WorldWideScience

Sample records for waste atw aqueous-based

  1. Neutronics-processing interface analyses for the Accelerator Transmutation of Waste (ATW) aqueous-based blanket system

    International Nuclear Information System (INIS)

    Davidson, J.W.; Battat, M.E.

    1993-01-01

    Neutronics-processing interface parameters have large impacts on the neutron economy and transmutation performance of an aqueous-based Accelerator Transmutation of Waste (ATW) system. A detailed assessment of the interdependence of these blanket neutronic and chemical processing parameters has been performed. Neutronic performance analyses require that neutron transport calculations for the ATW blanket systems be fully coupled with the blanket processing and include all neutron absorptions in candidate waste nuclides as well as in fission and transmutation products. The effects of processing rates, flux levels, flux spectra, and external-to-blanket inventories on blanket neutronic performance were determined. In addition, the inventories and isotopics in the various subsystems were also calculated for various actinide and long-lived fission product transmutation strategies

  2. Accelerator transmutation of wastes (ATW) - Prospects and safety

    International Nuclear Information System (INIS)

    Gudowski, W.; Pettersson, Kjell; Thedeen, T.

    1993-11-01

    Accelerator transmutation of nuclear waste (ATW) has during last years gained interest as a technologically possible method to transform radioactive wastes into short-lived or stable isotopes. Different ATW-projects are described from the physical and technical point of view. The principal sketch of the safety analysis of the ATW-idea is given. Due to the very limited technical data for existing ATW-projects the safety analysis can cause some risks for the health and environmental safety for the closest environment. General public should not be affected. 35 refs, 22 figs, 4 tabs

  3. Performance estimates for waste treatment pyroprocesses in ATW

    International Nuclear Information System (INIS)

    Li, N.

    1997-01-01

    The author has identified several pyrometallurgical processes for the conceptual ATW waste treatment cycle. These processes include reductive extraction, electrowinning and electrorefining, which constitute some versatile treatment cycles for liquid-metal based and molten-salt based waste forms when they are properly integrated. This paper examines the implementation of these processes and the achievable separations for some typical species. The author also presents a simple analysis of the processing rates limited by mass diffusion through a thin hydrodynamic boundary layer. It is shown that these processes can be realized with compact and efficient devices to meet the ATW demand for the periodic feeding and cleaning of the waste

  4. ATW system impact on high-level waste

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1992-01-01

    This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products

  5. The Los Alamos accelerator-driven transmutation of nuclear waste (ATW) concept development of the ATW target/blanket system

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Ning, L.

    1997-01-01

    In the past several years, the Los Alamos ADTT program has conducted studies of an innovative technology for solving the nuclear waste problem and building a new generation of safer and non-proliferant nuclear power plants. The ATW concept destroys higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. In this paper special attention is given to the basic design of the ATW Molten Salt concept and the safety perspective. 40 refs., 11 figs

  6. ATW economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1993-01-01

    A parametric systems model of the ATW [Accelerator Transmutation of (Nuclear) Waste] has been used to examine key system tradeoffs and design drivers on the basis of unit costs. This model has been applied primarily to the aqueous-slurry blanket concept for an ATW that generates net-electric power from the fissioning of spent reactor fuel. An important goal of this study is the development of essential parametric tradeoff studies to aid in any eventual engineering design of an ATW that would burn and generate net- electric power from spent reactor fuel

  7. Processing flowsheet for the accelerator transmutation of waste (ATW) program

    International Nuclear Information System (INIS)

    Dewey, H.; Walker, R.; Yarbro, S.

    1992-01-01

    At Los Alamos, an innovative approach to transmuting long-lived radioactive waste is under investigation. The concept is to use a linear proton accelerator coupled to a solid target to produce an intense neutron flux. The intense stream of neutrons can then be used to fission or transmute long-lived radionuclides to either stable or shorter-lived isotopes. For the program to be successful, robust chemical separations with high efficiencies (>10 5 ) are required. The actual mission, either defense or commercial, will determine what suite of unit operations will be needed. If the mission is to process commercial spent fuel, there are several options available for feed preparation and blanket processing. The baseline option would be an improved PUREX system with the main alternative being the current ATW actinide blanket processing flowsheet. 99 Tc and 129 I are more likely to reach the biosphere than the actinides. Many models have been developed for predicting how the radionuclides will behave in a repository over long time periods. The general conclusion is that the actinides will be sorbed by the soil. Therefore, over a long time period, e.g., a million years their hazard will be lessened because of radioactive decay and dispersion. However, some of the long-lived fission products are not sorbed and could potentially reach the environment over a few thousand year period. Hence, they could present a significant safety hazard. Because of limited resources, most of the priority has been focused on the actinide and technetium blanket assemblies

  8. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    International Nuclear Information System (INIS)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.J.; Laidler, J.J.; McDeavitt, S.M.; Thompson, M.; Toth, L.M.; Williamson, M.; Willit, J.L.

    1999-01-01

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years

  9. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  10. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    International Nuclear Information System (INIS)

    1990-01-01

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee's review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues

  11. The Los Alamos accelerator driven transmutation of nuclear waste (ATW) concept development of the ATW target/blanket system

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Ning, L.

    1997-01-01

    The studies carried out in the frame of the Accelerator Driven Transmutation Technology (ADTT) program developed at Los Alamos in order to solve the nuclear waste problem and to build a new generation of safer and non-proliferant nuclear power plants, are presented

  12. Separations technologies supporting the development of a deployable ATW system

    International Nuclear Information System (INIS)

    Laidler, J. J.

    2000-01-01

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The first several years of the program will be directed toward an elucidation of related technical issues and to the establishment, by means of comprehensive trade studies, of an optimum configuration of the elements of the chemical processing infrastructure required for support of the total ATW system. By adopting this sort of disciplined systems engineering approach, it is expected that development and demonstration costs can be minimized and that it will be possible to deploy an ATW system that is an environmentally sound and economically viable venture

  13. ILK statement about ATWS requirements

    International Nuclear Information System (INIS)

    2005-01-01

    A controversial debate is going on in Germany about the management of operating transients in case of the failure, additionally assumed, of the scram system (ATWS=Anticipated Transients without Scram). It was triggered by a recommendation by the German Advisory Committee on Reactor Safeguards (RSK) in a statement of May 3, 2001 according to which the demonstration that ATWS events were under control was to deviate from requirements in the RSK Guidelines for pressurized water reactors of 1981 (last amended in 1996) and not to take credit of the effects of one-off measures initiated actively, especially shutdown of the main coolant pumps. ILK therefore expresses its opinion in this Statement about the criteria to be met in demonstrations that ATWS is under control in pressurized water reactors. Also in boiling water reactors, studies of ATWS transients are part of the licensing procedure. However, the assumptions to be made there in demonstrating effective pressure limitation have been unchanged and uncontested long since. ILK included in its considerations especially also practices in the United States, France and Finland. In doing so, the Committee found the basic approach in dealing with ATWS to be the same in Germany, the United States and in France, namely to show that the consequences remain tolerable without the application of aggravating postulates. ILK feels that the approach so far employed in demonstrating safety in ATWS events results in balanced risk mitigation. The initiating event already has a very low probability of occurrence. Reliable measures are in place to manage it. (orig.)

  14. ATW neutron spectrum measurements at LAMPF

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Littleton, P.E.; Morgan, G.L. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Accelerator transmutation of waste (ATW) is a proposal to use a high flux of accelerator-produced thermalized neutrons to transmute both fission product and higher actinide commercial nuclear waste into stable or short-lived radioactive species in order to avoid long-term storage of nuclear waste. At LAMPF the authors recently performed experiments that were designed to measure the spectrum of neutrons produced per incident proton for full-scale proposed ATW targets of lead and lithium. The neutrons produced in such targets have a spectrum of energies that extends up to the energy of the incident proton beam, but the distribution peaks between 1 and 5 MeV. Transmutation reactions and fission of actinides are most efficient when the neutron energy is below a few eV, so the target must be surrounded by a non-absorbing material (blanket) to produce additional neutrons and reduce the energy of high energy neutrons without loss. The experiments with the lead target, 25 cm diameter by 40 cm long, were conducted with 800 MeV protons, while those with the lithium target, 25 cm diameter by 175 cm long, were conducted with 400 MeV protons. The blanket in both sets of experiments was a 60 cm diameter by 200 cm long annulus of lead that surrounded the target. Surrounding the blanket was a steel water tank with dimensions of 250 cm diameter by 300 cm long that simulated the transmutation region. A small sample pipe penetrated the length of the lead blanket and other sample pipes penetrated the length of the water tank at different radii from the beam axis so that the neutron spectra at different locations could be measured by foil activation. After irradiation the activated foil sets were extracted and counted with calibrated high resolution germanium gamma ray detectors at the Los Alamos nuclear chemistry counting facility.

  15. Proposal on the accelerator driven molten-salt reactor (ATW concept) benchmark calculations. (STAGE 1 - without an external neutron source)

    International Nuclear Information System (INIS)

    Svarny, J.; Mikolas, P.

    1999-01-01

    The first stage of ATW neutronic benchmark (without an external source), based on the simple modelling of two component concept is presented. The simple model of two component concept of the ATW (graphite + molten salt system) was found. The main purpose of this benchmark is not only to provide the basic characteristics of given ADS but also to test codes in calculations of the rate of transmutation waste and to evaluate basic kinetics parameters and reactivity effects. (author)

  16. Closed ThUOX Fuel Cycle for LWRs with ADTT (ATW) Backend for the 21st Century

    International Nuclear Information System (INIS)

    Beller, D.E.; Sailor, W.C.; Venneri, F.

    1998-01-01

    A future nuclear energy scenario with a closed, thorium-uranium-oxide (ThUOX) fuel cycle and new light water reactors (TULWRs) supported by Accelerator Transmutation of Waste (ATW) systems could provide several improvements beyond today's once-through, UO 2 -fueled nuclear technology. A deployment scenario with TULWRs plus ATWs to burn the actinides produced by these LWRs and to close the back-end of the ThUOX fuel cycle was modeled to satisfy a US demand that increases linearly from 80 GWe in 2020 to 200 GWe by 2100. During the first 20 years of the scenario (2000-2020), nuclear energy production in the US declines from today's 100 GWe to about 80 GWe, in accordance with forecasts of the US DOE's Energy Information Administration. No new nuclear systems are added during this declining nuclear energy period, and all existing LWRs are shut down by 2045. Beginning in 2020, ATWs that transmute the actinides from existing LWRs are deployed, along with TULWRs and additional ATWs with a support ratio of 1 ATW to 7 TULWRs to meet the energy demand scenario. A final mix of 174 GWe from TULWRs and 26 GWe from ATWs provides the 200 GWe demand in 2100. Compared to a once-through LWR scenario that meets the same energy demand, the TULWR/ATW concept could result in the following improvements: depletion of natural uranium resources would be reduced by 50%; inventories of Pu which may result in weapons proliferation will be reduced in quantity by more than 98% and in quality because of higher neutron emissions and 50 times the alpha-decay heating of weapons-grade plutonium; actinides (and possibly fission products) for final disposal in nuclear waste would be substantially reduced; and the cost of fuel and the fuel cycle may be 20-30% less than the once-through UO 2 fuel cycle

  17. Effects of buffer thickness on ATW blanket performances

    International Nuclear Information System (INIS)

    Yang, Won Sik

    2001-01-01

    This paper presents the preliminary results of target and buffer design studies for a lead-bismuth eutectic (LBE) cooled accelerator transmutation of waste (ATW) system, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using an 840 MWt LBE cooled ATW design, the effects of buffer thickness on the blanket performances have been studied. Varying the buffer thickness for a given blanket configuration, system performances have been estimated by a series of calculations using MCNPX and REBUS-3 codes. The effects of source importance change are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. As the irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. The results show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable

  18. Preliminary ATWS analysis for the IRIS PRA

    International Nuclear Information System (INIS)

    Maddalena Barra; Marco S Ghisu; David J Finnicum; Luca Oriani

    2005-01-01

    Full text of publication follows: The pressurized light water cooled, medium power (1000 MWt) IRIS (International Reactor Innovative and Secure) has been under development for four years by an international consortium of over 21 organizations from ten countries. The plant conceptual design was completed in 2001 and the preliminary design is nearing completion. The pre-application licensing process with NRC started in October, 2002. IRIS has been primarily focused on establishing a design with innovative safety characteristics. The first line of defense in IRIS is to eliminate event initiators that could potentially lead to core damage. In IRIS, this concept is implemented through the 'safety by design' approach, which allows to minimize the number and complexity of the safety systems and required operator actions. The end result is a design with significantly reduced complexity and improved operability, and extensive plant simplifications to enhance construction. To support the optimization of the plant design and confirm the effectiveness of the safety by design approach in mitigating or eliminating events and thus providing a significant reduction in the probability of severe accidents, the PRA is being used as an integral part of the design process. A preliminary but extensive Level 1 PRA model has been developed to support the pre-application licensing of the IRIS design. As a result of the Preliminary IRIS PRA, an optimization of the design from a reliability point of view was completed, and an extremely low (about 1.2 E -8 ) core damage frequency (CDF) was assessed to confirm the impact of the safety by design approach. This first assessment is a result of a PRA model including internal initiating events. During this assessment, several assumptions were necessary to complete the CDF evaluation. In particular Anticipated Transients Without Scram (ATWS) were not included in this initial assessment, because their contribution to core damage frequency was assumed

  19. New insights regarding ATWS for BWRS

    International Nuclear Information System (INIS)

    Drouin, M.T.; Kolaczkowski, A.M.; LaChance, J.L.; Ferrell, W.L.

    1987-01-01

    Anticipated transients without scram (ATWS) accident sequences have been found in past studies to have a relatively high core damage frequency (ranging from 5.4E-6 to 3E-4 per year) that represents a significant contribution to the total core damage frequency (ranging from 7-to-33%). Results of analyses for the two boiling water reactors (BWRs) analyzed as part of NUREG/CR-4550 indicate both a lower core damage frequency (ranging from 2E-7 to 1E-6 per year) and a lower contribution to the total core damage frequency (ranging from <1-to-10%). Based on these updated analyses, newer insights on the effects of reactor power equilibration, recirculation pump trip, high and low pressure injection and high pressure seal failure coupled with a detailed accident sequence analysis have resulted in lowering the significance of ATWS to core damage frequency

  20. Analysis of SBO ATWS for Maanshan PWR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Hao; Chen, Shao-Wen [National Tsing Hua Univ., Hsinchu, Taiwan (China). Inst. of Nuclear Engineering and Science; Wang, Jong-Rong; Shih, Chunkuan [National Tsing Hua Univ., Hsinchu, Taiwan (China). Inst. of Nuclear Engineering and Science; Nuclear and New Energy Education and Research Foundation, Hsinchu, Taiwan (China); Lin, Hao-Tzu [Atomic Energy Council, Taoyuan, Taiwan (China). Inst. of Nuclear Energy Research

    2015-11-15

    Station blackout anticipated transient without scram (SBO ATWS) is considered as loss of off-site and on-site power but no credit for automatic reactor trip. SBO ATWS causes reactor coolant pump (RCP) trip, loss of all main feedwater pumps and turbine trip, then the reactor coolant system (RCS) pressure rises rapidly due to loss of heat removal paths. The ASME Code Level C service limit criteria of 22.06 MPa (3200 psig) is assumed to be an unacceptable plant condition in SECY-83-293. The simulation is performed by TRACE which is a thermal-hydraulic code developed by U.S. NRC. Three different AFW flows are modeled to ensure the pressures will not be beyond the criteria. RCP seal-leakage is concerned as a SBLOCA due to loss of RCP seal-cooling. Four possible leakage flows are modeled to examine the reactor core water level and temperature variation.

  1. TRACE Assessment for BWR ATWS Analysis

    International Nuclear Information System (INIS)

    Cheng, L.Y.; Diamond, D.; Cuadra, Arantxa; Raitses, Gilad; Aronson, Arnold

    2010-01-01

    A TRACE/PARCS input model has been developed in order to be able to analyze anticipated transients without scram (ATWS) in a boiling water reactor. The model is based on one developed previously for the Browns Ferry reactor for doing loss-of-coolant accident analysis. This model was updated by adding the control systems needed for ATWS and a core model using PARCS. The control systems were based on models previously developed for the TRAC-B code. The PARCS model is based on information (e.g., exposure and moderator density (void) history distributions) obtained from General Electric Hitachi and cross sections for GE14 fuel obtained from an independent source. The model is able to calculate an ATWS, initiated by the closure of main steam isolation valves, with recirculation pump trip, water level control, injection of borated water from the standby liquid control system and actuation of the automatic depressurization system. The model is not considered complete and recommendations are made on how it should be improved.

  2. Effects of buffer thickness on ATW blanket performance

    International Nuclear Information System (INIS)

    Yang, W. S.; Mercatali, L.; Taiwo, T. A.; Hill, R. N.

    2001-01-01

    This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy ( and lt; 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level

  3. Effects of Buffer Thickness on ATW Blanket Performance

    International Nuclear Information System (INIS)

    Yang, W.S.; Mercatali, L.; Taiwo, T.A.; Hill, R.N.

    2002-01-01

    This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level. (authors)

  4. BWR ATWS mitigation by Fine Motion Control Rod

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.; Mallen, A.; Diamond, D.

    1994-01-01

    Two main methods of ATWS mitigation in a SBWR are: fine Motion control Rods (FMCRD) and Boron injection via the Standby Liquid control System (SLCS). This study has demonstrated that the use of FMCRD along with feedwater runback mitigated the conditions due to reactivity insertion and possible ATWS in a BWR which is similar to SBWR

  5. Target/blanket conceptual design for the Los Alamos ATW concept

    International Nuclear Information System (INIS)

    Ames, K.; Cappiello, M.; Ireland, J.; Sapir, J.; Farnum, G.

    1992-01-01

    The Los Alamos Accelerator Transmutation of Waste (ATW) concept has many potential applications that include defense waste transmutation, defense material production (i.e., tritium and 238 Pu), and the transmutation of hazardous nuclear wastes from commercial nuclear reactors (fission products and actinides). A more advanced long-term Los Alamos effort is investigating the potential of an accelerator- driven system to produce fission energy with a minimal nuclear waste stream. All applications employ a high-energy (800- to 1600-MeV), high-current (25--250 mA) proton linear accelerator as the driver. In this report, we discuss only the target/blanket conceptual design for the commercial nuclear waste application. A conceptual design for the target/blanket of the Los Alamos ATW concept has been presented. The neutronics, mechanical design, and heat transfer have been investigated in some detail for the base-case design. Much more work needs to be done, but at this point it appears that the design is feasible and will approach the design goal of supporting two commercial power reactors with each target/blanket module

  6. Induced structural radioactivity inventory analysis of the base case aqueous ATW reactor concept

    International Nuclear Information System (INIS)

    Bezdecny, J.A.; Henderson, D.L.; Sailor, W.C.

    1993-01-01

    The purpose of the Los Alamos National Laboratory Accelerator Transmutation of Nuclear Waste (ATW) project is the substantial reduction in volume of this country's long-lived high-level radioactive waste in a safe and energy efficient manner. An evaluation of the Accelerator Transmutation of Nuclear Waste concept has four aspects; material balance, energy balance, performance and cost. An evaluation of the material balance compares the amount of long-lived high-level waste transmuted with the amount and type of waste created in the process. One component of the material balance is the activation of structural materials over the lifetime of the transmutation reactor. An activation analysis has been performed on four structure regions of the reaction vessel: the tungsten target; the lead target and annulus; the Zircalloy and aluminum tubing carrying the actinide slurry and; the stainless steel tank

  7. Proposal on the accelerator driven molten-salt reactor (ATW-concept) benchmark calculation (stage-1 without an external neutron sources)

    International Nuclear Information System (INIS)

    Svarny, J.; Mikolas, P.

    1999-01-01

    The simple model of two component concept of the ATW (graphite + molten salt system) was found. The main purpose of this benchmark will be not only to provide the basic characteristics of given ADS but also to test codes in calculations of the rate of transmutation waste and to evaluate basic kinetics parameters and reactivity effects. (Authors)

  8. ATWS sensitivity studies to support PSA success criteria

    International Nuclear Information System (INIS)

    Zheng Yaoyao; Xu Zhen; Ke Xiao

    2010-01-01

    The limiting anticipated transient without scram (ATWS) event is the heatup transient caused by a reduction of heat removal capability by the secondary side of the plant. In order to evaluate the AP1000 plant behavior following an ATWS, loss of normal feedwater ATWS event has been analyzed using the LOFTRAN code. Several sensitivity studies are also performed to address some key issues, such as steam dump capacity, core makeup tank (CMT) characteristic and boron coefficient, reactor coolant pumps (RCPs) availability, startup feedwater system (STS) availability and steam generator (SG) heat flux. The results of the analysis show that in order to mitigate the consequence of such an accident, the steam dump should be isolated and RCP should trip on CMT actuation signal. (authors)

  9. ATWS analyses for Krsko Full Scope Simulator verification

    Energy Technology Data Exchange (ETDEWEB)

    Cerne, G; Tiselj, I; Parzer, I [Reactor Engineering Div., Inst. Jozef Stefan, Ljubljana (Slovenia)

    2000-07-01

    The purpose of this analysis was to simulate Anticipated Transient without Scram transient for Krsko NPP. The results of these calculations were used for verification of reactor coolant system thermal-hydraulic response predicted by Krsko Full Scope Simulator. For the thermal-hydraulic analyses the RELAP5/MOD2 code and the input card deck for NPP Krsko was used. The analyses for ATWS were performed to assess the influence and benefit of ATWS Mitigation System Actuation Circuitry (AMSAC). In the presented paper the most severe ATWS scenarios have been analyzed, starting with the loss of Main Feedwater at both steam generators. Thus, gradual loss of secondary heat sink occurred. On top of that, control rods were not supposed to scram, leaving the chain reaction to be controlled only by inherent physical properties of the fuel and moderator and eventual actions of the BOP system. The primary system response has been studied regarding the AMSAC availability. (author)

  10. Effect of reactor conditions on MSIV-ATWS power level

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1987-01-01

    In a boiling water reactor (BWR) when there is closure of the main steam isolation valves (MSIVs), the energy generated in the core will be transferred to the pressure suppression pool (PSP) via steam that flows out of the relief valves. The pool has limited capacity as a heat sink and hence, if there is no reactor trip [an anticipated transient without scram (ATWS) event], there is the possibility that the pool temperature may rise beyond acceptable limits. The present study was undertaken to determine how the initial reactor conditions affect the power level during an MSIV-ATWS event. The time of interest is the 20- to 30-min period when it is assumed that the reactor is in a quasi equilibrium condition with the water level and pressure fixed, natural circulation conditions and no control rod movement or significant boron in the core. The initial conditions of interest are the time of the cycle and the operating state

  11. Direct irradiation of long-lived fission products in an ATW system

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.F. [Univ. of Tennessee, Knoxville, TN (United States); Henderson, D. [Univ. of Wisconsin, Madison, WI (United States); Sailor, W.C. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The feasibility of directly irradiating five long-lived fission products (LLFPs: {sup 79}Se, {sup 93}Zr, {sup 107}Pd, {sup 126}Sn, and {sup 135}Cs, each with a half-life greater than 10,000 years), by incorporating them into the target of an Accelerator Transmutation of Waste (ATW) system is discussed. The important parameters used to judge the feasibility of a direct irradiation system were the target`s neutron spallation yield (given in neutrons produced per incident proton), and the removal rate of the LLFP, with the baseline incineration rate set at two light water reactors (LWRs) worth of the LLFP waste per year. A target was constructed which consisted of a LLFP cylindrical {open_quotes}plug{close_quotes} inserted into the top (where the proton beam strikes) of a 30 cm radius, 100 cm length lead target. {sup 126}Sn and {sup 79}Se were each found to have high enough removal rates to support two LWR`s production of the LLFP per year of ATW operation. For the baseline plug geometry (5 cm radius, 30 cm length) containing {sup 126}Sn, 3.5 LWRs could be supported per year (at 75% beam availability). Furthermore, the addition of a {sup 126}Sn plus had a slightly positive effect on the target`s neutron yield. The neutron production was 36.83 {plus_minus}.0039 neutrons per proton with a pure lead target having a yield of 36.29 {plus_minus}.0038. It was also found that a plug composed of a tin-selenide compound (SnSe) had high enough removal rates to burn two or more reactor years of both LLFPs simultaneously.

  12. Core dynamics of HTR under ATWS and accident conditions

    International Nuclear Information System (INIS)

    Nabbi, R.

    1988-05-01

    The systematic classification of the ATWS has been undertaken by analogy to the considerations made for LWR. The initiating events of ATWS and protection actions of safety systems resulting from monitoring of the system variables have been described. The main emphasis of this work is the analysis of the core dynamic consequences of scram failure during the anticipated transients. The investigation has shown that because of the temperature feedback mechanisms a temperature rise during the ATWS results in a self-shutdown of the reactor. Further inherent safety features of the HTR - conditioned by the high heat capacity of the core and by the compressibility of the coolant - do effectively counteract an undesirable increase of temperature and pressure in the primary circuit. In case of the long-term failure of the forced cooling and following core heatup, neutron physical phenomena appear which determine the reactivity behaviour of the HTR. They are, for instance, the decay of Xenon 135, release of the fission products and subsiding of the top reflector. The results of the computer simulations show that a recriticality has to be excluded during the first 2 days if the reactor is shutdown by the reflector rods at the beginning of the accident. (orig./HP) [de

  13. ATWS: a reappraisal. Part III. Frequency of anticipated transients. Interim report

    International Nuclear Information System (INIS)

    Leverenz, F.L. Jr.; Koren, J.M.; Erdmann, R.C.; Lellouche, G.S.

    1978-07-01

    The document is Part III of the Institute study of the ATWS question. The frequencies of the various events which have led to a reactor scram are documented from the nuclear power plant records. Some of these events, in the absence of scram, could lead to undesirable system response and are the ''transients of significance'' which comprise the anticipated transients of the ATWS question

  14. Strategy and Economic Prospect of Back-end Cycle through ATW

    International Nuclear Information System (INIS)

    Hendri Firman Windarto; Siti Alimah

    2003-01-01

    Strategy and economic prospect of back-end cycle through ATW has been studied. Nuclear fuel cycle through ATW is a single stratum of back-end cycle. By ATW, volume of spent fuel which should be disposed in long term can be reduced from 70,000 MHTM to 3,000 MHTM and half-life of spent fuel can be reduced from 15,700,000 years to 300 years. Strategic values of the ATW cycle are to prevent proliferation risk and to reduce the uncertainty of long term dispose. Economic prospect of the ATW cycle will give some advantages on reducing of spent fuel volume and its disposal period, and producing electricity. (author)

  15. Aqueous-based thick photoresist removal for bumping applications

    Science.gov (United States)

    Moore, John C.; Brewer, Alex J.; Law, Alman; Pettit, Jared M.

    2015-03-01

    Cleaning processes account for over 25% of processing in microelectronic manufacturing [1], suggesting electronics to be one of the most chemical intensive markets in commerce. Industry roadmaps exist to reduce chemical exposure, usage, and waste [2]. Companies are encouraged to create a safer working environment, or green factory, and ultimately become certified similar to LEED in the building industry [3]. A significant step in this direction is the integration of aqueous-based photoresist (PR) strippers which eliminate regulatory risks and cut costs by over 50%. One of the largest organic solvent usages is based upon thick PR removal during bumping processes [4-6]. Using market projections and the benefits of recycling, it is estimated that over 1,000 metric tons (mt) of residuals originating from bumping processes are incinerated or sent to a landfill. Aqueous-based stripping would eliminate this disposal while also reducing the daily risks to workers and added permitting costs. Positive-tone PR dissolves in aqueous strippers while negative-tone systems are lifted-off from the substrate, bumps, pillars, and redistribution layers (RDL). While the wafers are further processed and rinsed, the lifted-off PR is pumped from the tank, collected onto a filter, and periodically back-flushed to the trash. The PR solids become a non-hazardous plastic waste while the liquids are mixed with the developer stream, neutralized, filtered, and in most cases, disposed to the sewer. Regardless of PR thickness, removal processes may be tuned to perform in <15min, performing at rates nearly 10X faster than solvents with higher bath lives. A balanced formula is safe for metals, dielectrics, and may be customized to any fab.

  16. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  17. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  18. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  19. Transmutation and inventory analysis in an ATW molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Sisolak, J.E.; Truebenbach, M.T.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-10-01

    As an extension of earlier work to determine the equilibrium state of an ATW molten salt, power producing, reactor/transmuter, the WAIT code provides a time dependent view of material inventories and reactor parameters. By considering several cases, the authors infer that devices of this type do not reach equilibrium for dozens of years, and that equilibrium design calculations are inapplicable over most of the reactor life. Fissile inventory and k{sub eff} both vary by factors of 1.5 or more between reactor startup and ultimate convergence to equilibrium.

  20. Quantification of operator actions during ATWS following MSIV closure

    International Nuclear Information System (INIS)

    Luckas, W.J. Jr.; O'Brien, J.N.; Perline, R.K.; Spettell, C.M.

    1986-01-01

    Brookhaven National Laboratory (BNL) assisted the Accident Sequence Evaluation Program (ASEP) by performing a Human Reliability Analysis (HRA) of the operations crew tasks during the Anticipated Transient Without Scram (ATWS) accident sequence with Main Steam Isolation Valve (MSIV) closure at the Peach Bottom Atomic Power Station, Unit 2. A detailed task analysis was performed based on consideration of staffing, team interaction, and control room layout at Peach Bottom. ATWS scenarios developed by Oak Ridge National Laboratory (ORNL) and Idaho National Engineering Laboratory (INEL) were reviewed. Discussions were held with thermal-hydrodynamic/core neutronics engineers at BNL to determine the success criterion for tasks. Five major operator tasks were identified. After reviewing a computerized data base of human error probabilities (HEPs) from 19 probabilistic risk assessments (PRAs) for tasks similar to those above to establish the historic range of HEPs for such errors, consensus opinion and structured expert judgment was used to quantify each of these tasks at each branch point in the event tree within that range

  1. Performance comparison of liquid metal and gas cooled ATW system point designs

    International Nuclear Information System (INIS)

    Yang, W.S.; Taiwo, T.A.; Hill, R.N.; Khalil, H.S.; Wade, D.C.

    2001-01-01

    As part of the Advanced Accelerator Application (AAA) program in the U.S., preliminary design studies have been performed at Argonne National Laboratory (ANL) and Los Alamos National Laboratory (LANL) to define and compare candidate Accelerator Transmutation of Waste (ATW) systems. The studies at ANL have focused primarily on the transmutation blanket component of the overall system. Lead-bismuth eutectic (LBE), sodium, and gas cooled systems are among the blanket technology options currently under consideration. This paper summarizes the results from neutronics trade studies performed at ANL. Core designs have been developed for LBE and sodium cooled 840 MWt fast spectrum accelerator driven systems employing re-cycle. Additionally, neutronics analyses have been performed for a helium-cooled 600 MWt hybrid thermal and fast spectrum system proposed by General Atomics (GA), which is operated in the critical mode for three cycles and in a subcritical accelerator driven mode for a subsequent single cycle. For these three point designs, isotopic inventories, consumption rates, and annual burnup rates are compared. The mass flows and the ultimate loss of transuranic (TRU) isotopes to the waste stream per unit of heat generated during transmutation are also compared on a consistent basis. (author)

  2. ATWS analysis for Browns Ferry Nuclear Plant Unit 1

    International Nuclear Information System (INIS)

    Dallman, R.J.; Jouse, W.C.

    1985-01-01

    Analyses of postulated Anticipated Transients Without Scram (ATWS) were performed at the Idaho National Engineering Laboratory (INEL). The Browns Ferry Nuclear Plant Unit 1 (BFNP1) was selected as the subject of this work because of the cooperation of the Tennessee Valley Authority (TVA). The work is part of the Severe Accident Sequence Analysis (SASA) Program of the US Nuclear Regulatory Commission (NRC). A Main Steamline Isolation Valve (MSIV) closure served as the transient initiator for these analyses, which proceeded a complete failure to scram. Results from the analyses indicate that operator mitigative actions are required to prevent overpressurization of the primary containment. Uncertainties remain concerning the effectiveness of key mitigative actions. The effectiveness of level control as a power reduction procedure is limited. Power level resulting from level control only reduce the Pressure Suppression Pool (PSP) heatup rate from 6 to 4 0 F/min

  3. Audit Calculations of ATWS for Ulchin Unit 1 and 2 Power Uprate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Soo; Huh, Byung Gil; Choi, Yong Seog; Seul, Kwang Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the regulatory audit calculation for ATWS of Ulchin Unit 1 and 2 with 4.5% power uprate was performed to support the licensing review and to confirm the validity of licensee's calculation. In order to simulate the transient behavior of ATWS initiated by a loss of feed water, the systems of Ulchin Unit 1 and 2 was modeled with MARS-KS 1.3. In this study, the regulatory audit calculation of ATWS for Ulchin 1 and 2 with 4.5% power uprating and 99% MTC in the specific cycle designs was performed. It is conformed that the analysis results of ATWS for Ulchin 1 and 2 power uprate meets the RCS pressure acceptance criteria. An anticipated transient accompanied by a failure in the Reactor Trip System (RTS) to shut down the reactor is defined as an Anticipated Transient Without Scram (ATWS). Under certain postulated conditions, the ATWS could lead to Reactor Coolant system (RCS) pressure boundary fracture and/or core damage. For a conventional pressurized water reactor (PWR), the temperature corresponding to the NSSC notice No.2013.09(Performance Criteria for ECCS of the Pressurized Water Reactor Nuclear Power Plants), 1204 .deg. C and the pressure corresponding to the ASME Boiler and Pressure Vessel Code service level C stress, 221.5 bar is assumed to be an unacceptable plant condition against ATWS, above which the RCS pressure boundary could deform to the point of inoperability and the safe shutdown by injection of borated water could be challenged. Such potentially excessive RCS overpressure may occur in the ATWS initiated from a loss of heat sink. Currently, the modification of Ulchin 1 and 2 operating license for 4.5% power uprate is under review.

  4. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    International Nuclear Information System (INIS)

    Giachetti, R.T.

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs

  5. Accelerator-driven destruction of long-lived radioactive waste and energy production

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1997-01-01

    Nuclear waste management involves many issues. ATW is an option that can assist a repository by enhancing its capability and thereby assist nuclear waste management. Technology advances and the recent release of liquid metal coolant information from Russia has had an enormous impact on the viability of an ATW system. It now appears economic with many repository enhancing attributes. In time, an ATW option added to present repository activities will provide the public with a nuclear fuel cycle that is acceptable from economic and environmental points of view

  6. Accelerator transmutation of waste economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    A parametric systems model of the accelerator transmutation of (nuclear) waste (ATW) is used to examine key system trade-offs and design drivers on the basis of unit costs. This model is applied primarily to a fluid-fuel blanket concept for an ATW that generates net electric power from the fissioning of spent commercial reactor fuel. An important goal of this study is the development of essential parametric trade-offs to aid in any future conceptual engineering design of an ATW that would burn spent commercial fuel and generate net electric power. As such, costing procedures and methodologies used to estimate and compare advanced nuclear power generation systems are applied. The cost of electricity required by an electrical power-generating ATW fueled with spent commercial fuels is generally found to be above that projected for other advanced fission power plants. The accelerator and the chemical plant equipment cost accounts are quantitatively identified as main cost drivers, with the capital cost of radio-frequency power dominating the former. Significant reductions of this cost differential are possible by increased blanket neutron multiplication, increased plant capacity, or increased thermal-to-electric conversion efficiency. The benefits of reduced long-lived fission products and spent commercial fuel actinides provided by the ATW approach translate into a less tangible source of revenue to be provided by a charge that must be levied on the client fission power plants being serviced. The main goal of this study, however, is not a direct cost comparison but is instead a quantitative determination of cost-based sensitivity of key cost drivers and operational modes for an ATW concept that would address the growing spent commercial fuel problem; parametric results presented focus on this goal, and a specific ATW ''straw man'' is given to achieve this main objective

  7. Investigations of anticipated transients without scram (ATWS) for the high temperature reactor

    International Nuclear Information System (INIS)

    Heckhoff, H.D.

    1981-10-01

    In this study anticipated transients without scram (ATWS) are investigated for the high temperature reactor, especially for the thorium high temperature reactor (THTR) 300 MWe as an example. It is shown that the two ATWS 'feedwater flow reduction from full power' and 'positive reactivity insertion of 1 mNile/s from 40 per cent power' are the most important transients for the THTR. The additional load caused by the ATWS can be reduced sufficiently by some small modifications of the afterheat removal system. Supplementary precautions are not necessary. In the last part of this study some possibilities to improve the behaviour of the power plant are shown with regard to high temperature reactors of the future, the partial scram as well as some modifications of heating and cooling of the steam generator. (orig.) [de

  8. Reliability and availability considerations in the RF systems of ATW-class accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tallerico, P.J.; Lynch, M.T.; Lawrence, G. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    In an RF-driven, ion accelerator for waste transmutation or nuclear material production, the overall availability is perhaps the most important specification. The synchronism requirements in an ion accelerator, as contrasted to an electron accelerator, cause a failure of an RF source to have a greater consequence. These large machines also are major capital investments, so the availability determines the return on this capital. RF system design methods to insure a high availability without paying a serious cost penalty are the subject of this paper. The overall availability goal in the present designs is 75% for the entire ATW complex, and from 25 to 35% of the unavailability is allocated to the RF system, since it is one of the most complicated subsystems in the complex. The allowed down time for the RF system (including the linac and all other systems) is then only 7 to 9% of the operating time per year, or as little as 613 hours per year, for continuous operation. Since large accelerators consume large amounts of electrical power, excellent efficiency is also required with the excellent availability. The availability also influences the sizes of the RF components; smaller components may fail and yet the accelerator may still meet all specifications. Larger components are also attractive, since the cost of an RF system usually increases as the square root of the number of RF systems utilized. In some cases, there is a reliability penalty that accompanies the cost savings from using larger components. The authors discuss these factors, and present an availability model that allows one to examine these trade offs, and make rational choices in the RF and accelerator system designs.

  9. Joyo ATWS test analysis by Mimir-N2

    International Nuclear Information System (INIS)

    Yoshida, Akihiro

    2001-03-01

    The study on the passive safety test by using the Experimental Fast Reactor Joyo was performed to demonstrate the inherent safety of fast breeder reactors. An analysis code: Mimir-N2, which has been developed to analyze Joyo plant kinetics, was selected as a standard code for this study. In order to increase the reliability of the calculation, Mimir-N2 code was adjusted based on the data obtained through several plant characteristics tests carried out in Joyo. Throughout an operational data obtained in Joyo, it is supposed that the burn-up dependency observed on the power reactivity coefficient might be coming from the reactivity shift caused by a depression of a thermal expansion of fuel pellet. Based on the relationship between the measured power reactivity coefficient and the core averaged burn-up, the burn-up dependency mentioned above was estimated and introduced to Mimir-N2. As a result, calculated core and plant dynamics during the step reactivity response test, such as the response of the power range neutron monitor and the coolant temperature at the core inlet/outlet, corresponded with the measured value. Especially, it was confirmed that Mimir-N2 can simulate the perturbation caused by the thermal expansion of the core support plate. In addition, Mimir-N2 was modified to be enable to take into account for the core bowing reactivity, which is calculated by the core bowing reactivity analysis system developed for Joyo. The preliminary analysis of the plant dynamics during the ATWS events in MK-III core were carried out by using modified Mimir-N2. As a result, it was confirmed that the core bowing reactivity should not be neglected because it sometimes shows positive feedback characteristics. (author)

  10. ATWS analysis for total loss of feedwater sequence in UCN 3 and 4

    International Nuclear Information System (INIS)

    Park, S. H.; Song, Y. M.; Kim, D. H.; Kim, S. D.; Park, S. Y.

    1999-01-01

    ATWS is a trip-failed severe accident initiated from the transients like a turbine trip, a control bank withdrawal, and a loss of feedwater which are expected to occur comparatively often (one or two occurrences / year). In this study, an ATWS sequence in Ulchin 3 and 4 is analyzed and the effects of the important systems are studied for accident management purpose using a MIDAS/PK computer code. The MIDAS/PK code has been developed via coupling a point kinetics module with the MELCOR code. The code calculates a primary peak pressure of about 24MPa at 240 seconds for the ATWS initiated by a TLOF (Total Loss of Feedwater) transient. Along with the basic ATWS analysis, several sensitivity runs are performed. From these, the turbines and the safety depressurization system (SDS) are judged to be important. The turbine trip resulting in a loss of offsite power and a RCP trip, degrades primary heat transfer to the secondary sides, and in turn, increases primary coolant temperature which reduces the reactor power due to the negative moderator temperature coefficient. Manual operation of SDS has an effect to lower the primary peak pressure considerably via supplementary depressurization in addition to the PORVs

  11. Study on Fabrication of Ni-5 at.%W Tapes for Coated Conductors from Cylinder Ingots

    DEFF Research Database (Denmark)

    Ma, L.; Suo, H. L.; Yue, Zhao

    2015-01-01

    Ni-5 at.%W (Ni5W) tapes with a strong cube texture were fabricated using the RABiTS technique and by starting from cylindrical shaped ingots. In contrast to a conventional cuboid-shaped ingot, a cylinder shaped ingot has no anisotropy along the axial direction and the resulting tape will therefore...

  12. Nuclear energy and politics in Russian ATWS conditions

    International Nuclear Information System (INIS)

    Gagarinski, A.

    1998-01-01

    Relations between politics and nuclear power in the countries of sustainable development has been many times discussed during the short history of nuclear energy, and regularly arising new events, even very important (in Sweden, USA, etc.), just add to the formed understanding of the problem. Russia for 10 years lives in conditions of a transition period, which seems similar to ATWS-type accidents at nuclear power plants. In these conditions the effect of politics on nuclear power and vice versa are seen very clearly, and, more important, change swiftly, which may present interest for the countries with smoother public processes. The role of political processes in nuclear power is obvious and may be reduced to three main factors: change of political system and transition to market economy have placed nuclear power, though still within state sector, in an absolutely new economic condition, which determine its today's situation as 'Survival'; new possibilities of political influence and opposition to nuclear power (mainly struggle against construction of new nuclear fuel cycle objects) on a levels of authority (local, regional, federal); impact of the USSR collapse on the situation in Russian nuclear power was due sooner to temporary weakening of control and regulatory structures, than to the fact, that some fuel cycle elements have found themselves abroad (the factor of uranium resources' loss is unimportant at present). Nuclear safety was chosen to be the subject of Moscow 1996 Summit, initiated with the purpose of Russia coming closer to G7. The Summit has confirmed the thesis on the possibility of nuclear power o play an important role in the world energy demand in accordance with sustainable development goals. successful activities of Russia-USA Commission for economic and technological cooperation, known as 'Gore-Chernomyrdin' Commission, is to a large extent determined by positive nuclear decisions. Eastern direction of Russian nuclear export (Iran, China

  13. Generic implications of ATWS events at the Salem Nuclear Power Plant: generic implications. Vol. 1

    International Nuclear Information System (INIS)

    1983-04-01

    This report is the first of two volumes. It documents the work of an interoffice, interdisciplinary NRC Task Force established to determine the generic implications of two anticipated transients without scram (ATWS) at the Salem Nuclear Power Plant, Unit 1 on February 22 and 25, 1983. A second report will document the NRC actions to be taken based on the work of the Task Force. The Task Force was established to address three questions: (1) Is there a need for prompt action for similar equipment in other facilities. (2) Are NRC and its licensees learning the sefety-management lessons, and, (3) How should the priority and content of the ATWS rule be adjusted. A number of short-term actions were taken through Bulletins and an Information Notice. Intermediate-term actions to address the generic issues will be addressed in the separate report and implemented through appropriate regulatory mechanisms

  14. Anticipated Transient Without SCRAM(ATWS) analysis using the RETRAN code

    International Nuclear Information System (INIS)

    Youn, Bum soo; Lee, Jong beom; Song, Dong soo; Ha, Sang jun

    2014-01-01

    The purpose of this study is to evaluate the Anticipated Transient Without Scram(ATWS) Loss of Load(LOL) and Loss of Normal Feedwater(LOFW) events for the OPR1000 reactor. The analysis calculates the peak RCS and secondary system pressure for the LOL and LOFW ATWS events. The main product of this study is the ATWS evaluation of the OPR1000 reactor LOL and LOFW events. The results include a sequence of events and plots of key output parameters.. This study includes results of Loss of Load and Loss of Feedwater ATWS. The LOL case results in a faster reactor trip than the LOFW since the LOFW does not have the turbine trip at time zero. In addition the LOFW event has the SBCS available and as secondary pressure increase, the steam releases from the SBCS valves provide extra cooling to the secondary system, which also cools the primary system. This additional cooling also delays the DSS trip. For the LOFW event, both the turbine and SBCS are providing additional cooling, hence the primary and secondary system heatups are slower and lower. Thus the RCS and steam generator pressure are higher for the LOL event than the LOFW event. The LOL also has a slower decrease in SG water level than the LOFW event. This is due to loss of condenser vacuum that trips and isolates the turbine and renders the SBCS unavailable for the LOL event. Hence the secondary cooling for the LOL event is due to the steam releases from the MSSVs; whereas the LOFW turbine remains online until a DTT occurs on the DSS. Also the SBCS is available because the condenser is available

  15. Anticipated Transient Without SCRAM(ATWS) analysis using the RETRAN code

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Bum soo; Lee, Jong beom; Song, Dong soo; Ha, Sang jun [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    The purpose of this study is to evaluate the Anticipated Transient Without Scram(ATWS) Loss of Load(LOL) and Loss of Normal Feedwater(LOFW) events for the OPR1000 reactor. The analysis calculates the peak RCS and secondary system pressure for the LOL and LOFW ATWS events. The main product of this study is the ATWS evaluation of the OPR1000 reactor LOL and LOFW events. The results include a sequence of events and plots of key output parameters.. This study includes results of Loss of Load and Loss of Feedwater ATWS. The LOL case results in a faster reactor trip than the LOFW since the LOFW does not have the turbine trip at time zero. In addition the LOFW event has the SBCS available and as secondary pressure increase, the steam releases from the SBCS valves provide extra cooling to the secondary system, which also cools the primary system. This additional cooling also delays the DSS trip. For the LOFW event, both the turbine and SBCS are providing additional cooling, hence the primary and secondary system heatups are slower and lower. Thus the RCS and steam generator pressure are higher for the LOL event than the LOFW event. The LOL also has a slower decrease in SG water level than the LOFW event. This is due to loss of condenser vacuum that trips and isolates the turbine and renders the SBCS unavailable for the LOL event. Hence the secondary cooling for the LOL event is due to the steam releases from the MSSVs; whereas the LOFW turbine remains online until a DTT occurs on the DSS. Also the SBCS is available because the condenser is available.

  16. Investigation of decreasing reactor coolant inventory as a mechanism to reduce power during a BWR ATWS

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Layman, W.; Hentzen, R.D.; Gose, G.C.

    1985-01-01

    A best-estimate analysis was performed to evaluate the technique of intentionally reducing reactor coolant inventory in order to reduce power during a BWR ATWS event. The ATWS was initiated by closure of the main steam isolation valves. The analysis was performed with the RETRAN-02 computer code utilizing the one-dimensional kinetics option. The one-dimensional cross sections were developed using the SIMULATE-E and SIMTRAN-E computer codes. The MSIV closure transient provides some of the more severe conditions following a postulated failure to scram. In this transient, the only mechanism for removing energy from the vessel is through the safety relief valve system which results in a heating up of the suppression pool fluid. Consequently, the reactor power must be reduced so that the suppression pool temperature limits are not exceeded. Under the proposed emergency procedure guidelines for the ATWS event, the reactor vessel water level will be lowered to reduce system power. This analysis evaluated the dynamic response of the system as the water level was lowered to the top of active fuel evaluation. Correlating the system power and flow patterns to water level was of particular interest in the analysis. Under natural circulating conditions, the system flows, core power, and pressure responses are extremely tightly coupled and the analysis results proved to be very sensitive to the modeling of downcomer, upper plenum, and core regions

  17. Calculation of the time behavior of a PWR NPP during a loss of feedwater ATWS case

    International Nuclear Information System (INIS)

    Hoeld, A.

    1988-01-01

    Event tree analyses of plant internal accidents play an important role within the safety evaluations of nuclear power reactors. The consequences after normal and abnormal operational perturbations have to be studied with respect to the safety situation of the entire plant and the possibility of additional failures in the reactor scram system be taken into account. In the analysis of anticipated transients with or without reactor scram (non-ATWS or ATWS-cases), it can, according to their initiating events, be distinguished between three important categories, namely - loss of off-site and on-site power (LOOP), - turbine-trip without opening of the bypass station, - loss of main feed water (LOFW). The last case with the additional assumption of a failure in the control rod drive will be subject of this presentation, calculating the dynamic behavior of a PWR NPP (with an end of cycle core, EOC) after such a LOFW/ATWS accident by the transient code combination ALMOD-4/UTSG-2. A short characterization of this combination will be given before consequences of such an accident and the interactions of the different plant parameters are discussed in more detail on basis of the corresponding calculation

  18. On the ATW-concepts: ITP approach and opportunities

    Science.gov (United States)

    Simonenko, V. A.; Grebyonkin, K. F.

    1995-09-01

    It is discussed the interest of Russian Federal Nuclear Center-Institute of Technical Physics at Chelyabinsk-70 in the research of Accelerator Driven Technologies applications for radioactive waste transmutation, cumulated actinides burning, energy production. The ITP background and opportunities for this research are presented. It is shown the ITP possibilities for testing and experimental development of Accelerator Driven Technologies.

  19. On the ATW-concepts: ITP approach and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Simonenko, V.A.; Gregyonkin, K.F. [Institute of Technical Physics, Chelyabinsk (Russian Federation)

    1995-10-01

    It is discussed the interest of Russian Federal Nuclear Center - Institute of Technical Physics at Chelyabinsk-70 in the research of Accelerator Driven Technologies applications for radioactive waste transmutation, cumulated actinides burning, energy production. The ITP background and opportunities for this research are presented. It is shown the ITP possibilities for testing and experimental development of Accelerator Driven Technologies.

  20. BWR [boiling water reactor] core criticality versus water level during an ATWS [anticipated transient without scram] event

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Peng, C.M.; Maly, J.

    1988-01-01

    The BWR [boiling water reactor] emergency procedures guidelines recommend management of core water level to reduce the power generated during an anticipated transient without scram (ATWS) event. BWR power level variation has traditionally been calculated in the system codes using a 1-D [one-dimensional] 2-group neutron kinetics model to determine criticality. This methodology used also for calculating criticality of the partially covered BWR cores has, however, never been validated against data. In this paper, the power level versus water level issues in an ATWS severe accident are introduced and the accuracy of the traditional methodology is investigated by comparing with measured data. It is found that the 1-D 2-group treatment is not adequate for accurate predictions of criticality and therefore the system power level for the water level variations that may be encountered in a prototypical ATWS severe accident. It is believed that the current predictions for power level may be too high

  1. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT Facility

    International Nuclear Information System (INIS)

    Varacalle, D.J.; Giri, A.M.; Koizumi, Y.; Koske, J.E.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAPS/MOD1 computer code showed good agreement with the experimental data

  2. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  3. Estimates of thermal fatigue due to beam interruptions for an ALMR-type ATW

    International Nuclear Information System (INIS)

    Dunn, F. E.; Wade, D. C.

    1999-01-01

    Thermal fatigue due to beam interruptions has been investigated in a sodium cooled ATW using the Advanced Liquid Metal mod B design as a basis for the subcritical source driven reactor. A k eff of 0.975 was used for the reactor. Temperature response in the primary coolant system was calculated, using the SASSYS- 1 code, for a drop in beam current from full power to zero in 1 microsecond.. Temperature differences were used to calculate thermal stresses. Fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code were used to determine the number of cycles various components should be designed for, based on these thermal stresses

  4. Carbon microspheres as ball bearings in aqueous-based lubrication.

    Science.gov (United States)

    St Dennis, J E; Jin, Kejia; John, Vijay T; Pesika, Noshir S

    2011-07-01

    We present an exploratory study on a suspension of uniform carbon microspheres as a new class of aqueous-based lubricants. The surfactant-functionalized carbon microspheres (∼0.1 wt %) employ a rolling mechanism similar to ball bearings to provide low friction coefficients (μ ≈ 0.03) and minimize surface wear in shear experiments between various surfaces, even at high loads and high contact pressures. The size range, high monodispersity, and large yield stress of the C(μsphere), as well as the minimal environmental impact, are all desirable characteristics for the use of a C(μsphere)-SDS suspension as an alternative to oil-based lubricants in compatible devices and machinery.

  5. The feasibility study I on the blanket fuel options for the ATW/HYPER

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok; Meyer, M.K; Hayes, S.L

    2001-01-01

    The choice of a blanket fuel cycle technology and the fuel type for HYPER/ATW are important to develop an ADS with better economics, performance and safety. Even though several fuel types have been considered as an alternative of the blanket fuels for HYPER/ATW, the metal alloy and the dispersion fuels were selected as the candidate fuels for ADS, and the technical feasibilities for both fuels are evaluated in this report. General performance characteristics, fabrication abilities, technical aspects, safety aspects, economics, and non-proliferation aspects for each fuel type are reviewed and evaluated. And some technological problems are addressed in this report, focused on the development strategy, the roadmaps, and the flexibility to meet the missions and specific designs. This study has been performed at the first stage of conceptual design. Since it is under the lack of physical properties for each fuel material, no an attempt is made to select the best fuel option, but the more better fuel options are recommended.

  6. The feasibility study I on the blanket fuel options for the ATW/HYPER

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok; Meyer, M.K; Hayes, S.L.

    2001-01-01

    The choice of a blanket fuel cycle technology and the fuel type for HYPER/ATW are important to develop an ADS with better economics, performance and safety. Even though several fuel types have been considered as an alternative of the blanket fuels for HYPER/ATW, the metal alloy and the dispersion fuels were selected as the candidate fuels for ADS, and the technical feasibilities for both fuels are evaluated in this report. General performance characteristics, fabrication abilities, technical aspects, safety aspects, economics, and non-proliferation aspects for each fuel type are reviewed and evaluated. And some technological problems are addressed in this report, focused on the development strategy, the roadmaps, and the flexibility to meet the missions and specific designs. This study has been performed at the first stage of conceptual design. Since it is under the lack of physical properties for each fuel material, no an attempt is made to select the best fuel option, but the more better fuel options are recommended

  7. Safety assessment of the Indonesian multipurpose reactor RSG-GAS against ATWS and hypothetical accidents

    International Nuclear Information System (INIS)

    Hastowo, H.; Nabbi, R.; Prayoto; Ismuntoyo, R.P.H.

    2004-01-01

    Investigation on ATWS and hypothetical accidents for the Indonesian Multipurpose Reactor RSG-GAS have been undertaken by computer simulation technique. Two computer codes, namely RELAP5 and PARET-ANL, were used as the main tools. The RELAP5 was utilized to perform system analysis while the PARET-ANL code was used to perform the reactor core analysis in more detail. Two different models have been applied as a basis of the simulation: Typical Working Core model (IWC-model) consisting of four regions with different radial power factors; and the hot-channel model consisting of two regions with different radial power factors. Both RELAP5 ad PARET-ANL results showed that in the occurrence of ATWS, failure on fuel element or fuel plate was limited to the region with the most highest power factor. The results also indicated that no high pressure development occurs in that region, so that mechanical damage on the fuel element or other core components due to pressure shock did not happen.(author)

  8. Results and analysis of a loss-of-feedwater induced ATWS experiment in the LOFT Facility

    International Nuclear Information System (INIS)

    Grush, W.H.; Koizumi, Y.; Woerth, S.C.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by a loss of feedwater, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a two-position actuator relief valve to simulate a scaled power-operated relief valve (PORV) and safety relief valve (SRV) representative of those in a commercial PWR. Auxiliary feedwater injection was delayed during the experiment until the plant recovery phase where long-term shutdown was achieved by an operator-controlled plant recovery procedure without inserting the control rods. The system transient response predicted by the RELAP5/MOD1 computer code showed good agreement with the experimental data

  9. Generic implications of ATWS events at the Salem Nuclear Power Plant. Licensee and staff actions

    International Nuclear Information System (INIS)

    1983-08-01

    This report, Volume 2 of two volumes of NUREG-1000, describes the intermediate term actions to be taken by licensees and applicants of the US Nuclear Regulatory Commission (NRC), on the one hand, and by NRC staff, on the other, to address the generic issues raised by two anticipated transients without scram (ATWS) at the Salem Nuclear Generating Station, Unit 1, on February 22 and 25, 1983. These actions came about as a result of the findings of NUREG-1000, Volume 1, and of reviews by the NRC Committee to Review Generic Requirements, the NRC Program Offices, and the Commission. The actions to be taken by licensees and applicants have been detailed in a letter pursuant to 10 CFR 50.54(f)

  10. Effect of power oscillations on suppression pool heating during ATWS [Anticipated Transients Without Scram] conditions

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1990-01-01

    Nine selected Anticipated Transients Without Scram (ATWS) have been simulated on the BNL Engineering Plant Analyzer (EPA), to determine how power and flow oscillations, similar to those that did or could have occurred at the LaSalle-2 boiling Water Reactor (BWR), could affect the rate of Pressure Suppression Pool heating. It has been determined that the pool can reach its temperature limit of 80 degree C in 4.3 min. after Turbine Trip without Bypass, if the feedwater pumps are not tripped. The pool will not reach its limit, if Boron is injected, even when oscillations are encountered. Simultaneous turbine and recirculation pump trips, introduced under stable conditions, can lead to instability. 2 refs., 17 figs., 9 tabs

  11. A simplified analysis of uncertainty propagation in inherently controlled ATWS events

    International Nuclear Information System (INIS)

    Wade, D.C.

    1987-01-01

    The quasi static approach can be used to provide useful insight concerning the propagation of uncertainties in the inherent response to ATWS events. At issue is how uncertainties in the reactivity coefficients and in the thermal-hydraulics and materials properties propagate to yield uncertainties in the asymptotic temperatures attained upon inherent shutdown. The basic notion to be quantified is that many of the same physical phenomena contribute to both the reactivity increase of power reduction and the reactivity decrease of core temperature rise. Since these reactivities cancel by definition, a good deal of uncertainty cancellation must also occur of necessity. For example, if the Doppler coefficient is overpredicted, too large a positive reactivity insertion is predicted upon power reduction and collapse of the ΔT across the fuel pin. However, too large a negative reactivity is also predicted upon the compensating increase in the isothermal core average temperature - which includes the fuel Doppler effect

  12. ATWS thermal-hydraulic analysis for Krsko Full Scope Simulator validation

    International Nuclear Information System (INIS)

    Parzer, I.; Kljenak, I.

    2005-01-01

    The purpose of this analysis was to simulate Anticipated Transient without Scram transient for Krsko NPP. The results of these calculations were used for annual ANSI/ANS validation of reactor coolant system thermal-hydraulic response predicted by Krsko Full Scope Simulator. For the thermal-hydraulic analyses the RELAP5/MOD3.3 code and the input model for NPP Krsko, delivered by NPP Krsko, was used. In the presented paper the most severe ATWS scenario has been analyzed, starting with the loss of Main Feedwater at both steam generators. Thus, gradual loss of secondary heat sink occurred. On top of that, control rods were not supposed to scram, leaving the chain reaction to be controlled only by inherent physical properties of the fuel and moderator and eventual actions of the BOP system. The primary system response has been studied assuming AMSAC availability. (author)

  13. Planning the research and development necessary for accelerator transmutation of waste, leading to integrated proof of performance testing

    International Nuclear Information System (INIS)

    Bennett, D.R.; Pasamehmetoglu, K.; Finck, P.; Pitcher, E.; Khalil, H.; Todosow, M.; Hill, R.; Van Tuyle, G.; Laidler, J.; Crawford, D.; Thomas, K.

    2001-01-01

    The Research and Development (R and D) Plan for the Accelerator Transmutation of Waste (ATW) Program has been developed for the Department of Energy, Office of Nuclear Energy (DOE/NE) to serve as a focus and progressional guide in developing critical transmutation technologies. It is intended that the Plan will serve as a logical reference considering all elements of an integrated accelerator-driven transmutation system, and will maximize the use of resources by identifying and prioritizing research, design, development and trade activities. The R and D Plan provides a structured framework for identifying and prioritizing activities leading to technically-justifiable integrated Proof of Performance testing within ten years and ultimate demonstration of Accelerator Transmutation of Waste (ATW). The Plan builds from the decision objectives specified for ATW, utilizes informational input from the ATW Roadmap and programmatic System Point Design efforts, and employs the knowledge and expertise provided by professionals familiar with ATW technologies. With the firm intent of understanding what, why and when information is needed, including critical interfaces, the Plan then develops a progressional strategy for developing ATW technologies with the use of a Technology Readiness Level (TRL) scale. The TRL approach is first used to develop a comprehensive, yet generic, listing of experimental, analytical and trade study activities critical to developing ATW technologies. Technology-specific and concept-specific aspects are then laid over the generic mapping to gage readiness levels. Prioritization criteria for reducing technical uncertainty, providing information to decision points, and levering off of international collaborations are then applied to focus analytical, experimental and trade activities. (author)

  14. The possibility of fuel cycle design for ABC/ATW complex with molten fuel on LiF-BeF2 basis

    International Nuclear Information System (INIS)

    Naumov, V.S.; Bychkov, A.V.

    1995-01-01

    The experience gained in the field of the development of molten salt reactors (MSR) can be made a basis of chemical processing of the ABC/ATW liquid fuel. The following combination of two processing principles are proposed for the ABC/ATW fuel (LiF-BeF 2 -PuF 3,(4) - MAF n ): - continious removal of radioactive gases, volatile impurities and 'noble fission products'; - portion-by-portion electrochemical processing with removal of rare earth elements and some other fission products at an autonomous plant. After processing the fuel salt is brought back to the blanket of the ABC/ATW complex. The analysis of information previously published in different countries allows for a safe assumption that the ABC/ATW fuel cycle with liquid fuel salt is feasible and can be demonstrated experimentally

  15. The possibility of fuel cycle design for ABC/ATW complex with molten fuel on LiF-BeF2 basis

    International Nuclear Information System (INIS)

    Naumov, V. S.; Bychkov, A. V.

    1995-01-01

    The experience gained in the field of the development of molten salt reactors (MSR) can be made a basis of chemical processing of the ABC/ATW liquid fuel. The following combination of two processing principles are proposed for the ABC/ATW fuel (LiF-BeF2-PuF3,(4)-MAFn): -continious removal of radioactive gases, volatile impurities and 'noble fission products'; -portion-by-portion electrochemical processing with removal of rare earth elements and some other fission products at an autonomous plant. After processing the fuel salt is brought back to the blanket of the ABC/ATW complex. The analysis of information previously published in different countries allows for a safe assumption that the ABC/ATW fuel cycle with liquid fuel salt is feasible and can be demonstrated experimentally

  16. The possibility of fuel cycle design for ABC/ATW complex with molten fuel on LiF-BeF{sub 2} basis

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, V.S.; Bychkov, A.V. [Research Institute of Atomic Reactors, Dimitrovgrad (Russian Federation)

    1995-10-01

    The experience gained in the field of the development of molten salt reactors (MSR) can be made a basis of chemical processing of the ABC/ATW liquid fuel. The following combination of two processing principles are proposed for the ABC/ATW fuel (LiF-BeF{sub 2}-PuF{sub 3,(4)} - MAF{sub n}): - continious removal of radioactive gases, volatile impurities and {open_quotes}noble fission products{close_quotes}; - portion-by-portion electrochemical processing with removal of rare earth elements and some other fission products at an autonomous plant. After processing the fuel salt is brought back to the blanket of the ABC/ATW complex. The analysis of information previously published in different countries allows for a safe assumption that the ABC/ATW fuel cycle with liquid fuel salt is feasible and can be demonstrated experimentally.

  17. Uncertainty analysis of suppression pool heating during an ATWS in a BWR-5 plant

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Johnsen, G.W.; Lellouche, G.S.

    1994-03-01

    The uncertainty has been estimated of predicting the peak temperature in the suppression pool of a BWR power plant, which undergoes an NRC-postulated Anticipated Transient Without Scram (ATWS). The ATWS is initiated by recirculation-pump trips, and then leads to power and flow oscillations as they had occurred at the LaSalle-2 Power Station in March of 1988. After limit-cycle oscillations have been established, the turbines are tripped, but without MSIV closure, allowing steam discharge through the turbine bypass into the condenser. Postulated operator actions, namely to lower the reactor vessel pressure and the level elevation in the downcomer, are simulated by a robot model which accounts for operator uncertainty. All balance of plant and control systems modeling uncertainties were part of the statistical uncertainty analysis that was patterned after the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology. The analysis showed that the predicted suppression-pool peak temperature of 329.3 K (133 degrees F) has a 95-percentile uncertainty of 14.4 K (26 degrees F), and that the size of this uncertainty bracket is dominated by the experimental uncertainty of measuring Safety and Relief Valve mass flow rates under critical-flow conditions. The analysis showed also that the probability of exceeding the suppression-pool temperature limit of 352.6 K (175 degrees F) is most likely zero (it is estimated as < 5-104). The square root of the sum of the squares of all the computed peak pool temperatures is 350.7 K (171.6 degrees F)

  18. ATWS: a reappraisal, part II, evaluation of societal risks due to reactor protection systems failure. Vol. 3. Pwr risk analysis. Phase report

    International Nuclear Information System (INIS)

    Lellouche, G.S.

    1976-08-01

    This document is the third volume of part 2 in a series of studies which will examine the basis for the problem of Anticipated Transients Without Scram (ATWS). The purpose of part 2 is an evaluation of societal risks due to RPS failure based on more current data and methodology than used in WASH-1270. This volume examines and documents the potential contribution to societal risk due to ATWS in the PWR. Volumes 1 and 2 described a similar analysis for the BWR

  19. Proton beam micromachining on strippable aqueous base developable negative resist

    International Nuclear Information System (INIS)

    Rajta, I.; Uzonyi, I.; Baradacs, E.; Chatzichristidi, M.; Raptis, I.; Valamontes, E.S.

    2004-01-01

    applied for UV-LIGA. This epoxy resist is aqueous base developable (IC standard aqueous developers (tetramethyl ammonium hydroxide TMAH 0.26N)) and presents limited or no swelling and reduced roughness problems compared to the pure epoxy novolac resists. In order to test these novel resist materials in the PBM technique, irradiations have been performed on the nuclear microprobe facility at ATOMKI, Debrecen, Hungary. The proton energy was 2 MeV. Beam currents of 5-60 pA were focused down to 2-3 μm spotsize. The scan size was typically 1 mm. The tested formulations in the present work need about 120-240 nC/mm 2 fluence. This is higher than that of the SU-8, but these new formulations have the advantage of using IC industry developer solutions and easy stripping in acetone. The resist formulation consisted of polymer mix of 78% (w/w) PHS with 12% degree of hydrogenation and 22% (w/w) EP and 1-(4-hydroxy-3-methylphenyl) tetrahydrothiophenium triflate (o-CS-triflate) 3% (w/w) as PAG provided the best patterning results. Using this formulation 5-8 μm wide lines with aspect ratio 4-6 were resolved [2]. This project was supported by the Hungarian National Research Foundation OTKA (A080, M41939, M36324 and F42474), the Hungarian TeT (Greek-Hungarian Bilaretal Project GR-3/03) and the Greek General Secretariat for R and D (Greek-Hungarian Bilaretal Project). I. Rajta is a grantee of the Bolyai Janos Scholarship. (author)

  20. Simulation of BWR stability following an ATWS with boron injection using TRAC-BF1 with one-dimensional kinetics

    International Nuclear Information System (INIS)

    Lider, S.; Maclan, R.; Baratta, A.J.; Mahaffy, J.; Robinson, G.E.

    2004-01-01

    The scenario following an ATWS is characterized by the necessity to reduce the power in the reactor as fast as possible. The only means to insert a significant amount of negative reactivity in a BWR during an ATWS are the natural reactor negative void coefficient, and the injection of highly enriched boron through the SLCS. The ATWS management strategy suggested by BWR owner's group contemplates an initial rapid decrease in power as a result of the recirculation pump trip. This is followed by lowering of vessel water level and the injection of borated water into the lower plenum. A recent paper of Dias, et al. reports that reducing core power and lowering water level causes a reduction in boron mixing efficiency and the net effect is a longer time to shut down and an increase in Suppression Pool (SP) temperature. In the present paper, a series of analyses are made to address this issue. The preliminary results for the water level positions at TAF, TAF+1.5 m (TAF+5') and TAF+3 m (TAF+10') support the similar findings of Dias, et al. (author)

  1. ACCELERATOR TRANSMUTATION OF WASTE TECHNOLOGY AND IMPLEMENTATION SCENARIOS

    International Nuclear Information System (INIS)

    Beller, D.; Tuyle, G. van

    2000-01-01

    During 1999, the U.S. Department of Energy, in conjunction with its nuclear laboratories, a national steering committee, and a panel of world experts, developed a roadmap for research, development, demonstration, and deployment of Accelerator-driven Transmutation of Waste (ATW). The ATW concept that was examined in this roadmap study was based on that developed at the Los Alamos National Laboratory (LANL) during the 1990s. The reference deployment scenario in the Roadmap was developed to treat 86,300 tn (metric tonnes initial heavy metal) of spent nuclear fuel that will accumulate through 2035 from existing U.S. nuclear power plants (without license extensions). The disposition of this spent nuclear reactor fuel is an issue of national importance, as is disposition of spent fuel in other nations. The U.S. program for the disposition of this once-through fuel is focused to characterize a candidate site at Yucca Mountain, Nevada for a geological repository for spent fuel and high-level waste. The ATW concept is being examined in the U.S. because removal of plutonium minor actinides, and two very long-lived isotopes from the spent fuel can achieve some important objectives. These objectives include near-elimination of plutonium, reduction of the inventory and mobility of long-lived radionuclides in the repository, and use of the remaining energy content of the spent fuel to produce power. The long-lived radionuclides iodine and technetium have roughly one million year half-lives, and they are candidates for transport into the environment via movement of ground water. The scientists and engineers who contributed to the Roadmap Study determined that the ATW is affordable, doable, and its deployment would support all the objectives. We report the status of the U.S. ATW program describe baseline and alternate technologies, and discuss deployment scenarios to support the existing U.S. nuclear capability and/or future growth with a variety of new fuel cycles

  2. Containment venting as a mitigation technique for BWR MARK I plant ATWS

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1987-01-01

    Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without Scram (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it. Two alternative strategies that do not require containment venting, but that could delay or prevent severe fuel damage, are analyzed. BWR-LTAS code results are presented for a successful mitigation strategy in which the reactor vessel is depressurized, and for one in which the reactor vessel remains at pressure

  3. Fabrication of textured Ni–9.3at.%W substrate by electropulsing intermediate annealing method

    International Nuclear Information System (INIS)

    Liu, Jianan; Liu, Wei; Tang, Guoyi; Zhu, Rufei

    2014-01-01

    Highlights: •It’s the first time that EIA is used on Ni9 W substrate production. •Compared with CIA, EIA trends to sharpen the rolling texture. •Improved cube recrystallization texture is obtained by EIA. •EIA provides a highly efficient approach for Ni9 W substrate manufacture. -- Abstract: Sharp cube texture is difficult to obtain in high W content Ni–W alloy substrates used for coated conductors. In this paper, a new method called electropulsing intermediate annealing (EIA) is adopted to optimize the rolling and recrystallization texture of Ni–9.3 at.%W substrate. It is found that, compared with conventional intermediate annealing (CIA) at the same temperature, EIA trends to increase the Copper, S and Brass components, suppress the Goss component in rolling texture. Higher cube recrystallization texture is obtained at relatively low temperature by EIA in a shorter time. The effect of EIA on texture is attributed to the enhancement of recovery process resulting from the athermal effects

  4. Parametric study on thermal-hydraulic response following as ATWS event

    International Nuclear Information System (INIS)

    Suh, Jeong Kwan; Bang, Young Seok; Kim, Hho Jung

    2000-01-01

    A series of sensitivity calculations for the LOFT L9-3 experiment were performed using RELAP5/MOD3 code to assess parametric effects on thermal-hydraulic response in the event of Anticipated Transient Without Scram (ATWS). The base case calculation was made by the condition which gave a good agreement for the pressure of the reactor coolant system (RCS) with the experimental data. Four parameters of PORV/spray energy loss coefficient, steam generator nodalization and moderator density coefficient (MDC) were selected during the input preparation and investigated by calculating the total discharged energy through relief valves. The energy loss coefficient of the pressurizer spray valve has a significant effect on the behavior of the RCS pressure and the change of the MDC curve within 15 % at the negative region decreased the difference of the coolant temperature between the experiment and the calculation within a range of measurement uncertainty. The finer steam generator nodalization increased the primary to secondary heat transfer rate

  5. Transmutation of radioactive waste: Effect on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rasmussen, N.C.; Pigford, T.H.

    1997-01-01

    A committee of the National Research Council reviewed three concepts for transmuting radionuclides recovered from the chemical reprocessing of commercial light-water-reactor (LWR) fuel: LWR transmutation reactors fueled with recycled actinides, advanced liquid-metal reactors (ALMRs), and accelerator-driven subcritical reactors for transmutation of waste (ATW). The concepts were evaluated in terms of: (1) the extent to which waste disposal would benefit from transmutation, (2) time required to reduce the total inventory of radionuclides in the waste and fuel cycle, (3) the complexity of the overall transmutation system, (4) the extent of new development required, and (5) institutional and economic problems of operating such systems. Transmutation could affect geologic disposal of waste by reducing the inventory of transuranics (TRUs), fission products, and other radionuclides in the waste. Reducing the inventory of transuranics does not necessarily affect radiation doses to people who use contaminated ground water if the dissolution rate of transuranics in waste is controlled by elemental solubilities. However, reducing inventories of Am and Pu would decrease potential hazards from human intrusion. The likelihood for underground nuclear criticality would also be reduced. The long-lived fission products Tc-99, I-129, Cs-135 and others typically contribute most to the long-term radiation doses to future populations who use contaminated water from the repository. Their transmutation requires thermal or epithermal neutrons, readily available in LWR and ATW transmutors. ALMR and LWR transmutors would require several hundred years to reduce the total transuranic inventory by even a factor of 10 at constant electric power, and thousands of years for a hundred-fold reduction. For the same electrical power, the ATW could reduce total transuranic inventory about tenfold more rapidly, because of its very high thermal-neutron flux. However, extremely low process losses would be

  6. Criticality safety analysis of accelerator transmutation waste system

    International Nuclear Information System (INIS)

    Landeyro, P.A.; Cepraga, D.G.; Orazi, A.

    1993-01-01

    The Accelerator Transmutation Waste system (ATW) is under development at the Los Alamos National Laboratory. It consists of a particle accelerator producing a proton beam having an energy of 1.5 GeV. These particles are introduced into the upper part of a molten Pb-Bi column and they produce, by a spallation reaction, a high strength neutron flux, 1.0x10 16 n/(square centimeters sec). The neutrons enter a heavy water blanket where actinides and long-lived fission products circulate in vertical tubes. The goal of this research effort is to perform an independent verification of the feasibility of actinide burning in the ATW system. The work is divided into four tasks: a) production of an actinide and long-lived fission product cross section library from JEF 2.2; b) simulation, using MCNP and KENO IV Monte Carlo codes, of the ATW configurations existing in literature; c) validation of the cross sections by comparison of Keff and reaction rate results, calculated with MCNP and KENO IV, with experimental benchmarks and intercomparison between calculations of a PWR unit cell and the computations carried out with various codes and cross section libraries (NEACRF criticality working group data); d) simulation of the ATW configuration. The two first tasks are almost complete with excellent agreement between this study's results and those of Los Alamos

  7. Risk evaluation of the alternate-3A modification to the ATWS prevention/mitigation system in a BWR-4, MARK-II power plant

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Karol, R.; Shiu, K.

    1983-01-01

    The authors present a risk evaluation of the ATWS Alternate 3A modification proposed by NRC staff in NUREG-0460 to the ATWS prevention/mitigation system in a BWR nuclear power plant. The evaluation is done relative to three risk indices: the frequency of core damage, the expected early fatalities, and the expected latent fatalities. The ATWS prevention tree includes: the mechanical subsystem of the reactor protection system, the electrical subsystem of the reactor protection system, the recirculation pump trip and the Alternate Rod Insertion System. The mitigation tree includes: standby liquid control system, opening of the relief valves, reclosing the relief valves, failure of coolant injection, inadvertent actuation of the automatic depressurization system, inadvertent operation of high-pressure injection system and containment heat removal

  8. Investigations of operational incidents without reactor scram (ATWS) and other selected safety devices

    International Nuclear Information System (INIS)

    Ullrich, W.; Frisch, W.

    1976-09-01

    The most important results may be summarized as follows: Analyses performed up to now show that the primary system is not directly endangered by any overpressure, as 1,1 times the design pressure will not be exceeded in light water reactors. In smaller areas of the reactor core, hazards may exist for several fuel rods. Here, additional tests are still required, especially during failures with a considerable lowering of the water level in the pressure vessel of BWRs or during failures with a very high steam development combined with pump failures in a PWR. Generally, computer models used are suitable to perform ATWS analyses. The confidence in the relatively recent PWR-models should be confirmed by comparison with other models and by reexaminations. Reliability studies of pressure relief systems and of those systems functioning in case of a scram, generally reveal that systems are of a high quality design. Deficiencies insofar as they have been recognized in time, have been eliminated during the licensing procedure. The determined nonavailability data for reactor scrams (RESA) are between 2 x 10 -6 and 5 x 10 -6 . Quantitive treatment of common mode failures is very difficult. First attempts for a solution have been made and results are given in chapters 8 and 9. More extensive studies should be performed in order to adequately quantify the common mode failures and in order to permit them to be handled as an integral part of reliability analyses. Results of analyses performed for BWRs and PWRs led to the conclusion that additional hardware measures on a large scale are not necessary now. Chapter 10, however, proposes possible improvements concerning the existing engineered safegurads for both the BWR and the PWR. These proposals should be discussed with the RSK and manufacturers and utilities as well, in order to achieve an optimum safety standard and to avoid a priori any adverse effect. (orig./HP) [de

  9. Estimation of the development possibility of the ABC/ATW fuel cycle based on LiF-BeF2 fuel salt. Part 2

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Naumov, V.S.

    1994-01-01

    The aim of the first chapter was generalization of data on solubility and equilibrium states of fission product and actinide fluorides in fluoride salt melts-solvents and fuel composition melts based on LiF-BeF 2 mixture which was proposed as fuel basis for ABC/ATW facility. The second chapter is devoted to description of processes proposed for the chemical-technological complex of the ABC/ATW facility and their physico-chemical peculiarities. The complex is responsible for the removal of fission products and actinides from irradiated fuel salt

  10. Evaluation of very low frequencies of ATWS and PLOHS in a loop-type FBR plant by making use of inherently safe features

    International Nuclear Information System (INIS)

    Sakata, K.; Koyama, K.; Aoi, S.; Simonelli, R.B.; Wallace, I.T.

    1987-01-01

    Frequencies of ATWS (Anticipated Transient Without Scram) and PLOHS (Protected Loss of Heat Sink) for a large loop-type FBR plant were evaluated by applying PSA methodologies. The frequencies were found to be so low that ATWS and PLOHS could be excluded from candidates of the design basis events. Furthermore, the inherently safe features introduced to the system design were verified to be very effective for reduction of the Probability of CCF (Common Cause Failure), which deteriorates reliability of both the reactor shutdown and the decay heat removal systems. (orig.)

  11. Environmental impacts of radiological consequences during the anticipated transients without scram (ATWS) events in nuclear power reactors

    International Nuclear Information System (INIS)

    El-Kafas, A.A.

    2011-01-01

    Anticipated transients without scram (ATWS), is one of the (worst case) accidents could happen if the system that provides a highly reliable means of shutting down the reactor (scram system )fails to work during a reactor event (anticipated transient).It has two general characteristics: (1) Initiation by a transient anticipated to occur one or more times in the life of reactor and ,(2) Assumed to proceed without scram.The types of events considered are those used for designing the plant .The evaluation of the radiological consequences during the assessment of the nuclear events,especially ATWS in nuclear power reactors, is very essential for environmental studies and public safety. In this paper, the root cases for nuclear events and dose calculation are presented. Scenario of accident sequences together with radiological impacts is illustrated for loss of coolant accident (LOCA) for a typical pressurized water reactor nuclear power plant. Recommendations for mitigating or preventing the release of radiation and high radioactive materials to environment are presented.

  12. Development of cube textured Ni-5 at.%W alloy substrates for coated conductor application using a melting process

    International Nuclear Information System (INIS)

    Zhao Yue; Suo Hongli; Liu Min; Liu Danmin; Zhang Yingxiao; Zhou Meiling

    2006-01-01

    Biaxially textured Ni-5 at.%W substrates have been prepared by cold rolling, followed by three different annealing routes. In this paper, the processes of melting Ni and W metals, flat rolling, various annealing methods are described in detail. The Ni-5 at.%W tapes annealed under either high vacuum or flowing Ar (7% H 2 ) gas were characterized by X-ray pole figures, ODF, EBSD as well as AFM analysis. The texture analysis indicated that as fabricated tapes have a sharp cube texture formed after annealing at a wide temperature range of 800-1100 o C. The high quality of cube orientation on tapes was obtained after a two-step annealing (TSA), where the percentage of the cube texture component was as high as 93.5% within a misorientation angle smaller than 8 o from EBSD analysis. Furthermore, it was also observed that the number of twin boundaries in this tape decreased with respect to that of tapes annealed both in vacuum and one-step gas annealing. From AFM on 1 μm 2 areas, it was concluded that the roughness (RMS) on the tape surface reached 0.98 nm

  13. Evolution of microstructure, texture and topography during additional annealing of cube-textured Ni–5at.%W substrate for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Grivel, Jean-Claude

    2012-01-01

    Microstructure, texture and topography have been studied in a recrystallized Ni–5at.%W substrate before and after additional annealing at 1025C for 1 h. The initial recrystallized material contained a strong cube texture and a high fraction of low angle grain boundaries. R3 boundaries were also f...

  14. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  15. Materials compatibility and corrosion issues for accelerator transmutation of waste

    International Nuclear Information System (INIS)

    Staudhammer, K.

    1992-08-01

    The need to understand the materials issues in an accelerator transmutation of waste (ATW) system is essential. This report focuses on the spallation container material, as this material is exposed to some of the most crucial environmental conditions of simultaneous radiation and corrosion in the system. The most severe design being considered is that of liquid lead. In previous investigations of lead compatibility with materials, the chemistry of the system was derived solely from the corrosion products; however, in an ATW system, the chemistry of the lead changes not only with the derived corrosion products of the material being tested but also with the buildup of the daughter production with time. Daughter production builds up and introduces elements that may have a great effect on the corrosion activity of the liquid lead. Consequently, data on liquid lead compatibility can be regarded only as a guide and must be reevaluated when particular daughter products are added. This report is intended to be a response to specific materials issues and concerns expressed by the ATW design working group and addresses the compatibility/corrosion concerns

  16. Disposition of nuclear waste using subcritical accelerator-driven systems

    International Nuclear Information System (INIS)

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-01-01

    Studies have shown that the repository long-term radiological risk is from the long-lived transuranics and the fission products Tc-99 and I-129, thermal loading concerns arise mainly form the short-lived fission products Sr-90 and Cs-137. In relation to the disposition of nuclear waste, ATW is expected to accomplish the following: (1) destroy over 99.9% of the actinides; (2) destroy over 99.9% of the Tc and I; (3) separate Sr and Cs (short half-life isotopes); (4) separate uranium; (5) produce electricity. In the ATW concept, spent fuel would be shipped to a ATW site where the plutonium, other transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their only pass through the facility. This approach contrasts with the present-day reprocessing practices in Europe and Japan, during which high purity plutonium is produced and used in the fabrication of fresh mixed-oxide fuel (MOX) that is shipped off-site for use in light water reactors

  17. An overview of Russian experience and capabilities for development of ATW/ABC systems

    Science.gov (United States)

    Kazaritsky, Vladimir D.

    1995-09-01

    Several Russian institutes are expected to undertake a feasibility study of nuclear power systems based on proton accelerators. The examined systems are intended for conversion of surplus Pu and transmutation of long-lived radioactive waste. This research motivated by the demilitarization agreements and criticism of traditional nuclear power is focused on environmental protection.

  18. An overview of Russian experience and capabilities for development of ATW/ABC systems

    Energy Technology Data Exchange (ETDEWEB)

    Kazaritsky, V.D. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    1995-10-01

    Several Russian institutes are expected to undertake a feasibility study of nuclear power systems based on proton accelerators. The examined systems are intended for conversion of surplus Pu and transmutation of long-lived radioactive waste. This research motivated by the demilitarisation agreements and criticism of traditional nuclear power is focused on environmental protection.

  19. Analysis of a high pressure ATWS [anticipated transient without scram] with very low make-up flow

    International Nuclear Information System (INIS)

    Wagner, K.C.

    1988-10-01

    A series of calculations were performed to analyze the response of General Electric Company's (GE) advanced boiling water reactor (ABWR) during an anticipated transient without scram (ATWS). This work investigated the early plant response with an assumed failure or manual inhibit of the high pressure core flooder (HPCF). Consequently, the reactor core isolation cooling (RCIC) and control rod drive (CRD) systems are the only sources of high pressure injection available to maintain core cooling. Steam leaving the reactor pressure vessel was diverted to the pressure suppression pool (PSP) via the steam line and the safety relief valves. The combination of an unscrammed core and the CRD and RCIC injection sources make this a particularly challenging transient. System energy balance calculations were performed to predict the core power and PSP heat-up rate. The amount of vessel vapor superheat and the PSP temperature were found to significantly affect the resultant core power. Consequently, detailed thermal-hydraulic calculations were performed to simulate the system response during the postulated transient. 15 refs., 15 figs., 4 tabs

  20. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  1. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    International Nuclear Information System (INIS)

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, 90 Sr, 99 Tc, 129 I, and 137 Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello

  2. Pyrochemical separations technologies envisioned for the U.S. accelerator transmutation of waste system

    International Nuclear Information System (INIS)

    Laidler, J. J.

    2000-01-01

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system

  3. NRC Fact-Finding Task Force report on the ATWS event at Salem Nuclear Generating Station, Unit 1, on February 25, 1983

    International Nuclear Information System (INIS)

    1983-03-01

    An NRC Region I Task Force was established on March 1, 1983 to conduct fact finding and data collection with regard to the circumstances which led to an anticipated transient without scram (ATWS) event at the Public Service Electric and Gas Company's Salem Generating Station, Unit 1 on February 25, 1983. The charter of the Task Force was to determine the factual information pertinent to management and administrative controls which should have ensured proper operation of the reactor trip breakers in the solid state protection system. This report documents the findings of the Task Force along with its conclusions

  4. Study of the burning capability of the Los Alamos ATW system

    Energy Technology Data Exchange (ETDEWEB)

    Landeyro, P.A. [ENEA, Roma (Italy); Buccafurni, A.; Orazi, A. [ANPA, Roma (Italy)

    1995-10-01

    The aim of calculations is to evaluate the evolution of the infinate multiplication factor (k{sub inf}) during the irradiation of minor actinides, High Level Waste (HLWL) and Plutonium. The most important results are independently verified with Monte Carlo calculations. The relative importance of the main parameters affecting the k{sub inf} was investigated by performing calculations with several minor actinide and plutonium concentrations as well as different {sup 238}U decontamination factors for HLW. The merit figure value for minor actinide alone, considering a constant neutron flux indicates that the best results are reached for minor actinide concentration equal to PWR spent fuel. The best plutonium burning results are obtained for a concentration (50.23 g/l) equal to the half of PWR spent fuel one. The simulations lead to two different reactor concepts: one for HLW burning and the other for plutonium burning purposes. To burn the HLW the most suitable reactor is an homogeneous one. This kind of reactor can effectively be utilised to burn minor actinide in low concentration (namely the PWR spent fuel). On the other hand an heterogeneous reactor with channels filled by all actinides present in PWR spent fuel with the exclusion of U isotopes with a concentration of 50 g/l can be studied.

  5. Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4 V operating voltage

    Science.gov (United States)

    Wu, Haoran; Lian, Keryn

    2018-02-01

    A novel asymmetrical-bipolar electrochemical capacitor system leveraging the contributions of a Zn-CNT asymmetrical electrode and a KOH-H2SO4 dual-pH electrolyte was developed. The positive and negative electrodes operated in electrolytes with different pH, exploiting the maximum potential of both electrodes, which led to a cell voltage of 2.4 V. The potential tracking of both electrodes revealed that the Zn negative electrode could maintain a potential at -1.2 V, while the CNT positive electrode can be charged to +1.2 V without significant irreversible reactions. A bipolar ion exchange membrane has effectively separated the acid and alkaline from neutralization, which resulted in stable performance of the device with capacitance retention of 94% and coulombic efficiency of 99% over 10,000 cycles. This asymmetrical-bipolar design overcomes the thermodynamic limit of water decomposition, opening a new avenue towards high energy and high power density aqueous-based ECs.

  6. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key Topics / Enhanced safety and operation excellence and decommissioning experience and Waste management solutions

    Energy Technology Data Exchange (ETDEWEB)

    Salnikova, Tatiana [AREVA GmbH, Erlangen (Germany); Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-10-15

    Summary report on the Key Topics ''Enhanced Safety and Operation Excellence'' and ''Decommissioning Experience and Waste Management Solutions'' of the 47{sup th} Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 have been and will be covered in further issues of atw.

  7. Introducing a European Partnership. First issue of 'European Nuclear Features'. A joint publication of atw, Nuclear Espana, Revue Generale Nucleare (2004)

    International Nuclear Information System (INIS)

    2004-01-01

    'European Nuclear Features' is a joint publication of the three specialized technical journals, Nuclear Espana (Spain), Revue Generale Nucleaire (France), and atw - International Journal for Nuclear Power (Germany), planned for six issues annually. ENF is to further greatly the international European exchange of information and news about energy and nuclear power. News items, comments, and scientific and technical contributions will cover important aspects of the field. The first issue of ENF contains contributions about these topics, among others: - European Nuclear Society and Foratom: Strengthening the Nuclear Network. - Report: EPR - the European Pressurized Water Reactor. - Finland: Starting Construction of the Fifth Nuclear Power Plant. - Czech Republic: Nuclear Power Report for 2003/2004. - The Decommissioning Project of the Bohunice-1 and -2 Units. - FRM-II: TUM Research Neutron Source Generates Its First Neutrons. (orig.)

  8. RADDA - Comparison of results of three ATWS/ATWC scenarios simulated with the help of POLCA-T and S3K/RELAP5

    International Nuclear Information System (INIS)

    Peltonen, J.

    2008-03-01

    The effects of ATWS and ATWC-events with control rods failing to enter the core has been evaluated in this project. To understand the uncertainties in using modern 3D-calculation methods two different codes were used in the project. The outputs from the two code packages were compared. Within the project the used code were first evaluated against a real event, pancake core at Forsmark 3. The results give important knowledge of the core responses for such events and on how to use different code to perform such calculations. The NKS report is only one minor part of the total project. The project was sponsored by TVO, Forsmark, OKG, Ringhals, SKI besides the NKS-funding. The results could be used for PSA-studies and for deterministically safety analysis. (au)

  9. Disposition of nuclear waste using subcritical accelerator-driven systems

    International Nuclear Information System (INIS)

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-01-01

    Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power

  10. Accelerator-driven transmutation of high-level waste from the defense and commercial sectors

    International Nuclear Information System (INIS)

    Bowman, C.; Arthur, E.; Beard, C.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while generating useful electrical power and without producing a long-lived radioactive waste stream. We have identified and quantified the unique qualities of subcritical nuclear systems and their capabilities in bringing about the complete destruction of plutonium. Although the 1191 subcritical systems involved in our most effective designs radically depart from traditional nuclear reactor concepts, they are based on extrapolations of existing technologies. Overall, care was taken to retain the highly desired features that nuclear technology has developed over the years within a conservative design envelope. We believe that the ATW systems designed in this project will enable almost complete destruction of nuclear waste (conversion to stable species) at a faster rate and without many of the safety concerns associated with the possible reactor approaches

  11. RF system considerations for accelerator production of tritium and the transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1993-01-01

    RF driven proton accelerators for the transmutation of nuclear waste (ATW) or for the production of tritium (APT) require unprecedented amounts of CW RF power at UHF frequencies. For both systems, the baseline design is for 246 MW at 700 MHz and 8,5 MW at 350 MHz. The main technical challenges are how to design and build such a large system so that it has excellent reliability, high efficiency, and reasonable capital cost. The issues associated with the selection of the RF amplifier and the sizes of the power supplies are emphasized in this paper

  12. Preliminary analysis of the induced structural radioactivity inventory of the base-case aqueous accelerator transmutation of waste reactor concept

    International Nuclear Information System (INIS)

    Bezdecny, J.A.; Vance, K.M.; Henderson, D.L.

    1995-01-01

    The purpose of the Los Alamos National Laboratory Accelerator Transmutation of (Nuclear) Waste (ATW) project is the substantial reduction in volume of long-lived high-level radioactive waste of the US in a safe and energy-efficient manner. An evaluation of the ATW concept has four aspects: material balance, energy balance, performance, and cost. An evaluation of the material balance compares the amount of long-lived high-level waste transmuted with the amount and type, of waste created in the process. One component of the material balance is the activation of structural materials over the lifetime of the transmutation reactor. A preliminary radioactivity and radioactive mass balance analysis has been performed on four structure regions of the reaction chamber: the tungsten target, the lead annulus, six tubing materials carrying the actinide slurry, and five reaction vessel structural materials. The amount of radioactive material remaining after a 100-yr cooling period for the base-case ATW was found to be 338 kg of radionuclides. The bulk of this material (313 kg) was generated in the zirconium-niobium (Zr-Nb) actinide tubing material. Replacement of the Zr-Nb tubing material with one of the alternative tubing materials analyzed would significantly reduce the short- and long-term radioactive mass produced. The alternative vessel material Al-6061 alloys, Tenelon, HT-9, and 2 1/4 Cr-1 Mo and the alternative actinide tubing materials Al-6061 alloy, carbon-carbon matrix, silicon carbide, and Ti-6 Al-4 V qualify for shallow land burial. Alternative disposal options for the base-case structural material Type 304L stainless steel and the actinide tubing material Zr-Nb will need to be considered as neither qualifies for shallow land burial

  13. Homogeneous dispersion of gadolinium oxide nanoparticles into a non-aqueous-based polymer by two surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Jorice, E-mail: jorice.samuel@gmail.com [AREVA T and D UK Ltd, AREVA T and D Research and Technology Centre (United Kingdom); Raccurt, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Mancini, Cedric; Dujardin, Christophe; Amans, David; Ledoux, Gilles [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France); Poncelet, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Tillement, Olivier [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France)

    2011-06-15

    Gadolinium oxide nanoparticles are more and more used. They can notably provide interesting fluorescence properties. Herein they are incorporated into a non-aqueous-based polymer, the poly(methyl methacrylate). Their dispersion within the polymer matrix is the key to improve the composite properties. As-received gadolinium oxide nanopowders cannot be homogeneously dispersed in such a polymer matrix. Two surface treatments are, therefore, detailed and compared to achieve a good stability of the nanoparticles in a non-aqueous solvent such as the 2-butanone. Then, once the liquid suspensions have been stabilized, they are used to prepare nanocomposites with homogeneous particles dispersion. The two approaches proposed are an hybrid approach based on the growth of a silica shell around the gadolinium oxide nanoparticles, and followed by a suitable silane functionalization; and a non-hybrid approach based on the use of surfactants. The surface treatments and formulations involved in both methods are detailed, adjusted and compared. Thanks to optical methods and in particular to the use of a 'home made' confocal microscope, the dispersion homogeneity within the polymer can be assessed. Both methods provide promising and conclusive results.

  14. Effect of high doses of gamma radiation on thermophysical properties of ZrO2 nanofluids in aqueous base

    International Nuclear Information System (INIS)

    Pinho, Priscila G.M.; Rocha, Marcelo S.

    2017-01-01

    This work conducts a general theoretical and experimental study of the physical properties associated with the heat transfer capacity of ZrO 2 nanofluids in aqueous base and the effects of gamma on such properties, with a view to the possibility of applying as heat transfer fluid in future generations of nuclear reactor systems. The effects of concentrations and temperature, before and after the action of ionizing radiation were carried out. Theoretical models, parameters of influence and experimental results available in specialized literature were reviewed. Experimental study of physical properties of nanofluids samples in various concentrations (0.001% vol. 0.01% vol. 0.1% vol.), without the action of gamma radiation was also conducted. The physical properties investigated are the thermal conductivity, electrical conductivity, pH, density, and viscosity. Nanofluid samples were irradiated in the Multipurpose Radiator of IPEN under the doses 1 MGy, 2 MGy, and 3 MGy. Analysis using techniques of samples visualization before and after irradiation using scanning electron microscope (SEM) was adopted. The trials will be held to display the verification of the change in distribution of nanoparticles after irradiation of samples. This test aims to check for changes in the structure of the nanoparticles. It is expected with the results from this research project, a contribution to the advancement of knowledge of nanofluids applications in high heat transfer systems. (author)

  15. Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Moradi

    2011-07-01

    Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.

  16. Effect of high doses of gamma radiation on thermophysical properties of ZrO{sub 2} nanofluids in aqueous base

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Priscila G.M.; Rocha, Marcelo S., E-mail: pri.pgm@gmail.com, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    This work conducts a general theoretical and experimental study of the physical properties associated with the heat transfer capacity of ZrO{sub 2} nanofluids in aqueous base and the effects of gamma on such properties, with a view to the possibility of applying as heat transfer fluid in future generations of nuclear reactor systems. The effects of concentrations and temperature, before and after the action of ionizing radiation were carried out. Theoretical models, parameters of influence and experimental results available in specialized literature were reviewed. Experimental study of physical properties of nanofluids samples in various concentrations (0.001% vol. 0.01% vol. 0.1% vol.), without the action of gamma radiation was also conducted. The physical properties investigated are the thermal conductivity, electrical conductivity, pH, density, and viscosity. Nanofluid samples were irradiated in the Multipurpose Radiator of IPEN under the doses 1 MGy, 2 MGy, and 3 MGy. Analysis using techniques of samples visualization before and after irradiation using scanning electron microscope (SEM) was adopted. The trials will be held to display the verification of the change in distribution of nanoparticles after irradiation of samples. This test aims to check for changes in the structure of the nanoparticles. It is expected with the results from this research project, a contribution to the advancement of knowledge of nanofluids applications in high heat transfer systems. (author)

  17. Transmutation of fission products and actinide waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Pitcher, E.J.; Russell, G.J. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The authors studied the neutronics of an ATW system for the transmutation of the fission products ({sup 99}Tc in particular) and the type of actinide waste stored in several tanks at Hanford. The heart of the system is a highly-efficient neutron production target. It is surrounded by a blanket containing a moderator/reflector material, as well as the products to be transmuted. The fission products are injected into the blanket in the form of an aqueous solution in heavy water, whereas an aqueous actinides slurry is circulated in the outer part of the blanket. For the sake of definiteness, the authors focussed on {sup 99}Tc (the most difficult fission product to transmute), and {sup 239}Pu, {sup 237}Np, and {sup 241}Am. Because of the low thermal neutron absorption cross-section of {sup 99}Tc, considerable care and effort must be devoted to the design of a very efficient neutron source.

  18. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  19. RPV housed ATWS poison tank

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1992-01-01

    This patent describes a boiling water reactor (BWR) wherein housed within a reactor pressure vessel (RPV) is a nuclear core and an upper steam dome connected to a steam outlet in the RPV. The improvement comprises: a pressurized vessel disposed in the steam dome containing a neutron poison effective for inactivating the core and a first line for assaying the poison which first line runs to the outside of the RPV, the vessel being vented to the steam dome to pressurize the poison contained therein, the vessel being connected by a second line terminating beneath the core, the second line containing a valve which is actuable to release the poison through the line upon its actuation

  20. Effect of Initial Surface Quality on Final Roughness and Texture of Annealed Ni-5at.%W Tapes Coated with a Gd2Zr2O7 Buffer Layer

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Yue, Zhao; Mishin, Oleg

    2012-01-01

    Surface roughness of Ni-5at.%W tapes in coldrolled and annealed conditions after subsequent deposition of a Gd2Zr2O7 buffer layer has been studied as a function of the polishing grade, taking grain boundary grooving into account. It is found that annealing decreases the initial mean surface...... roughness achieved by mechanical polishing of the cold-rolled material, except after very fine polishing. Furthermore, compared to the surface of the tape annealed after fine polishing, the mean roughness slightly increases after the deposition of the buffer layer. Grain boundary grooving was found...... to impose a lower limit for the mean surface roughness. In the annealed tapes, the fraction of orientations within 5◦ from the ideal cube orientation was observed to be very sensitive to the surface roughness before annealing....

  1. Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems

    International Nuclear Information System (INIS)

    Olson, K.R.; Henderson, D.L.

    1995-01-01

    The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed

  2. Accelerator driven reactors and nuclear waste management projects in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Janouch, F. [Royal Institute of Technology, Stockholm (Sweden); Mach, R. [Institute of Nuclear Physics, Rez near Prague (Czechoslovakia)

    1995-10-01

    The Czech Republic is almost the only country in the central Europe which continues with the construction of nuclear power reactors. Its small territory and dense population causes public worries concerning the disposal of the spent nuclear fuel. The Czech nuclear scientists and the power companies and the nuclear industries are therefore looking for alternative solutions. The Los Alamos ATW project had received a positive response in the Czech mass-media and even in the industrial and governmental quarters. The recent scientific symposium {open_quotes}Accelerator driven reactors and nuclear waste management{close_quotes} convened at the Liblice castle near Prague, 27-29. 6. 1994 and sponsored by the Czech Energy Company CEZ, reviewed the competencies and experimental basis in the Czech republic and made the first attempt to formulate the national approach and to establish international collaboration in this area.

  3. Wastes options

    International Nuclear Information System (INIS)

    Maes, M.

    1992-01-01

    After a description of the EEC environmental policy, some wastes families are described: bio-contaminant wastes (municipal and industrial), hospitals wastes, toxic wastes in dispersed quantities, nuclear wastes (radioactive and thermal), plastics compounds wastes, volatiles organic compounds, hydrocarbons and used solvents. Sources, quantities and treatments are given. (A.B.). refs., figs., tabs

  4. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  5. Technologies for destruction of long-lived radionuclides in high-level nuclear waste: Overview and requirements

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1993-01-01

    This paper, and this topical session on Nuclear Waste Minimization, Management and Remediation, focuses on two nuclear systems, and their associated technologies, that have the potential to address concerns surrounding long-lived radionuclides in high-level waste. Both systems offer technology applicable to HLW from present light-water reactors (LWR). Additionally these systems represent advanced nuclear power concepts that have important features associated with integrated management of wastes, long-term fuel supplies, and enhanced safety. The first system is the Integral Fast Reactor (IFR) concept. This system incorporates a metal-fueled fast reactor coupled with chemical separations based on pyroprocessing to produce power while simultaneously burning long-lived actinide waste. IFR applications include burning of actinides from current LWR spent fuel and energy production in a breeder environment. The second concept, Accelerator Transmutation of Waste (ATW), is based upon an accelerator-induced intense source of thermal neutrons and is aimed at destruction of long-lived actinides and fission products. This concept can be applied to long-lived radionuclides in spent fuel HLW as well as a future fission power source built around use of natural thorium or uranium as fuels coupled with concurrent waste destruction

  6. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  7. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  8. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  9. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  10. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  11. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......, but such studies are very expensive if fair representation of both spatial and temporal variations should be obtained. In addition, onsite studies may affect the waste generation in the residence because of the increased focus on the issue. Residential waste is defined in different ways in different countries...

  12. Mining wastes

    International Nuclear Information System (INIS)

    Pradel, J.

    1981-01-01

    In this article mining wastes means wastes obtained during extraction and processing of uranium ores including production of uraniferous concentrates. The hazards for the population are irradiation, ingestion, dust or radon inhalation. The different wastes produced are reviewed. Management of liquid effluents, water treatment, contamined materials, gaseous wastes and tailings are examined. Environmental impact of wastes during and after exploitation is discussed. Monitoring and measurements are made to verify that ICRP recommendations are met. Studies in progress to improve mining waste management are given [fr

  13. Technologies for destruction of long-lived radionuclides in high-level nuclear waste - overview and requirements

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1993-01-01

    A major issue surrounding current nuclear power generation is the management and disposal of long-lived, high-level waste (HLW). The planned and scientifically acceptable destination for this waste is in deep underground, geologically stable, repositories. However, public concerns surrounding such disposal of long-lived nuclear wastes and other issues such as proliferation and safety negatively affect the potential role that nuclear power can play in meeting current and future national energy needs. This paper and this topical session on nuclear waste minimization, management, and remediation focus on two nuclear systems and their associated technologies that have the potential to address concerns surrounding long-lived radionuclides in HLW. Both systems offer technology applicable to HLW from current light water reactors (LWRs). In addition, these systems represent advanced nuclear power concepts that have important features associated with integrated management of wastes long-term fuel supplies, and enhanced safety. The first system is the integral fast reactor (IFR) concept. This system incorporates a metal-fueled fast reactor coupled with chemical separations based on pyroprocessing to produce power while burning long-lived actinide waste. The IFR applications include the burning of actinides from current LWR spent fuel and energy production in a breeder environment. The second concept, accelerator transmutation of waste (ATW), is based on an accelerator-induced intense source of thermal neutrons and is aimed at the destruction of long-lived actinides and fission products. This concept can be applied to long-lived radionuclides in spent-fuel HLW as well as a future fission power source built around use of natural thorium or uranium as fuels coupled with concurrent waste destruction

  14. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    International Nuclear Information System (INIS)

    Cooper, J.F.; Ballazs G.B.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput

  15. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.

  16. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  17. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  18. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  19. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  20. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  1. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  2. Waste treatment

    International Nuclear Information System (INIS)

    Hutson, G.V.

    1996-01-01

    Numerous types of waste are produced by the nuclear industry ranging from high-level radioactive and heat-generating, HLW, to very low-level, LLW and usually very bulky wastes. These may be in solid, liquid or gaseous phases and require different treatments. Waste management practices have evolved within commercial and environmental constraints resulting in considerable reduction in discharges. (UK)

  3. Nuclear wastes

    International Nuclear Information System (INIS)

    2004-01-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  4. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  5. The German act on the reorganisation of responsibility in nuclear waste management

    International Nuclear Information System (INIS)

    Raetzke, Christian

    2017-01-01

    The author discussed the Draft on the Act in the Reorganisation of Responsibility in Nuclear Waste Management in atw 12 (2016). Now, amendments are discussed, which resulted from the legislative procedure until today's draft. Significant additions affect the authorisation for the conclusion of a public-law contract between the Federal Government and the nuclear power plant operators, the deadline for the payment of the basic amount, and the option for the operation of the interim storage facilities for a transitional period by the operators on behalf of the federal company. Since the adoption of the draft act, it has become clear that the nuclear power plant operators will pay the risk premium. This will fulfil the full logic of the new system. It has also become known, that the public law contract is now ready for signing. According to the author, the act will bring a final arrangement for financing nuclear waste disposal. However, adjustment can not be avoided in practice. The concrete implementation will be a exciting topic in many ways.

  6. Electronic wastes

    Science.gov (United States)

    Regel-Rosocka, Magdalena

    2018-03-01

    E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.

  7. Waste -92

    International Nuclear Information System (INIS)

    Ekwall, K.

    1992-11-01

    The report gives a review of waste incineration in Sweden today, including environmental and legal aspects. 21 incinerator plants are in use, producing heat to district heating network and, to a minor part, electric power. In 1991 1.31 Mton household waste and 0.35 Mton industrial waste were incinerated producing 4.4 Twh of energy. In a few cities 30-40 percent of the district heat comes from waste incineration. The theoretical and practical potentials for energy production in Sweden are estimated to 7 respective 5 TWh for household waste and 9 respective 5-6 TWh for industrial waste. Landfill gas is extracted at about 35 sites, with a yearly production of 0.3 TWh which corresponds to 3-5 percent of the potentially recoverable quantity. (8 refs., 2 figs., 13 tabs.)

  8. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...... of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information...

  9. Nuclear waste

    International Nuclear Information System (INIS)

    1990-01-01

    Each year, nuclear power plants, businesses, hospitals, and universities generate more than 1 million cubic feet of hardware, rags, paper, liquid waste, and protective clothing that have been contaminated with radioactivity. While most of this waste has been disposed of in facilities in Nevada, South Carolina, and Washington state, recent legislation made the states responsible - either individually, or through groups of states called compacts - for developing new disposal facilities. This paper discusses the states' progress and problems in meeting facility development milestones in the law, federal and state efforts to resolve issues related to mixed waste (low-level waste that also contains hazardous chemicals) and waste with very low levels of radioactivity, and the Department of Energy's progress in discharging the federal government's responsibility under the law to manage the most hazardous low-level waste

  10. Waste indicators

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Lassen, C.; Hansen, E. [Cowi A/S, Lyngby (Denmark)

    2003-07-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  11. Waste indicators

    International Nuclear Information System (INIS)

    Dall, O.; Lassen, C.; Hansen, E.

    2003-01-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  12. Wasting away

    International Nuclear Information System (INIS)

    Salzman, L.

    1978-01-01

    The problems of radioactive waste disposal are discussed, with particular reference to the following: radiation hazards from uranium mill tailings; disposal and storage of high-level wastes from spent fuel elements and reprocessing; low-level wastes; decommissioning of aged reactors; underground disposal, such as in salt formations; migration of radioactive isotopes, for example into ground water supplies or into the human food chain. (U.K.)

  13. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  14. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  15. Nuclear power plants: 2013 atw compact statistics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-03-15

    At the end of 2013, nuclear power plants were available for energy supply in 31 countries of the world. A total of 437 nuclear power plants were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. This means that the number was unchanged compared to the previous year's number on 31 December 2012. The available gross power of nuclear power plants increased by approx. 2 GWe from 2012 to the end of 2013. In total 4 nuclear generating units were commissioned in 2013 in China (+2) and in the Republic Korea (+1). 6 nuclear generating units were decommissioned in 2013. Four units in the U.S.A. (-4) were shut down due to economical reasons. In Canada (-2) the operation status of 2 units was changed from long-term shutdown to permanently shutdown. 70 nuclear generating units with an aggregate gross power of approx. 73 GWe, were under construction in 15 countries end of 2013. New or continued projects are notified from (in brackets: number of new projects) China (+3), Belarus (+1), Rep. of Korea (+1) and the United Arab Emirates (+1). Some 115 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  16. Nuclear power plants: 2009 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the turn of 2009/2010, nuclear power plants were available for energy supply in 30 countries of the world. A total of 437 nuclear power plants, which is one plant less than at the 2008/2009 turn, were in operation with an aggregate gross power of approx. 391 GWe and an aggregate net power, respectively, of 371 GWe. The available gross power of nuclear power plants did not changed noticeably from 2008 to the end of 2009. In total 2 nuclear generating units were commissioned in 2009. One NPP started operation in India and one in Japan. Three nuclear generating units in Japan (2) und Lithuania (1) were decomissioned in 2009. 52 nuclear generating units, i.e. 10 plants more than at the end of 2008, with an aggregate gross power of approx. 51 GWe, were under construction in 14 countries end of 2009. New or continued projects are notified from (number of new projects): China (+9), Russia (1), and South Korea (1). Some 84 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  17. Nuclear power plants: 2013 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    At the end of 2013, nuclear power plants were available for energy supply in 31 countries of the world. A total of 437 nuclear power plants were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. This means that the number was unchanged compared to the previous year's number on 31 December 2012. The available gross power of nuclear power plants increased by approx. 2 GWe from 2012 to the end of 2013. In total 4 nuclear generating units were commissioned in 2013 in China (+2) and in the Republic Korea (+1). 6 nuclear generating units were decommissioned in 2013. Four units in the U.S.A. (-4) were shut down due to economical reasons. In Canada (-2) the operation status of 2 units was changed from long-term shutdown to permanently shutdown. 70 nuclear generating units with an aggregate gross power of approx. 73 GWe, were under construction in 15 countries end of 2013. New or continued projects are notified from (in brackets: number of new projects) China (+3), Belarus (+1), Rep. of Korea (+1) and the United Arab Emirates (+1). Some 115 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  18. Nuclear power plants: 2004 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In late 2004, nuclear power plants were available for power supply or were under construction in 32 countries worldwide. A total of 441 nuclear power plants, i.e. two plants more than in late 2003, were in operation with an aggregate gross power of approx. 386 GWe and an aggregate net power, respectively, of 362 GWe, in 31 countries. The available capacity of nuclear power plants increased by approx. 5 GWe as a result of the additions by the six units newly commissioned: Hamaoka 5 (Japan), Ulchin 6 (Korea), Kalinin 3 (Russia), Khmelnitski 2 (Ukraine), Qinshan II-2 (People's Republic of China), and Rowno 4 (Ukraine). In addition, unit 3 of the Bruce A nuclear power plant in Canada with a power of 825 MWe was restarted after an outage of many years. Contrary to earlier plans, a recommissioning program was initiated for the Bruce A-1 and A-2 units, which are also down at present. Five plants were decommissioned for good in 2004; Chapelcross 1 to 4 with 50 MWe each in the United Kingdom, and Ignalina 1 with 1 300 MWe in Lithuania. 22 nuclear generating units with an aggregate gross power of 19 GWe in nine countries were under construction in late 2004. In India, construction work was started on a new project, the 500 MWe PFBR prototype fast breeder reactor. In France, the EDF utility announced its intention to build an EPR on the Flamanville site beginning in 2007. (orig.)

  19. Nuclear power plants: 2005 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Nuclear power plants were available for power supply and under construction, respectively, in 32 countries of the world as per end of 2005. A total of 444 nuclear power plants, i.e. three plants more than at the end of 2004, with an aggregate gross power of approx. 389 GWe and an aggregate net power of 370 GWe, respectively, were in operation in 31 countries. The available capacity of nuclear power plants increased by some 4,5 GWe as a result of the capacities added by the four newly commissioned units of Higashidori 1 (Japan), Shika 2 (Japan), Tarapur 4 (India), and Tianwan 1 (China). In addition, unit A-1 of the Pickering nuclear power station in Canada, with 825 MWe, was restarted after a downtime of several years. Two plants were decommissioned for good in 2005: Obrigheim in Germany, and Barsebaeck 2 in Sweden. 23 nuclear generating units, i.e. one unit more than in late 2004, with an aggregate gross power of approx. 19 GWe were still under construction in nine countries by late 2005. In Pakistan, construction of a new project, Chasnupp 2, was started; in China, construction was begun of two units, Lingao Phase 2, units 3 and 4, and in Japan, the Shimane 3 generating unit is being built. (orig.)

  20. Nuclear power plants: 2008 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    At the turn of 2008/2009, nuclear power plants were available for energy supply in 31 countries of the world. A total of 438 nuclear power plants, which is one plant less than at the 2007/2008 turn, were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. The available gross power of nuclear power plants didn't changed noticeabely from 2007 to the end of 2008. No nuclear generating unit was commissioned in 2008. One nuclear generating unit in the Slovak Republic was decomissioned in 2008. 42 nuclear generating units, i.e. 10 plants more than at the end of 2007, with an aggregate gross power of approx. 38 GWe, were under construction in 14 countries end of 2008. New or continued projects are notified from (in brackets: number of new projects): Bulgaria (2), China (5), South Korea (2), Russia (1), and the Slovak Republic (2). Some 80 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another approximately 120 units are in their preliminary project phases. (orig.)

  1. Recycling waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P I.S.

    1976-01-01

    It is being realized that if environmental quality is to be improved the amount of waste generated by man has to be substantially reduced. There are two ways this can be achieved. First, by conserving materials and energy, and sacrificing economic growth, a solution that is completely unacceptable because it would mean some form of rationing, mass unemployment, and collapse of society as it is known. The second way to reduce the volume of waste is by planned recycling, re-use, and recovery. Already the reclamation industry recovers, processes, and turns back for re-use many products used by industry and thereby reduces the UK's import bill for raw materials. In the book, the author sets out the various ways materials may be recovered from industrial and municipal wastes. The broad technology of waste management is covered and attention is focused on man's new resources lying buried in the mountains of industrial wastes, the emissions from stocks, the effluents and sludges that turn rivers into open sewers, and municipal dumps in seventeen chapters. The final chapter lists terms and concepts used in waste technology, organizations concerned with waste management, and sources of information about recycling waste. (MCW)

  2. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  3. Sawmill "Waste"

    Science.gov (United States)

    Fred C. Simmons; Adna R. Bond

    1955-01-01

    Sawmills have the reputation of being very wasteful in converting logs and bolts into lumber and timbers. Almost everyone has seen the great heaps of sawdust and slabs that collect at sawmills. Frequently the question is asked, "Why doesn't somebody do something about this terrible waste of wood?"

  4. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  5. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  6. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide timely and concise information on radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc)

  7. Nuclear waste

    International Nuclear Information System (INIS)

    Pligt, J. van der

    1989-01-01

    This chapter present a brief overview of the current situation of siting radioactive wastes. This is followed by an overview of various psychological approaches attempting to analyse public reactions to nuclear facilities. It will be argued that public reactions to nuclear waste factilities must be seen in the context of more general attitudes toward nuclear energy. The latter are not only based upon perceptions of the health and environmental risks but are built on values, and sets of attributes which need not be similar to the representations o the experts and policy-makers. The issue of siting nuclear waste facilities is also embedded in a wider moral and political domain. This is illustrated by the importance of equity issues in siting radioactive wastes. In the last section, the implications of the present line of argument for risk communication and public participation in decisions about siting radioactive wastes will be briefly discussed. (author). 49 refs

  8. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  9. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  10. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  11. Waste segregation

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.

    1982-01-01

    A scoping study has been undertaken to determine the state-of-the-art of waste segregation technology as applied to the management of low-level waste (LLW). Present-day waste segregation practices were surveyed through a review of the recent literature and by means of personal interviews with personnel at selected facilities. Among the nuclear establishments surveyed were Department of Energy (DOE) laboratories and plants, nuclear fuel cycle plants, public and private laboratories, institutions, industrial plants, and DOE and commercially operated shallow land burial sites. These survey data were used to analyze the relationship between waste segregation practices and waste treatment/disposal processes, to assess the developmental needs for improved segregation technology, and to evaluate the costs and benefits associated with the implementation of waste segregation controls. This task was planned for completion in FY 1981. It should be noted that LLW management practices are now undergoing rapid change such that the technology and requirements for waste segregation in the near future may differ significantly from those of the present day. 8 figures

  12. Nuclear wastes

    International Nuclear Information System (INIS)

    2002-01-01

    This scientific document presents an introduction to the nuclear wastes problems, the separation process and the transmutation, the political and technical aspects of the storage, the radioprotection standards and the biological effects. (A.L.B.)

  13. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  14. Nuclear waste

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews the Department of Energy's management of underground single-shell waste storage tanks at its Hanford, Washington, site. The tanks contain highly radioactive and nonradioactive hazardous liquid and solid wastes from nuclear materials production. Hundreds of thousands of gallons of these wastes have leaked, contaminating the soil, and a small amount of leaked waste has reached the groundwater. DOE does not collect sufficient data to adequately trace the migration of the leaks through the soil, and studies predicting the eventual environmental impact of tank leaks do not provide convincing support for DOE's conclusion that the impact will be low or nonexistent. DOE can do more to minimize the environmental risks associated with leaks. To reduce the environmental impact of past leaks, DOE may be able to install better ground covering over the tanks to reduce the volume of precipitation that drains through the soil and carries contaminants toward groundwater

  15. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  17. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  18. Nuclear waste

    International Nuclear Information System (INIS)

    1988-01-01

    As required by the Nuclear Waste Policy Act of 1982, the Department of Energy is to annually determine whether the waste disposal fee will produce sufficient revenues to offset the total estimated costs of the waste disposal program. In its June 1987 assessment, DOE recommended that the fee remain unchanged even though its analysis showed that at an inflation rate of 4 percent the current fee would result in end-of-program deficits ranging from $21 billion to $76 billion in 2085. The 1988 assessment calls for reduced total costs because of program changes. Thus, DOE may be able to begin using a realistic inflation rate in determining fee adequacy in 1988 without proposing a major fee increase

  19. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  20. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  1. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  2. Human waste

    NARCIS (Netherlands)

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-01-01

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in

  3. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  4. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  5. The German act on the reorganisation of responsibility in nuclear waste management; Des Gesetz zur Neuordnung der Verantwortung in der kerntechnischen Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Raetzke, Christian [CONLAR Consulting on Nuclear Law and Regulation, Leipzig (Germany)

    2017-04-15

    The author discussed the Draft on the Act in the Reorganisation of Responsibility in Nuclear Waste Management in atw 12 (2016). Now, amendments are discussed, which resulted from the legislative procedure until today's draft. Significant additions affect the authorisation for the conclusion of a public-law contract between the Federal Government and the nuclear power plant operators, the deadline for the payment of the basic amount, and the option for the operation of the interim storage facilities for a transitional period by the operators on behalf of the federal company. Since the adoption of the draft act, it has become clear that the nuclear power plant operators will pay the risk premium. This will fulfil the full logic of the new system. It has also become known, that the public law contract is now ready for signing. According to the author, the act will bring a final arrangement for financing nuclear waste disposal. However, adjustment can not be avoided in practice. The concrete implementation will be a exciting topic in many ways.

  6. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  7. Harmful Waste Process

    International Nuclear Information System (INIS)

    Ki, Mun Bong; Lee, Shi Jin; Park, Jun Seok; Yoon, Seok Pyo; Lee, Jae Hyo; Jo, Byeong Ryeol

    2008-08-01

    This book gives descriptions of processing harmful waste, including concerned law and definition of harmful waste, current conditions and generation of harmful waste in Korea, international condition of harmful waste, minimizing of generation of harmful waste, treatment and storage. It also tells of basic science for harmful waste disposal with physics, chemistry, combustion engineering, microbiology and technique of disposal such as physical, chemical, biological process, stabilizing and solidification, incineration and waste in landfill.

  8. Radioactive waste

    International Nuclear Information System (INIS)

    Berkhout, F.

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)

  9. Radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Berkhout, F

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author).

  10. Nuclear waste

    International Nuclear Information System (INIS)

    1988-01-01

    The Department of Energy has proposed a draft plan for investigating the Yucca Mountain, Nevada, site to determine if it suitable for a waste repository. This fact sheet provides information on the status of DOE's and the Nuclear Regulatory Commission's efforts to streamline what NRC expects will be the largest and most complex nuclear-licensing proceeding in history, including the development of an electronic information management system called the Licensing Support System

  11. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  12. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The Koeberg nuclear power station, planned to come on stream in 1984, is expected to save South Africa some six million t/annum of coal, and to contribute some 10 per cent of the country's electricity requirements. The use of nuclear energy will provide for growing national energy needs, and reduce high coal transport costs for power generation at the coast. In the long term, however, it gives rise to the controversial question of nuclear waste storage. The Atomic Energy Corporation of South Africa Ltd (AEC) recently announced the purchase of a site in Namaqualand (NW Cape) for the storage of low-level radioactive waste. The Nuclear Development Corporation of South Africa (Pty) Ltd, (NUCOR) will develop and operate the site. The South African Mining and Engineering Journal interviewed Dr P.D. Toens, manager of the Geology Department and Mr P.E. Moore, project engineer, on the subject of nuclear waste, the reasons behind Nucor's choice of site and the storage method

  13. Radioactive wastes

    International Nuclear Information System (INIS)

    Straub, C.P.

    1975-01-01

    A review is presented on the environmental behavior of radioactive wastes. The management of high-level wastes and waste disposal methods were discussed. Some topics included were ore processing, coagulation, absorption and ion exchange, fixation, ground disposal, flotation, evaporation, transmutation and extraterrestrial disposal. Reports were given of the 226 Ra, 224 Ra and tritium activity in hot springs, 90 Sr concentrations in the groundwater and in White Oak Creek, radionuclide content of algae, grasses and plankton, radionuclides in the Danube River, Hudson River, Pacific Ocean, Atlantic Ocean, Lake Michigan, Columbia River and other surface waters. Analysis showed that 239 Pu was scavenged from Lake Michigan water by phytoplankton and algae by a concentration factor of up to 10,000. Benthic invertebrates and fish showed higher 239 Pu concentrations than did their pelagic counterparts. Concentration factors are also given for 234 Th, 60 Co, Fe and Mr in marine organisms. Two models for predicting the impact of radioactivity in the food chain on man were mentioned. In an accidental release from a light-water power reactor to the ocean, the most important radionuclides discharged were found to be 90 Sr, 137 Cs, 239 Pu and activation products 65 Zr, 59 Fe, and 95 Zr

  14. Nuclear waste

    International Nuclear Information System (INIS)

    1990-06-01

    DOE estimates that disposing of radioactive waste from civilian nuclear power plants and its defense-related nuclear facilities could eventually end up costing $32 billion. To pay for this, DOE collects fees from utilities on electricity generated by nuclear power plants and makes payments from its defense appropriation. This report states that unless careful attention is given to its financial condition, the nuclear waste program is susceptible to future shortfalls. Without a fee increase, the civilian-waste part of the program may already be underfunded by at least $2.4 billion (in discounted 1988 dollars). Also, DOE has not paid its share of cost-about $480 million-nor has it disclosed this liability in its financial records. Indexing the civilian fee to the inflation rate would address one major cost uncertainty. However, while DOE intends to do this at an appropriate time, it does not use a realistic rate of inflation as its most probable scenario in assessing whether that time has arrived

  15. National perspective on waste management

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1980-01-01

    Sources of nuclear wastes are listed and the quantities of these wastes per year are given. Methods of processing and disposing of mining and milling wastes, low-level wastes, decommissioning wastes, high-level wastes, reprocessing wastes, spent fuels, and transuranic wastes are discussed. The costs and safeguards involved in the management of this radioactive wastes are briefly covered in this presentation

  16. Rethinking the waste hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, C; Vigsoe, D [eds.

    2005-03-01

    There is an increasing need to couple environmental and economic considerations within waste management. Consumers and companies alike generate ever more waste. The waste-policy challenges of the future lie in decoupling growth in waste generation from growth in consumption, and in setting priorities for the waste management. This report discusses the criteria for deciding priorities for waste management methods, and questions the current principles of EU waste policies. The basis for the discussion is the so-called waste hierarchy which has dominated the waste policy in the EU since the mid-1970s. The waste hierarchy ranks possible methods of waste management. According to the waste hierarchy, the very best solution is to reduce the amount of waste. After that, reuse is preferred to recycling which, in turn, is preferred to incineration. Disposal at a landfill is the least favourable solution. (BA)

  17. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  18. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...... separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste....

  19. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  20. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around “70% of the municipal waste produced...

  1. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  2. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  3. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  4. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  5. Waste treatment

    International Nuclear Information System (INIS)

    Davies, D.; Hooper, E.W.

    1981-01-01

    In the treatment of wastes, such as liquid radioactive effluents, it is known to remove radionuclides by successive in situ precipitation of cobalt sulphide, an hydroxide, barium sulphate and a transition element ferrocyanide, followed by separation of the thereby decontaminated effluent. In this invention, use is made of precipitates such as obtained above in the treatment of further fresh liquid radioactive effluent, when it is found that the precipitates have additional capacity for extracting radionuclides. The resulting supernatant liquor may then be subjected to a further precipitation treatment such as above. Decontamination factors for radionuclides of Ce, Ru, Sr and Cs have been considerably enhanced. (author)

  6. Nuclear waste

    International Nuclear Information System (INIS)

    1992-08-01

    In September 1989, a New York commission charged with choosing a site for a low-level radioactive waste disposal facility announced its intent to conduct limited investigations at five potential sites. In this paper the authors review the commission's site selection process. After discussions with your office, the authors agreed to determine if the commission's consideration and selection of the Taylor North site was consistent with its prescribed procedures for considering offered sites. The authors also agreed to identify technical and other issues that need to be addressed before the final site evaluation and the selection steps can be completed

  7. Waste remediation

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  8. Household hazardous waste

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, Thomas Højlund

    2007-01-01

    .) comprised 15-25% and foreign items comprised 10-20%. Water-based paint was the dominant part of the paint waste. The chemical composition of the paint waste and the paint-like waste was characterized by an analysis of 27 substances in seven waste fractions. The content of critical substances was tow......'Paint waste', a part of the 'household hazardous waste', amounting to approximately 5 tonnes was collected from recycling stations in two Danish cities. Sorting and analyses of the waste showed paint waste comprised approximately 65% of the mass, paint-like waste (cleaners, fillers, etc...... and the paint waste was less contaminated with heavy metals than was the ordinary household waste. This may suggest that households no longer need to source-segregate their paint if the household waste is incinerated, since the presence of a small quantity of solvent-based paint will not be harmful when...

  9. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  10. The temporality of waste

    DEFF Research Database (Denmark)

    Madsen, Katrine Dahl; Jordt Jørgensen, Nanna; Læssøe, Jeppe

    Waste is, indisputably, one of the key issues of environmental concerns of our times. In an environment and sustainability education perspective, waste offers concrete entry points to issues of consumption, sustainability and citizenship. Still, waste education has received relatively little...

  11. Waste Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-02

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.

  12. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  13. Waste Characterization Methods

    International Nuclear Information System (INIS)

    Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-01-01

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream's generation, characterization, and management; and not merely a list of information sources.

  14. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  15. Utilisation of solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Balu, K

    1978-07-01

    The prime solution to the present energy crisis is the recovery of latent energy from waste materials, for solid waste contains recoverable energy and it merely needs to be released. The paper is concerned with classification of solid waste, energy content of waste, methods of solid waste disposal, and chemical processing of solid waste. Waste disposal must be performed in situ with energy recovery. Scarcity of available land, pollution problem, and unrecovered latent energy restrict the use of the land-filling method. Pyrolysis is an effective method for the energy recovery and disposal problems. Chemical processing is suitable for the separated cellulosic fraction of the waste material.

  16. Potential for waste reduction

    International Nuclear Information System (INIS)

    Warren, J.L.

    1990-01-01

    The author focuses on wastes considered hazardous under the Resource Conservation and Recovery Act. This chapter discusses wastes that are of interest as well as the factors affecting the quantity of waste considered available for waste reduction. Estimates are provided of the quantities of wastes generated. Estimates of the potential for waste reduction are meaningful only to the extent that one can understand the amount of waste actually being generated. Estimates of waste reduction potential are summarized from a variety of government and nongovernment sources

  17. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  18. Facile, one-pot and scalable synthesis of highly emissive aqueous-based Ag,Ni:ZnCdS/ZnS core/shell quantum dots with high chemical and optical stability

    Science.gov (United States)

    Sahraei, Reza; Soheyli, Ehsan; Faraji, Zahra; Soleiman-Beigi, Mohammad

    2017-11-01

    We report here on a one-pot, mild and low cost aqueous-based synthetic route for the preparation of colloidally stable and highly luminescent dual-doped Ag,Ni:ZnCdS/ZnS core/shell quantum dots (QDs). The pure dopant emission of the Ni-doped core/shell QDs was found to be highly affected by the presence of a second dopant ion (Ag+). Results showed that the PL emission intensity increases while its peak position experiences an obvious blue shift with an increase in the content of Ag+ ions. Regarding the optical observations, we provide a simple scheme for absorption-recombination processes of the carriers through impurity centers. To obtain optimum conditions with a better emission characteristic, we also study the effect of different reaction parameters, such as refluxing temperature, the pH of the core and shell solution, molar ratio of the dopant ions (Ni:(Zn+Cd) and Ag:(Zn+Cd)), and concentration of the core and shell precursors. Nonetheless, the most effective parameter is the presence of the ZnS shell in a suitable amount to eliminate surface trap states and enhance their emission intensity. It can also improve the bio-compatibility of the prepared QDs by restricting the Cd2+ toxic ions inside the core of the QDs. The present suggested route also revealed the remarkable optical and chemical stability of the colloidal QDs which establishes them as a decent kind of nano-scale structure for light emitting applications, especially in biological technologies. The suggested process also has the potential to be scaled-up while maintaining the emission characteristics and structural quality necessary for industrial applications in optoelectronic devices.

  19. Package materials, waste form

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The schedules for waste package development for the various host rocks were presented. The waste form subtask activities were reviewed, with the papers focusing on high-level waste, transuranic waste, and spent fuel. The following ten papers were presented: (1) Waste Package Development Approach; (2) Borosilicate Glass as a Matrix for Savannah River Plant Waste; (3) Development of Alternative High-Level Waste Forms; (4) Overview of the Transuranic Waste Management Program; (5) Assessment of the Impacts of Spent Fuel Disassembly - Alternatives on the Nuclear Waste Isolation System; (6) Reactions of Spent Fuel and Reprocessing Waste Forms with Water in the Presence of Basalt; (7) Spent Fuel Stabilizer Screening Studies; (8) Chemical Interactions of Shale Rock, Prototype Waste Forms, and Prototype Canister Metals in a Simulated Wet Repository Environment; (9) Impact of Fission Gas and Volatiles on Spent Fuel During Geologic Disposal; and (10) Spent Fuel Assembly Decay Heat Measurement and Analysis

  20. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  1. Nuclear waste

    International Nuclear Information System (INIS)

    1989-10-01

    The Department of Energy is awarding grants to the state of Nevada for the state's participation in DOE's program to investigate Yucca Mountain as a possible site for the disposal of civilian nuclear waste. This report has found that DOE's financial assistance budget request of $15 million for Nevada's fiscal year 1990 was not based on the amount the state requested but rather was derived by increasing Nevada's grant funds from the previous year in proportion to the increase that DOE requested for its own activities at the Nevada site. DOE's evaluations of Nevada's requests are performed too late to be used in DOE's budget formulation process because Nevada has been applying for financial assistance at about the same time that DOE submits its budget request to Congress

  2. Nuclear waste

    International Nuclear Information System (INIS)

    1991-01-01

    The Privacy Act of 1974 restricts both the type of information on private individuals that federal agencies may maintain in their records and the conditions under which such information may be disclosed. The Nuclear Regulatory Commission, which must approve DOE plans to build a nuclear waste repository at the Yucca Mountain site in Nevada, requires a quality assurance program to guarantee that studies of the site are done by qualified employees. Under such a program, the training and qualifications of DOE and contractor employees would be verified. This report reviews DOE's efforts to identify and resolve the implications of the Privacy Act for DOE's quality assurance program and how the delay in resolving Privacy Act issues may have affected preliminary work on the Yucca Mountain project

  3. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  4. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  5. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  6. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  7. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  8. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  9. Nuclear wastes, a questionnaire

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Questionnaire giving basic information for the public on nuclear wastes and radioactive waste management. Risk and regulations to reduce the risk to permissible limits are more particularly developed. A survey of radioactive wastes is made along the fuel cycle: production, processing, transport, disposal to end on effect of waste management on the cost of nuclear kWh [fr

  10. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  11. Central Waste Complex (CWC) Waste Analysis Plan

    International Nuclear Information System (INIS)

    ELLEFSON, M.D.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly

  12. Why have we stopped research on liquid centrifugal separation

    International Nuclear Information System (INIS)

    Li, N.

    1996-01-01

    Using high-temperature high-speed liquid centrifuges for lanthanides and actinides separation was originally proposed as a physical separation method in the Los Alamos ADTT/ATW concept [C. Bowman, LA-UR-92-1065 (1992)]. The authors investigated centrifugal separation in a concerted effort of experiments, theoretical analysis and numerical simulations. They discovered that owing to the ionic-composition-dependence of the sedimentation coefficients for the fission products and actinides, separation by grouping of molecular densities would not work in general in the molten salt environment. Alternatively the lanthanides and actinides could be transferred to a liquid metal carrier (e.g. bismuth) via reductive extraction and then separated by liquid centrifuges, but the material and technical challenges are severe. Meanwhile the authors have established that the reductive extraction procedure itself can be used for desired separations. Unlike conventional aqueous-based reprocessing technologies, reductive extraction separation uses only reagent (Li) that reconstitutes carrier salts (LiF-BeF 2 ) and a processing medium (Bi) that can be continuously recycled and reused, with a nearly-pure fission products waste stream. The processing units are compact and reliable, and can be built at relatively low cost while maintaining high throughput. Therefore the research effort on developing liquid centrifuges for separations in ADTT/ATW was terminated in late 1995. