strains from 54 species of yeast and have begun to determine their fermentation characteristics. During this work, we found several isolates of five species that produce lactic acid and ethanol during wort fermentation: Hanseniaspora vineae, Lachancea fermentati, Lachancea thermotolerans, Schizosaccharomyces japonicus, and Wickerhamomyces anomalus. Tested representatives of these species yielded excellent attenuation, lactic acid production, and sensory characteristics, positioning them as viable alternatives to lactic acid bacteria (LAB) for the production of sour beers. Indeed, we suggest a new LAB-free paradigm for sour beer production that we term "primary souring" because the lactic acid production and resultant pH decrease occurs during primary fermentation, as opposed to kettle souring or souring via mixed culture fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Drink beer to save the planet

    Directory of Open Access Journals (Sweden)

    Lauren Barfield

    2009-09-01

    Full Text Available This student poster display example considers the ethics of the marketing of the “Cascade Green” beer inAustralia. Issues considered include the ethics of marketing beer, the environmental impacts of the beersmarketing and packaging and a reflection upon the societal impacts of the product.

  7. Progress in Brewing Science and Beer Production.

    Science.gov (United States)

    Bamforth, C W

    2017-06-07

    The brewing of beer is an ancient biotechnology, the unit processes of which have not changed in hundreds of years. Equally, scientific study within the brewing industry not only has ensured that modern beer making is highly controlled, leading to highly consistent, high-quality, healthful beverages, but also has informed many other fermentation-based industries.

  8. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process.

  9. Detecting beer intake by unique metabolite patterns

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...

  10. Beer consumption and the 'beer belly': scientific basis or common belief?

    Science.gov (United States)

    Schütze, M; Schulz, M; Steffen, A; Bergmann, M M; Kroke, A; Lissner, L; Boeing, H

    2009-09-01

    The term 'beer belly' expresses the common belief that beer consumption is a major determinant of waist circumference (WC). We studied the gender-specific associations between beer consumption and WC (partially in relation to body weight and hip circumference (HC) change). Within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study (7876 men, 12 749 women), cross-sectional associations were investigated applying general linear models. Prospective analyses of baseline beer consumption and an 8.5-year WC change were assessed using multivariate general linear models and polytomous logistic regression. To test the site-specific effect of beer consumption on WC, an adjustment for concurrent changes in body weight and HC was carried out. In addition, the relationship between change in beer consumption and change in WC was studied. A positive association in men and no association in women were seen between beer consumption and WC at baseline. Men consuming 1000 ml/d beer were at 17% higher risk for WC gain compared with very light consumers. Significantly lower odds for WC gain (odds ratio=0.88; 95% confidence interval 0.81, 0.96) were found in beer-abstaining women than in very-light-drinking women. The adjustment for concurrent body weight and HC change diminished effect estimates notably, explaining most of the association between beer and change in WC. Decreasing beer consumption was related to higher relative odds for WC loss, although not statistically significant. Beer consumption leads to WC gain, which is closely related to concurrent overall weight gain. This study does not support the common belief of a site-specific effect of beer on the abdomen, the beer belly.

  11. Production of non-alcoholic beer using free and immobilized cells of Saccharomyces cerevisiae deficient in the tricarboxylic acid cycle.

    Science.gov (United States)

    Navrátil, Marián; Dömény, Zoltán; Sturdík, Ernest; Smogrovicová, Daniela; Gemeiner, Peter

    2002-04-01

    Production of non-alcoholic beer using Saccharomyces cerevisiae has been studied. Non-recombinant mutant strains with a defect in the synthesis of tricarboxylic-acid-cycle enzymes were used and applied in both free and pectate-immobilized form, using both batch and packed-bed continuous systems. After fermentation, basic parameters of the beer produced by five mutant strains were compared with a standard strain of brewing yeast. Results showed that the beer prepared by mutant yeast cells was characterized by lower levels of total alcohols, with ethanol concentrations between 0.07 and 0.31% (w/w). The organic acids produced, especially lactic acid, in concentrations up to 1.38 g x l(-1) had a strong protective effect on the microbial stability of the final product and thus the usual addition of lactic acid could be omitted. Application of the yeast mutants appears to be a good alternative to the classical methods for the production of non-alcoholic beer.

  12. What is in a beer? Proteomic characterization and relative quantification of hordein (gluten) in beer.

    Science.gov (United States)

    Colgrave, Michelle L; Goswami, Hareshwar; Howitt, Crispin A; Tanner, Gregory J

    2012-01-01

    The suite of prolamin proteins present in barley flour was characterized in this study, in which we provide spectral evidence for 3 previously characterized prolamins, 8 prolamins with only transcript evidence, and 19 genome-derived predicted prolamins. An additional 9 prolamins were identified by searching the complete spectral set against an unannotated translated EST database. Analyses of wort, the liquid extracted from the mashing process during beer production, and beer were undertaken and a similar suite of prolamins were identified. We have demonstrated by using tandem mass spectrometry that hordeins are indeed present in beer despite speculation to the contrary. Multiple reaction monitoring (MRM) mass spectrometry was used for the rapid analyses of hordein in barley (Hordeum vulgare L.) beer. A selection of international beers were analyzed and compared to the results obtained with hordein deletion beers. The hordein deletion beers were brewed from grains carrying mutations that prevented the accumulation of either B-hordeins (Risø 56) or C-hordeins (Risø 1508). No intact C-hordeins were detected in beer, although fragments of C-hordeins were present in wort. Multiple reaction monitoring analysis of non-barley based gluten (hordein)-free beers targeting the major hordein protein families was performed and confirmed the absence of hordein in several gluten-free commercial beers.

  13. Effects of spent craft brewers’ yeast on fermentation and methane production by rumen microorganisms

    Science.gov (United States)

    Saccharomyces cerevisiae is a key component of beer brewing and a major by-product. The leftover, spent brewers’ yeast, from large breweries has been used for some time as a protein supplement in cattle, however the possible advantages of spent yeast from smaller craft breweries, containing much hig...

  14. 27 CFR 26.263 - Determination of tax on beer.

    Science.gov (United States)

    2010-04-01

    ... beer. 26.263 Section 26.263 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Procedure at Port of Entry From the Virgin Islands § 26.263 Determination of tax on beer. If the certificate prescribed in § 26.205 covers beer, the beer tax will be collected on the basis of the number of barrels of...

  15. 27 CFR 25.296 - Record of beer concentrate.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Record of beer concentrate..., DEPARTMENT OF THE TREASURY LIQUORS BEER Records and Reports § 25.296 Record of beer concentrate. (a) Daily records. A brewer who produces concentrate or reconstitutes beer shall maintain daily records which...

  16. 27 CFR 25.1 - Production and removal of beer.

    Science.gov (United States)

    2010-04-01

    ... beer. 25.1 Section 25.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Scope of Regulations § 25.1 Production and removal of beer. The regulations in this part relate to beer and cereal beverages and cover the location, construction, equipment...

  17. 27 CFR 28.225 - Removals of beer by brewer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Removals of beer by brewer..., DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Exportation of Beer With Benefit of Drawback Execution of Claims § 28.225 Removals of beer by brewer. Where a brewer removes taxpaid beer from the...

  18. 27 CFR 25.158 - Tax computation for bottled beer.

    Science.gov (United States)

    2010-04-01

    ... bottled beer. 25.158 Section 25.158 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Tax on Beer Determination of Tax § 25.158 Tax computation for bottled beer. Barrel equivalents for various case sizes are as follows: (a) For U.S. measure...

  19. 27 CFR 25.186 - Record of beer transferred.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Record of beer transferred..., DEPARTMENT OF THE TREASURY LIQUORS BEER Removals Without Payment of Tax Transfer to Another Brewery of Same Ownership § 25.186 Record of beer transferred. (a) Preparation of invoice. When beer is transferred between...

  20. 27 CFR 25.221 - Voluntary destruction of beer.

    Science.gov (United States)

    2010-04-01

    ... beer. 25.221 Section 25.221 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Voluntary Destruction § 25.221 Voluntary destruction of beer. (a) On brewery premises. (1) A brewer may destroy, at the brewery, beer on which the tax has not...

  1. PREFERENCES AND BUYING BEHAVIOUR OF STUDENTS ON THE BEER MARKET

    National Research Council Canada - National Science Library

    Karolina Jąder

    2013-01-01

    .... The aim was study the preferences and buying behaviour of students on the beer market. It shows the place of beer among other alcohols, frequency and place of consumption, as well the place of beer shopping and the criteria of beer purchase...

  2. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    Science.gov (United States)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  3. Detection and enumeration of Dekkera anomala in beer, cola, and cider using real-time PCR.

    Science.gov (United States)

    Gray, S R; Rawsthorne, H; Dirks, B; Phister, T G

    2011-04-01

    In this article, a quantitative real-time PCR assay for detection and enumeration of the spoilage yeast Dekkera anomala in beer, cola, apple cider, and brewing wort is presented as an improvement upon existing detection methods, which are very time-consuming and not always accurate.   Primers were designed to exclude other organisms common in these beverages, and the assay was linear over 6 log units of cell concentrations. The addition of large amounts of non-target yeast DNA did not affect the efficiency of this assay. A standard curve of known DNA was established by plotting the C(t) values obtained from the QPCR against the log of plate counts on yeast peptone dextrose medium and unknowns showed exceptional correlation when tested against this standard curve. The assay was found to detect D. anomala at levels of 10-14 CFU ml⁻¹ in either cola or beer and at levels of 9·4-25·0 CFU ml⁻¹ in apple cider. The assay was also used to follow the growth of D. anomala in brewing wort. The results indicate that real-time PCR is an effective tool for rapid, accurate detection and quantitation of D. anomala in beer, cola and apple cider. This method gives a faster and more efficient technique to screen beer, cola, and cider samples and reduce spoilage by D. anomala. Faster screening may allow for significant reduction in economic loss because of reduced spoilage. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  4. Isolation of yeast Saccharomyces cerevisiae from unusual natural habitats

    OpenAIRE

    Finžgar, Bernarda

    2012-01-01

    Baker yeast Saccharomyces cerevisiae has been an eukarontic experimental organism since 1960s, becoming even more significant with the determination of its complete nucleotide genome sequence in 1996. Even though its biochemical function in the fermentation process had long remained unclear, its metabolism and products (eg. bread, beer, wine) have been used for millennia. S. cerevisiae yeast represents an important organism for production of recombinant proteins (gene manipulation). Moreover,...

  5. Peer Effects in Alcohol Consumption: Evidence from Russia's Beer Boom

    OpenAIRE

    Deconinck, Koen; Swinnen, Johan F. M.

    2012-01-01

    Starting around 1996, Russia witnessed a strong growth in beer consumption, leading to a fivefold growth in average beer consumption and making beer the most important alcoholic drink today. We use survey data from the Russian Longitudinal Monitoring Survey (RLMS) to analyze individual detfirminants of beer drinking. Using both lagged and simultaneous measures to establish lower and upper bounds on the peer effect, we show that the decision to drink beer is strongly influenced by the average ...

  6. New Type of BeerBeer with Improved Functionality and Defined Pharmacodynamic Properties

    Directory of Open Access Journals (Sweden)

    Saša Despotović

    2010-01-01

    Full Text Available The paper highlights the facts about the possibilities of improving the functionality of beer with extracts of thyme (Thymus vulgaris, lemon balm (Melissa officinalis and mushroom Ganoderma lucidum. It briefly summarizes the most important data about possible positive action of moderate beer consumption and the benefits of beer as a base for developing a variety of products with enhanced functionality. It gives an overview about the mentioned herbs and the mushroom, their use in traditional medicine, chemical composition, pharmacodynamic properties and possible benefits from the brewing point of view. Procedures for extraction of biological material, experimental results of antimicrobial properties, antioxidant capacity and sensory evaluation of beer enriched with these extracts are given. Experimental results indicate that commercially produced and bottled pils beer enriched with tinctures of Thymus vulgaris and Melissa officinalis shows improved antimicrobial and antioxidative properties. Ganoderma is particularly important because of its unique functional properties and sensory compatibility with beer. Products obtained like this could fulfill several goals: developing novel beer types, developing products with health-promoting properties that meet market needs and eventually gain new beer consumers. Alcohol content of such products depends on the type and alcohol content of initial beer.

  7. Potential of xylose-fermented yeast isolated from sugarcane bagasse waste for xylitol production using hydrolysate as carbon source

    Directory of Open Access Journals (Sweden)

    Kusumawadee Thancharoen

    2016-10-01

    Full Text Available Xylitol is a high value sugar alcohol that is used as a sweetener. In the past years, the biological process of D-xylose from lignocellulosic material into xylitol has gained increasing interest as an alternative production method. In this study, sugarcane bagasse was used as raw material for xylitol production because of its high efficiency, reduced industrial cost, and high concentration of xylose. Pre-treatment of sugarcane bagasse with sulfuric acid was performed with various conditions. The results showed that the optimum condition was exhibited for 3.1% sulfuric acid at 126°C for 18 min producing 19 g/l xylose. Isolated yeasts from the sugarcane bagasse were selected and tested for xylitol ability from xylose. Results showed that Candida tropicalis KS 10-3 (from 72 isolates had the highest ability and produced 0.47 g xylitol/ g xylose in 96 hrs of cultivation containing 32.30 g/l xylose was used as the production medium.

  8. Optimization of Initial pH and Total Sugar Concentration Variables on Citric Acid Production from Pineapple Waste with Aspergillus niger Yeast by Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2011-06-01

    Full Text Available Citric acid can be produced from pineapple waste by using fermentation process. This process is done in bubble column reactor with Aspergillus niger yeast. The objective of this research is to find the optimum conditions of initial pH and total sugar concentration. The optimization method used was response surface methodology. This research was carried out at a temperature of 30 oC, spore concentration of 1.23 x 109 spore/ml, total volume 2.0 liter, flow rate of air 58.07 cc/sec and a 5% antifoam concentration. The fermentation process lasted 7 days and the citric acid concentration was analyzed by High Pressure Liquid Cromatography (HPLC method. Statistica 6 software was used for the data treatment. The mathematical model for the optimization citric acid fermentation in bubble column reactor is Y = 54.507 + 2.9851X - 8.987X12 - 2.581X2 - 15.446X22 - 7.989X1X2 The parameter of Y is citric acid yield, X1 is a coding initial pH and X2 is a coding total sugar concentration. The results has given an initial pH optimum 3.61 and total sugar concentration 19,285% w/v with optimum an yield of 55.03 % . Keywords: Bubble column bioreactor, Citric acid fermentation, Initial pH, Total sugar concentration, Response surface methodology

  9. Analysis of the hybrid genomes of brewing yeasts

    NARCIS (Netherlands)

    Bolat, I.

    2016-01-01

    One of the best guarded secrets of brewers is represented by the brewing yeast employed in beer fermentation, due to its profound impact upon the specific flavour profile of the final product. The current research tackles the genome diversity of lager brewing strains as well as their impact on

  10. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    Science.gov (United States)

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Case of immediate hypersensitivity to beer.

    Science.gov (United States)

    Inoue, Tomoko; Yagami, Akiko; Shimojo, Naoshi; Hara, Kazuhiro; Nakamura, Masashi; Matsunaga, Kayoko

    2016-06-01

    We report here a case of immediate hypersensitivity to beer, in which a female patient developed angioedema of the eyelids shortly after consuming beer. In skin prick tests, the patient showed positive reactions to the base ingredients of beer, particularly malt and barley. The specific serum immunoglobulin E antibodies against barley and malt displayed weakly positive reactivity. To identify the immunoreactive antigens, malt and barley proteins were separated by 2-D polyacrylamide gel electrophoresis and immunoreacted with the patient's serum. The results of mass spectrometric analysis revealed that the main antigen was a protein with similarity to protein z-type serpin. Notably, the identified antigen had a molecular weight of 20-25 kDa, which is markedly smaller than that previously reported for protein Z4 (44 kDa). Taken together, these analyses indicate that a possible new antigen which belongs to the protein Z family elicits immediate hypersensitivity to beer. © 2015 Japanese Dermatological Association.

  12. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  13. The use of enzymes for beer brewing

    OpenAIRE

    Donkelaar, van, Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der, Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process. The exergy efficiency of malting was 77%. The main exergy losses stem from the use of natural gas for kilning and from starch loss during germination. The exergy efficiency of the enzyme production p...

  14. Mycotoxin profiling of 1000 beer samples with a special focus on craft beer

    Science.gov (United States)

    van Dam, Ruud; van Doorn, Ronald; Katerere, David; Berthiller, Franz; Haasnoot, Willem; Nielen, Michel W. F.

    2017-01-01

    Currently beer is booming, mainly due to the steady rise of craft breweries worldwide. Previous surveys for occurrence of mycotoxins in beer, were mainly focussed on industrial produced beer. The present survey reports the presence of mycotoxins in craft beer and how this compares to industrial produced beer. More than 1000 beers were collected from 47 countries, of which 60% were craft beers. A selection of 1000 samples were screened for the presence of aflatoxin B1, ochratoxin A (OTA), zearalenone (ZEN), fumonisins (FBs), T-2 and HT-2 toxins (T-2 and HT-2) and deoxynivalenol (DON) using a mycotoxin 6-plex immunoassay. For confirmatory analysis, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and applied. The 6-plex screening showed discrepancies with the LC-MS/MS analysis, possibly due to matrix interference and/or the presence of unknown mycotoxin metabolites. The major mycotoxins detected were DON and its plant metabolite deoxynivalenol-3-β-D-glucopyranoside (D3G). The 6-plex immunoassay reported the sum of DON and D3G (DON+D3G) contaminations ranging from 10 to 475 μg/L in 406 beers, of which 73% were craft beers. The popular craft beer style imperial stout, had the highest percentage of samples suspected positive (83%) with 29% of all imperial stout beers having DON+D3G contaminations above 100 μg/L. LC-MS/MS analysis showed that industrial pale lagers from Italy and Spain, predominantly contained FBs (3–69 μg/L). Besides FBs, African traditional beers also contained aflatoxins (0.1–1.2 μg/L). The presence of OTA, T-2, HT-2, ZEN, β-zearalenol, 3/15-acetyl-DON, nivalenol and the conjugated mycotoxin zearalenone 14-sulfate were confirmed in some beers. This study shows that in 27 craft beers, DON+D3G concentrations occurred above (or at) the Tolerable Daily Intake (TDI). Exceeding the TDI, may have a health impact. A better control of brewing malts for craft beer, should be put in place to circumvent this potential

  15. Mycotoxin profiling of 1000 beer samples with a special focus on craft beer.

    Directory of Open Access Journals (Sweden)

    Jeroen Peters

    Full Text Available Currently beer is booming, mainly due to the steady rise of craft breweries worldwide. Previous surveys for occurrence of mycotoxins in beer, were mainly focussed on industrial produced beer. The present survey reports the presence of mycotoxins in craft beer and how this compares to industrial produced beer. More than 1000 beers were collected from 47 countries, of which 60% were craft beers. A selection of 1000 samples were screened for the presence of aflatoxin B1, ochratoxin A (OTA, zearalenone (ZEN, fumonisins (FBs, T-2 and HT-2 toxins (T-2 and HT-2 and deoxynivalenol (DON using a mycotoxin 6-plex immunoassay. For confirmatory analysis, a liquid chromatography tandem mass spectrometry (LC-MS/MS method was developed and applied. The 6-plex screening showed discrepancies with the LC-MS/MS analysis, possibly due to matrix interference and/or the presence of unknown mycotoxin metabolites. The major mycotoxins detected were DON and its plant metabolite deoxynivalenol-3-β-D-glucopyranoside (D3G. The 6-plex immunoassay reported the sum of DON and D3G (DON+D3G contaminations ranging from 10 to 475 μg/L in 406 beers, of which 73% were craft beers. The popular craft beer style imperial stout, had the highest percentage of samples suspected positive (83% with 29% of all imperial stout beers having DON+D3G contaminations above 100 μg/L. LC-MS/MS analysis showed that industrial pale lagers from Italy and Spain, predominantly contained FBs (3-69 μg/L. Besides FBs, African traditional beers also contained aflatoxins (0.1-1.2 μg/L. The presence of OTA, T-2, HT-2, ZEN, β-zearalenol, 3/15-acetyl-DON, nivalenol and the conjugated mycotoxin zearalenone 14-sulfate were confirmed in some beers. This study shows that in 27 craft beers, DON+D3G concentrations occurred above (or at the Tolerable Daily Intake (TDI. Exceeding the TDI, may have a health impact. A better control of brewing malts for craft beer, should be put in place to circumvent this potential

  16. Mycotoxin profiling of 1000 beer samples with a special focus on craft beer.

    Science.gov (United States)

    Peters, Jeroen; van Dam, Ruud; van Doorn, Ronald; Katerere, David; Berthiller, Franz; Haasnoot, Willem; Nielen, Michel W F

    2017-01-01

    Currently beer is booming, mainly due to the steady rise of craft breweries worldwide. Previous surveys for occurrence of mycotoxins in beer, were mainly focussed on industrial produced beer. The present survey reports the presence of mycotoxins in craft beer and how this compares to industrial produced beer. More than 1000 beers were collected from 47 countries, of which 60% were craft beers. A selection of 1000 samples were screened for the presence of aflatoxin B1, ochratoxin A (OTA), zearalenone (ZEN), fumonisins (FBs), T-2 and HT-2 toxins (T-2 and HT-2) and deoxynivalenol (DON) using a mycotoxin 6-plex immunoassay. For confirmatory analysis, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and applied. The 6-plex screening showed discrepancies with the LC-MS/MS analysis, possibly due to matrix interference and/or the presence of unknown mycotoxin metabolites. The major mycotoxins detected were DON and its plant metabolite deoxynivalenol-3-β-D-glucopyranoside (D3G). The 6-plex immunoassay reported the sum of DON and D3G (DON+D3G) contaminations ranging from 10 to 475 μg/L in 406 beers, of which 73% were craft beers. The popular craft beer style imperial stout, had the highest percentage of samples suspected positive (83%) with 29% of all imperial stout beers having DON+D3G contaminations above 100 μg/L. LC-MS/MS analysis showed that industrial pale lagers from Italy and Spain, predominantly contained FBs (3-69 μg/L). Besides FBs, African traditional beers also contained aflatoxins (0.1-1.2 μg/L). The presence of OTA, T-2, HT-2, ZEN, β-zearalenol, 3/15-acetyl-DON, nivalenol and the conjugated mycotoxin zearalenone 14-sulfate were confirmed in some beers. This study shows that in 27 craft beers, DON+D3G concentrations occurred above (or at) the Tolerable Daily Intake (TDI). Exceeding the TDI, may have a health impact. A better control of brewing malts for craft beer, should be put in place to circumvent this potential problem.

  17. Saturated in beer: awareness of beer advertising in late childhood and adolescence.

    Science.gov (United States)

    Collins, Rebecca L; Ellickson, Phyllis L; McCaffrey, Daniel F; Hambarsoomians, Katrin

    2005-07-01

    The purpose of this study was to examine exposure, response to, and awareness of beer advertising in 2 age groups, including awareness of a Budweiser advertisement (ad) that portrayed lizards and an animated ferret. In the spring of 2000, 1,996 fourth graders and 1,525 ninth graders attending 1 of 60 South Dakota schools participated in an in-school survey. Several indicators of advertising awareness, exposure, and response were assessed: recognition, product naming, brand naming, and liking in response to stills drawn from 4 masked television beer ads, listing of beer brands, exposure, attention to, and skepticism toward television beer ads. Fourteen percent of 4th graders and 20% of 9th graders recognized at least 3 of 4 sample beer ads. Seventy-five percent of 4th graders and 87% of 9th graders recognized the Budweiser ferret ad; about one in three 4th graders could name the brand it advertised, whereas more than three in four 9th graders could do so. When asked to list as many beer brands as they could, almost 29% of 4th graders listed 3 or more beer brands and 82% of 9th graders did so. Ninth graders liked beer advertisements more and paid greater attention to them, but 4th graders were exposed to them more often. Television beer ads result in high levels of beer advertising awareness in children as young as age 9, and even higher awareness among 14-year-olds. Practices that expose or appeal to youth, including use of animated characters, should be avoided by beer advertisers.

  18. Frogs Sell Beer: The Effects of Beer Advertisements on Adolescent Drinking Knowledge, Attitudes, and Behavior.

    Science.gov (United States)

    Gentile, Douglas A.; Walsh, David A.; Bloomgren, Barry W., Jr.; Atti, Jule A.; Norman, Jessica A.

    This present research reveals how beer advertising affects adolescents' knowledge of beer brands, drinking attitudes, and drinking behaviors. In addition to traditional psychological approaches for measuring media effects on alcohol-related behaviors and attitudes, market research advertising tracking methods were included to permit a clearer and…

  19. Functional or emotional? How Dutch and Portuguese conceptualise beer, wine and non-alcoholic beer consumption

    NARCIS (Netherlands)

    Silva, Ana Patricia; Jager, Gerry; Bommel, van Roelien; Zyl, van Hannelize; Voss, Hans Peter; Hogg, Tim; Pintado, Manuela; Graaf, de Kees

    2016-01-01

    Non-alcoholic beer (NAB) may be a healthier alternative to wine and beer consumption, however has little appeal to consumers. Conceptualisations, i.e. functional and emotional associations that consumers have with foods/beverages, were explored to understand how NAB consumption is perceived, and

  20. [Does beer have an impact on weight gain? Effects of moderate beer consumption on body composition].

    Science.gov (United States)

    Romeo, J; González-Gross, M; Wärnberg, J; Díaz, L E; Marcos, A

    2007-01-01

    The effects of alcohol consumption on body weight have been evaluated in a large number of studies suggesting to be inversely as well as positively related to body weight and body fat. This study examined the relationships between moderate beer consumption and anthropometrical parameters in Spanish healthy adults. After a 30 day alcohol abstemious period, 58 healthy volunteers were submitted to a daily moderate consumption of beer during the following 30 days. Weight, height, skinfolds and circumferences were measured at three points: (a) basal; (b) abstemious and (c) after moderate consumption of beer. Biceps skinfold (mm) increased (p beer consumption in regard to abstinence period (5.74 +/- 1.70 vs. 6.23 +/- 1.74). No significant differences were observed in the rest of anthropometrical parameters studied in both women and men along the study intervention. Moderate beer consumption during one month did not mostly change weight and weight-related parameters in healthy adults.

  1. Application of chitooligosaccharides as antioxidants in beer to improve the flavour stability by protecting against beer staling during storage.

    Science.gov (United States)

    Yang, Fan; Luan, Bo; Sun, Zhen; Yang, Chao; Yu, Zhimin; Li, Xianzhen

    2017-02-01

    To improve beer flavour stability by adding chitooligosaccharides that prevent formation of staling compounds and also scavenge radicals in stale beer. Chitooligosaccharides, at 0.001-0.01%, inhibited the formation of staling compounds in forced aged beer. The formation of 5-hydroxymethylfurfural, trans-2-nonenal and phenylacetaldehyde were decreased by 105, 360 and 27%, respectively, when compared with those in stale beer without chitooligosaccharide addition. The capability of chitooligosaccharides to prevent staling compound formation depended on their molecular size (2 or 3 kDa). The DPPH/hydroxyl radical scavenging activity in fresh beer significantly lower than that in forced aged beer in the presence of chitooligosaccharides. When compared with stale beer without added chitooligosaccharides, the radical scavenging activity could be increased by adding chitooligosaccharides to forced aged beer. Chitooligosaccharides play an active part in the prevention of beer flavour deterioration by inhibiting the formation of staling compounds and increasing radical scavenging activity.

  2. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica.

    Science.gov (United States)

    Dobrowolski, Adam; Mituła, Paweł; Rymowicz, Waldemar; Mirończuk, Aleksandra M

    2016-05-01

    In this study, crude glycerol from various industries was used to produce lipids via wild type Yarrowia lipolytica A101. We tested samples without any prior purification from five different waste products; each contained various concentrations of glycerol (42-87%) as the sole carbon source. The best results for lipid production were obtained for medium containing glycerol from fat saponification. This reached 1.69gL(-1) (25% of total cell dry weight) with a biomass yield of 0.17gg(-1) in the flasks experiment. The batch cultivation in a bioreactor resulted in enhanced lipid production-it achieved 4.72gL(-1) with a biomass yield 0.21gg(-1). Moreover, the properly selected batch of crude glycerol provides a defined fatty acid composition. In summary, this paper shows that crude glycerol from soap production could be efficiently converted to single cell oil without any prior purification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. PREFERENCES AND BUYING BEHAVIOUR OF STUDENTS ON THE BEER MARKET

    OpenAIRE

    Karolina Jąder

    2013-01-01

    This paper presents the results of the research conducted in November among 220 students at the University of Life Sciences in Poznań. The aim was study the preferences and buying behaviour of students on the beer market. It shows the place of beer among other alcohols, frequency and place of consumption, as well the place of beer shopping and the criteria of beer purchase. The most popular brands and tastes of beer were researched. Otherwise was analysed preference for beer packaging and pro...

  4. Genetic improvement of brewer's yeast: current state, perspectives and limits.

    Science.gov (United States)

    Saerens, Sofie M G; Duong, C Thuy; Nevoigt, Elke

    2010-05-01

    Brewer's yeast strain optimisation may lead to a more efficient beer production process, better final quality or healthier beer. However, brewer's yeast genetic improvement is very challenging, especially true when it comes to lager brewer's yeast (Saccharomyces pastorianus) which contributes to 90% of the total beer market. This yeast is a genetic hybrid and allopolyploid. While early studies applying traditional genetic approaches encountered many problems, the development of rational metabolic engineering strategies successfully introduced many desired properties into brewer's yeast. Recently, the first genome sequence of a lager brewer's strain became available. This has opened the door for applying advanced omics technologies and facilitating inverse metabolic engineering strategies. The latter approach takes advantage of natural diversity and aims at identifying and transferring the crucial genetic information for an interesting phenotype. In this way, strains can be optimised by introducing "natural" mutations. However, even when it comes to self-cloned strains, severe concerns about genetically modified organisms used in the food and beverage industry are still a major hurdle for any commercialisation. Therefore, research efforts will aim at developing new sophisticated screening methods for the isolation of natural mutants with the desired properties which are based on the knowledge of genotype-phenotype linkage.

  5. Aroma formation by immobilized yeast cells in fermentation processes.

    Science.gov (United States)

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. Copyright © 2014 John Wiley & Sons, Ltd.

  6. PREFERENCES AND BUYING BEHAVIOUR OF STUDENTS ON THE BEER MARKET

    Directory of Open Access Journals (Sweden)

    Karolina Jąder

    2013-09-01

    Full Text Available This paper presents the results of the research conducted in November among 220 students at the University of Life Sciences in Poznań. The aim was study the preferences and buying behaviour of students on the beer market. It shows the place of beer among other alcohols, frequency and place of consumption, as well the place of beer shopping and the criteria of beer purchase. The most popular brands and tastes of beer were researched. Otherwise was analysed preference for beer packaging and promotion effects on students. It was found that beer is the most often chosen alcohol among this group of consumers, and vast majority of them consume it at least once a week. Students often drink beer at home or at friends, and favourite brands are: Lech, Redd’s, Desperados and Żubr.

  7. Applying the 2003 Beers Update to Elderly Medicare Enr...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Applying the 2003 Beers Update to Elderly Medicare Enrollees in the Part D Program Inappropriate prescribing of certain medications known as Beers drugs may be...

  8. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    OpenAIRE

    Miriam Solgajová; Helena Frančáková; Štefan Dráb; Žigmund Tóth

    2013-01-01

    Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wo...

  9. Beer Potomania--An Unusual Cause of Hyponatremia.

    Science.gov (United States)

    Kujubu, Dean A; Khosraviani, Ardeshir

    2015-01-01

    The first case of severe hyponatremia, since referred to as beer potomania, in a heavy beer drinker patient was reported in 1972. Excessive consumption of beer in particular, which has a low solute content, may result in severe hyponatremia. We report a case of severe hyponatremia that occurred in a patient who, owing to his underlying colon cancer, was drinking beer and ingesting little food.

  10. Can Niche Agriculturalists Take Notes from the Craft Beer Industry?

    OpenAIRE

    Woolverton, Andrea E.; Parcell, Joseph L.

    2008-01-01

    This industry-level case study focuses on the growth cycles of craft brewing, a niche industry. The research case is defined as the craft beer industry evolution including the surrounding institutional and consumer environments. The research goal is to provide insight for niche agriculturalists by examining the case of the successful niche craft beer industry. First, the environment surrounding craft beer reemergence is analyzed. We examine the current state of the craft beer industry with a ...

  11. Development beer technology with amaranth flour

    Directory of Open Access Journals (Sweden)

    M. M. Danina

    2016-01-01

    Full Text Available At the present time, the urgent problem is the development of product range of beer and the reduction of production costs. We used amaranth flour: "protein" and "carbohydrate", is designed and experimentally obtained from seeds of amaranth and made available for research "Agros" company (Kaliningrad region. The article discusses the effects of different concentrations of flour on the process of mashing, fermentation and the quality of beer. Prepared in the ratio of light barley malt:amaranth flour 90:10 and 80:20, respectively. Experimental were chosen of mashing barley malt with the addition of flour. The mashing process started with a temperature of 40 or 500C. Cytolytic pause was 30 min, protein-25 min, malt pause was increased up to 30 min. Using 20% of flour in the total grain charge leads to the increase of first wort extract content to 12.2%. By increasing the amount of flour in the grist of grain products increases the saccharification of the mash. The time of saccharification when you make 20% of the "protein" flour and the initial temperature of mashing 500C is 26 minutes, and "carbohydrate" flour -18min., therefore, when developing technology of new beer, from the point of view of reducing the cost of production, it is advisable to use "carbohydrate" amaranth flour in the amount of 20% in the total grain products. We estimated the impact of concentrations used flour on organoleptic indicators of finished beer on a 25 point scale. The aroma of the beer was felt citrus and malt undertones. Total score of beer with 10% amaranth flour is 18 points, and 20% amaranth flour is 20 points.

  12. 27 CFR 28.295 - Exception for export of beer.

    Science.gov (United States)

    2010-04-01

    ... beer. 28.295 Section 28.295 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Alternate Procedures § 28.295 Exception for export of beer. The provisions of this subpart do not apply in the case of beer when the exporter or claimant obtains proof of exportation other than certification...

  13. 27 CFR 31.33 - Retail dealer in beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Retail dealer in beer. 31... Classified § 31.33 Retail dealer in beer. (a) General. Except as otherwise provided in paragraph (b) of this section, every person who sells or offers for sale beer, but not distilled spirits or wines, to any person...

  14. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage in...

  15. 27 CFR 31.34 - Wholesale dealer in beer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wholesale dealer in beer... Classified § 31.34 Wholesale dealer in beer. (a) General. Except as otherwise provided in paragraph (b) of this section, every person who sells or offers for sale beer, but not distilled spirits or wines, to...

  16. Spent yeast as natural source of functional food additives

    Science.gov (United States)

    Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek

    Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used

  17. Beer and Organic Labels: Do Belgian Consumers Care?

    Directory of Open Access Journals (Sweden)

    Eline Poelmans

    2017-08-01

    Full Text Available We investigate whether beer drinkers are willing to pay a price premium for organic beer compared to conventional beer. Moreover, we identify subgroups of consumers with different preference patterns by investigating whether specific personal characteristics of the purchasers have an influence on this willingness-to-pay. Specifically, results are reported from a survey including a stated choice experiment of consumer decisions concerning beer purchases in Flanders (Belgium, focusing on organic labels. A non-probabilistic sampling method was used over the Internet and 334 responses were useable for the empirical analysis. Each respondent was asked to choose their preferred beer from a series of nine choice cards describing three different beer varieties. In this respect, we created a two-block design, each consisting of nine choice cards. Each respondent was randomly presented with one of the two blocks, so that an equal distribution of the blocks could be obtained. Overall, we find that our sample is statistically indifferent between a beer with an organic label and a similar beer without an organic label. This is in line with previous research that stated that consumers are unwilling to pay high price premiums for organic vice products, such as beer. We find no statistically different preferences for male or female respondents, or for members or non-members of nature protection organizations. However, we find a significant difference (p-value = 0.029 between primary beer shoppers who have a zero willingness-to-pay (WTP for organic beer compared to similar non-organic beer and the reference group that has a negative WTP of 14 Euro per 1.5 L for organic beer. In addition, the WTP for beer drinkers older than 40 (negative WTP of 22 Euro per 1.5 L and the WTP for frequent beer drinkers (zero WTP are statistically different from the reference group (p-value = 0.019 and 0.000 respectively.

  18. Selenium in commercial beer and losses in the brewing process from wheat to beer.

    Science.gov (United States)

    Rodrigo, S; Young, S D; Cook, D; Wilkinson, S; Clegg, S; Bailey, E H; Mathers, A W; Broadley, M R

    2015-09-01

    There is increasing interest in enhancing the micronutrient composition of cereals through fertilization. The aims of this study were (1) to determine the Se concentration of commercial beers retailing in the UK, and (2) to test if the transfer of Se, from biofortified grain to final beer product, is <10% under UK cultivation conditions, as seen previously under Mediterranean conditions. The Se concentration of 128 commercial beers was measured, using inductively coupled plasma-mass spectrometry (ICP-MS). The selenium content of commercial beers varied 6.5-fold, with beers originating from America having higher Se concentrations than those from Europe. Laboratory-scale brewing trials with isotopically-enriched (77)Se wheat, sampled from UK field-sites, showed that most (77)Se losses in the brewing process occurred during mashing (54%), with fermented beer containing ∼ 10% of the (77)Se initially present in the wheat grain. Total N values in wort and malt were positively correlated with the (77)Se content of the wheat grain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Comparison of four extraction methods for analysis of volatile hop-derived aroma compounds in beer.

    Science.gov (United States)

    Richter, Tobias M; Eyres, Graham T; Silcock, Patrick; Bremer, Phil J

    2017-11-01

    The volatile organic compound profile in beer is derived from hops, malt, yeast, and interactions between the ingredients, making it very diverse and complex. Due to the range and diversity of the volatile organic compounds present, the choice of the extraction method is extremely important for optimal sensitivity and selectivity. This study compared four extraction methods for hop-derived compounds in beer late hopped with Nelson Sauvin. Extraction capacity and variation were compared for headspace solid-phase micro extraction, stir bar sorptive extraction, headspace sorptive extraction, and solvent-assisted flavor evaporation. Generally, stir bar sorptive extraction was better suited for acids, headspace sorptive extraction for esters and aldehydes, while headspace solid-phase microextraction was less sensitive overall, extracting 40% fewer compounds. Solvent-assisted flavor evaporation with dichloromethane was not suitable for the extraction of hop-derived volatile organic compounds in beer, as the profile was strongly skewed towards alcohols and acids. Overall, headspace sorptive extraction is found to be best suited, closely followed by stir bar sorptive extraction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Yeast diversity and native vigor for flavor phenotypes.

    Science.gov (United States)

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The production of precipitated calcium carbonate from industrial gypsum wastes

    CSIR Research Space (South Africa)

    De Beer, Morris

    2014-05-01

    Full Text Available The production of precipitated calcium carbonate from industrial gypsum wastes M. de Beer Thesis submitted for the degree Doctor Philosophiae in Chemical Engineering at the Potchefstroom Campus of the North-West University Abstract Precipitated...

  2. Acetobacter lambici sp. nov., isolated from fermenting lambic beer.

    Science.gov (United States)

    Spitaels, Freek; Li, Leilei; Wieme, Anneleen; Balzarini, Tom; Cleenwerck, Ilse; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-04-01

    An acetic acid bacterium, strain LMG 27439(T), was isolated from fermenting lambic beer. The cells were Gram-stain-negative, motile rods, catalase-positive and oxidase-negative. Analysis of the 16S rRNA gene sequence revealed the strain was closely related to Acetobacter okinawensis (99.7 % 16S rRNA gene sequence similarity with the type strain of this species), A. ghanensis (99.6 %), A. syzygii (99.6 %), A. fabarum (99.4 %) and A. lovaniensis (99.2 %). DNA-DNA hybridization with the type strains of these species revealed moderate DNA-DNA hybridization values (31-45 %). Strain LMG 27439(T) was unable to grow on glycerol or methanol as the sole carbon source, on yeast extract with 10 % ethanol or on glucose-yeast extract medium at 37 °C. It did not produce acid from l-arabinose, d-galactose or d-mannose, nor did it produce 2-keto-d-gluconic acid, 5-keto-d-gluconic acid or 2,5-diketo-d-gluconic acid from d-glucose. It did not grow on ammonium as the sole nitrogen source and ethanol as the sole carbon source. These genotypic and phenotypic data distinguished strain LMG 27439(T) from established species of the genus Acetobacter, and therefore we propose this strain represents a novel species of the genus Acetobacter. The name Acetobacter lambici sp. nov. is proposed, with LMG 27439(T) ( = DSM 27328(T)) as the type strain.

  3. Experiences with preventive procedures application in the process of beer production in Czech Republic

    Directory of Open Access Journals (Sweden)

    Jana Kotovicová

    2011-01-01

    Full Text Available Food-processing industry is an intriguing field regarding prevention procedures application. All food-processing operations have common fundamental spheres of problems – wastewater polluted by organic substances, solid waste of biological origin and losses during source material processing. Beer production process is a representative of food-processing sphere. The brewing industry has an ancient tradition and is still a dynamic sector open to new developments in technology and scientific progress. A case study of beer production in Czech Republic has been performed. During the work on the project, there were utilized methodical procedures of Cleaner Production, best available technologies (BAT utilization and hazard analysis critical control points (HACCP, optimization of final technology operation.

  4. Banana as adjunct in beer production: applicability and performance of fermentative parameters.

    Science.gov (United States)

    Carvalho, Giovani B M; Silva, Daniel P; Bento, Camila V; Vicente, António A; Teixeira, José A; Felipe, Maria das Graças A; Almeida E Silva, João B

    2009-05-01

    Traditionally, the raw materials for beer production are barley, hops, water, and yeast, but most brewers use also different adjuncts. During the alcoholic fermentation, the contribution of aroma compounds from other ingredients to the final beer flavor depends on the wort composition, on the yeast strain, and mainly on the process conditions. In this context, banana can also be a raw material favorable to alcoholic fermentation being rich in carbohydrates and minerals and providing low acidity. In this work, the objective was to evaluate the performance of wort adjusted with banana juice in different concentrations. For this, static fermentations were conducted at 15 degrees C at pilot scale (140 L of medium). The addition of banana that changed the concentration of all-malt wort from 10 degrees P to 12 and 15 degrees P were evaluated ( degrees P is the weight of the extract or the sugar equivalent in 100 g solution, at 20 degrees C). The results showed an increase in ethanol production, with approximately 0.4 g/g ethanol yield and 0.6 g/L h volumetric productivity after 84 h of processing when concentrated wort was used. Thus, it was concluded that banana can be used as an adjunct in brewing methods, helping in the development of new products as well as in obtaining concentrated worts.

  5. Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using "-omics" techniques.

    Science.gov (United States)

    Piddocke, Maya P; Fazio, Alessandro; Vongsangnak, Wanwipa; Wong, Man L; Heldt-Hansen, Hans P; Workman, Chris; Nielsen, Jens; Olsson, Lisbeth

    2011-04-23

    Addition of sugar syrups to the basic wort is a popular technique to achieve higher gravity in beer fermentations, but it results in dilution of the free amino nitrogen (FAN) content in the medium. The multicomponent protease enzyme Flavourzyme has beneficial effect on the brewer's yeast fermentation performance during high gravity fermentations as it increases the initial FAN value and results in higher FAN uptake, higher specific growth rate, higher ethanol yield and improved flavour profile. In the present study, transcriptome and metabolome analysis were used to elucidate the effect on the addition of the multicomponent protease enzyme Flavourzyme and its influence on the metabolism of the brewer's yeast strain Weihenstephan 34/70. The study underlines the importance of sufficient nitrogen availability during the course of beer fermentation. The applied metabolome and transcriptome analysis allowed mapping the effect of the wort sugar composition on the nitrogen uptake. Both the transcriptome and the metabolome analysis revealed that there is a significantly higher impact of protease addition for maltose syrup supplemented fermentations, while addition of glucose syrup to increase the gravity in the wort resulted in increased glucose repression that lead to inhibition of amino acid uptake and hereby inhibited the effect of the protease addition. © 2011 Piddocke et al; licensee BioMed Central Ltd.

  6. Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using "-omics" techniques

    Directory of Open Access Journals (Sweden)

    Workman Chris

    2011-04-01

    Full Text Available Abstract Background Addition of sugar syrups to the basic wort is a popular technique to achieve higher gravity in beer fermentations, but it results in dilution of the free amino nitrogen (FAN content in the medium. The multicomponent protease enzyme Flavourzyme has beneficial effect on the brewer's yeast fermentation performance during high gravity fermentations as it increases the initial FAN value and results in higher FAN uptake, higher specific growth rate, higher ethanol yield and improved flavour profile. Results In the present study, transcriptome and metabolome analysis were used to elucidate the effect on the addition of the multicomponent protease enzyme Flavourzyme and its influence on the metabolism of the brewer's yeast strain Weihenstephan 34/70. The study underlines the importance of sufficient nitrogen availability during the course of beer fermentation. The applied metabolome and transcriptome analysis allowed mapping the effect of the wort sugar composition on the nitrogen uptake. Conclusion Both the transcriptome and the metabolome analysis revealed that there is a significantly higher impact of protease addition for maltose syrup supplemented fermentations, while addition of glucose syrup to increase the gravity in the wort resulted in increased glucose repression that lead to inhibition of amino acid uptake and hereby inhibited the effect of the protease addition.

  7. Exploring the use of natural antimicrobial agents and pulsed electric fields to control spoilage bacteria during a beer production process.

    Science.gov (United States)

    Galvagno, M A; Gil, G R; Iannone, L J; Cerrutti, P

    2007-01-01

    Different natural antimicrobials affected viability of bacterial contaminants isolated at critical steps during a beer production process. In the presence of 1 mg/ml chitosan and 0.3 mg/ml hops, the viability of Escherichia coli in an all malt barley extract wort could be reduced to 0.7 and 0.1% respectively after 2 hour- incubation at 4 degrees C. The addition of 0.0002 mg/ml nisin, 0.1 mg/ml chitosan or 0.3 mg/ml hops, selectively inhibited growth of Pediococcus sp. in more than 10,000 times with respect to brewing yeast in a mixed culture. In the presence of 0.1 mg ml chitosan in beer, no viable cells of the thermoresistant strain Bacillus megaterium were detected. Nisin, chitosan and hops increased microbiological stability during storage of a local commercial beer inoculated with Lactobacillus plantarum or Pediococcus sp. isolated from wort. Pulsed Electric Field (PEF) (8 kV/cm, 3 pulses) application enhanced antibacterial activity of nisin and hops but not that of chitosan. The results herein obtained suggest that the use of these antimicrobial compounds in isolation or in combination with PEF would be effective to control bacterial contamination during beer production and storage.

  8. Stimulation of Egg Production in Japanese Quails by Enriching Feed with Residual Yeast

    Directory of Open Access Journals (Sweden)

    Letitia Oprean

    2010-05-01

    Full Text Available Quail eggs are more and more approved for consumers because they bring many benefits to the human body. Therefore, quails breeding for eggs production have become a very profitable business. Residual yeast may be a nutritional supplement, especially rich in vitamins and proteins. This article studies the influence of residual beer yeast on egg laying in Japanese quails. In order to be integrated into the diet of quails the yeast has undergone a process of autolysis; its influence has been examined on separate groups. The results were reported as a percentage compared with the control group, where the feed does not contain this supplement. Due to its content rich in vitamins and proteins, the residual beer yeast used in feeding the quails bred for eggs stimulates egg laying.

  9. Evaluation of qualitative and quantitative immunoassays to detect barley contamination in gluten-free beer with confirmation using LC/MS/MS.

    Science.gov (United States)

    Allred, Laura K; Sealey Voyksner, Jennifer A; Voyksner, Robert D

    2014-01-01

    To meet the need for the detection and quantitation of barley gluten in beer, qualitative screening and quantitative immunoassays based on the monoclonal antigluten antibody 401/21 (Skerritt) were validated in a single laboratory. Sample replicates were tested at each stage of beer production using multiple yeast strains and methods of end-stage protein removal. Quantitation was performed using barley-specific standards based on barley flour extracts. Immunoassay results were confirmed using LC/MS/MS for barley-specific peptides. The LOD for the qualitative screening test was 5 mg/L barley gluten. Recovery for the barley-spiked worts ranged from 81 to 128% in the quantitative ELISA assay; the LOD was beer.

  10. 27 CFR 25.263 - Production of concentrate and reconstitution of beer.

    Science.gov (United States)

    2010-04-01

    ... and reconstitution of beer. 25.263 Section 25.263 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Beer Concentrate § 25.263 Production of concentrate and reconstitution of beer. (a) Operations at brewery. A brewer may concentrate beer...

  11. 27 CFR 25.157 - Determination of tax on bottled beer.

    Science.gov (United States)

    2010-04-01

    ... bottled beer. 25.157 Section 25.157 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Tax on Beer Determination of Tax § 25.157 Determination of tax on bottled beer. The quantities of bottled beer removed subject to tax shall be computed to...

  12. 27 CFR 25.212 - Beer returned to brewery from which removed.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Beer returned to brewery... TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Beer Returned to Brewery § 25.212 Beer returned to brewery from which removed. If beer on which the tax has been determined or paid is returned to...

  13. 27 CFR 25.15 - Materials for the production of beer.

    Science.gov (United States)

    2010-04-01

    ... production of beer. 25.15 Section 25.15 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Definitions Standards for Beer § 25.15 Materials for the production of beer. (a) Beer must be brewed from malt or from substitutes for malt. Only rice...

  14. 27 CFR 25.156 - Determination of tax on keg beer.

    Science.gov (United States)

    2010-04-01

    ... keg beer. 25.156 Section 25.156 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Tax on Beer Determination of Tax § 25.156 Determination of tax on keg beer. (a) In determining the tax on beer removed in kegs, a barrel is regarded as a...

  15. Nonlinear dynamic phenomena in the beer model

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Laugesen, Jakob Lund

    2007-01-01

    present a formal bifurcation analysis to analyse the complex dynamics produced by the model. Consistent with the rules of the game, the model constitutes a piecewise-linear map with nonlinearities arising from non-negativity constraints. The bifurcations that occur in piecewise-linear systems......The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...... are distinctly different from those observed in smooth systems. We show how the model displays abrupt Hopf and period-doubling bifurcations, truncated bifurcation cascades, and various border-collision bifurcations. The latter allow direct transitions from periodic to chaotic dynamics. Bifurcation phenomena...

  16. Making a frothy shampoo or beer

    Science.gov (United States)

    Durian, Douglas

    2011-03-01

    The terms ``foam'' and ``froth'' refer to a dispersion of gas bubbles in a liquid. Why do certain liquids show a tendency to foam while others do not? For example, bubbles can be produced in pure water by vigorous agitation, but then they rapidly coalesce and disappear. While foams cannot be produced with pure water, foams associated with beer or shampoo can persist for several minutes or even hours. What ingredient(s) in shampoo and beer make their foams stable, and what physical concepts control their stability? In this talk I'll review three basic mechanisms underlying foam stability, and I'll make connection with current research on coarsening by the diffusion of gas from smaller to larger bubbles. With thanks to Srinivasa Raghavan, Adam Roth, and NASA Microgravity Fluid Physics Grant NNX07AP20G.

  17. MODERN PROCESSES AND EQUIPMENT FOR BEER PRODUCTION

    Directory of Open Access Journals (Sweden)

    Yu. I. Sidorov

    2013-04-01

    Full Text Available Modern progress trends of processes of brewing and fermenters for their realization are considered. It is rotined that the today most widespread method of production are speed-up processes on the method of Nathan in one technological stage in one vehicle –cylinder-conical tank — CCT. The next stage of development must be passing to the continuous methods, however these, known enough methods, so far did not find realization. The second directions of development of brewing is distribution of minibrewerys, including restaurant complexes. The basic stimulus of development of this direction is possibility of receipt of the so-called «living» beer — the high-quality unfiltered product, however today large competition make mass productions which mastered the technique of production of «living» beer at industrial level.

  18. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  19. Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid

    OpenAIRE

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-01-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints ar...

  20. A review of flavour formation in continuous beer fermentations

    OpenAIRE

    Brányik, Tomáš; Vicente, A. A.; Dostálek, Pavel; Teixeira, J. A.

    2008-01-01

    The attractive prospect of a continuous beer fermentation system consists mostly of the accelerated transformation of wort into beer. Although continuous beer fermentation has been studied as a promising technology for several decades, the number of industrial applications is still limited. The major obstacle hindering the extensive industrial exploitation of this technology is the difficulty in achieving the correct balance of sensory compounds in the short time typical ...

  1. Codeine-spiked beer in a date rape case?

    Science.gov (United States)

    Havig, Stine Marie; Wiik, Elisabeth; Karinen, Ritva; Brochmann, Gerd Wenche; Vevelstad, Merete

    2016-11-01

    A case of suspected drug-facilitated sexual assault, involving codeine and acetaminophen, possibly mixed in beer, was recently addressed at the Norwegian Institute of Public Health. To examine the case, a small study was performed, spiking beer with preparations containing codeine and acetaminophen and observing the concentrations, appearance, and taste of the solutions. The study revealed the majority of the preparations to be quickly soluble in beer, achieving high concentrations, but at the expense of strong taste and drastic visible changes in the beer.

  2. Predictors of beer advertising awareness among eighth graders.

    Science.gov (United States)

    Collins, Rebecca L; Schell, Terry; Ellickson, Phyllis L; McCaffrey, Daniel

    2003-09-01

    To identify correlates of beer advertising awareness among adolescents at an age when most initiate use of alcohol. We conducted a cross-sectional analysis of an in-school survey about alcohol advertising. Structural equation modeling was used to test for independent predictors of a latent beer advertising awareness construct, separately among boys and girls. Twenty middle schools in South Dakota, USA participated during their spring semester. A total of 1530 eighth graders. A latent advertisement awareness variable was derived based on recognition of six masked beer advertisements, knowledge of beer brands and knowledge of beer slogans. Tested predictors included measures of exposure to alcohol advertising in various venues, social norms regarding drinking, drinking beliefs and behavior and gender. Adolescents with greater exposure to advertisements in magazines, at sporting and music events and on television were more advertisement aware than those with less exposure, as were teens who watch more TV, pay attention to beer advertisements and know adults who drink. Beer advertisement awareness was dramatically higher among boys, and was associated with drinking only among boys. Each of a variety of advertising venues appears to influence independently the extent to which beer advertising is incorporated into an adolescent's cognitive world. Boys are more likely to be aware of and remember beer marketing, and may be more likely to drink as a result of this awareness than girls.

  3. Fate of Mycotoxins during Beer Brewing and Fermentation

    National Research Council Canada - National Science Library

    INOUE, Tomonori; NAGATOMI, Yasushi; UYAMA, Atsuo; MOCHIZUKI, Naoki

    2013-01-01

    ...) during beer brewing was investigated in this study. Malt artificially spiked with each mycotoxin was put through the mashing, filtration, boiling and fermentation processes involved in brewing...

  4. Yeast flocculation: what brewers should know.

    Science.gov (United States)

    Verstrepen, K J; Derdelinckx, G; Verachtert, H; Delvaux, F R

    2003-05-01

    For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.

  5. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    Science.gov (United States)

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  6. Comparison of analytical parameters of beer brewed in two different technological ways at two pub breweries

    OpenAIRE

    Pavel Kryl; Gregor, T; Los, J.

    2012-01-01

    This publication deals with brewing beer by infusion and decoction technologies of mash production in microbreweries. Samples of two microbrewery beers are compared, namely Richard beer (Brno-Žebětín) produced in a double mash manner appropriate for the Czech brewing type, and beer samples taken at the laboratory microbrewery of Mendel University in Brno (MENDELU), where beer is produced in a simpler and less energy – demanding infusion method. At all the beer samples the basic analytical par...

  7. Towards a sensory congruent beer bottle: Consumer associations between beer brands, flavours, and bottle designs

    NARCIS (Netherlands)

    Fenko, Anna; Heiltjes, Sanne; van den Berg-Weitzel, Lianne; Lloyd, Peter; Bohemia, Erik

    2016-01-01

    Sensory packaging design congruent with product and brand characteristics may be used as an innovative tool to communicate product and brand values to consumers and to enhance taste experience. This study investigated whether consumers associate sensory properties of beer bottles with certain brand

  8. Beer, wood, and welfare - The impact of improved stove use among dolo-beer breweries

    NARCIS (Netherlands)

    M. Grimm (Michael); J. Peters (Jörg)

    2015-01-01

    textabstractLocal beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households

  9. Biotechnological production of non-traditional beer

    Science.gov (United States)

    Parise, Adadi; Kovaleva, Elena G.; Glukhareva, Tatiana V.; Shatunova, Svetlana A.

    2017-09-01

    In the present study we brewed sorghum (pito) and low-alcoholic beer (LAB) utilizing Sacharomyces cerevisiae, Lactobacillus plantarum and Saccharomycodes ludwigii as starters, respectively, and characterized their quality parameters. Single infusion method of mashing was practiced. Physiochemical, sensory and antiradical properties of samples were determined. Pito was produced by pitching wort with S. cerevisae (single starter culture (SSC)) and S. cerevisae in combination with L. plantarum (mixed starter culture (MSC)). oBrix did not change over the next 24 hours for both cultures and began to decline, yet still it remain steady when the fermentation was over. After the end of fermentation, wort pitched with SSC showed lower oBrix (6.63±0.11), than the wort with MSC (6.73±0.20) and differ significantly (P < 0.05) with duration of the fermentation process. LAB also exhibited a decrease in oBrix from 12.2±0.12 to 8.04±0.01 at the end of the fermentation. Titratable acidity (TA) and pH remained constant after 24 hours of fermentation. TA began to increase from 0.73±0.02 to 1.04±0.02 and 0.73±0.02 to 1.07±0.02 for SSC and MSC, respectively. A decrease in pH from 4.33±0.20 to 3.86±0.15 and 4.33±0.20 to 4.2±0.1 was observed for SSC and MSC, respectively, during the rest of the fermentation period. A total of 22 volatile compounds including 11 esters, 3 alcohols and 8 acids, were identified in pito. Seven of these compounds were detected after the first fermentation (in green beer), whilst the rest (16 compounds) were distinguish after secondary fermentation. We also identified 8 volatiles in LAB, including 5 alcohols, 2 esters and 1 acid. Electron paramagnetic resonance spectroscopy of free radicals was used to determine the antiradical activity (AOA) of LAB in comparison with industrial alcoholic beverages (Baltica 7 from St Petersburg, Russia and Nectar beer from Bosnia-Herzegonia). LAB showed DPPH radical scavenging activity of 1.16 ×10-4 mol × equ (R2

  10. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  11. Improving industrial yeast strains: exploiting natural and artificial diversity

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  12. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    Science.gov (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  13. Transcriptome analysis of beer-spoiling Lactobacillus brevis BSO 464 during growth in degassed and gassed beer.

    Science.gov (United States)

    Bergsveinson, Jordyn; Friesen, Vanessa; Ziola, Barry

    2016-10-17

    Lactobacillus brevis BSO 464 (Lb464) is a beer-spoilage-related (BSR) isolate of interest given its unique physiological attributes; specifically, it is highly hop-tolerant and exhibits very rapid growth in pressurized/gassed beer. RNA sequencing was performed on Lb464 grown in pressurized and non-pressurized beer to determine important genetic mechanisms for growth in these environments. The data generated were compared against data in a previous transcriptional study of another lactic acid bacterium (LAB) during growth in beer, namely, Pediococcus claussenii ATCC BAA-344(T) (Pc344). Results revealed that the most important genetic elements for Lb464 growth in beer are related to biogenic amine metabolism, membrane transport and fortification, nutrient scavenging, and efficient transcriptional regulation. Comparison with the previous transcriptional study of Pc344 indicated that the total coding capacity (plasmid profile and genome size) of a LAB isolate allows for beer-spoilage virulence and adaptation to different beer environments, i.e., the ability to grow in degassed beer (during production) or gassed beer (packaged product). Further, differences in gene expression of Lb464 and Pc344 during mid-exponential growth in beer may dictate how rapidly each isolate exhausts particular carbon sources during. The presence of headspace pressure/dissolved CO2 was found to drive Lb464 transcription during mid-exponential growth in beer towards increasing cell wall and membrane modification, transport, osmoregulation, and DNA metabolism and transposition events. This transcriptional activity resembles transcriptional patterns or signatures observed in a viable, but non-culturable state established by non-related organisms, suggesting that Lb464 overall uses complex cellular regulation to maintain cell division and growth in the stressful beer environment. Additionally, increased expression of several hypothetical proteins, the hop-tolerance gene horC, and DNA repair and

  14. Music Influences Hedonic and Taste Ratings in Beer.

    Science.gov (United States)

    Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles

    2016-01-01

    The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience.

  15. Extracts of medicinal plants as functional beer additives

    Directory of Open Access Journals (Sweden)

    Đorđević Sofija

    2016-01-01

    Full Text Available This paper is based on determining the level of the antioxidant activity of beer, to which sensory acceptable amounts of selected extracts of medicinal plants were added, with the aim of obtaining a beer with increased functional and new sensory features. For purposes of this study a commercial lager beer type Pils and extracts of herbal drugs: Melissae folium, Thymi herba, Juniperi fructus, Urticae radix and Lupuli strobuli, were used. Total phenols were analyzed by the method of Folin-Ciocalteu, and the antioxidant activity of samples using FRAP and DPPH test. Sensory evaluation of beer was conducted on 80 subjects, using a nine levels hedonic scale. The results showed that the content of total phenols was the highest in the beer which thyme, juniper and lemon balm were added to (384.22, 365.38 and 363.08 mg GAE/L, respectively, representing the increase of 37.09, 30.36 and 29.55% (respectively compared to the commercial lager beer. Values of antioxidant activity were correlated with the content of total phenols. The extract of lemon balm blended in the best manner with the baseline, commercial lager beer in terms of sensory acceptability. New beer, enriched with lemon balm, had a pleasant, appealing and harmonious flavor and aroma.

  16. Beer consumption and premature mortality in Louisiana: an ecologic analysis.

    Science.gov (United States)

    Cohen, Deborah A; Mason, Karen; Farley, Thomas A

    2004-05-01

    This study was conducted to determine whether beer consumption is associated with premature mortality across municipalities in Louisiana. We conducted a cross-sectional ecologic study using tax data on the sales of beer and mortality data from Louisiana. We aggregated deaths that occurred before the age of 65 to the level of the municipality and calculated age-adjusted rates of both overall premature mortality and specific causes of premature mortality that may be related to alcohol. After controlling for potential confounders including population distributions for race, income, employment and education, we examined whether beer sales were independently associated with premature mortality rates due to homicides, unintentional injuries, other acute alcohol-related causes, liver diseases, cardiovascular disease and other chronic alcohol-related causes. After controlling for race and socioeconomic status, municipalities with greater beer consumption had higher premature mortality, with the model explaining up to 24% of all premature deaths. Beer consumption was also independently associated with homicide, liver diseases and cardiovascular disease. Neither unintentional injuries nor other chronic alcohol-related causes of mortality were significantly associated with beer consumption. The population-level association between beer consumption and mortality may reflect population-level determinants of beer consumption as well as indirect health effects of alcohol consumption on persons who are not heavy drinkers.

  17. Inhibition of cholinesterases by phenolic acids detected in beer: A ...

    African Journals Online (AJOL)

    ... and the interactive index of combination. These results support the idea that simple phenolic acids from beer can play a role in neuroprotection, but further studies need to be conducted. Keywords: Acetylcholinesterase, Alzheimer's disease, beer, butyrylcholinesterase, phenolic acids. African Journal of Biotechnology Vol.

  18. Drug use among people who patronize beer parlours: The function ...

    African Journals Online (AJOL)

    This study investigates big five personality factors and self-monitoring as predictors of drug use among people who patronize beer parlours within Ibadan metropolis. The study adopted expost facto design. Two hundred and twenty eight (228) people who patronize beer parlours were sampled using purposive sampling ...

  19. Music Influences Hedonic and Taste Ratings in Beer

    Science.gov (United States)

    Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles

    2016-01-01

    The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience. PMID:27199862

  20. Review of hypotheses for fouling during beer clarification using membranes

    NARCIS (Netherlands)

    Mepschen, A.; Sman, van der R.G.M.; Vollebregt, H.M.; Noordman, T.R.

    2012-01-01

    Hypotheses concerning the fouling of membranes during beer clarification via crossflow microfiltration are reviewed. Beer has been classified into three groups of components, each having a different kind of fouling mechanisms – but also having interactions with other modes of fouling. The membrane

  1. Carcinogenic nitrosamines in traditional beer as the cause of ...

    African Journals Online (AJOL)

    the 1930s the annual frequency rose. A dietary cause was sought, the staple diet of black people having changed from sorghum to maize. (corn), with traditional beer being brewed from maize. Carcinogenic N-nitrosamines in traditional beer were suggested as a cause of SCC of the oesophagus, with Fusarium moniliforme, ...

  2. Music influences hedonic and taste ratings in beer

    Directory of Open Access Journals (Sweden)

    Felipe eReinoso Carvalho

    2016-05-01

    Full Text Available The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231. The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song.In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting.These results provide support for the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food events. Here we also suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction towards a song can have for the ensuing tasting experience.

  3. Analysis of changes tendency on the polish beer market

    National Research Council Canada - National Science Library

    Zbigniew Gołaś; Mariusz Ścibek

    2010-01-01

    The article shows the analysis of Polish beer market in progress. On the basis of the carried out research it can be stated that Polish beer industry can be rated as one of the most modern hi-tech in the world...

  4. Preference shifts in the demand for wine and beer

    NARCIS (Netherlands)

    Butter, F.A.G. den; Delifotis, A.; Koning, Ruud H.

    1997-01-01

    Preference shifts in the demand for wine and beer are empirically investigated for Germany, the Netherlands, France, and Italy. With the rise in disposable income we see a shift from the demand for beer to the demand for wine notably in the Netherlands and somewhat less clearly in Germany, and a

  5. Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions.

    Science.gov (United States)

    Hiralal, Lettisha; Olaniran, Ademola O; Pillay, Balakrishna

    2014-01-01

    A broad range of aroma-active esters produced during fermentation are vital for the complex flavour of beer. This study assessed the influence of fermentation temperature, pH, and wort nutritional supplements on the production of yeast-derived ester compounds and the overall fermentation performance. The best fermentation performance was achieved when wort was supplemented with 0.75 g/l l-leucine resulting in highest reducing sugar and FAN (free amino nitrogen) utilization and ethanol production. At optimum fermentation pH of 5, 38.27% reducing sugars and 35.28% FAN was utilized resulting in 4.07% (v/v) ethanol. Wort supplemented with zinc sulphate (0.12 g/l) resulted in 5.01% ethanol (v/v) production and 54.32% reducing sugar utilization. Increase in fermentation temperature from 18°C to room temperature (± 22.5°C) resulted in 17.03% increased ethanol production and 14.42% and 62.82% increase in total acetate ester concentration and total ethyl ester concentration, respectively. Supplementation of worth with 0.12 g/l ZnSO4 resulted in 2.46-fold increase in both isoamyl acetate and ethyl decanoate concentration, while a 7.05-fold and 1.96-fold increase in the concentration of isoamyl acetate and ethyl decanoate, respectively was obtained upon 0.75 g/l l-leucine supplementation. Wort supplemented with l-leucine (0.75 g/l) yielded the highest beer foam head stability with a rating of 2.67, while highest yeast viability was achieved when wort was supplemented with 0.12 g/l zinc sulphate. Results from this study suggest that supplementing wort with essential nutrients required for yeast growth and optimizing the fermentation conditions could be an effective way of improving fermentation performance and controlling aroma-active esters in beer. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer.

    Science.gov (United States)

    Redruello, Begoña; Ladero, Victor; Del Rio, Beatriz; Fernández, María; Martin, M C; Alvarez, Miguel A

    2017-02-15

    This paper reports a novel UHPLC method for simultaneously quantifying nine biogenic amines, 21 amino acids, and ammonium ions, in beer. Precision values of standard curves slopes were lower than 3.4% and recovery was between 85% and 106%, indicating the absence of matrix effect. Linear calibration curves were obtained for analyte concentrations between two and four orders of magnitude (R(2)>0.996). Repeatability tests returned mean variations of 3.2% and 0.5% for beer and a standard solution, respectively. Sensitivity ranged between 0.03mg/L and 0.63mg/L for the biogenic amines, and 0.05mg/L and 5.19mg/L for other compounds. Original data on the habitual presence of ethanolamine in beers are presented. The method allows for more samples to be assayed per unit time, it uses less solvent than other techniques and therefore reduces costs and the associated waste. It could be a valuable tool for monitoring the safety and quality of beers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of Environmental Stress Factors and Recycling on the Lipid Composition of Brewer’s Yeast Mitochondria

    Directory of Open Access Journals (Sweden)

    Gordana Čanadi Jurešić

    2017-10-01

    Full Text Available The aim of this study was to investigate alterations in the content and composition of mitochondrial lipids of brewer’s yeast, which occur during brewing and repetitive recycling. The bottom-fermenting brewer’s yeast of Saccharomyces cerevisiae species obtained from industrial beer production was used throughout the study. The first three generations of recycled yeast were analysed. Differences between the generations were more pronounced in the phospholipid and neutral lipid composition than in fatty acid composition. Squalene was present in all generations in high concentrations. The results give insight into the response of yeast cells to stress factors and recycling.

  8. Sulfites in beer: reviewing regulation, analysis and role

    Directory of Open Access Journals (Sweden)

    Luis F. Guido

    2016-04-01

    Full Text Available ABSTRACT Beer is an extremely complex mixture of more than 3,000 different compounds in an aqueous environment. Thus, it is perhaps not surprising that the maintenance of beer quality throughout its lifetime has been a considerable challenge for brewers. Whilst it is inevitable that chemical changes will occur in beer with the passage of time, it is the formation of flavor-active components which is of immediate concern to an overview of beer shelf life stability. Sulfur dioxide has long been recognized by brewers as the most important factor in delaying flavor staling, and prolonging the shelf life of beer. However, nowadays, sulfur dioxide and sulfites are considered allergens and concerns about the safety of their use as food additives have been on the increase. The present review is structured into three main parts. Firstly, the chemical properties of sulfur dioxide are presented, along with the toxic effects and maximum legal levels permitted according to U.S. and EU legislation. As the accurate determination of the free, bound and total sulfur dioxide in beer is essential to ensuring regulatory compliance, several methods have been developed for analyzing sulfur dioxide in beer. Thus, secondly, various types of methods are reported and compared with the officially recommended ones. Finally, the crucial role of sulfite in the control of flavor instability of beer is discussed in light of the current data. Two courses of action have been proposed, which are elucidated in detail relating firstly to the fact that sulfite inhibits beer oxidation during storage by acting as an antioxidant and, secondly, sulfite reacts with the carbonyl staling compounds in beer, and thereby masks stale flavors.

  9. Uncovering patterns of consumers' interest for beer: A case study with craft beers.

    Science.gov (United States)

    Donadini, Gianluca; Porretta, Sebastiano

    2017-01-01

    To uncover patterns of consumer interest in craft beers, the authors explored the quality perception of craft beers in a panel of industrial mass-marketed beer drinkers (n=150) and examined the differences in interest for this beer segment between men and women. The authors adopted a conjoint rating experiment in which the respondents were given forty-nine beer profiles to evaluate and were asked to score the degree of interest in each profile on a 9-point scale. Each profile was described on eight attributes (type of brewery, brewing technology, characterizing raw materials, brewhouse equipment, location of the brewery, type of container, retail price, where to buy) varied at different levels. Results showed that Italian consumers placed greatest importance on type of container (30.49%) and on brewing technology (17.64%). Characterizing raw materials (13.44%) and type of brewery (12.64) rank 3 and 4 and were placed in the same band some way below brewing technology. Retail price (9.87%) and where to buy (8.73%) were of far less importance. The least importance of all was attached to brewhouse equipment (4.44%) and to location of the brewery (2.75%). As far as utility values are concerned, the factor level glass bottle+crown cap and the factor level microfiltration are the utilities that most increased the interest of consumers. They were followed by the factor level local grains, stainless steel keg and monastery. In contrast, the factor level PET Keg, aluminum can and large scale corporate brewery showed the greatest negative impact on interest. Men and women shared similar patterns of interest. However, men placed more importance than women on retail price, location of the brewery and where to buy. Women attached more importance than men on type of container, brewing technology and type of brewer. These findings are relevant to understanding consumers'behavior in the beer market and to translating consumer needs, wants and expectations into manufacturing

  10. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  11. Cytosolic localization of acetohydroxyacid synthase Ilv2 and its impact on diacetyl formation during beer fermentation.

    Science.gov (United States)

    Dasari, Suvarna; Kölling, Ralf

    2011-02-01

    Diacetyl (2,3-butanedione) imparts an unpleasant "butterscotch-like" flavor to alcoholic beverages such as beer, and therefore its concentration needs to be reduced below the sensory threshold before packaging. We examined the mechanisms that lead to highly elevated diacetyl formation in petite mutants of Saccharomyces cerevisiae during beer fermentations. We present evidence that elevated diacetyl formation is tightly connected to the mitochondrial import of acetohydroxyacid synthase (Ilv2), the key enzyme in the production of diacetyl. Our data suggest that accumulation of the matrix-targeted Ilv2 preprotein in the cytosol is responsible for the observed high diacetyl levels. We could show that the Ilv2 preprotein accumulates in the cytosol of petite yeasts. Furthermore, expression of an Ilv2 variant that lacks the N-terminal mitochondrial targeting sequence and thus cannot be imported into mitochondria led to highly elevated diacetyl levels comparable to a petite strain. We further show that expression of a mutant allele of the γ-subunit of the F(1)-ATPase (ATP3-5) could be an attractive way to reduce diacetyl formation by petite strains.

  12. 27 CFR 31.152 - Requirements as to wines and beer.

    Science.gov (United States)

    2010-04-01

    ... and beer. 31.152 Section 31.152 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Dealers' Records and Reports § 31.152 Requirements as to wines and beer. Every wholesale dealer in liquors who receives wines, or wines and beer, and every wholesale dealer in beer must keep at the dealer's...

  13. 27 CFR 25.192 - Removal of sour or damaged beer.

    Science.gov (United States)

    2010-04-01

    ... beer. 25.192 Section 25.192 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Removals Without Payment of Tax Removal of Beer Unfit for Beverage Use § 25.192 Removal of sour or damaged beer. (a) Containers. The brewer shall remove sour or...

  14. 27 CFR 31.75 - Dealer in beer and dealer in liquors at the same location.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dealer in beer and dealer... Subject to Registration § 31.75 Dealer in beer and dealer in liquors at the same location. Any person who registers as a wholesale dealer in beer or retail dealer in beer and who thereafter begins to sell distilled...

  15. 27 CFR 27.75 - Samples of distilled spirits, wine, and beer for quality control purposes.

    Science.gov (United States)

    2010-04-01

    ... spirits, wine, and beer for quality control purposes. 27.75 Section 27.75 Alcohol, Tobacco Products and... DISTILLED SPIRITS, WINES, AND BEER General Requirements Exemptions § 27.75 Samples of distilled spirits, wine, and beer for quality control purposes. Samples of distilled spirits, wine, and beer in containers...

  16. 27 CFR 25.223 - Destruction of beer off brewery premises.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Destruction of beer off... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Voluntary Destruction § 25.223 Destruction of beer off brewery premises. (a) Destruction without supervision. A brewer may destroy beer without...

  17. 27 CFR 26.105 - Prepayment of tax-release of beer.

    Science.gov (United States)

    2010-04-01

    ... of beer. 26.105 Section 26.105 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Beer § 26.105 Prepayment of tax—release of beer. (a) Action by brewer. Where the beer is to be withdrawn from bonded storage after payment of the...

  18. 27 CFR 25.213 - Beer returned to brewery other than that from which removed.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Beer returned to brewery... AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Beer Returned to Brewery § 25.213 Beer returned to brewery other than that from which removed. (a) Refund or adjustment of tax...

  19. Exploring Low Alcohol Beer Consumption Among College Students: Implications for Drunk Driving.

    Science.gov (United States)

    Russ, Nason W.; Geller, E. Scott

    1988-01-01

    When given a "blind" taste test prior to a party, college students (N=137) showed no clear preference for Budweiser beer, Bud Light, or low-alcohol beer, but later drank significantly less low-alcohol beer. It was concluded that without improved marketing intervention, low-alcohol beer will not impact on drunk driving among college…

  20. Effect of beer drinking on ultrasound bone mass in women.

    Science.gov (United States)

    Pedrera-Zamorano, Juan D; Lavado-Garcia, Jesus M; Roncero-Martin, Raul; Calderon-Garcia, Julian F; Rodriguez-Dominguez, Trinidad; Canal-Macias, Maria L

    2009-10-01

    To study the effect of beer consumption on bone mass in a group of healthy women, by using phalangeal bone ultrasound to evaluate the amplitude-dependent speed of sound. This was a cross-sectional study of 1697 healthy women (mean age 48.4 y, body mass index (BMI) 19.0-32.0 kg/m(2)), recruited in a clinical convenience sample and screened for the existence of disease and/or medication that would affect calcium metabolism. Of this total, 710 were premenopausal, 176 were perimenopausal, and 811 were postmenopausal. The women recruited completed a questionnaire that contained detailed sections on current cigarette, alcohol, caffeine, and nutrient consumption. In terms of current alcohol intake, the subjects were classified as moderate drinkers, light drinkers, and nondrinkers. Drinkers were also analyzed according to the kind of alcohol consumed: wine or beer. Quantitative bone ultrasound values were greater in the beer drinkers compared with the no beer and/or wine drinkers. Taking the amplitude-dependent speed of sound as a dependent variable, and age, BMI, gonadal status, intake of beer and wine, and number of cigarettes per day as independent variables, we found age (beta = -1.52), BMI (beta = -3.86), gonadal status (beta = -27.47), and beer intake (beta = 1.06) to be significant. The greater bone density found in women beer drinkers might be a result of the phytoestrogen content of this alcoholic drink; this requires further investigation.

  1. Structure, dynamics and directions of changes on the world beer market

    OpenAIRE

    Zbigniew Gołaś; Mariusz Ścibek

    2009-01-01

    The report shows the results of analysis of a structure and dynamics of changes in the world beer market. In the article there are analysed production and sale of beer, the beer foreign trade, brands and consumption of beer in years 1999-2004. The research carried out shows that Europe plays the major role in the world beer production, it is the region of the biggest beer tradition in the world. However, the market leader position belongs to China, which in case of beer production has already...

  2. Optimal temperature control for batch beer fermentation.

    Science.gov (United States)

    Gee, D A; Ramirez, W F

    1988-02-20

    Optimal control theory was applied to the process of batch beer fermentation. The performance functional considered was a weighted sum of maximum ethanol production and minimum time. Calculations were based on the model of Engasser et al. modified to include temperature effects. Model parameters were determined from isothermal batch fermentations. The fermentor cooling duty was the single available control. Temperature state variable constraints as well as control variable constraints were considered. The optimal control law is shown to be bang-bang control with the existence of a singular arc corresponding to isothermal operation at the maximum temperature constraint. An iterative algorithm is presented for computing appropriate switching times using a penalty-function-augmented performance functional.

  3. Electrospray mass spectrometry characterization of post-translational modifications of barley alpha-amylase 1 produced in yeast

    DEFF Research Database (Denmark)

    Søgaard, M; Andersen, Jens S.; Roepstorff, P

    1993-01-01

    We have used electrospray mass spectrometry (ESMS) in combination with protein chemistry and genetics to delineate post-translational modifications in yeast of barley alpha-amylase 1 (AMY1), a 45 kD enzyme crucial for production of malt, an important starting material in the manufacture of beer...

  4. Vaginal Yeast Infections

    Science.gov (United States)

    ... Yeast Infections Print A A A en español Infecciones vaginales por hongos What Are Vaginal Yeast Infections? ... keep the amount in a person's body under control. But yeast in the vagina can sometimes "overgrow" ...

  5. Yeast Infection (Vaginal)

    Science.gov (United States)

    ... vaginal discharge with a cottage cheese appearance Complicated yeast infection You might have a complicated yeast infection ... have an uncomplicated or a complicated infection. Uncomplicated yeast infection For mild to moderate symptoms and infrequent ...

  6. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material.

    Science.gov (United States)

    Steiner, Elisabeth; Auer, Andrea; Becker, Thomas; Gastl, Martina

    2012-03-15

    Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. The quality attributes of barley, malt, kettle-full-wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two-dimensional polyacrylamide gel electrophoresis was used. It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry.

  7. Chinese consumers and European beer: Associations between attribute importance, socio-demographics, and consumption

    OpenAIRE

    Wang, Ou; Gellynck, Xavier; Verbeke, Wim

    2017-01-01

    The demand for western alcoholic beverages in China has increased tremendously in recent years. However, there is still a lack of understanding with regard to the behaviour of Chinese consumers towards European beer, which is a common western alcoholic beverage. This study explores associations between beer attribute importance scores, socio-demographic factors, general beer consumption frequency and country associations of European beer, and the consumption of imported European beer in China...

  8. Hops (Humulus lupulus) Content in Beer Modulates Effects of Beer on the Liver After Acute Ingestion in Female Mice.

    Science.gov (United States)

    Landmann, Marianne; Sellmann, Cathrin; Engstler, Anna Janina; Ziegenhardt, Doreen; Jung, Finn; Brombach, Christine; Bergheim, Ina

    2017-01-01

    Using a binge-drinking mouse model, we aimed to determine whether hops (Humulus lupulus) in beer is involved in the less damaging effects of acute beer consumption on the liver in comparison with ethanol. Female C57BL/6 J mice were either fed one iso-alcoholic and iso-caloric bolus dose of ethanol, beer, beer without hops (6 g ethanol/kg body weight) or an iso-caloric bolus of maltodextrin control solution. Markers of steatosis, intestinal barrier function, activation of toll-like receptor 4 signaling cascades, lipid peroxidation and lipogenesis were determined in liver, small intestine and plasma 2 h and 12 h after acute alcohol ingestion. Alcohol-induced hepatic fat accumulation was significantly attenuated in mice fed beer whereas in those fed beer without hops, hepatic fat accumulation was similar to that found in ethanol-fed mice. While markers of intestinal barrier function e.g. portal endotoxin levels and lipogenesis only differed slightly between groups, hepatic concentrations of myeloid differentiation primary response gene 88, inducible nitric oxide synthase (iNOS) and plasminogen-activator inhibitor 1 protein as well as of 4-hydroxynonenal and 3-nitrotyrosine protein adducts were similarly elevated in livers of mice fed ethanol or beer without hops when compared with controls. Induction of these markers was markedly attenuated in mice fed hops-containing beer. Taken together, our data suggest that hops in beer markedly attenuated acute alcohol-induced liver steatosis in female mice through mechanisms involving a suppression of iNOS induction in the liver. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  9. Development of detection medium for hard-to-culture beer-spoilage lactic acid bacteria.

    Science.gov (United States)

    Suzuki, K; Asano, S; Iijima, K; Kuriyama, H; Kitagawa, Y

    2008-05-01

    To develop a detection medium for hard-to-culture beer-spoilage lactic acid bacteria (LAB). Four hard-to-culture beer-spoilage strains of LAB, belonging to Lactobacillus paracollinoides and Lactobacillus lindneri, have been obtained by repeatedly subculturing the wild-type strains in beer. To develop a countermeasure against these hard-to-culture beer-spoilage LAB, a beer-based medium was modified. As a consequence, the supplementation of a small amount of de Man Rogosa Sharpe medium was found to enhance the growth of hard-to-culture beer-spoilage LAB strains obtained in this study. In addition, sodium acetate was shown to improve the selectivity of this beer-based medium. Further comparative study was performed with five other media widely used for the detection of beer-spoilage LAB in the brewing industry. This study revealed that the newly developed medium, designated advanced beer-spoiler detection (ABD) medium, possessed superior sensitivity for hard-to-culture beer-spoilage LAB and comparable sensitivity with easy-to-culture beer-spoilage LAB. Moreover, ABD medium was found to suppress the growth of nonspoilage micro-organisms, and thereby allow the selective growth of beer-spoilage LAB. Advanced beer-spoiler detection medium is considered as an effective tool for comprehensive detection of beer-spoilage LAB in breweries. The detection by ABD medium can be used as an indicator for differentiating the beer-spoilage ability of LAB without further confirmatory tests in breweries.

  10. Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability.

    Science.gov (United States)

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro; Ogushi, Kensuke

    2015-04-01

    Foam stability is a key factor of beer quality for consumers and brewers. Recent beer proteome analyses have suggested that barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) derived from barley are important for beer foam stability. In this study, BDAI-1 and ALP were purified from a Japanese commercial beer sample using salt precipitation and column chromatography. The purification level was verified using two-dimensional gel electrophoresis, mass spectrometry, and database searches. Purified BDAI-1 and ALP were added to a beer sample to compare the foam stability to that of a control beer sample. As a result, beer foam stability was significantly improved by BDAI-1 but not by ALP, thereby suggesting that BDAI-1 affects beer foam stability whereas ALP does not. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Predictive Model of Energy Consumption in Beer Production

    National Research Council Canada - National Science Library

    Tiecheng Pu; Jing Bai

    2013-01-01

    ...) in the beer production. Using the subtractive clustering on the historical data of energy consumption, the limit of artificial experience is conquered while confirming the number of fuzzy rules...

  12. Amylolytic fungi in starter cakes for rice beer production

    National Research Council Canada - National Science Library

    Das, Arup Jyoti; Miyaji, Tatsuro; Deka, Sankar Chandra

    2017-01-01

    Two types of starter cakes, viz. amou and perok-kushi, used in the production of rice beer in Assam, India, by the Bodo and Deori communities, respectively, were used for the isolation of amylolytic fungi...

  13. Influence of catalyst (Yeast) on the Biomethanization of Selected ...

    African Journals Online (AJOL)

    Yeast catalyzed the rate of biomethanization of waste materials and rate at which it alter the reaction rate has been determined. It was observed that addition of yeast improved the quality and quantity of biogas generated and also fastened the acid and methane forming stages during biomethanization. The volumes of ...

  14. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... has been Saccharomyces cerevisiae. This yeast also has the ability to produce ethanol which is not contaminated by other products from the substrate. Banana peels are readily available agricultural waste in. Nigeria, yet they seem to be underutilized as potential growth medium for local yeast strains, ...

  15. Beer elicits vasculoprotective effects through Akt/eNOS activation.

    Science.gov (United States)

    Vilahur, Gemma; Casani, Laura; Mendieta, Guiomar; Lamuela-Raventos, Rosa M; Estruch, Ramon; Badimon, Lina

    2014-12-01

    There is controversy regarding the effect of alcohol beverage intake in vascular vasodilatory function in peripheral arteries. The effects of beer intake in coronary vasodilation remain unknown. We investigated whether regular beer intake (alcohol and alcohol-free) protects against hypercholesterolaemia-induced coronary endothelial dysfunction and the mechanisms behind this effect. Pigs were fed 10 days: (i) a Western-type hypercholesterolaemic diet (WD); (ii) WD+low-dose beer (12·5 g alcohol/day); (iii) WD+moderate-dose beer (25 g alcohol/day); or (iv) WD+moderate-dose alcohol-free-beer (0·0 g alcohol/day). Coronary responses to endothelium-dependent vasoactive drugs (acetylcholine: receptor mediated; calcium ionophore-A23189: nonreceptor mediated), endothelium-independent vasoactive drug (SNP) and L-NMMA (NOS-antagonist) were evaluated in the LAD coronary artery by flow Doppler. Coronary Akt/eNOS activation, MCP-1 expression, oxidative DNA damage and superoxide production were assessed. Lipid profile, lipoproteins resistance to oxidation and urinary isoxanthohumol concentration were evaluated. Alcoholic and nonalcoholic beer intake prevented WD-induced impairment of receptor- and non-receptor-operated endothelial-dependent coronary vasodilation. All animals displayed a similar vasodilatory response to SNP and L-NMMA blunted all endothelial-dependent vasorelaxation responses. Haemodynamic parameters remained unchanged. Coronary arteries showed lower DNA damage and increased Akt/eNOS axis activation in beer-fed animals. Animals taking beer showed HDL with higher antioxidant capacity, higher LDL resistance to oxidation and increased isoxanthohumol levels. Weight, lipids levels, liver enzymes and MCP-1 expression were not affected by beer intake. Non-alcoholic-related beer components protect against hyperlipemia-induced coronary endothelial dysfunction by counteracting vascular oxidative damage and preserving the Akt/eNOS pathway. Light-to-moderate beer

  16. DIAGNOSIS OF RISK FACTORS FOR BEER DEPENDENCE IN YOUNG PEOPLE

    Directory of Open Access Journals (Sweden)

    G. A. Novikova

    2017-10-01

    Full Text Available In the article the approach to identification of factors influencing beer consumption by young people. Describes the author’s methodology, identifying biological, social, psychological, pedagogical and economic risk factors of development of beer dependence in young people. The data obtained using the proposed methodology can be used to identify risk groups according to the dependent behavior and planning of preventive measures.

  17. Slow-light enhancement of Beer-Lambert-Bouguer absorption

    DEFF Research Database (Denmark)

    Mortensen, Asger; Xiao, Sanshui

    2007-01-01

    We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measureme......We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption...

  18. Analysis of anions in beer using ion chromatography

    OpenAIRE

    Bruce, Jonathan

    2002-01-01

    The majority of anions found in beer are a consequence of impurities derived from the water used during the brewing process. The process of beer manufacture consists of malting, brewing and fermentation followed by maturation before filtration and finally storage. Strict quality control is required because the presence of certain anions outside strictly defined tolerance limits can affect the flavour characteristics of the finished product. The anions present were quantified using the techniq...

  19. Branding and Performance in the Global Beer Market

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer

    The mass market for beers is served by a few global breweries in an oligopoly structure covering most of the world market. The homogeneity of their main lager beers are very high and produced at large scaled plants at low costs. However, the breweries spend large amounts of money to promote some ...... and relate it to the rapid change in the oligopoly structure of the market through the merger and acquisition activities....

  20. Croatian fan scene: Football in television beer commercials

    OpenAIRE

    Biti Ozren

    2016-01-01

    In this paper attention is given to the mutual synergy between sports, commercials and alcohol. Therefore, we approach the research topic specified in the title with regards to the cultural history of football and beer, the functioning of the commercial industry within consumer culture and the structural practices of consuming football and beer trough which, at specific places and in special occasions, masculinity is performed. This research relies primaril...

  1. Craft Beer in the US: A Production of Culture Perspective

    OpenAIRE

    Chapman, Nathaniel Gray

    2015-01-01

    In this dissertation I use the production of culture perspective as a lens to analyze the emergence of craft beer in the US. In doing so, I examine how the six facets of the production of culture perspective have both constrained and stimulated the production of craft beer in the US. The six facets of the production of culture perspective are: law and regulation, industry structure, organizational structure, markets, technology, and occupational careers. These six facets, in concert, allowed ...

  2. Toxicity profile of commercially produced indigenous banana beer.

    Science.gov (United States)

    Shale, K; Mukamugema, J; Lues, R J; Venter, P

    2012-08-01

    Mycotoxins, together with endotoxins, represent important classes of naturally occurring contaminants in food products, posing significant health risks to consumers. The aim of this study is to investigate the occurrence of both Fusarium mycotoxins and endotoxins in commercially produced traditional banana beer. Two brands of commercially produced traditional banana beer were collected from a local retail market in Kigali, Rwanda. Beer samples were analysed for the presence of deoxynivalenol (DON), fumonisin B₁ and zearalenone (ZEA), using an enzyme-linked immuno-sorbent assay (ELISA) method. The quantification of bacterial endotoxin using Limulus amoeboecyte lysate (LAL) assay was also conducted. The contamination levels were 20 and 6.7 µg kg⁻¹ for DON; 34 and 31.3 µg kg⁻¹ for FB₁; 0.66 and 2.2 µg kg⁻¹ for ZEA in brands A and B of the beers, respectively. Results indicate that the levels of Fusarium toxins and bacterial endotoxin reported in this study did not pose adverse human health effects as a result of drinking/consuming banana beer. However, exposure to low/sub-threshold doses or non-toxic levels of endotoxins magnifies the toxic effect of xenobiotic agents (e.g. fungal toxins) on liver and other target organs. Considering Fusarium toxins and/or endotoxin contamination levels in other agricultural commodities intended for human consumption, health risks might be high and the condition is aggravated when beer is contaminated by mixtures of the mycotoxins, as indicated in this study.

  3. Analysis of changes tendency on the polish beer market

    Directory of Open Access Journals (Sweden)

    Zbigniew Gołaś

    2010-01-01

    Full Text Available The article shows the analysis of Polish beer market in progress. On the basis of the carried out research it can be stated that Polish beer industry can be rated as one of the most modern hi-tech in the world. It is caused by cooperation of foreign investors with the Polish market which has resulted in a strong consolidation and separating of three major breweries owning almost 90% of the national beer market. Very tough competition between huge producers has also brought benefits to consumers who have received better quality product at a lower price. Moreover, changes in consumers’ habits have occurred. This is described by reduction in consumption of hard liquors on behalf of soft alcohols with the major position of beer. Polish beer market is close to satisfying consumers’ demands. Beer consumption per one inhabitant in Poland is close to European mean but its development will not be so dynamic as before. The situation is caused by the risk arising from the law which is not clear. Moreover, increasing fiscal aggravations and costs of production which due to the increase of prices of raw materials are also critical.

  4. Beer consumption increases human attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Thierry Lefèvre

    2010-03-01

    Full Text Available Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso.We used a Y tube-olfactometer designed to take advantage of the whole body odour (breath and skin emanations as a stimulus to gauge human attractiveness to Anopheles gambiae (the primary African malaria vector before and after volunteers consumed either beer (n = 25 volunteers and a total of 2500 mosquitoes tested or water (n = 18 volunteers and a total of 1800 mosquitoes. Water consumption had no effect on human attractiveness to An. gambiae mosquitoes, but beer consumption increased volunteer attractiveness. Body odours of volunteers who consumed beer increased mosquito activation (proportion of mosquitoes engaging in take-off and up-wind flight and orientation (proportion of mosquitoes flying towards volunteers' odours. The level of exhaled carbon dioxide and body temperature had no effect on human attractiveness to mosquitoes. Despite individual volunteer variation, beer consumption consistently increased attractiveness to mosquitoes.These results suggest that beer consumption is a risk factor for malaria and needs to be integrated into public health policies for the design of control measures.

  5. Beer consumption increases human attractiveness to malaria mosquitoes.

    Science.gov (United States)

    Lefèvre, Thierry; Gouagna, Louis-Clément; Dabiré, Kounbobr Roch; Elguero, Eric; Fontenille, Didier; Renaud, François; Costantini, Carlo; Thomas, Frédéric

    2010-03-04

    Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso. We used a Y tube-olfactometer designed to take advantage of the whole body odour (breath and skin emanations) as a stimulus to gauge human attractiveness to Anopheles gambiae (the primary African malaria vector) before and after volunteers consumed either beer (n = 25 volunteers and a total of 2500 mosquitoes tested) or water (n = 18 volunteers and a total of 1800 mosquitoes). Water consumption had no effect on human attractiveness to An. gambiae mosquitoes, but beer consumption increased volunteer attractiveness. Body odours of volunteers who consumed beer increased mosquito activation (proportion of mosquitoes engaging in take-off and up-wind flight) and orientation (proportion of mosquitoes flying towards volunteers' odours). The level of exhaled carbon dioxide and body temperature had no effect on human attractiveness to mosquitoes. Despite individual volunteer variation, beer consumption consistently increased attractiveness to mosquitoes. These results suggest that beer consumption is a risk factor for malaria and needs to be integrated into public health policies for the design of control measures.

  6. Occurrence of (Z)-3,4-Dideoxyglucoson-3-ene in Different Types of Beer and Malt Beer as a Result of 3-Deoxyhexosone Interconversion.

    Science.gov (United States)

    Hellwig, Michael; Nobis, Arndt; Witte, Sophia; Henle, Thomas

    2016-04-06

    In beer, 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal) are important sugar degradation products, but little is known about the relevance of the interconversion reaction between these compounds in different types of beer. In the present study, 3-DG was quantitated at concentrations of 12.9-52.7 mg/L and 3-DGal at concentrations of 6.0-26.4 mg/L in different types of beer (pilsner, wheat, bock, dark, and alcohol-free beers). The concentrations in malt beer tended to be higher. Largely overlapping concentration ranges precluded a classification of beers by their 3-deoxyglycosone contents. 3,4-Dideoxyglucoson-3-ene (3,4-DGE) was identified as an important intermediate and quantitated in beer and malt beer for the first time. The E and Z isomers of the corresponding quinoxaline were synthesized by a new synthetic approach and isolated by semipreparative HPLC. An assay was developed for quantitation of (E)- and (Z)-3,4-DGE by HPLC-MS/MS, and the Z isomer was determined at concentrations of 0.3-1.7 mg/L in beer and 0.5-4.8 mg/L in malt beer samples. The E isomer was shown to be of little importance. Concentrations of 5-hydroxymethylfurfural (HMF) were twice as high as those of (Z)-3,4-DGE in beer samples (0.4-3.7 mg/L) but much higher in malt beer samples (1.6-336 mg/L).

  7. A discovery-driven approach to elucidate urinary metabolome changes after a regular and moderate consumption of beer and nonalcoholic beer in subjects at high cardiovascular risk.

    Science.gov (United States)

    Quifer-Rada, Paola; Chiva-Blanch, Gemma; Jáuregui, Olga; Estruch, Ramon; Lamuela-Raventós, Rosa M

    2017-10-01

    The aim of this work was to study the urinary metabolomics changes of participants that consumed beer, nonalcoholic beer (na-beer), and gin. Thirty-three males at high cardiovascular risk between 55 and 75 years old participated in an open, randomized, crossover, controlled trial with three nutritional interventions consisting of beer, na-beer, and gin for 4 wk. Diet and physical activity was monitored throughout the study and compliance was assessed by measurement of urinary isoxanthohumol. Metabolomic analysis was performed in urine samples by LC coupled to an LTQ-Orbitrap mass spectrometer combined with univariate and multivariate statistical analysis. Ten metabolites were identified. Eight were exogenous metabolites related to beer, na-beer, or gin consumption, but two of them were related to endogenic changes: hydroxyadipic acid linked to fatty acid oxidation, and 4-guanidinobutanoic acid, which correlated with a decrease in urinary creatinine. Plasmatic acylcarnitines were quantified by targeted MS. A regular and moderate consumption of beer and na-beer decreased stearoylcarnitine concentrations. Humulinone and 2,3-dihydroxy-3-methylvaleric acid showed to be potential biomarkers of beer and na-beer consumption. Moreover, the results of this trial provide new evidence that the nonalcoholic fraction of beer may increase fatty oxidation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Drosophila-associated yeast species in vineyard ecosystems.

    Science.gov (United States)

    Lam, Samuel S T H; Howell, Kate S

    2015-10-01

    Yeast activity during wine fermentation directly contributes to wine quality, but the source and movement of yeasts in vineyards and winery environments have not been resolved. Here, we investigate the yeast species associated with the Drosophila insect vector to help understand yeast dispersal and persistence. Drosophila are commonly found in vineyards and are known to have a mutualistic relationship with yeasts in other ecosystems. Drosophilids were collected from vineyards, grape waste (marc) piles and wineries during grape harvest. Captured flies were identified morphologically, and their associated yeasts were identified. Drosophila melanogaster/D. simulans, D. hydei and Scaptodrosophila lativittata were identified in 296 captured Drosophila flies. These flies were associated with Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii and H. valbyensis yeasts. Yeast and Drosophila species diversity differed between collection locations (vineyard and marc: R = 0.588 for Drosophila and R = 0.644 for yeasts). Surprisingly, the primary wine fermentation yeast, Saccharomyces cerevisiae, was not isolated. Drosophila flies are preferentially associated with different yeast species in the vineyard and winery environments, and this association may help the movement and dispersal of yeast species in the vineyard and winery ecosystem. © FEMS 2015. All rights reserved.

  9. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    Science.gov (United States)

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Characteristics of African traditional beers brewed with sorghum malt: a review

    Directory of Open Access Journals (Sweden)

    Lyumugabe, F.

    2012-01-01

    Full Text Available Traditional sorghum beers are produced in several countries of Africa, but variations in the manufacturing process may occur depending on the geographic localization. These beers are very rich in calories, B-group vitamins including thiamine, folic acid, riboflavin and nicotinic acid, and essential amino acids such as lysine. However, the traditional sorghum beer is less attractive than Western beers because of its poorer hygienic quality, organoleptic variations and shorter shelf life. Research into the microbiological and biochemical characteristics of traditional sorghum beers as well as their technologies have been performed and documented in several African countries. This review aims to summarize the production processes and compositional characteristics of African traditional sorghum beers (ikigage, merissa, doro, dolo, pito, amgba and tchoukoutou. It also highlights the major differences between these traditional beers and barley malt beer, consumed worldwide, and suggests adaptations that could be made to improve the production process of traditional sorghum beer.

  11. Interval ANOVA simultaneous component analysis (i-ASCA) applied to spectroscopic data to study the effect of fundamental fermentation variables in beer fermentation metabolites

    DEFF Research Database (Denmark)

    Grassi, Silvia; Lyndgaard, Christian Bøge; Rasmussen, Morten Arendt

    2017-01-01

    This study explores the effect of different settings on beer fermentation process applying an interval-based version of ASCA on FT-IR data. Three main factors (yeast type, temperature, fermentation time) are included in the experimental design, being high sources of variation in brewing...... and strictly interdependent; thus, difficult to be studied through a univariate approach. The three-factor full factorial design leads to a spectral multi-set data, with a total of 12 independent fermentations, which is explored combining ASCA and an interval adaptation of ASCA (interval-ASCA or i...... and temperature, in smaller variable regions. The proposed approach demonstrates how interval-ASCA on FT-IR data, isolating the variation in the data according to the experimental design used, allows a rapid and accurate test for parameter control in beer manufacturing....

  12. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  13. A Collection-Distribution Center Location and Allocation Optimization Model in Closed-Loop Supply Chain for Chinese Beer Industry

    Directory of Open Access Journals (Sweden)

    Kai Kang

    2017-01-01

    Full Text Available Recycling waste products is an environmental-friendly activity that can result in manufacturing cost saving and economic efficiency improving. In the beer industry, recycling bottles can reduce manufacturing cost and the industry’s carbon footprint. This paper presents a model for a collection-distribution center location and allocation problem in a closed-loop supply chain for the beer industry under a fuzzy random environment, in which the objectives are to minimize total costs and transportation pollution. Both random and fuzzy uncertainties, for which return rate and disposal rate are considered fuzzy random variables, are jointly handled in this paper to ensure a more practical problem solution. A heuristic algorithm based on priority-based global-local-neighbor particle swarm optimization (pb-glnPSO is applied to ensure reliable solutions for this NP-hard problem. A beer company case study is given to illustrate the application of the proposed model and to demonstrate the priority-based global-local-neighbor particle swarm optimization.

  14. Manipulations to the Alcohol and Sodium Content of Beer for Postexercise Rehydration.

    Science.gov (United States)

    Desbrow, Ben; Cecchin, Danielle; Jones, Ashleigh; Grant, Gary; Irwin, Chris; Leveritt, Michael

    2015-06-01

    The addition of 25 mmol·L(-1) sodium to low alcohol (2.3% ABV) beer has been shown to enhance post exercise fluid retention compared with full strength (4.8% ABV) beer with and without electrolyte modification. This investigation explored the effect of further manipulations to the alcohol and sodium content of beer on fluid restoration following exercise. Twelve male volunteers lost 2.03 ± 0.19% body mass (mean ± SD) using cycling-based exercise. Participants were then randomly allocated a different beer to consume on four separate occasions. Drinks included low alcohol beer with 25 mmol·L-1 of added sodium [LightBeer+25], low alcohol beer with 50 mmol·L(-1) of added sodium [LightBeer+50], midstrength beer (3.5% ABV) [Mid] or midstrength beer with 25 mmol·L(-1) of added sodium [Mid+25]. Total drink volumes in each trial were equivalent to 150% of body mass loss during exercise, consumed over a 1h period. Body mass, urine samples and regulatory hormones were obtained before and 4 hr after beverage consumption. Total urine output was significantly lower in the LightBeer+50 trial (1450 ± 183 ml) compared with the LightBeer+25 (1796 ± 284 ml), Mid+25 (1786 ± 373 ml) and Mid (1986 ± 304 ml) trials (all p beer appears to have more significant impact on post exercise fluid retention than small changes in alcohol content.

  15. Development of a robotic pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using computer vision and pattern recognition algorithms: RoboBEER.

    Science.gov (United States)

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Li, GuangJun; Collmann, Richard; Condé, Bruna; Torrico, Damir

    2016-11-01

    There are currently no standardized objective measures to assess beer quality based on the most significant parameters related to the first impression from consumers, which are visual characteristics of foamability, beer color and bubble size. This study describes the development of an affordable and robust robotic beer pourer using low-cost sensors, Arduino® boards, Lego® building blocks and servo motors for prototyping. The RoboBEER is also coupled with video capture capabilities (iPhone 5S) and automated post hoc computer vision analysis algorithms to assess different parameters based on foamability, bubble size, alcohol content, temperature, carbon dioxide release and beer color. Results have shown that parameters obtained from different beers by only using the RoboBEER can be used for their classification according to quality and fermentation type. Results were compared to sensory analysis techniques using principal component analysis (PCA) and artificial neural networks (ANN) techniques. The PCA from RoboBEER data explained 73% of variability within the data. From sensory analysis, the PCA explained 67% of the variability and combining RoboBEER and Sensory data, the PCA explained only 59% of data variability. The ANN technique for pattern recognition allowed creating a classification model from the parameters obtained with RoboBEER, achieving 92.4% accuracy in the classification according to quality and fermentation type, which is consistent with the PCA results using data only from RoboBEER. The repeatability and objectivity of beer assessment offered by the RoboBEER could translate into the development of an important practical tool for food scientists, consumers and retail companies to determine differences within beers based on the specific parameters studied. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Bottled vs. Canned Beer: Do They Really Taste Different?

    Directory of Open Access Journals (Sweden)

    Andrew Barnett

    2016-09-01

    Full Text Available People often say that beer tastes better from a bottle than from a can. However, one can ask how reliable this perceived difference is across consumers. And, if reliable, one can further ask whether it is a purely psychological phenomenon (associated with the influence of packaging on taste perception, or whether instead it reflects some more mundane physico-chemical interaction between the packaging material (or packing procedure/process and the contents. Two experiments were conducted in order to address these questions. In the main experiment, 151 participants at the 2016 Edinburgh Science Festival were served a special ‘craft beer’ in a plastic cup. The beer was either poured from a bottle or can (a between-participants experimental design was used. The participants were encouraged to pick up the packaging in order to inspect the label before tasting the beer. The participants rated the perceived taste, quality, and freshness of the beer, as well as their likelihood of purchase, and estimated the price. All of the beer came from the same batch (specifically a Session IPA from Barney’s Brewery in Edinburgh. None of the participants were familiar with this particular craft brew. Nevertheless, those who evaluated the beer from the bottle rated it as tasting better than those who rated the beer served from the can. Having demonstrated such a perceptual difference (in terms of taste, we then went on to investigate whether people would prefer one packaging format over the other when the beer from bottle and can was served blind to a new group of participants (i.e., when the participants did not know the packaging material. The participants in this control study (n = 29 were asked which beer they preferred. Alternatively, they could state that the two samples tasted the same. No sign of a consistent preference was obtained under such blind tasting conditions. Explanations for the psychological impact of the packaging format, in terms of

  17. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes

    Directory of Open Access Journals (Sweden)

    Mauricio Castro-Sepulveda

    2016-06-01

    Full Text Available Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W, beer (AB or non-alcoholic beer (NAB. Body mass, plasma Na+ and K+ concentrations and urine specific gravity (USG were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05 in W (−1.1%, AB (−1.0% and NAB (−1.0%. In the last minutes of exercise, plasma Na+ was reduced (p < 0.05 in W (−3.9% and AB (−3.7%, plasma K+ was increased (p < 0.05 in AB (8.5%, and USG was reduced in W (−0.9% and NAB (−1.0%. Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na+ and increased plasma K+ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na+ in plasma during exercise.

  18. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    Science.gov (United States)

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-06-07

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05) in W (-1.1%), AB (-1.0%) and NAB (-1.0%). In the last minutes of exercise, plasma Na⁺ was reduced (p < 0.05) in W (-3.9%) and AB (-3.7%), plasma K⁺ was increased (p < 0.05) in AB (8.5%), and USG was reduced in W (-0.9%) and NAB (-1.0%). Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  19. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  20. EFFECT OF TEMPERATURE ON THE PROCESS OF BEER PRIMARY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Miriam Solgajová

    2013-02-01

    Full Text Available Beer is a very popular and widespread drink worldwide. Beer may be defined as a foamy alcoholic drink aerated by carbon dioxide that is formed during fermentation. Sensorial and analytical character of beer is mainly formed during process of primary fermentation. Our work has monitored the influence of temperature of fermentation substrate on the process of primary fermentation during beer production. Obtained values of temperature and apparent extract out of four brews of 10% light hopped wort has been recorded, during the process of primary fermentation carried out in mini brewery of SPU. We have compared our results with theoretical values of primary fermentation process commonly achieved in conditions of industrial breweries. It was found out that our results differ in some ways, moreover they exceed theoretically given values which was caused due to different construction of mini brewery fermentation tank in comparison with industrial brewery technologies. Beer produced in mini brewery of SPU showed in sensorial tests very good quality without any strange odour and any strange taste.

  1. Esomeprazole reduces gastroesophageal reflux after beer consumption in healthy volunteers.

    Science.gov (United States)

    Franke, Andreas; Hepp, Caroline; Harder, Hermann; Beglinger, Christoph; Singer, Manfred V

    2008-01-01

    Patients with gastroesophageal reflux disease (GERD) are advised to avoid alcoholic beverages since alcohol consumption induces gastroesophageal reflux in healthy volunteers and increases it in patients with GERD. Proton-pump inhibitors (PPIs) are frequently administered for reflux symptoms but their effect on gastroesophageal reflux after alcohol consumption has not yet been fully studied. The aim of the present study was therefore to investigate the effect of esomeprazole, an S-enantiomer of omeprazole, on gastroesophageal reflux after beer consumption. In this placebo-controlled, double-blind, crossover study, 16 healthy male volunteers received 20 mg esomeprazole daily for one week. On day 7, in an acute experiment, the subjects then consumed 500 ml beer within 5 min. Subsequently, gastroesophageal reflux was monitored by pH-metry over a period of 3 h. In addition, gastric emptying was measured by ultrasonography and blood concentrations of ethanol, cholecystokinin and gastrin were determined. Gastroesophageal reflux was significantly (p=0.001) reduced by 93% after treatment with esomeprazole (0.2%, median percentage of time pHbeer consumption. However, there was no difference in the increase in plasma gastrin after beer consumption between the esomeprazole treatment and placebo. Esomeprazole significantly reduces gastroesophageal reflux after beer consumption in healthy volunteers. Gastric emptying of beer is not prolonged after treatment with esomeprazole, although compared with placebo, this PPI induced significantly higher plasma gastrin concentrations. Moderate alcohol consumption does not worsen gastroesophageal reflux when a PPI is administered.

  2. Monitoring of beer fermentation based on hybrid electronic tongue.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Association between alcohol advertising and beer drinking among adolescents.

    Science.gov (United States)

    Faria, Roberta; Vendrame, Alan; Silva, Rebeca; Pinsky, Ilana

    2011-06-01

    To analyze the association between alcohol advertising and beer drinking among adolescents. A total of 1,115 students enrolled in the 7th and 8th grades of three public schools in São Bernardo do Campo, Southeastern Brazil, were interviewed in 2006. The independent variables were as follows: attention paid to alcohol advertisements, belief in the veracity of advertisements, affective response to advertisements and previous tobacco use, among others. The dependent variable was beer drinking in the last 30 days. Univariate and multiple logistic regression analyses were made. Age, importance given to religion and the presence of a bathroom in the home were used as control. Beer drinking in the last 30 days was associated with tobacco use (OR = 4.551), having a favorite alcoholic beverage brand (OR = 5.150), poor parental supervision (OR = 2.139), considering parties one goes to as similar to those seen in commercials (OR = 1.712), paying more attention to advertisements (OR = 1.563) and believing that advertisements tell the truth (OR = 2.122). This association remained, even in the presence of other variables associated with beer drinking. Alcohol advertisements are positively associated with recent beer drinking, because they remind adolescents of their own reality or make them believe in their veracity. Alcohol advertisement restrictions can be one way to prevent alcohol use and abuse by adolescents.

  4. Studies supporting the use of mechanical mixing in large scale beer fermentations.

    Science.gov (United States)

    Nienow, Alvin W; McLeod, Georgina; Hewitt, Christopher J

    2010-05-01

    Brewing fermentations have traditionally been undertaken without the use of mechanical agitation, with mixing being provided only by the fluid motion induced by the CO(2) evolved during the batch process. This approach has largely been maintained because of the belief in industry that rotating agitators would damage the yeast. Recent studies have questioned this view. At the bench scale, brewer's yeast is very robust and withstands intense mechanical agitation under aerobic conditions without observable damage as measured by flow cytometry and other parameters. Much less intense mechanical agitation also decreases batch fermentation time for anaerobic beer production by about 25% compared to mixing by CO(2) evolution alone with a small change in the concentration of the different flavour compounds. These changes probably arise for two reasons. Firstly, the agitation increases the relative velocity and the area of contact between the cells and the wort, thereby enhancing the rate of mass transfer to and from the cells. Secondly, the agitation eliminates spatial variations in both yeast concentration and temperature, thus ensuring that the cells are maintained close to the optimum temperature profile during the whole of the fermentation time. These bench scale studies have recently been supported by results at the commercial scale from mixing by an impeller or by a rotary jet head, giving more consistent production without changes in final flavour. It is suggested that this reluctance of the brewing industry to use (adequate) mechanical agitation is another example where the myth of shear damage has had a detrimental effect on the optimal operation of commercial bioprocessing.

  5. The impact of amino acid availability and gene transcription on aroma compound profiling in Saccharomyces yeast

    OpenAIRE

    Procopio, Susanne

    2017-01-01

    Aroma is an important quality character of beer. Amino acid (AA) assimilation by yeast during fermentation is linked to the aroma profile. Thus, significant AA on the detected aroma compound spectra were evaluated and DNA microarray analyses were performed to evaluate key genes associated with AA assimilation and its derived aroma active compounds. Further, the single addition of the significant AA on the transcription level of key genes was tested and could be correlated with the final conce...

  6. Comparison of analytical parameters of beer brewed in two different technological ways at two pub breweries

    National Research Council Canada - National Science Library

    Kryl, Pavel; Gregor, T; Los, J

    ... – demanding infusion method. At all the beer samples the basic analytical parameters of real extract, ethanol content, degree of fermentation and the extract of original hopped wort were measured using an automatic beer analyzer...

  7. Measurement Of Beer Taste Attributes Using An Electronic Tongue

    Science.gov (United States)

    Polshin, Evgeny; Rudnitskaya, Alisa; Kirsanov, Dmitry; Lammertyn, Jeroen; Nicolaï, Bart; Saison, Daan; Delvaux, Freddy R.; Delvaux, Filip; Legin, Andrey

    2009-05-01

    The present work deals with the results of the application of an electronic tongue system as an analytical tool for rapid assessment of beer flavour. Fifty samples of Belgian and Dutch beers of different types, characterized with respect to sensory properties and bitterness, were analyzed using the electronic tongue (ET) based on potentiometric chemical sensors. The ET was capable of predicting 10 sensory attributes of beer with good precision including sweetness, sourness, intensity, body, etc., as well as the most important instrumental parameter—bitterness. These results show a good promise for further progressing of the ET as a new analytical technique for the fast assessment of taste attributes and bitterness, in particular, in the food and brewery industries.

  8. Kosovo beer markets - Consumer preferences and baying behaviour

    Directory of Open Access Journals (Sweden)

    M. Gjonbalaj

    2009-12-01

    Full Text Available This paper analyzes and presents important findings on the consumers buying behaviour and their preferences for beer. The paper also tests whether there is dependency of frequencies buying beer with demographic and economic factors. The data were entered and processed in Statistical Program for Social Sciences (SPSS, while common statistical models have been used for interpretation of results and tested hypotheses. A research was part of the project ‘’Marketing Support of Food Products in Kosovo’’ which was founded by European Agency for Reconstruction. The aim of this project was to support Kosovo producers of food industry by offering them relevant information on beer market, consumers buying behaviour and their preferences.

  9. Metabolism of Zearalenone in the Course of Beer Fermentation

    Science.gov (United States)

    Mizutani, Kohei; Nagatomi, Yasushi; Mochizuki, Naoki

    2011-01-01

    Zearalenone (ZON) is a mycotoxin with estrogenic activity, produced by members of Fusarium species, and is found worldwide in a number of cereal crops. It is known to have four active metabolites (α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalanol (α-ZAL), and β-zearalanol (β-ZAL)). A highly sensitive analytical method using liquid chromatography/tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) has been established and validated in order to analyze ZON and its metabolites in beer and malt samples. The metabolism of ZON in the course of beer fermentation was further characterized using the artificially contaminated wort by this established method. In the fermented sample, 85.9% of ZON was converted to β-ZOL, which has lower estrogenic activity than that of ZON. These findings indicate that the health risk to humans due to ZON in beer is reduced during the fermentation process. PMID:22069701

  10. Fate of mycotoxins during beer brewing and fermentation.

    Science.gov (United States)

    Inoue, Tomonori; Nagatomi, Yasushi; Uyama, Atsuo; Mochizuki, Naoki

    2013-01-01

    Mycotoxins are frequent contaminants of grains, and breweries need, therefore, to pay close attention to the risk of contamination in beer made from such grains as barley and corn. The fate of 14 types of mycotoxin (aflatoxins, fumonisins, ochratoxin A, patulin, trichothecenes, and zearalenone) during beer brewing was investigated in this study. Malt artificially spiked with each mycotoxin was put through the mashing, filtration, boiling and fermentation processes involved in brewing. After brewing, the levels of aflatoxins, ochratoxin A, patulin, and zearalenone were found to have decreased to less than 20% of their initial concentration. They had been adsorbed mainly to the spent grain and removed from the unhopped wort. Additionally, as zearalenone was known, patulin was metabolized to the less toxic compound during the fermentation process. The risk of carry-over to beer was therefore reduced for half of the mycotoxins studied. However, attention still needs to be paid to the risk of trichothecene contamination.

  11. Metabolism of zearalenone in the course of beer fermentation.

    Science.gov (United States)

    Mizutani, Kohei; Nagatomi, Yasushi; Mochizuki, Naoki

    2011-02-01

    Zearalenone (ZON) is a mycotoxin with estrogenic activity, produced by members of Fusarium species, and is found worldwide in a number of cereal crops. It is known to have four active metabolites (α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalanol (α-ZAL), and β-zearalanol (β-ZAL)). A highly sensitive analytical method using liquid chromatography/tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) has been established and validated in order to analyze ZON and its metabolites in beer and malt samples. The metabolism of ZON in the course of beer fermentation was further characterized using the artificially contaminated wort by this established method. In the fermented sample, 85.9% of ZON was converted to β-ZOL, which has lower estrogenic activity than that of ZON. These findings indicate that the health risk to humans due to ZON in beer is reduced during the fermentation process.

  12. CORROSION RESISTANCE OF ALUMINUM CANS IN CONTACT WITH BEER

    Directory of Open Access Journals (Sweden)

    Luiza Esteves

    2015-07-01

    Full Text Available Aluminum cans with an organic coating are used in Brazil as packaging for carbonated beverages (soft drinks, beer, which act as electrolyte solutions. These electrolytes, in contact with the inner metal can, initiate a corrosion process of aluminum. The presence of metallic ions can change the flavor of the beverage, compromising the product quality. This work aims to evaluate the corrosion resistance of aluminum in beer environment using the technique of Electrochemical Impedance Spectroscopy (EIS. The Scanning Electron Microscopy (SEM and the Energy Dispersive Spectroscopy (EDS were used to evaluate the metal surface. Two batches with different coating thickness were analyzed for the same date of manufacture. The electrolyte resistance and the aluminum charge transfer resistance in beer varied depending on the batch analyzed.

  13. Special Beer obtained by Synchronous Alcoholic Fermentation of Two Different Origin Substrates

    OpenAIRE

    Mudura, Elena; Teodora Emilia COLDEA; Victor PLESCA; FARCAS, ANCA

    2016-01-01

    Beer is the most consumed alcoholic beverage worldwide. Both beer and wine are  recognized since ancient times for their health benefits. Nowadays, these beverages are consumed for its sensory, social interaction, and recently even in culinary dishes. In addition, studies showed the benefits of beer moderate consumption on health. Beer is a low-alcohol beverage and also presents many nutritional properties outlined by its nutritional content rich in vitamins, minerals and antioxidants that co...

  14. Craft vs. industrial: Habits, attitudes and motivations towards beer consumption in Mexico.

    Science.gov (United States)

    Gómez-Corona, Carlos; Escalona-Buendía, Héctor B; García, Mauricio; Chollet, Sylvie; Valentin, Dominique

    2016-01-01

    Food choices tend to be stable over time; they do not change fast, since consumers tend to act like creatures of habits. However, food habits can evolve, like currently the craft beer category. A change of habits involves a change of perception towards a product. Therefore, what is changing in the perception of beer? Two studies were conducted to address this question. First study was preliminary and aimed at exploring beer consumption habits in Mexico and a better understanding of craft beer representation among beer users. A questionnaire was administrated to 207 consumers in Mexico City during a beer festival. Results showed that respondents could be classified in: industrial beer (41.1%), occasional industrial (24.1%), and craft beer (34.8%) consumers. Craft cluster included mostly 25-35 years old men with high-income level. Among the craft beers cited by respondents from this cluster some are industrial, suggesting that the concept of craft beer might not be well defined, or defined in ideological terms. The second and main study was conducted using consumer ethnographies to understand the motivations and benefits of craft beer consumption. Opposite to industrial, craft beer emerges as an experience-based and symbolic product rather than a utilitarian one. The main motivation for drinking craft beer seems to be the quest of authenticity. Respondents' motivations to drink craft beer are generated by three important factors: desire for more knowledge, new taste experiences, and move away from the mainstream beer consumption. Craft consumers do not drink the product for its functional attributes, they consume it for what it means and as a consequence they build an identity, perceived as more authentic and unique, in comparison to the mainstream industrial beer consumption in Mexico. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Forecasting optimal duration of a beer main fermentation process using the Kalman filter

    OpenAIRE

    Niyonsaba T.; Pavlov V. A.

    2016-01-01

    One of the most important processes of beer production is the main process of fermentation. In this process, the wort transforms into beer. The quality of beer depends on the dynamics of wort parameters. The main fermentation process continues for 10 days and requires high costs. Therefore, the main purpose of this article is to forecast the optimal duration of the beer main fermentation process and provide its optimal control. The Kalman filter can provide optimal control of the main ferment...

  16. A laboratory yeast strain suitable for spirit production.

    Science.gov (United States)

    Schehl, Beatus; Müller, Christine; Senn, Thomas; Heinisch, Jürgen J

    2004-12-01

    Yeast strains of the species Saccharomyces cerevisiae currently in use for the production of consumable alcohols such as beer, wine and spirits are genetically largely undefined. This prevents the use of standard genetic manipulations, such as crossings and tetrad analysis, for strain improvement. Furthermore, it complicates the application of the majority of modern methods developed in yeast molecular biology. Here we used two haploid laboratory strains with suitable auxotrophic markers for the construction of a genetically well defined, prototrophic diploid production strain. This strain was tested for its fermentative and sensory performances in comparison to commercially available yeasts. Three different fruit mashes (cherries, plums and pears) were fermented in a 90 kg scale. These were then subjected to distillation and used for the production of spirits with a final ethanol content of 40% (v/v). Fermentation parameters assayed included growth, sugar utilization, ethanol production and generation of volatile compounds, higher alcohols and glycerol. The spirits were also tested for their sensory performances and the data obtained statistically consolidated. Our results clearly demonstrate that this laboratory strain does not display any disadvantage compared with commercial yeasts in spirit production for any of the parameters tested, yet it offers the potential to apply both classical breeding and modern molecular genetic techniques for adjusting yeast physiology to special production schemes.

  17. Beer, Wood, and Welfare--The Impact of Improved Stove Use Among Dolo-Beer Breweries.

    Science.gov (United States)

    Grimm, Michael; Peters, Jörg

    2015-01-01

    Local beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households as well as the environmental effect. We find substantial wood savings among the breweries, 36% to 38% if they fully switch to an improved stove. In absolute amounts, they save about 0.176 kg of fuelwood per litre of dolo brewed. These savings imply huge reductions in CO2-emissions and reduce the overall demand for woodfuel, which is predominantly used by the poorer strata for cooking purposes. We provide estimates for the price decrease that might result from this and show that the urban poor are likely to benefit. Thus, the intervention under study is an example for a green growth intervention with pro-poor welfare gains--something green growth strategies should look for.

  18. Quantification of brewers' yeast flocculation in a stirred tank: effect of physical parameters on flocculation.

    Science.gov (United States)

    van Hamersveld, E H; van der Lans, R G; Luyben, K C

    1997-10-20

    Quantification of yeast flocculation under defined conditions will help to understand the physical mechanisms of the flocculation process used in beer fermentation. Flocculation was quantified by measuring the size of yeast flocs and the number of single cells. For this purpose, a method to measure floc size and number of single cells in situ was developed. In this way, it was possible to quantify the actual flocculation during fermentation, without influencing flocculation. The effects of three physical parameters, floc strength, fluid shear, and yeast cell concentration, on flocculation during beer fermentation, were examined. Increasing floc strength results in larger flocs and lower numbers of single cells. If the fluid shear is increased, the size of the flocs decreases, and the number of single cells remains constant at approximately 10% of the total cells present. The cell concentration also influences flocculation, a reduction of 50% in cell concentration leads to a decrease of about 25% in floc size. The number of single cells decreases in linear proportion to the cell concentration. This means that, during yeast settling at full scale, the number of single cells decreases. The results of this study are used in a model for yeast flocculation. With respect to full scale fermentation the effect of cell concentration will play an important role, for flocculation and sedimentation will occur simultaneously leading to a quasi steady state between these phenomena. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 190-200, 1997.

  19. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  20. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages.

    Science.gov (United States)

    Varela, Cristian

    2016-12-01

    The conversion of fermentable sugars into alcohol during fermentation is the key process in the production of all alcoholic beverages. However, microbial activity during fermentation is considerably more complex than merely producing ethanol, usually involving the action of a great diversity of yeasts and bacteria and the production of metabolites that affect the organoleptic properties of fermented beverages. Non-Saccharomyces yeasts, which are naturally present in un-inoculated, spontaneous fermentations, can provide a means for increasing aroma and flavour diversity in fermented beverages. This review will cover the impacts of non-Saccharomyces yeasts on volatile composition and sensory profile of beer, wine, spirits and other fermented beverages, and look at future opportunities involving yeast interactions and regionality in alcoholic beverages.

  1. 27 CFR 25.285 - Refund of beer tax excessively paid.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Refund of beer tax... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Refund or Adjustment of Tax or Relief From Liability § 25.285 Refund of beer tax excessively paid. (a) Eligibility. A brewer who, under the provisions...

  2. 27 CFR 31.53 - Wholesale dealers in beer consummating sales at premises of other dealers.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wholesale dealers in beer... beer consummating sales at premises of other dealers. Any dealer who has registered as a wholesale dealer in beer for the place from which that dealer conducts selling operations may consummate sales of...

  3. Purposeful naming: The case of beer halls named during both the ...

    African Journals Online (AJOL)

    This article examines the reasons behind names given to beer halls from their inception in colonial Rhodesia to present day Zimbabwe. To achieve this goal, it analyses names of beer halls, beer outlets built in the former townships of colonial Rhodesia (now called high-density suburbs), and those built at growth points, ...

  4. 27 CFR 25.225 - Destruction of taxpaid beer which was never removed from brewery premises.

    Science.gov (United States)

    2010-04-01

    ... beer which was never removed from brewery premises. 25.225 Section 25.225 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Voluntary Destruction § 25.225 Destruction of taxpaid beer which was never removed from brewery premises. (a) General. A...

  5. 27 CFR 27.1 - Imported distilled spirits, wines, and beer.

    Science.gov (United States)

    2010-04-01

    ..., wines, and beer. 27.1 Section 27.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER Scope of Regulations § 27.1 Imported distilled spirits, wines, and beer. This part, “Importation of...

  6. 27 CFR 28.226 - Removals of beer by agent on behalf of brewer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Removals of beer by agent... TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Exportation of Beer With Benefit of Drawback Execution of Claims § 28.226 Removals of beer by agent on behalf of brewer...

  7. 27 CFR 26.104 - Deferred payment of tax-release of beer.

    Science.gov (United States)

    2010-04-01

    ...-release of beer. 26.104 Section 26.104 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Beer § 26.104 Deferred payment of tax—release of beer. (a) Action by brewer. Where the brewer has furnished bond on Form 2898, and payment of the tax is...

  8. 27 CFR 27.48 - Imported distilled spirits, wines, and beer.

    Science.gov (United States)

    2010-04-01

    ..., wines, and beer. 27.48 Section 27.48 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER Tax On Imported Distilled Spirits, Wines, and Beer Collection of Internal Revenue Taxes § 27.48 Imported...

  9. 27 CFR 25.282 - Beer lost by fire, theft, casualty, or act of God.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Beer lost by fire, theft... TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Refund or Adjustment of Tax or Relief From Liability § 25.282 Beer lost by fire, theft, casualty, or act of God. (a) General. The tax paid by...

  10. Using Preferred Attribute Elicitation to Determine How Males and Females Evaluate Beer.

    Science.gov (United States)

    Muggah, Elizabeth M; McSweeney, Matthew B

    2017-08-01

    The variety of beers available for consumption has increased due to the recent emergence of many craft brewing operations and it has been suggested that this is affecting how consumers evaluate beer. Currently, beer consumers are mostly male and only 20% of women are primarily beer drinkers. The main objective of this project is to compare and contrast descriptions of beer products created by males and females. The preferred attribute elicitation (PAE) method was used to create a description of 4 beers common to residents of Nova Scotia, Canada. Four PAE sessions were held: 2 sessions consisted of females (n = 16 and 15) and 2 sessions of males (n = 11 and 17). Four beer samples were chosen from locally available commercial beers, 2 of these samples were considered to be craft-brewed beer and the other samples were nationally available brands (macrobrewed). Both the males and females generated descriptions that included 5 identical terms; however, they differed in the importance they assigned to each attribute. Notably, bitterness was perceived to be of more importance to female panelists. Throughout all PAE sessions, the craft-brewed beers were associated with considerably more sensory attributes than the macrobrewed beers. It can be concluded that both the female and male groups found discernible differences between the craft and macrobrewed beers; however, they place importance on different sensory attributes. © 2017 Institute of Food Technologists®.

  11. Structure, dynamics and directions of changes on the world beer market

    Directory of Open Access Journals (Sweden)

    Zbigniew Gołaś

    2009-01-01

    Full Text Available The report shows the results of analysis of a structure and dynamics of changes in the world beer market. In the article there are analysed production and sale of beer, the beer foreign trade, brands and consumption of beer in years 1999-2004. The research carried out shows that Europe plays the major role in the world beer production, it is the region of the biggest beer tradition in the world. However, the market leader position belongs to China, which in case of beer production has already overtaken position of longstanding beer market leader – United States. Geography and dynamics of beer sale have been changed as well. Distinct slowing down in beer sale on markets of the biggest beer traditions can be noticed, while on the area of Central East Europe, East Europe and Asia the strong dynamics of sale can be observed. The reasons of such a trend are various, mostly the changes are triggered by strongly differentiated level of beer consumption per capita and changes in costumers tastes, much more focused on consuming soft alcoholic drinks.

  12. Citrus Waste Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    Karel Grohman; Scott Stevenson

    2007-01-30

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  13. Protein expression-yeast.

    Science.gov (United States)

    Nielsen, Klaus H

    2014-01-01

    Yeast is an excellent system for the expression of recombinant eukaryotic proteins. Both endogenous and heterologous proteins can be overexpressed in yeast (Phan et al., 2001; Ton and Rao, 2004). Because yeast is easy to manipulate genetically, a strain can be optimized for the expression of a specific protein. Many eukaryotic proteins contain posttranslational modifications that can be performed in yeast but not in bacterial expression systems. In comparison with mammalian cell culture expression systems, growing yeast is both faster and less expensive, and large-scale cultures can be performed using fermentation. While several different yeast expression systems exist, this chapter focuses on the budding yeast Saccharomyces cerevisiae and will briefly describe some options to consider when selecting vectors and tags to be used for protein expression. Throughout this chapter, the expression and purification of yeast eIF3 is shown as an example alongside a general scheme outline. © 2014 Elsevier Inc. All rights reserved.

  14. Yeast Infection during Pregnancy

    Science.gov (United States)

    ... OK? What's the best way to treat a yeast infection during pregnancy? Answers from Yvonne Butler Tobah, M.D. You can safely treat a yeast infection during pregnancy with various over-the-counter ...

  15. Testing scales for attitude towards beer: The case of two brands of beer of the same producer

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    2017-01-01

    respondents. Both brands are produced by the Carlsberg Group, and both are lagers. The Carlsberg Group markets Tuborg as a more premium brand, and it also aims at women. The research was conducted in Denmark using an on-line questionnaire. The attitudes were measured in three dimensions - affective, cognitive......There is an increasing amount of literature focused on beer purchase and consumption, both micro- and macro-economic studies. The aim of the paper is to tests scales for attitudes towards Tuborg and Carlsberg beers, and to compare Cronbach's alphas for the two brands when evaluated by the same......, and conative. Affective and cognitive dimensions were measured using already validated instruments, while the conative dimension (for which no validated instrument was found) is based on consumption of a particular brand of beer. With regards to finding, Cronbach's alpha for the affective dimension was .944...

  16. Genome annotation of a Saccharomyces sp. lager brewer's yeast

    Directory of Open Access Journals (Sweden)

    Patricia Marcela De León-Medina

    2016-09-01

    Full Text Available The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes.

  17. Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of Different Beer Types.

    Science.gov (United States)

    Hellwig, Michael; Witte, Sophia; Henle, Thomas

    2016-09-28

    The Maillard reaction is important for beer color and flavor, but little is known about the occurrence of individual glycated amino acids in beer. Therefore, seven Maillard reaction products (MRPs), namely, fructosyllysine, maltulosyllysine, pyrraline, formyline, maltosine, MG-H1, and argpyrimidine, were synthesized and quantitated in different types of beer (Pilsner, dark, bock, wheat, and nonalcoholic beers) by HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Free MRPs were analyzed directly. A high molecular weight fraction was isolated by dialysis and hydrolyzed enzymatically prior to analysis. Maltulosyllysine was quantitated for the first time in food. The most important free MRPs in beer are fructosyllysine (6.8-27.0 mg/L) and maltulosyllysine (3.7-21.8 mg/L). Beer contains comparatively high amounts of late-stage free MRPs such as pyrraline (0.2-1.6 mg/L) and MG-H1 (0.3-2.5 mg/L). Minor amounts of formyline (4-230 μg/L), maltosine (6-56 μg/L), and argpyrimidine (0.1-4.1 μg/L) were quantitated. Maltulosyllysine was the most significant protein-bound MRP, but both maltulosyllysine and fructosyllysine represent only 15-60% of the total protein-bound lysine-derived Amadori products. Differences in the patterns of protein-bound and free individual MRPs and the ratios between them were identified, which indicate differences in their chemical, biochemical, and microbiological stabilities during the brewing process.

  18. RESEARCH ON OBTAINING HIGH Β-GLUCANS CONTENT FROM DIFFERENT SOURCES OF YEAST BY HARNESSING THEIR BIOLOGICALLY ACTIVE POTENTIAL

    Directory of Open Access Journals (Sweden)

    Ionuț AVRĂMIA

    2017-12-01

    Full Text Available Isolated polysaccharides from different natural sources have gained a real interest from the scientific community due to biologically active effects on body functions such as: lipid metabolism correction, immune stimulating, glycemic control in type II diabetes, antitumor activity, etc. A category of these polysaccharides is β-glucans, β-D-glucose polymers produced by various organisms such as bacteria, yeasts, algae and plants. This paper presents the experimental results obtained from the analysis of four types of yeast available on the market in order to select the one with the highest content of β-glucan, which can be later exploited in various fields: medical, pharmaceutical, food or cosmetics. According to the experimental data, the highest level of β-glucans content is represented by beer yeast, 21.49% higher than bakery yeast and 36.36% higher than wine yeast.

  19. Influence of the Addition of Riboflavin in Culture Medium on Delivering Biomass Using Yeast Strains of Saccharomyces Carlsbengensis

    Directory of Open Access Journals (Sweden)

    Cornelia Nicoară

    2010-05-01

    Full Text Available Yeasts requirements for growth factors should be considered both in terms of ability to summarize the simpleaverage and the dependence on external supplies. Vitamins are components of coenzymes or enzymes prostheticgroups and thus they are growth factors for yeast. The study concerns about the influence of the addition ofriboflavin in culture medium in different quantities, the accumulation of yeast biomass under the action of yeaststrains of beer. The process of cultivation has been made for 24 hours at a temperature of 220C. The addition ofriboflavin in culture medium of yeast biomass increased in each strain of yeast compared with the witness - thesample without added riboflavin. Biomass obtained by follow this procedure could be used to create new foodproducts with high ration nutritional value.

  20. Natural Products Organic Chemistry Experiment for the University Student. III. The Brewing of the Low-alcohol Beer from Malt or Seed of the Beer Barley

    OpenAIRE

    戸谷, 義明

    2000-01-01

    As no experiments concerned with biochemistry have recently been scheduled for juniors of the Aichi University of Education who specialize in chemistry, a brewing experiment making the low-alcohol beer was developed. This method was applicable to chemical laboratory courses. The beer is so much familiar to the students as one of the luxurious alcoholic beverages which are seriously related with adult's diseases, obesity, and alcoholism, that the laboratory experiment of beer brewing would aro...

  1. The impact of beer type, pizza spiciness and gender on match perceptions

    Directory of Open Access Journals (Sweden)

    Harrington, Robert J.

    2008-04-01

    Full Text Available This exploratory study surveys preferences of participants towards pairing three categories of beer (lager, ale and stout with a non-spicy and spicy pizza. The goals of this study are to determine the level of a ‘just right’ match of pizza style with each beer type, determine any differences by gender, and to explore if spice has an impact on participants’ beer selection and beer preference. Implications of this research apply to restaurateurs’ ability to appropriately cater their beer and pizza offerings in terms of menu design and pro-duct delivery.

  2. Using the profile method for evaluationthe beer quality

    Directory of Open Access Journals (Sweden)

    O. Bocharova

    2017-04-01

    Full Text Available The expediency of using the profile method of analysis for assessing the influence of technological factors on the quality of beer has been established. The characteristics for the evaluation of beer quality by the profile method are chosen. The results obtained using the profile method give a more complete picture of the properties of beer than the results of the scoring method. Each of the samples was analyzed and studied. The results of analysis of such criteria as aroma, flavor, appearance and physicochemical parameters are demonstrated on profilograms. Estimation of flavor is the most difficult, since this concept includes a complex sensation of taste, aroma and consistency, determined in the oral cavity. To confirm the organoleptic properties of the «body» of the best sort of beer, rheological analysis data were presented. Such an integrated approach will allow fully studying the properties of a low-alcohol beverage and clearly demonstrating the advantages of a profile method of analysis.

  3. Carcinogenic nitrosamines in traditional beer as the cause of ...

    African Journals Online (AJOL)

    tumorigenic effect for approximately 30 - 40 years for a tumour to manifest, a cause was sought ... It is suggested that carcinogenic N-nitrosamines in traditional beer are a major factor in the causation of SCC of the oesophagus in black. South Africans. .... represented a negative established free energy of binding (–4.92 ...

  4. Proximate composition of traditional local sorghum beer “dolo ...

    African Journals Online (AJOL)

    Dolo is a local beer manufactured from malted sorghum grains. It is the most commonly consumed alcoholic beverage in Burkina Faso (60% of population). Thirty (30) samples of dolo were collected from local markets in Ouagadougou and analyzed with respect to their proximate compositions and pH values using ...

  5. Slow-light enhancement of Beer-Lambert-Bouguer absorption

    Science.gov (United States)

    Mortensen, Niels Asger; Xiao, Sanshui

    2007-04-01

    The authors theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measurements widely employed in analytical chemistry.

  6. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  7. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer

    Directory of Open Access Journals (Sweden)

    Sara Arranz

    2012-07-01

    Full Text Available Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol or to their non-alcoholic components (mainly polyphenols. Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day is associated with decreased incidence of cardiovascular disease (CVD, hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer’s lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols.

  8. Changes in the immune system after moderate beer consumption.

    Science.gov (United States)

    Romeo, Javier; Wärnberg, Julia; Nova, Esther; Díaz, Ligia E; González-Gross, Marcela; Marcos, Ascensión

    2007-01-01

    Epidemiological studies have suggested that moderate alcohol consumption is associated with lower morbidity. However, intervention studies are needed to elucidate mechanisms involved. This study was aimed to determine the effects of moderate beer consumption on the immune function of healthy adults, taking into account gender differences. After a 30-day alcohol abstinence period, 57 healthy volunteers consumed a moderate intake of beer (330 ml for women and 660 ml for men) for 30 days. Total leukocyte and lymphocyte counts; absolute values of T-lymphocyte CD3+, CD4+, and CD8+ subsets; delayed-hypersensitivity skin response (DHSR); absolute values of B lymphocytes (CD19+) and serum immunoglobulin concentrations (IgG, IgA, and IgM); and cytokine production (IL-2, IL-4, IL-6, IL-10, IFN-gamma, and TNF-alpha) were evaluated following the abstinence and alcohol consumption periods. After moderate beer consumption CD3+ cells increased only in women (p beer consumption produced an immunomodulatory effect in a healthy adult Spanish population; this effect appears to be more relevant in women than in men. Copyright (c) 2007 S. Karger AG, Basel.

  9. Croatian fan scene: Football in television beer commercials

    Directory of Open Access Journals (Sweden)

    Biti Ozren

    2016-01-01

    Full Text Available In this paper attention is given to the mutual synergy between sports, commercials and alcohol. Therefore, we approach the research topic specified in the title with regards to the cultural history of football and beer, the functioning of the commercial industry within consumer culture and the structural practices of consuming football and beer trough which, at specific places and in special occasions, masculinity is performed. This research relies primarily on discourse analysis of football-beer commercials. For the purpose of enriching the insights gained by this method, a semi-structured interview was conducted with a market expert specialized in branding and an autoethnographic approach is present. The central part of the study is based on a corpus of advertisements that were broadcast on national television programs in the last ten years and that have emerged as part of a market designed advertising campaigns for major breweries during the World and European football championships. For the most of them, the common denominator is putting football fans in the forefront, whether in stadiums, bars, town squares or at home. Also, in most cases, they exclusively present male protagonists during their leisure time, united by their passion for football and beer, as well as their desire for relaxed socialization and fun. Apart from gender, the national context is essential, since these commercials usually visually, audibly and textually refer to the national football team of Croatia.

  10. Nutrient content of sorghum beer strainings | van Heerden | South ...

    African Journals Online (AJOL)

    South African Journal of Animal Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 17, No 4 (1987) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Nutrient content of sorghum beer strainings.

  11. Brewing and consumptions practices of indigenous traditional beer ...

    African Journals Online (AJOL)

    The article is based on a study that aimed to assess the knowledge, attitude, behaviour and practices regarding the food safety and brewing methods applicable to the manufacturing of traditional beer as well as consumer perceptions. A questionnaire survey was conducted among 30 informal brewers and 90 traditional ...

  12. Optimal adaptive scheduling and control of beer membrane filtration

    NARCIS (Netherlands)

    Willigenburg, van L.G.; Vollebregt, H.M.; Sman, van der R.G.M.

    2015-01-01

    An adaptive optimal scheduling and controller design is presented that attempts to improve the performance of beer membrane filtration over the ones currently obtained by operators. The research was performed as part of a large European research project called EU Cafe with the aim to investigate the

  13. Performance practice and functions of local wine and beer parlor ...

    African Journals Online (AJOL)

    Since the phenomenon of music is ubiquitous and indispensable among the Yoruba and Africans in general, beer and wine parlors/shops engages in one form of musical practice or the other ... It was observed that alcohol in-take is capable of affecting the mood and instilling a temporary musical inspiration in the consumer.

  14. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer

    Science.gov (United States)

    Arranz, Sara; Chiva-Blanch, Gemma; Valderas-Martínez, Palmira; Medina-Remón, Alex; Lamuela-Raventós, Rosa M.; Estruch, Ramón

    2012-01-01

    Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits) on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol) or to their non-alcoholic components (mainly polyphenols). Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day) is associated with decreased incidence of cardiovascular disease (CVD), hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer’s lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols. PMID:22852062

  15. Management of Conflicts within Beer Drinking Settings | Dodo ...

    African Journals Online (AJOL)

    International Journal of Modern Anthropology ... It was guided by the Public Sphere theory propounded by Jurgen Habermas which argues that public sphere is an area in social life where people assemble and liberally discuss detecting ... Keywords: conflict resolution, conflict management, public sphere, beer, conflict ...

  16. Lactobacillus backii and Pediococcus damnosus isolated from 170-year-old beer recovered from a shipwreck lack the metabolic activities required to grow in modern lager beer.

    Science.gov (United States)

    Kajala, Ilkka; Bergsveinson, Jordyn; Friesen, Vanessa; Redekop, Anna; Juvonen, Riikka; Storgårds, Erna; Ziola, Barry

    2017-11-08

    In 2010, bottles of beer containing viable bacteria of the common beer-spoilage species Lactobacillus backii and Pediococcus damnosus were recovered from a shipwreck near the Åland Islands, Finland. The 170-year quiescent state maintained by the shipwreck bacteria presented a unique opportunity to study lactic acid bacteria (LAB) evolution vis a vis growth and survival in the beer environment. Three shipwreck bacteria (one L. backii strain and two P. damnosus strains) and modern-day beer-spoilage isolates of the same two species were genome sequenced, characterized for hop iso-α-acid tolerance, and growth in degassed lager and wheat beer. In addition, plasmid variants of the modern-day P. damnosus strain were analyzed for the effect of plasmid-encoded genes on growth in lager beer. Coding content on two plasmids was identified as essential for LAB growth in modern lager beer. Three chromosomal regions containing genes related to sugar transport and cell wall polysaccharides were shared by pediococci able to grow in beer. Our results show that the three shipwreck bacteria lack the necessary plasmid-located genetic content to grow in modern lager beer, but carry additional genes related to acid tolerance and biofilm formation compared to their modern counterparts. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. 27 CFR 25.160 - Tax adjustment for brewers who produce more than 2,000,000 barrels of beer.

    Science.gov (United States)

    2010-04-01

    ... who produce more than 2,000,000 barrels of beer. 25.160 Section 25.160 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Tax on Beer Determination of Tax § 25.160 Tax adjustment for brewers who produce more than 2,000,000 barrels of beer. Each...

  18. 27 CFR 28.227 - Removals of beer by persons other than the brewer or agent of the brewer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Removals of beer by... ALCOHOL Exportation of Beer With Benefit of Drawback Execution of Claims § 28.227 Removals of beer by persons other than the brewer or agent of the brewer. Where there is a removal of taxpaid beer by a person...

  19. 41 CFR 102-41.205 - Do we report all forfeited distilled spirits, wine, and beer to GSA for disposal?

    Science.gov (United States)

    2010-07-01

    ... forfeited distilled spirits, wine, and beer to GSA for disposal? 102-41.205 Section 102-41.205 Public..., and Beer § 102-41.205 Do we report all forfeited distilled spirits, wine, and beer to GSA for disposal? (a) Yes, except do not report distilled spirits, wine, and beer not fit for human consumption or for...

  20. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  1. Comparison of analytical parameters of beer brewed in two different technological ways at two pub breweries

    Directory of Open Access Journals (Sweden)

    Pavel Kryl

    2012-01-01

    Full Text Available This publication deals with brewing beer by infusion and decoction technologies of mash production in microbreweries. Samples of two microbrewery beers are compared, namely Richard beer (Brno-Žebětín produced in a double mash manner appropriate for the Czech brewing type, and beer samples taken at the laboratory microbrewery of Mendel University in Brno (MENDELU, where beer is produced in a simpler and less energy – demanding infusion method. At all the beer samples the basic analytical parameters of real extract, ethanol content, degree of fermentation and the extract of original hopped wort were measured using an automatic beer analyzer. The results coming out of the automatic beer analyzer are compared with the results of the beer samples analysis performed by liquid chromatography, by which the contents of oligosaccharides, maltose, glycerol and ethanol were measured. Both methods provide a number of analytical results for the comparison of decoction and infusion techniques, and analytical characteristics of both the brewing procedures. Emphasis is placed on statistical data processing and comparison of different types of beer and particular brews between each other, both in terms of production technology as well as beer sampling throughout the year.

  2. Measuring Hordein (Gluten) in Beer – A Comparison of ELISA and Mass Spectrometry

    Science.gov (United States)

    Blundell, Malcolm J.; Goswami, Hareshwar P.; Howitt, Crispin A.

    2013-01-01

    Background Subjects suffering from coeliac disease, gluten allergy/intolerance must adopt a lifelong avoidance of gluten. Beer contains trace levels of hordeins (gluten) which are too high to be safely consumed by most coeliacs. Accurate measurement of trace hordeins by ELISA is problematic. Methods We have compared hordein levels in sixty beers, by sandwich ELISA, with the level determined using multiple reaction monitoring mass spectrometry (MRM-MS). Results Hordein levels measured by ELISA varied by four orders of magnitude, from zero (for known gluten-free beers) to 47,000 µg/mL (ppm; for a wheat-based beer). Half the commercial gluten-free beers were free of hordein by MS and ELISA. Two gluten-free and two low-gluten beers had zero ELISA readings, but contained significant hordein levels (pgluten in beverages such as beer and highlights the need for the development of new sensitive and selective quantitative assay such as MS. PMID:23509606

  3. The importance of surface charge and hydrophobicity for the flocculation of chain-forming brewing yeast strains and resistance of these parameters to acid washing.

    Science.gov (United States)

    Wilcocks, K L; Smart, K A

    1995-12-15

    The cell surface charge and hydrophobicity of the brewing yeast cell surface influences flocculation. Physiological stress, such as starvation, affects the capacity of some strains to flocculate due to the reorganisation of the cell wall and the modification of the surface physical properties. On completion of a brewery fermentation, yeast is removed from the beer, stored and inoculated (repitched) into a subsequent fermentation. Prior to repitching, brewing yeast slurries may be acid washed to remove any contaminating bacteria. This treatment has been shown to cause yeast cell surface "blistering". Acid washing treatment was used to examine the susceptibility of the physical properties of two chain-forming brewing yeast strains to stress. Although acid-washing affected the cell surface charge and hydrophobicity in both strains, the flocculation response was strain dependant. It is suggested that surface charge and the non-separation of progeny from mother cells rather than hydrophobicity influences the flocculation of chain-forming brewing yeast.

  4. Brewing with Distinction: The Implications of a Quality Symbol for the Craft Beer Industry of British Columbia

    OpenAIRE

    Oppenheimer, Leonardo Manuel

    2008-01-01

    A growing segment of the Canadian beer market is the microbrew/craft beer segment. For the palates of many beer connoisseurs, craft beer has a taste that distinguishes it from other beers, thus setting it apart from the mass-marketed products of the giant commercial breweries. However, a large proportion of beer consumers in Canada remain oblivious to the virtues and properties that make craft beer unique. This study examines the feasibility of creating a quality symbol of distinction as a me...

  5. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    Science.gov (United States)

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

  6. On the relationship between the indirectly measured attitude towards beer and beer consumption: the role of attitude accessibility.

    Science.gov (United States)

    Descheemaeker, Mathilde; Spruyt, Adriaan; Hermans, Dirk

    2014-01-01

    Although some studies have demonstrated that the indirectly measured attitude towards alcohol is related to alcohol use, this relationship has not always been confirmed. In the current study, we attempted to shed light on this issue by investigating whether the predictive validity of an indirect attitude measure is dependent upon attitude accessibility. In a sample of 88 students, the picture-picture naming task, an adaptation of the affective priming paradigm, was used to measure the automatically activated attitude towards beer. Attitude accessibility was measured using a speeded evaluative categorization task. Behavioral measures were the amount of beer poured and drunk during a bogus taste test and the choice between a bottle of beer or water at the end of the experiment. In line with our hypothesis, the indirectly measured attitude towards beer predicted behavior during the taste test only when it was highly accessible. In contrast, this attitude was related to choice behavior irrespective of attitude accessibility. This study confirms that indirect attitude measures can be valuable predictors of alcohol-related behavior, but that it is sometimes necessary to take attitude accessibility into account.

  7. On the relationship between the indirectly measured attitude towards beer and beer consumption: the role of attitude accessibility.

    Directory of Open Access Journals (Sweden)

    Mathilde Descheemaeker

    Full Text Available Although some studies have demonstrated that the indirectly measured attitude towards alcohol is related to alcohol use, this relationship has not always been confirmed. In the current study, we attempted to shed light on this issue by investigating whether the predictive validity of an indirect attitude measure is dependent upon attitude accessibility. In a sample of 88 students, the picture-picture naming task, an adaptation of the affective priming paradigm, was used to measure the automatically activated attitude towards beer. Attitude accessibility was measured using a speeded evaluative categorization task. Behavioral measures were the amount of beer poured and drunk during a bogus taste test and the choice between a bottle of beer or water at the end of the experiment. In line with our hypothesis, the indirectly measured attitude towards beer predicted behavior during the taste test only when it was highly accessible. In contrast, this attitude was related to choice behavior irrespective of attitude accessibility. This study confirms that indirect attitude measures can be valuable predictors of alcohol-related behavior, but that it is sometimes necessary to take attitude accessibility into account.

  8. On the Relationship between the Indirectly Measured Attitude Towards Beer and Beer Consumption: The Role of Attitude Accessibility

    Science.gov (United States)

    Descheemaeker, Mathilde; Spruyt, Adriaan; Hermans, Dirk

    2014-01-01

    Although some studies have demonstrated that the indirectly measured attitude towards alcohol is related to alcohol use, this relationship has not always been confirmed. In the current study, we attempted to shed light on this issue by investigating whether the predictive validity of an indirect attitude measure is dependent upon attitude accessibility. In a sample of 88 students, the picture-picture naming task, an adaptation of the affective priming paradigm, was used to measure the automatically activated attitude towards beer. Attitude accessibility was measured using a speeded evaluative categorization task. Behavioral measures were the amount of beer poured and drunk during a bogus taste test and the choice between a bottle of beer or water at the end of the experiment. In line with our hypothesis, the indirectly measured attitude towards beer predicted behavior during the taste test only when it was highly accessible. In contrast, this attitude was related to choice behavior irrespective of attitude accessibility. This study confirms that indirect attitude measures can be valuable predictors of alcohol-related behavior, but that it is sometimes necessary to take attitude accessibility into account. PMID:24777156

  9. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.

    Science.gov (United States)

    Mukai, Nobuhiko; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2014-07-01

    Among industrial yeasts used for alcoholic beverage production, most wine and weizen beer yeasts decarboxylate ferulic acid to 4-vinylguaiacol, which has a smoke-like flavor, whereas sake, shochu, top-fermenting, and bottom-fermenting yeast strains lack this ability. However, the factors underlying this difference among industrial yeasts are not clear. We previously confirmed that both PAD1 (phenylacrylic acid decarboxylase gene, YDR538W) and FDC1 (ferulic acid decarboxylase gene, YDR539W) are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. In the present study, single nucleotide polymorphisms (SNPs) of PAD1 and FDC1 in sake, shochu, wine, weizen, top-fermenting, bottom-fermenting, and laboratory yeast strains were examined to clarify the differences in ferulic acid decarboxylation ability between these types of yeast. For PAD1, a nonsense mutation was observed in the gene sequence of standard top-fermenting yeast. Gene sequence analysis of FDC1 revealed that sake, shochu, and standard top-fermenting yeasts contained a nonsense mutation, whereas a frameshift mutation was identified in the FDC1 gene of bottom-fermenting yeast. No nonsense or frameshift mutations were detected in laboratory, wine, or weizen beer yeast strains. When FDC1 was introduced into sake and shochu yeast strains, the transformants exhibited ferulic acid decarboxylation activity. Our findings indicate that a positive relationship exists between SNPs in PAD1 and FDC1 genes and the ferulic acid decarboxylation ability of industrial yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Beer, Wood, and Welfare ‒ The Impact of Improved Stove Use Among Dolo-Beer Breweries

    Science.gov (United States)

    2015-01-01

    Local beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households as well as the environmental effect. We find substantial wood savings among the breweries, 36% to 38% if they fully switch to an improved stove. In absolute amounts, they save about 0.176 kg of fuelwood per litre of dolo brewed. These savings imply huge reductions in CO2-emissions and reduce the overall demand for woodfuel, which is predominantly used by the poorer strata for cooking purposes. We provide estimates for the price decrease that might result from this and show that the urban poor are likely to benefit. Thus, the intervention under study is an example for a green growth intervention with pro-poor welfare gains – something green growth strategies should look for. PMID:26244341

  11. Beer, Wood, and Welfare--The Impact of Improved Stove Use Among Dolo-Beer Breweries.

    Directory of Open Access Journals (Sweden)

    Michael Grimm

    Full Text Available Local beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households as well as the environmental effect. We find substantial wood savings among the breweries, 36% to 38% if they fully switch to an improved stove. In absolute amounts, they save about 0.176 kg of fuelwood per litre of dolo brewed. These savings imply huge reductions in CO2-emissions and reduce the overall demand for woodfuel, which is predominantly used by the poorer strata for cooking purposes. We provide estimates for the price decrease that might result from this and show that the urban poor are likely to benefit. Thus, the intervention under study is an example for a green growth intervention with pro-poor welfare gains--something green growth strategies should look for.

  12. Scale-down/scale-up studies leading to improved commercial beer fermentation.

    Science.gov (United States)

    Nienow, Alvin W; Nordkvist, Mikkel; Boulton, Christopher A

    2011-08-01

    Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.

    Science.gov (United States)

    Oomuro, Mayu; Kato, Taku; Zhou, Yan; Watanabe, Daisuke; Motoyama, Yasuo; Yamagishi, Hiromi; Akao, Takeshi; Aizawa, Masayuki

    2016-11-01

    One of the key processes in making beer is fermentation. In the fermentation process, brewer's yeast plays an essential role in both the production of ethanol and the flavor profile of beer. Therefore, the mechanism of ethanol fermentation by of brewer's yeast is attracting much attention. The high ethanol productivity of sake yeast has provided a good basis from which to investigate the factors that regulate the fermentation rates of brewer's yeast. Recent studies found that the elevated fermentation rate of sake Saccharomyces cerevisiae species is closely related to a defective transition from vegetative growth to the quiescent (G0) state. In the present study, to clarify the relationship between the fermentation rate of brewer's yeast and entry into G0, we constructed two types of mutant of the bottom-fermenting brewer's yeast Saccharomyces pastorianus Weihenstephan 34/70: a RIM15 gene disruptant that was defective in entry into G0; and a CLN3ΔPEST mutant, in which the G1 cyclin Cln3p accumulated at high levels. Both strains exhibited higher fermentation rates under high-maltose medium or high-gravity wort conditions (20° Plato) as compared with the wild-type strain. Furthermore, G1 arrest and/or G0 entry were defective in both the RIM15 disruptant and the CLN3ΔPEST mutant as compared with the wild-type strain. Taken together, these results indicate that regulation of the G0/G1 transition might govern the fermentation rate of bottom-fermenting brewer's yeast in high-gravity wort. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  15. Detection and identification of Brettanomyces/Dekkera sp. yeasts with a loop-mediated isothermal amplification method.

    Science.gov (United States)

    Hayashi, Nobuyuki; Arai, Ritsuko; Tada, Setsuzo; Taguchi, Hiroshi; Ogawa, Yutaka

    2007-01-01

    Primer sets for a loop-mediated isothermal amplification (LAMP) method were developed to specifically identify each of the four Brettanomyces/Dekkera species, Dekkera anomala, Dekkera bruxellensis, Dekkera custersiana and Brettanomyces naardenensis. Each primer set was designed with target sequences in the ITS region of the four species and could specifically amplify the target DNA of isolates from beer, wine and soft drinks. Furthermore, the primer sets differentiated strains of the target species from strains belonging to other species, even within the genus Brettanomyces/Dekkera. Moreover, the LAMP method with these primer sets could detect about 1 x 10(1) cfu/ml of Brettanomyces/Dekkera yeasts from suspensions in distilled water, wine and beer. This LAMP method with primer sets for the identification of Brettanomyces/Dekkera yeasts is advantageous in terms of specificity, sensitivity and ease of operation compared with standard PCR methods.

  16. The influence of sucrose and maltose on Saccharomyces cerevisiae yeast multiplication

    Directory of Open Access Journals (Sweden)

    O. I. Ponomareva

    2016-01-01

    Full Text Available The data on the influence of fermentable carbohydrates concentration on yeast multiplication are widely represented in the literature. This study presents the results of experiments showing an influence of sucrose and maltose concentration on Saccharomyces cerevisiae yeast multiplication. The objects of this research are bakery, beer, wine and alcohol yeast that are widely used in fermentation industry. Beet molasses and malt wort were chosen as nutrient medium for yeast breeding. Their basic sugars are mainly represented by sucrose and maltose. The concentration of sugars was 9, 12, 16 and 20%. The intensity of yeast multiplication was evaluated based on yeast cells concentration during their cultivation and the specific growth rate. Sugar concentrations causing an intensive accumulation of examined yeast strains were determined. This paper presents the experimental data that were received describing the influence of sucrose and maltose concentration on the duration of a lag phase period for different yeast strains. Specific growth rates of researched strains were determined for nutrient mediums with different glucose and maltose concentrations. It was found that the Crabtree effect, that is caused by high carbohydrates concentration in culture medium, is most pronounced when yeast cells grow on a sucrose medium. Brewer’s and baker's yeast are more adapted to high concentrations of carbohydrates. The obtained experimental data could be utilized to develop flow charts of growing a pure culture of Saccharomyces cerevisiae yeast to use at fermentation plants, including low power ones.

  17. What's in a name? The effect of congruent and incongruent product names on liking and emotions when consuming beer or non-alcoholic beer in a bar

    NARCIS (Netherlands)

    Silva, Ana Patricia; Jager, Gerry; Voss, Hans Peter; Zyl, van Hannelize; Hogg, Tim; Pintado, Manuela; Graaf, de Kees

    2017-01-01

    This study concerns the expectations, liking and emotions related to the consumption of conventional beer and non-alcoholic beer (NAB), which are related but different products. These beverages are derived from the same raw materials and have undistinguished visual sensory cues. However consumers

  18. The silicon content of beer and its bioavailability in healthy volunteers.

    Science.gov (United States)

    Sripanyakorn, Supannee; Jugdaohsingh, Ravin; Elliott, Hazel; Walker, Caroline; Mehta, Payal; Shoukru, Sera; Thompson, Richard P H; Powell, Jonathan J

    2004-03-01

    Dietary Si, as soluble orthosilicic acid (OSA), may be important for the growth and development of bone and connective tissue. Beer appears to be a major contributor to Si intake, although the Si content of beer and its bioavailability in human subjects have not been well established. Here we investigated the Si content of different beers and then estimated Si absorption from beer in healthy volunteers. The Si content of seventy-six different beers was estimated using inductively coupled plasma optical emission spectrometry and one of the beers, used in the ingestion study, was ultrafiltered to determine OSA content. Next, following the ingestion of 0.6 litres beer (22.5 mg Si; 4.6 % (v/v) ethanol), serum and urinary Si levels were measured in nine healthy volunteers over a 6 h period. A solution of OSA was similarly investigated as a positive control and water and 4.6 % ethanol as negative controls. The mean Si level of beer was 19.2 (sd 6.6) mg/l; the median Si level was 18.0 mg/l. There was no significant difference in the Si levels of the different beers by geographical origin or type of beer. Serum and urinary Si levels increased considerably following the ingestion of beer or a solution of OSA but not with the ingestion of either 4.6 % ethanol or water. The ultrafilterability of Si from beer (about 80 %) and its absorption in volunteers (about 55 %) was comparable with that of a solution of OSA suggesting that Si in beer is present chiefly in a monomeric form and is readily bioavailable.

  19. Chemotropism during yeast mating.

    Science.gov (United States)

    Follette, Peter J; Arkowitz, Robert A

    2009-01-01

    Virtually all eukaryotic cells can grow in a polarized fashion in response to external signals. Cells can respond to gradients of chemoattractants or chemorepellents by directional growth, a process referred to as chemotropism. The budding yeast Saccharomyces cerevisiae undergoes chemotropic growth during mating, in which two haploid cells of opposite mating type grow toward one another. We have shown that mating pheromone gradients are essential for efficient mating in yeast and have examined the chemotropism defects of different yeast mutants. Two methods of assessing the ability of yeast strains to respond to pheromone gradients are presented here.

  20. Integrative Expression of Glucoamylase Gene in a Brewer’s Yeast Saccharomyces pastorianus Strain

    Directory of Open Access Journals (Sweden)

    Guangyi Zhang

    2008-01-01

    Full Text Available The recombinant brewer’s yeast Saccharomyces pastorianus strain was constructed byintroducing the ilv2:GLA fragment released from pMGI6, carrying glucoamylase gene (GLA and using the yeast α-acetolactate synthase gene (ILV2 as the recombination sequence. The strain was able to utilise starch as the sole carbon source, its glucoamylase activity was 6.3 U/mL and its α-acetolactate synthase activity was lowered by 33.3 %. The introduced GLA gene was integrated at the recipient genomic ILV2 gene, one copy of ILV2 gene was disrupted and the other copy remained intact. Primary wort fermentation test confirmed that the diacetyl and residual sugar concentration in the wort fermented by the recombinant strain were reduced by 65.6 and 34.2 % respectively, compared to that of the recipient strain. Under industrial operating conditions, the maturation time of beer fermented by the recombinant strain was reduced from 7 to 4 days, there were no significant differences in the appearance and mouthfeel, and the beer satisfied the high quality demands. That is why the strain could be used in beer production safely.

  1. Beer-Fick criteria and generic drugs in Brazil

    OpenAIRE

    Gorzoni, Milton Luiz; Fabbri, Renato Moraes Alves; Pires, Sueli Luciano

    2008-01-01

    OBJETIVO: Determinar a prevalência de fármacos potencialmente inapropriados para idosos em medicamentos genéricos brasileiros pelos critérios de Beers-Fick. MÉTODOS: Análise da lista de medicamentos genéricos publicada no Diário Oficial da União de 12 de julho de 2004 e copiada da página da Agência Nacional de Vigilância Sanitária (ANVISA) - www.anvisa.gov.br, utilizando-se os critérios de Beers-Fick. RESULTADOS: Contendo 299 produtos e/ou apresentações, a lista analisada apresentava 20 deles...

  2. Loyalty to two brands of beer of the same producer

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    2017-01-01

    The focus of the paper is loyalty to two brands of beer produced by the Carlsberg Group - Tuborg and Carlsberg. Both beers are lagers. The Carlsberg Group markets Tuborg as a more premium brand, and it also aims to promote it to women. Unlike in the Netherlands with one brand - Heineken and unlike...... in the Czech Republic with many well-known brands by a multitude of producers, the Danish case gives a unique opportunity to investigate if customers truly prefer one of two brands or are approximately equally low in loyalty to any brand as it is produced by the same company and tastes very similarly (if...... not the same), i.e. if brand loyalty can be built to similar products produced by the same company. Data for the research were collected using an on-line questionnaire. The survey was conducted in Denmark. Respondents were Danish university students; such selection was done in order to ensure familiarity...

  3. Purification and structural characterization of LTP1 polypeptides from beer.

    Science.gov (United States)

    Jégou, S; Douliez, J P; Mollé, D; Boivin, P; Marion, D

    2000-10-01

    We report on the purification of lipid transfer proteins (LTP) from barley seeds and beer with the aim of investigating the chemical modifications that occur during the brewing process. In seeds, the well-known LTP of 9 kDa (LTP1) has been found together with a second form named LTPb that displays comparable amino acid composition but was not fully sequenced. These two forms have been recovered in beer with marked chemical modifications including disulfide bond reduction and rearrangement and especially glycation by Maillard reaction. The glycation is heterogeneous with variable amounts of hexose units bound to LTPs. Circular dichroism shows that glycated LTP1 having all their disulfide bridges reduced are totally unfolded. These results provide a first basis for understanding how barley LTPs become foam-promoting agents during the malting and brewing process.

  4. Creativity, Community, & Growth: A Social Geography of Urban Craft Beer

    Directory of Open Access Journals (Sweden)

    Neil Reid

    2017-03-01

    Full Text Available To better understand the non-economic drivers of growth in emerging industries, this paper examines the craft beer industry.  Specifically, the paper will review two examples—the Black Cloister Brewing Company in Toledo, OH and 3rd Turn Brewery, Louisville, KY—to understand how the values of entrepreneurs and local firms that are situated at the nexus of work, place, and creativity promote growth.  Further, the paper will consider the socio-cultural meaning of creativity relative to the craft beer industry and the many ways in which the concept of innovation traditionally used by economic geographers to understand growth can be better understood within the context of creativity in some industries.  In doing so, the paper represents a conceptual shift away from innovation towards creativity, as well as community.

  5. Organizational climate in a beer company: an exploratory study

    OpenAIRE

    Acosta U., Beatriz; Universidad del Papaloapan, Campus Tuxtepec, México.; Venegas G., Cyntia; Universidad del Papaloapan, Campus Tuxtepec, México.

    2014-01-01

    Results presented are part of Cyntia Venegas Gómez Master thesis (2010). Aim was to identify organizational climate in a beer company from Litwin and Stringer’s organizational climate questionnaire, 1968. Participated 49 workers which answered Litwin and Stringer Questionnaire. This has 53 items, divided in 9 scales. Workers perceived a good climate in support, structure, risk, responsibility and warmth and bad climate in conflict, identity, standards and reward. Statistical differences were ...

  6. THE ANALYSIS OF THE BEER SECTOR IN ROMANIA

    Directory of Open Access Journals (Sweden)

    OANA DOBRE-BARON

    2012-12-01

    Full Text Available This study aims to analyse a sector of the Romanian economy which is currently among the most sustainable. It is about production and marketing of beer, a product with a long and rich history around the world but also in Romania. The analysis covers a period of seven years and takes into account the dynamic evolution of those market-specific indicators such as: production, consumption, imports, exports, workforce involved, the contribution to the state budget, etc.

  7. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. EVALUATION OF FERMENTATION PARAMETERS DURING HIGH-GRAVITY BEER PRODUCTION

    OpenAIRE

    Almeida,R.B.; J.B. Almeida e Silva; U.A. Lima; Silva, D P; Assis,A.N.

    2001-01-01

    A large number of advantages are obtained from the use of highly concentrated worts during the production of beer in a process referred to as "high-gravity". However, problems related to slow or stuck fermentations, which cause the lower productivity and possibility of contamination, are encountered. This study examines the influence of factors pH, percentage of corn syrup, initial wort concentration and fermentation temperature on the fermentation parameters, namely productivity, wort attenu...

  9. Market structure and its interactions in beer commodity chain

    Directory of Open Access Journals (Sweden)

    Edita Veselská

    2005-01-01

    Full Text Available This paper aims to contribute to deeper knowledge of the economics of the beer commodity chain, focused on the formation of the market structure and its interactions with the price development within analysed commodity chain. The results of the economic analysis have proved, that czech brewery is high concentrated and that between concentration ratio and breweries’s margin exists a positive interdependence.

  10. Beer classification by means of a potentiometric electronic tongue.

    Science.gov (United States)

    Cetó, Xavier; Gutiérrez-Capitán, Manuel; Calvo, Daniel; del Valle, Manel

    2013-12-01

    In this work, an electronic tongue (ET) system based on an array of potentiometric ion-selective electrodes (ISEs) for the discrimination of different commercial beer types is presented. The array was formed by 21 ISEs combining both cationic and anionic sensors with others with generic response. For this purpose beer samples were analyzed with the ET without any pretreatment rather than the smooth agitation of the samples with a magnetic stirrer in order to reduce the foaming of samples, which could interfere into the measurements. Then, the obtained responses were evaluated using two different pattern recognition methods, principal component analysis (PCA), which allowed identifying some initial patterns, and linear discriminant analysis (LDA) in order to achieve the correct recognition of sample varieties (81.9% accuracy). In the case of LDA, a stepwise inclusion method for variable selection based on Mahalanobis distance criteria was used to select the most discriminating variables. In this respect, the results showed that the use of supervised pattern recognition methods such as LDA is a good alternative for the resolution of complex identification situations. In addition, in order to show an ET quantitative application, beer alcohol content was predicted from the array data employing an artificial neural network model (root mean square error for testing subset was 0.131 abv). Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Metabolism of Zearalenone in the Course of Beer Fermentation

    Directory of Open Access Journals (Sweden)

    Naoki Mochizuki

    2011-02-01

    Full Text Available Zearalenone (ZON is a mycotoxin with estrogenic activity, produced by members of Fusarium species, and is found worldwide in a number of cereal crops. It is known to have four active metabolites (a-zearalenol (a-ZOL, b-zearalenol (b-ZOL, a-zearalanol (a-ZAL, and b-zearalanol (b-ZAL. A highly sensitive analytical method using liquid chromatography/tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS has been established and validated in order to analyze ZON and its metabolites in beer and malt samples. The metabolism of ZON in the course of beer fermentation was further characterized using the artificially contaminated wort by this established method. In the fermented sample, 85.9% of ZON was converted to b-ZOL, which has lower estrogenic activity than that of ZON. These findings indicate that the health risk to humans due to ZON in beer is reduced during the fermentation process.

  12. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation.

    Science.gov (United States)

    Mas, Albert; Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Cerezo, Ana B; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  13. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  14. Liquid Chromatography-Mass Spectrometry Analysis Reveals Hydrolyzed Gluten in Beers Crafted To Remove Gluten.

    Science.gov (United States)

    Colgrave, Michelle L; Byrne, Keren; Howitt, Crispin A

    2017-11-08

    During brewing, gluten proteins may be solubilized, modified, complexed, hydrolyzed, and/or precipitate. Gluten fragments that persist in conventional beers render them unsuitable for people with celiac disease (CD) or gluten intolerance. Barley-based beers crafted to remove gluten using proprietary precipitation and/or application of enzymes, e.g. prolyl endopeptidases (PEP) that degrade the proline-rich gluten molecules, are available commercially. Gluten measurement in fermented products remains controversial. The industry standard, a competitive ELISA, may indicate gluten values gluten peptides derived from hydrolyzed fragments, many >30 kDa in size. Barley gluten (hordeins) were detected in all beers analyzed with peptides representing all hordein classes detected in conventional beers but also, alarmingly, in many gluten-reduced beers. It is evident that PEP digestion was incomplete in several commercial beers, and peptides comprising missed cleavages were identified, warranting further optimization of PEP application in an industrial setting.

  15. Is beer consumption related to measures of abdominal and general obesity?

    DEFF Research Database (Denmark)

    Bendsen, Nathalie Tommerup; Christensen, Robin; Bartels, Else Marie

    2013-01-01

    A systematic review was conducted to assess the evidence linking beer consumption to abdominal and general obesity. Following a systematic search strategy, 35 eligible observational studies and 12 experimental studies were identified. Regarding abdominal obesity, most observational data pointed...... towards a positive association or no association between beer intake and waist circumference or waist-to-hip ratio in men, whereas results for women were inconsistent. Data from a subset of studies indicated that beer intake > 500 mL/day may be positively associated with abdominal obesity. Regarding...... general obesity, most observational studies pointed towards an inverse association or no association between beer intake and body weight in women and a positive association or no association in men. Data from six experimental studies in men, in which alcoholic beer was compared with low-alcoholic beer...

  16. Occurrence of Fusarium mycotoxins and their dietary intake through beer consumption by the European population.

    Science.gov (United States)

    Rodríguez-Carrasco, Yelko; Fattore, Margherita; Albrizio, Stefania; Berrada, Houda; Mañes, Jordi

    2015-07-01

    Since cereals are raw materials for production of beer and beer-based drinks, the occurrence mycotoxins in 154 beer samples was topic of investigation in this study. The analyses were conducted using QuEChERS extraction and gas chromatography-tandem mass spectrometry determination. The analytical method showed recoveries for vast majority of analytes ranged from 70% to 110%, relative standard deviations lower than 15% and limits of detection from 0.05 to 8 μg/L. A significant incidence of HT-2 toxin and deoxynivalenol (DON) were found in 9.1% and 59.7% of total samples, respectively. The exposure of European population to mycotoxins through beer consumption was assessed. No toxicological concern was associated to mycotoxins exposure for average beer consumers. Despite that, for heavy beer drinkers, the contribution of this commodity to the daily intake is not negligible, approaching or even exceeding the safety levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Bacteria associated with human saliva are major microbial components of Ecuadorian indigenous beers (chicha

    Directory of Open Access Journals (Sweden)

    Ana L. Freire

    2016-04-01

    Full Text Available Indigenous beers (chicha are part of the indigenous culture in Ecuador. The fermentation process of these beers probably relies on microorganisms from fermented substrates, environment and human microbiota. We analyzed the microbiota of artisanal beers (including a type of beer produced after chewing boiled cassava using bacterial culture and 16S ribosomal RNA (rRNA gene-based tag-encoded FLX amplicon pyrosequencing (bTEFAP. Surprisingly, we found that Streptococcus salivarius and Streptococcus mutans (part of the human oral microbiota were among the most abundant bacteria in chewed cassava and in non-chewed cassava beers. We also demonstrated that S. salivarius and S. mutans (isolated from these beers could proliferate in cassava mush. Lactobacillus sp. was predominantly present in most types of Ecuadorian chicha.

  18. The yeast Dekkera bruxellensis genome contains two orthologs of the ARO10 gene encoding for phenylpyruvate decarboxylase.

    Science.gov (United States)

    de Souza Liberal, Anna Theresa; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante; Simões, Diogo Ardaillon; de Morais, Marcos Antonio

    2012-07-01

    The yeast Dekkera bruxellensis possesses important physiological traits that enable it to grow in industrial environments as either spoiling yeast of wine production or a fermenting strain used for lambic beer, or fermenting yeast in the bioethanol production process. In this work, in silico analysis of the Dekkera genome database allowed the identification of two paralogous genes encoding for phenylpyruvate decarboxylase (DbARO10) that represents a unique trait among the hemiascomycetes. The molecular analysis of the theoretical protein confirmed its protein identity. Upon cultivation of the cell in medium containing phenylpyruvate, both increases in gene expression and in phenylpyruvate decarboxylase activity were observed. Both genes were differentially expressed depending on the culture condition and the type of metabolism, which indicated the difference in the biological function of their corresponding proteins. The importance of the duplicated DbARO10 genes in the D. bruxellensis genome was discussed and represents the first effort to understand the production of flavor by this yeast.

  19. Alterations in Phosphatidylcholine and Phosphatidylethanolamine Content During Fermentative Metabolism in Saccharomyces cerevisiae Brewer’s Yeast

    Directory of Open Access Journals (Sweden)

    Gordana Čanadi Jurešić

    2009-01-01

    Full Text Available During beer production and serial recycling, brewer’s yeasts are exposed to various stress factors that, overpowering the cellular defence mechanisms, can impair yeast growth and fermentation performance. It is well known that yeast cells acclimatize to stress conditions in part by changing the lipid composition of their membranes. The main focus of this study is the effect of stressful fermentation conditions on two phospholipid species, phosphatidylcholine (PtdCho and phosphatidylethanolamine (PtdEtn, in Saccharomyces cerevisiae bottom-fermenting brewer’s yeast. For this purpose the content and fatty acid profile of these major classes of phospholipids have been compared, as well as their ratio in the whole cells of the starter culture, non-stressed yeast population, and the first three recycled yeast generations. The stressed yeast generations showed an increased mass fraction of PtdCho and a decreased mass fraction of PtdEtn, which led to an increased PtdCho/PtdEtn ratio in the recycled cells as compared to the non-stressed yeast culture. The most pronounced variation of PtdCho/PtdEtn ratio was found in the second yeast generation, yielding a 78 % increase with respect to the starter culture. Variations in the content of both, PtdCho and PtdEtn, were accompanied by a higher mass fraction of unsaturated fatty acids in both phospholipid species (palmitoleic acid in PtdCho, and palmitoleic and oleic in PtdEtn and by the increased ratio of C16/C18 acids in PtdCho. The results suggest that both phospholipid species, including their fatty acids, are highly involved in the adaptation of brewer’s yeast to stressful fermentation conditions.

  20. Modified multiplex PCR methods for comprehensive detection of Pectinatus and beer-spoilage cocci.

    Science.gov (United States)

    Iijima, Kazumaru; Asano, Shizuka; Suzuki, Koji; Ogata, Tomoo; Kitagawa, Yasushi

    2008-10-01

    Specific PCR primers were designed based on the 16S rRNA genes of recently proposed beer-spoilage species, Pectinatus haikarae, Megasphaera sueciensis, and M. paucivorans, and two sets of our previously reported multiplex PCR methods for Pectinatus spp. and beer-spoilage cocci were reconstructed. Each modified multiplex PCR method was found specifically to detect beer-spoilage species of Pectinatus and cocci, including new species.

  1. Craft Beer Marketing. Do You Have to be First, Best, or Unique to Succeed?

    OpenAIRE

    Lahnalampi, Benjamin

    2016-01-01

    This thesis deals with the interplay of marketing and design in the craft brewing industry in Finland. The goal was to figure out what craft brewers do to successfully market their products. The thesis first explains that craft beer is different from generic beer in that it is uncompromising in its ingredients, special flavours, and sole focus on the beer rather than stock prices. Craft breweries use grassroots and guerrilla marketing tactics. They are heavily involved in social media marketi...

  2. Studies on Radiation Protection Effect of the Beer

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jong Gi; Ha, Tae Young; Hwang, Chul; Hyan; Lee, Young Hwa [Dept. of Radiation Oncology, Busan National University Hospital, Busan (Korea, Republic of)

    2007-09-15

    In this study, it was investigated whether commercially produced beer is able to prevent a lymphocyte from radiation induced apoptosis. Whole blood samples were acquired from 5 healthy volunteers (male, 26-38 years old) and the lymphocyte were isolated by density gradient centrifugation. Radiation induced apoptosis of the lymphocyte were investigated by 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy to 5.0 Gy irradiation. In some experiments, the donor drunk beer and then blood samples were collected. In other experiments, melatonin or glycine betain was added to lymphocyte culture medium. Treated or untreated lymphocytes were cultured for 60 hours and radiation induced apoptosis of the lymphocyte was analyzed by annexin-V staining through flow cytometery. Relative radiation induced apoptosis ratio of the untreated lymphocytes is 1.22{+-}1.1, 1.22{+-}1.1, 1.38{+-}1.0, 1.47{+-}1.1, 1.50{+-}1.2 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively. Relative radiation induced apoptosis ratio of lymphocytes is isolated from beer drunken donors is 0.971.0, 0.991.0, 1.11{+-}0.9, 1.29{+-}1.1, 1.15{+-}1.1 by radiation doses respectively which are reduced 21.5% compared with untreated lymphocyte. Relative radiation induced apoptosis ratio of the lymphocytes is isolated from non-alcohol beer drunken donors is 1.22{+-}1.1, 1.17{+-}1.1, 1.13{+-}1.3, 1.38{+-}1.2, 1.32{+-}1.1 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively which are reduced 10.8% compared with the untreated lymphocyte. As a result, it is suggested that beer may protect the lymphocyte from radiation damage and inhibit apoptosis.

  3. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  4. Mycotoxin analysis of industrial beers from Brazil: The influence of fumonisin B1 and deoxynivalenol in beer quality.

    Science.gov (United States)

    Piacentini, Karim C; Rocha, Liliana O; Fontes, Lívia C; Carnielli, Lorena; Reis, Tatiana A; Corrêa, Benedito

    2017-03-01

    Worldwide, barley is the main source of carbohydrate in the brewing process. However, corn is often used as an adjunct to improve and accelerate the fermentation process. Considering that, these two substrates are susceptible to fungal contamination as well as mycotoxins. The objective of the current study is to determine the incidence of the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) in industrial beers. The method applied for mycotoxin analyses included high performance liquid chromatography. The mean levels for recovery experiments were 89.6% for DON and 93.3% for FB1. DON was not detected in any of the analyzed samples whereas FB1 was found in 49% of the 114 samples. The current survey demonstrated levels of FB1 contamination in industrial beer, possibly due to the addition of contaminated adjuncts. It is necessary to establish maximum levels of mycotoxins in beer in Brazil and other countries in order to reduce health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Prions in Yeast

    Science.gov (United States)

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  6. The yeast Golgi apparatus.

    Science.gov (United States)

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms. © 2011 John Wiley & Sons A/S.

  7. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Cr) and tin (Sn) from metal-containing effluent by waste brewer's yeast. Biosorption of Cr and Sn was studied under batch conditions at a pH value of 6.5. The biomass, non-viable cells of the yeast Saccharomyces cerevisiae, is able to adsorb ...

  8. Detection of iso-α-acids to confirm beer consumption in postmortem specimens.

    Science.gov (United States)

    Rodda, Luke N; Gerostamoulos, Dimitri; Drummer, Olaf H

    2015-01-01

    Iso-α-acids (IAAs) can be used as markers for the consumption of beer. Postmortem specimens from a range of coronial cases were analyzed for IAAs in order to determine the prevalence of beer consumption and any correlation to blood alcohol concentrations (BAC). A total of 130 cases were included in this study including those where beer was mentioned in the case circumstances, cases where beer was not mentioned specifically but alcohol was detected, and cases where neither beer was mentioned nor a positive BAC was present. Available blood, serum, vitreous humour and urine specimens were analyzed. Of the 50 cases where beer was mentioned, 86% had one or more IAAs detected. In cases that only had a positive BAC (n = 60), 57% of these cases also showed the presence of these beer markers. IAAs were detected in specimens obtained from traumatized, burnt, and decomposed cases with a mention of beer consumption or where BAC was positive in blood. No IAAs were detected in cases where BAC was negative. There was little or no correlation between blood IAA concentrations and BAC. This study demonstrates the possible detection of IAAs as a marker for beer consumption. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Chinese consumers and European beer: Associations between attribute importance, socio-demographics, and consumption.

    Science.gov (United States)

    Wang, Ou; Gellynck, Xavier; Verbeke, Wim

    2017-01-01

    The demand for western alcoholic beverages in China has increased tremendously in recent years. However, there is still a lack of understanding with regard to the behaviour of Chinese consumers towards European beer, which is a common western alcoholic beverage. This study explores associations between beer attribute importance scores, socio-demographic factors, general beer consumption frequency and country associations of European beer, and the consumption of imported European beer in China. The data (n = 541) were collected in two Chinese cities: Shanghai and Xi'an. Results of ordered logistic regression analyses show that the consumption of imported European beer is positively associated with importance attached to the product attributes Origin, Brand, Colour and Texture, and it is negatively associated with importance attached to Price and Alcoholic content. Furthermore, male gender, living in Shanghai city, a good financial situation, frequent beer consumption and a high-level employment position have a significantly positive influence on European beer consumption in China. In addition, about two thirds of the study participants associate imported European beer with 'Germany'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Aflatoxin B1 and sterigmatocystin survey in beer sold in China.

    Science.gov (United States)

    Zhao, Yarong; Huang, Jianxiang; Ma, Liyan; Liu, Shuai; Wang, Fuhua

    2017-03-01

    A total of 101 samples of beer from the Chinese market were analysed for the presence of aflatoxin B1 (AFB1) and sterigmatocystin (STC), using methods based on liquid chromatography-tandem mass spectrometry. The limit of quantification and the limit of detection in beer were 0.1 and 0.03 µg/kg, respectively. Recoveries of AFB1 and STC from spiked beer samples were 97.8-103.6% and 92.7-102.1%, respectively. None of the beer purchased samples were contaminated with AFB1 or STC.

  11. Consumption of beer and colorectal cancer incidence: a meta-analysis of observational studies.

    Science.gov (United States)

    Zhang, Cheng; Zhong, Min

    2015-04-01

    Several meta-analyses and reports from the World Cancer Research Fund supported a risk association between alcohol consumption and colorectal cancer (CRC). However, the association for beer consumption, the common type of alcoholic beverage, remains unclear. We identified studies by a literature search of PUBMED and EMBASE through 30 June 2014. Summary relative risks (SRRs) with their 95% CIs were calculated with a fixed or random effects model. Twelve case-control and nine cohort studies were included. Compared with non-alcohol drinkers or non-beer drinkers, any beer drinkers were associated with an increased risk of CRC (SRR = 1.20, 95% CI, 1.06-1.37; p(heterogeneity) beer drinking was related to increased risk of CRC (SRR = 1.37, 95% CI 1.26-1.49), while light or moderate beer drinking was not. The dose-response analysis demonstrated that an increase of one drink per day in beer consumption was related to an increased risk of CRC (SRR = 1.13, 95% CI, 1.06-1.21). There was evidence of a potential nonlinear association between beer intake and CRC incidence (p = 0.002 for nonlinearity). The results from this meta-analysis suggest that heavy (≥ 2 drinks/day) beer drinking may be associated with increased CRC risk. More researches with improved control of confounding and actual measurement of beer consumption are needed to confirm these findings.

  12. The Bacteriostasis Study of Nisin for the Raspberry Health Draft Beer

    Science.gov (United States)

    Sun, Jinxu; Zhu, Hui xia; Guo, Jiping; Xiao, Dong Guang

    The raspberry healthy draft beer was obtained by adding the extracting of raspberry into the raw fermentation materials of beer, in order to prolong the shelf life, the different concentrations nisin were added to the the raspberry healthy draft beer, the result shown that nisin could have obvious influence on the shelf life, the shelf life prolonged with nisin concentrations adding, the shelf life raspberry healthy draft beer was 44d after adding 0.02 nisin mg/mL, the shelf life prolonged 36d than blank.

  13. Yeast (different sources and levels) as protein source in diets of reared piglets: effects on protein digestibility and N-metabolism.

    Science.gov (United States)

    Spark, M; Paschertz, H; Kamphues, J

    2005-01-01

    The aim of this study was to examine the feeding value of different yeasts as a substitute for soya bean meal, the main protein source in diets of weaned piglets. Tested two yeasts were already available on the market, Saccharomyces cerevisiae and Kluyveromyces lactis (beer and milk yeast), which replaced 40% of the soya bean meal in the diets. Furthermore, a yeast (Kluyveromyces fragilis) grown on whey, a side-product of cheese production, was used in increasing concentrations in the diets, so that increasing amounts of the soya bean meal (20%, 40% and 60%) could be replaced. As proved in these experiments, a replacement of 60% of the soya protein with whey yeast protein had positive effects on the performances (daily weight gain) and on the N-metabolism and did not have negative effects on the health or the faeces consistency. The whey yeast stands out because of its high protein quality (N-digestibility and N-retention). Furthermore, the replacement of soya bean meal with highly digestible yeasts is welcomed under the aspect of animal health, because of the reduction of anti-nutritive soya components (stachyose, glycinin) in diets of weaned piglets. The controlled production conditions of the yeasts result in a high feed safety; in addition, the yeast as an end-of-pipe-product is a resource conserving and valuable feed. A main stimulus for the use of yeasts, however, in a food production controlled by economic standpoints, is their price and the costs of other competing feeds.

  14. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    Science.gov (United States)

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 expression.

    Science.gov (United States)

    Iijima, K; Ogata, T

    2010-12-01

    To construct a self-cloning brewer's yeast that can minimize the unfavourable flavours caused by oxidation and certain kinds of sulfur compounds. DNA fragments of a high-expression promoter from the TDH3 gene originating from Saccharomyces cerevisiae were integrated into the promoter regions of the S. cerevisiae-type and Saccharomyces bayanus-type SSU1 genes of bottom-fermenting brewer's yeast. PCR and sequencing confirmed the TDH3 promoter was correctly introduced into the SSU1 regions of the constructed yeasts, and no foreign DNA sequences were found. Using the constructed yeasts, the concentration of sulfite in fermenting wort was higher when compared with the parent strain. In addition, the concentrations of hydrogen sulfide, 3-methyl-2-buten-1-thiol (MBT) and 2-mercapto-3-methyl-1-butanol (2M3MB) were lower when compared with the parent strain. We successfully constructed a self-cloning brewer's yeast with high SSU1 expression that enhanced the sulfite-excreting ability and diminished the production ability of hydrogen sulfide, MBT and 2M3MB. The self-cloning brewer's yeast with high SSU1 expression would contribute to the production of superior quality beer with a high concentration of sulfite and low concentrations of hydrogen sulfide, MBT and 2M3MB. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  16. Evaluation of brewers' spent grain as a novel media for yeast growth.

    Science.gov (United States)

    Cooray, Sachindra T; Lee, Jaslyn J L; Chen, Wei Ning

    2017-12-01

    Brewers' spent grain (BSG) is a by-product generated from the beer manufacturing industry, which is extremely rich in protein and fiber. Here we use low cost BSG as the raw material for the production of a novel growth media, through a bioconversion process utilizing a food grade fungi to hydrolyze BSG. The novel fermentation media was tested on the yeast Rhodosporidium toruloides, a natural yeast producing carotenoid. The yeast growth was analysed using the growth curve and the production of intracellular fatty acids and carotenoids. Untargeted GCMS based metabolomics was used to analyse the constituents of the different growth media, followed by multivariate data analysis. Growth media prepared using fermented BSG was found to be able to support the growth in R. toruloides (21.4 mg/ml) in comparable levels to YPD media (24.7 mg/ml). Therefore, the fermented BSG media was able to fulfill the requirement as a nitrogen source for R. toruloides growth. This media was able to sustain normal metabolomics activity in yeast, as indicated by the level of fatty acid and carotenoid production. This can be explained by the fact that, in the fermented BSG media metabolites and amino acids were found to be higher than in the unfermented media, and close to the levels in YPD media. Taken together, our study provided evidence of a growth media for yeast using BSG. This should have potential in replacing components in the current yeast culture media in a sustainable and cost effective manner.

  17. Measuring hordein (gluten in beer--a comparison of ELISA and mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Gregory J Tanner

    Full Text Available BACKGROUND: Subjects suffering from coeliac disease, gluten allergy/intolerance must adopt a lifelong avoidance of gluten. Beer contains trace levels of hordeins (gluten which are too high to be safely consumed by most coeliacs. Accurate measurement of trace hordeins by ELISA is problematic. METHODS: We have compared hordein levels in sixty beers, by sandwich ELISA, with the level determined using multiple reaction monitoring mass spectrometry (MRM-MS. RESULTS: Hordein levels measured by ELISA varied by four orders of magnitude, from zero (for known gluten-free beers to 47,000 µg/mL (ppm; for a wheat-based beer. Half the commercial gluten-free beers were free of hordein by MS and ELISA. Two gluten-free and two low-gluten beers had zero ELISA readings, but contained significant hordein levels (p<0.05, or near average (60-140% hordein levels, by MS, respectively. Six beers gave false negatives, with zero ELISA readings but near average hordein content by MS. Approximately 20% of commercial beers had ELISA readings less than 1 ppm, but a near average hordein content by MS. Several barley beers also contained undeclared wheat proteins. CONCLUSIONS: ELISA results did not correlate with the relative content of hordein peptides determined by MS, with all barley based beers containing hordein. We suggest that mass spectrometry is more reliable than ELISA, as ELISA enumerates only the concentration of particular amino-acid epitopes; this may vary between different hordeins and may not be related to the absolute hordein concentration. MS quantification is undertaken using peptides that are specific and unique, enabling the quantification of individual hordein isoforms. This outlines the problem of relying solely on ELISA determination of gluten in beverages such as beer and highlights the need for the development of new sensitive and selective quantitative assay such as MS.

  18. Beer ethanol consumption and plasma homocysteine among patients with type 2 diabetes.

    Science.gov (United States)

    Sakuta, Hidenari; Suzuki, Takashi; Ito, Teizo; Yasuda, Hiroko

    2007-11-01

    We analyzed the association between beer and other type of ethanol consumption and tHcy levels among type 2 diabetic patients. Male type 2 diabetic patients without overt nephropathy were studied (n=242). Ethanol consumptions of the patients were 35.1+/-37.8mL/day for total ethanol, 13.9+/-15.2mL/day for beer ethanol and 21.2+/-32.1mL/day for non-beer ethanol. Both, total and non-beer ethanol consumption correlated with tHcy, whereas beer ethanol consumption showed a trend to inverse association with tHcy (standard regression coefficient, 0.184, 0.283 and -0.110, respectively). Each intake of 30mL/day ethanol consumption was associated with an increase of tHcy of 0.6micromol/L for total ethanol and 1.1micromol/L for non-beer ethanol and a decrease of tHcy of 0.7micromol/L for beer ethanol. Similar trend was observed in the analysis model which included only drinkers, and also in an adjusted analysis model. Plasma tHcy of beer only drinkers was lower than that of non-beer alcohol only drinkers (8.9+/-1.9micromol/L versus 11.5+/-5.5micromol/L, P=0.003). Non-beer ethanol consumption might be less healthy compared with beer ethanol consumption among type 2 diabetic patients in terms of the effects on tHcy.

  19. Aluminium and Aroma Compound Concentration in Beer During Storage at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Marija Soldo Gjeldum

    2006-01-01

    Full Text Available Problem of aluminium in beer has been elaborated in several papers over the last decade. However, the effect of aluminium on organoleptic properties of beer has been observed in few papers where it has been stated that aluminium gives beer a »metallic« and bitter flavour without any observations on particular aroma compound changes. Also, the number of reports on precise changes of aroma components throughout different storage conditions is surprisingly scarce. In order to investigate the changes of aluminium concentration along with aroma compound changes, graphite furnace-atomic absorption spectrophotometry (GF-AAS with Zeeman background correction and gas chromatography with static headspace sampler (GC-HSS were used in this work. Analyses were conducted periodically throughout seven months of storage on three different brands of beer from name breweries. Samples were taken before and after filling in aluminium cans. One part of samples was stored in a refrigerator (4 °C and the other in a thermostatic chamber (22 °C. The effects of beer brand and storage conditions on aluminium concentration and level of aroma compounds were measured. To prove the effect of aluminium concentration on the changes of aroma compounds, the adequate level of aluminium sulphate was added to bottled beer samples stored at 28 °C. Although different beer types showed significantly different aluminium concentration, it could be the result of other factors (different batches of identical beer type showed significantly different aluminium concentration as well. Samples that were stored in the refrigerator were protected from aluminium migration from the can to the beer and showed increased aroma stability. Level of aroma constituents of analyzed beer brands was significantly different. Elevated aluminium concentration did not have any noticeable effect on the level of aroma compounds in beer samples stored at 28 °C.

  20. Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Daenen, Luk; Malcorps, Philippe; Derdelinckx, Guy; Verachtert, Hubert; Verstrepen, Kevin J

    2015-08-03

    Ever since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a few of the features that make it the ideal alcoholic fermentation organism. However, in certain conditions or for certain specific fermentation processes, the physiological boundaries of this species limit its applicability. Therefore, there is currently a strong interest in non-Saccharomyces (or non-conventional) yeasts with peculiar features able to replace or accompany S. cerevisiae in specific industrial fermentations. Brettanomyces (teleomorph: Dekkera), with Brettanomyces bruxellensis as the most commonly encountered representative, is such a yeast. Whilst currently mainly considered a spoilage organism responsible for off-flavour production in wine, cider or dairy products, an increasing number of authors report that in some cases, these yeasts can add beneficial (or at least interesting) aromas that increase the flavour complexity of fermented beverages, such as specialty beers. Moreover, its intriguing physiology, with its exceptional stress tolerance and peculiar carbon- and nitrogen metabolism, holds great potential for the production of bioethanol in continuous fermentors. This review summarizes the most notable metabolic features of Brettanomyces, briefly highlights recent insights in its genetic and genomic characteristics and discusses its applications in industrial fermentation processes, such as the production of beer, wine and bioethanol. Copyright © 2015. Published by Elsevier B.V.

  1. U.S. BEER FLOWS & THE IMPACT OF NAFTA

    Directory of Open Access Journals (Sweden)

    Richard A. MCGOWAN

    2007-01-01

    Full Text Available After World War II and up until the 1980’s, the liberalization of trade was realized on a multilateral basis. World trade grew at twice the pace of GDP growth (Krueger, 1999. However, starting in the mid 1980’s, preferential trading arrangements (PTAs increased in numbers. Perhaps the most influential PTA ever to be signed could be the North America Free Trade Agreement, or simply NAFTA, which came into effect January 1, 1994. The agreement established a free-trade area between its member countries- US, Canada and Mexico- in which all tariffs would be phased out between them, but each country would maintain its separate national barriers against the rest of the world. A lot of attention has been paid to the impact of NAFTA on the welfare of its member countries and on the rest of the world. This paper will focus on the impact of the agreement on the US’s beer trade flows by analyzing annual import and export data using several methods. To our knowledge there is no precedent for such research. Section II provides a brief review of the conclusions and methodology of existing works on NAFTA trade issues, as well as some important aspects of the agreement. Section III provides an overview of the world beer industry, and the NAFTA member countries beer markets. Section IV provides in great detail the methodology that we will employ. The focus of Section V is to explain the results obtained. Section VI provides conclusions and implications for further research on this subject. References and other sources can be found in Section VII.

  2. Kinetic enzymatic determination of glycerol in wine and beer using a sequential injection system with spectrophotometric detection.

    Science.gov (United States)

    Oliveira, Hugo M; Segundo, Marcela A; Lima, José L F C; Grassi, Viviane; Zagatto, Elias A G

    2006-06-14

    A sequential injection system for the automatic determination of glycerol in wine and beer was developed. The method is based on the rate of formation of NADH from the reaction of glycerol and NAD+ catalyzed by the enzyme glycerol dehydrogenase in solution. The determination of glycerol was performed between 0.3 and 3.0 mmol L(-1) (0.028 and 0.276 g L(-1)), and good repeatability was attained (rsd < 3.6%, n = 5) for all samples tested. The determination rate was 54 h(-1), the reagent consumption was only 0.75 micromol of NAD+ and 5.4 ng of enzyme per assay, and the waste production was 2.12 mL per assay. Results obtained for samples were in agreement with those obtained with the batch enzymatic method.

  3. Improvement of nutritional quality and antioxidant activities of yeast ...

    African Journals Online (AJOL)

    This study evaluated the potential use and improves the health beneficial properties of the soybean waste manufacturing products by solid-state fermentation of six GRAS different yeast strains, including extractable antioxidant activities and bioavailable nutritional compositions. In comparison with nonfermented okara ...

  4. Lipids from yeasts and fungi: Tomorrow's source of Biodiesel?

    NARCIS (Netherlands)

    Meeuwse, P.; Sanders, J.P.M.; Tramper, J.; Rinzema, A.

    2013-01-01

    In the search for new transport fuels from renewable resources, biodiesel from microbial lipids comes into view. We have evaluated the lipid yield and energy use of a process for production of biodiesel from agricultural waste using lipid-accumulating yeast and fungi. We included different

  5. The effects of beer taxes on physical child abuse.

    Science.gov (United States)

    Markowitz, S; Grossman, M

    2000-03-01

    The purpose of this paper is to examine the effects of alcohol regulation on physical child abuse. Given the positive relationship between alcohol consumption and violence, and the negative relationship between consumption and price, the principal hypothesis to be tested is that an increase in the price of alcohol will lead to a reduction in the incidence of violence. We also examine the effects of illegal drug prices and alcohol availability on the incidence of child abuse. Equations are estimated separately for mothers and fathers, and include state fixed effects. Results indicate that increases in the beer tax may decrease the incidence of violence committed by females but not by males.

  6. Preparation of malts for production of special beers

    Directory of Open Access Journals (Sweden)

    Hana Kábelová-Ficová

    2017-01-01

    Full Text Available The article deals with production of various malts intended for manufacture of special types of beer. The malts were used to brew samples of beer with alcoholic strength ranging between 8 - 12% EPM. The above range of original wort content was chosen due to its suitability for sensory evaluation and properties; in stronger types of beer, (more than 12% EPM, nature of the beverage can be drown by mashy flavour. In the experimental samples, the actual residual extract oscillated between 4.0 - 6.5%. The content of ethanol corresponded to the degree of fermentation and thereby also to the residual actual extract in balance equilibrium specifying that higher residual extract corresponds to lower content of alcohol by volume. It ranged between 2.5 - 5.0%. The sample 1 contained the highest amount of ethanol by mass (3.9% and the sample 13 showed the lowest one (1.9%; alike trend of ethanol content by volume was revealed (5 and 2.44%, respectively. The highest content of actual and apparent extract was found in the sample 2 (6.6 and 5.2%, respectively; the sample 13 showed the lowest levels (4.0 and 3.1%, respectively. The original wort extract content averaged 9.9% in most of the samples; the sample 1 showed distinctly higher value (12.6% and, on the contrary, the sample 13 demonstrated the lowest one (7.4%. The highest relative density was revealed in the sample 2 (1.02% and the lowest one in the sample 13 (1.01%. Considering differences in osmotic pressure, the sample 1 exhibited the highest value (1045 mOs and the sample 13 the lowest one (551 mOs. The highest level of fermentation was found in the sample 19 (61.7%, the lowest one was proved in the sample 19 (44.0%. Sensory analysis corresponded to originality and characteristics of each sample. The sample of beer made from spring barley was evaluated to be the best one.

  7. X-ray irradiation of yeast cells

    Science.gov (United States)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  8. [Penicillium-inhibiting yeasts].

    Science.gov (United States)

    Benítez Ahrendts, M R; Carrillo, L

    2004-01-01

    The objective of this work was to establish the in vitro and in vivo inhibition of post-harvest pathogenic moulds by yeasts in order to make a biocontrol product. Post-harvest pathogenic moulds Penicillium digitatum, P. italicum, P. ulaiense, Phyllosticta sp., Galactomyces geotrichum and yeasts belonging to genera Brettanomyces, Candida, Cryptococcus, Kloeckera, Pichia, Rhodotorula were isolated from citrus fruits. Some yeasts strains were also isolated from other sources. The yeasts were identified by their macro and micro-morphology and physiological tests. The in vitro and in vivo activities against P. digitatum or P. ulaiense were different. Candida cantarellii and one strain of Pichia subpelliculosa produced a significant reduction of the lesion area caused by the pathogenic moulds P. digitatum and P. ulaiense, and could be used in a biocontrol product formulation.

  9. Classification of different types of beer according to their colour characteristics

    Science.gov (United States)

    Nikolova, Kr T.; Gabrova, R.; Boyadzhiev, D.; Pisanova, E. S.; Ruseva, J.; Yanakiev, D.

    2017-01-01

    Twenty-two samples from different beers have been investigated in two colour systems - XYZ and SIELab - and have been characterised according to their colour parameters. The goals of the current study were to conduct correlation and discriminant analysis and to find the inner relation between the studied indices. K-means cluster has been used to compare and group the tested types of beer based on their similarity. To apply the K-Cluster analysis it is required that the number of clusters be determined in advance. The variant K = 4 was worked out. The first cluster unified all bright beers, the second one contained samples with fruits, the third one contained samples with addition of lemon, the fourth unified the samples of dark beers. By applying the discriminant analysis it is possible to help selections in the establishment of the type of beer. The proposed model correctly describes the types of beer on the Bulgarian market and it can be used for determining the affiliation of the beer which is not used in obtained model. One sample has been chosen from each cluster and the digital image has been obtained. It confirms the color parameters in the color system XYZ and SIELab. These facts can be used for elaboration for express estimation of beer by color.

  10. Occurrence of biogenic amines in beers produced with malted organic Emmer wheat (Triticum dicoccum).

    Science.gov (United States)

    Mozzon, Massimo; Boselli, Emanuele; Obiedziński, Mieczysław W; Frega, Natale G

    2015-01-01

    Because several groups of microorganisms are able to decarboxylate amino acids, the presence of biogenic amines (BA) can be seen as an index of the microbiological quality of the brewing process. BAs were quantified for the first time in the intermediate products and craft beers produced with malted organic Emmer wheat (Triticum dicoccum) in a small size brewery in order to assess the possible presence of critical control points related to biological hazard in the brewing process. BA levels in beers produced exclusively from malted organic Emmer wheat were between 15.4 and 25.2 mg l(-1) in the samples of light beer (Lt) and between 8.9 and 15.3 mg l(-1) in double malt beers (DM) ready for consumption (the beers stored for 90 days at 1-2°C). Cadaverine and tyramine were the main BAs in the Lt and DM beers, respectively. Increased concentrations of BAs seemed to be more related to the heat treatment of the processing product during mashing and wort boiling, rather than to the fermentation process. Much lower concentrations were found in finished beers obtained from 50% malted organic Emmer wheat and 50% malted barley (up to 3.2 mg l(-1)) or from 30% malted Emmer wheat (up to 8.3 mg l(-1)). Thus, Emmer wheat malt can be a useful alternative to wheat and spelt for the production of beer with a limited content of BA, if the processing technology is kept under control.

  11. Correlates of in-store promotions for beer: differential effects of market and product characteristics.

    Science.gov (United States)

    Bray, Jeremy W; Loomis, Brett; Engelen, Mark

    2007-03-01

    We estimated the strength and direction of the association between product characteristics (beer type, package size, and brand name) and market-area socioeconomic characteristics, and promoted sales of beer in grocery stores. Supermarket scanner data from 64 market areas across the United States over 5 years were used to estimate regression models of the share of beer sales that are promoted, controlling for beer price, packaging, and type; and for market-level age, race/ethnicity, income, unemployment rate, and percentage of the population living in an alcohol control state. Large-volume units, such as 144-oz and 288-oz packages, are more likely to be promoted than smaller package sizes. Malt-liquor beverages are less likely to be promoted than non-malt-liquor beverages. Age, race/ethnicity, income, and geographic location of the market area are not significantly related to promoted beer sales. Marketing research has shown that in-store merchandising and promotions can substantially increase beer sales and that purchasing large package sizes may increase total consumption. Our results suggest that high levels of promoted sales for large-volume beer packages may result in increased beer consumption.

  12. Effect of acute beer ingestion on the liver: studies in female mice.

    Science.gov (United States)

    Kanuri, Giridhar; Wagnerberger, Sabine; Landmann, Marianne; Prigl, Eva; Hellerbrand, Claus; Bischoff, Stephan C; Bergheim, Ina

    2015-04-01

    The aim of the present study was to assess whether the effects of acute consumption of stout or pilsner beer on the liver differ from those of plain ethanol in a mouse model. Seven-week-old female C57BL/6J mice received either ethanol, stout or pilsner beer (ethanol content: 6 g/kg body weight) or isocaloric maltodextrin solution. Plasma alanine transaminase, markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade as well as lipid peroxidation and fibrogenesis in the liver were measured 12 h after acute ethanol or beer intake. Acute alcohol ingestion caused a marked ~11-fold increase in hepatic triglyceride accumulation in comparison to controls, whereas in mice exposed to stout and pilsner beer, hepatic triglyceride levels were increased only by ~6.5- and ~4-fold, respectively. mRNA expression of sterol regulatory element-binding protein 1c and fatty acid synthase in the liver did not differ between alcohol and beer groups. In contrast, expression of myeloid differentiation primary response gene 88, inducible nitric oxide synthases, but also the concentrations of 4-hydroxynonenal protein adducts, nuclear factor κB and plasminogen activator inhibitor-1 were induced in livers of ethanol treated mice but not in those exposed to the two beers. Taken together, our results suggest that acute ingestion of beer and herein especially of pilsner beer is less harmful to the liver than the ingestion of plain ethanol.

  13. Identification of ecotype-specific marker genes for categorization of beer-spoiling Lactobacillus brevis.

    Science.gov (United States)

    Behr, Jürgen; Geissler, Andreas J; Preissler, Patrick; Ehrenreich, Armin; Angelov, Angel; Vogel, Rudi F

    2015-10-01

    The tolerance to hop compounds, which is mainly associated with inhibition of bacterial growth in beer, is a multi-factorial trait. Any approaches to predict the physiological differences between beer-spoiling and non-spoiling strains on the basis of a single marker gene are limited. We identified ecotype-specific genes related to the ability to grow in Pilsner beer via comparative genome sequencing. The genome sequences of four different strains of Lactobacillus brevis were compared, including newly established genomes of two highly hop tolerant beer isolates, one strain isolated from faeces and one published genome of a silage isolate. Gene fragments exclusively occurring in beer-spoiling strains as well as sequences only occurring in non-spoiling strains were identified. Comparative genomic arrays were established and hybridized with a set of L. brevis strains, which are characterized by their ability to spoil beer. As result, a set of 33 and 4 oligonucleotide probes could be established specifically detecting beer-spoilers and non-spoilers, respectively. The detection of more than one of these marker sequences according to a genetic barcode enables scoring of L. brevis for their beer-spoiling potential and can thus assist in risk evaluation in brewing industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Anti-bacterial profile of some beers and their effect on some selected ...

    African Journals Online (AJOL)

    The investigation of the therapeutic properties of some beers, allow us to study their anti-bacterial profile against food born diseases caused by bacteria such as Escherichia coli, Salmonella typhimurium, Staphilococcus aureus, Bacillus cereus, Bacillus anthracis and Bacillus subtilis. The results obtained show that beers B2 ...

  15. Household production of sorghum beer in Benin: technological and socio-economic aspects

    NARCIS (Netherlands)

    Kayodé, A.P.P.; Hounhouigan, J.D.; Nout, M.J.R.; Niehof, A.

    2007-01-01

    This study evaluated the sorghum brewing microenterprises in Benin with emphasis on the beer quality, the social significance of the product as well as the income generated. Tchoukoutou, the Benin opaque sorghum beer, has important social functions as it fosters the cooperative spirit and remains an

  16. Effect of traditional beer consumption on the iron status of a rural ...

    African Journals Online (AJOL)

    Beer drinking plays an important social role in rural. Africa, and is the most commonly consumed beverage at most social events.1,2 Beer drinking takes place at weddings and funerals, as a token of hospitality, during religious ceremonies, as a sign of change of status, and as a token of appreciation for work done.1 ...

  17. Food buying habits of people who buy wine or beer: cross sectional study

    DEFF Research Database (Denmark)

    Johansen, Ditte; Friis, Karina; Skovenborg, Erik

    2006-01-01

    : Wine buyers bought more olives, fruit and vegetables, poultry, cooking oil, and low fat cheese, milk, and meat than beer buyers. Beer buyers bought more ready cooked dishes, sugar, cold cuts, chips, pork, butter or margarine, sausages, lamb, and soft drinks than wine buyers. CONCLUSIONS: Wine buyers...

  18. Effect of consumption of red wine, spirits and beer on serum homocysteine

    NARCIS (Netherlands)

    Gaag, M.S. van der; Ubbink, J.B.; Sillanaukee, P.; Nikkari, S.; Hendriks, H.F.J.

    2000-01-01

    Serum homocysteine increases after moderate consumption of red wine and spirits, but not after moderate consumption of beer. Vitamin B6 in beer seems to prevent the alcohol-induced rise in serum homocysteine. Chemicals/CAS: Homocysteine, 454-28-4; Pyridoxine, 65-23-6

  19. Manganese in brewing raw materials, disposition during the brewing process, and impact on the flavor instability of beer

    OpenAIRE

    Porter, JR; Bamforth, CW

    2016-01-01

    © 2016 American Society of Brewing Chemists, Inc. Like iron and copper, manganese promotes the staling of beer, by converting ground state oxygen to reactive oxygen species. Manganese was detected in beers at levels that are likely to impact the aging of beer. Manganese originates in the grist materials but is present at even higher levels in hops. Although there is substantially more iron in those hops than manganese, the delivery into beer of these ions is much greater for manganese. Leachi...

  20. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing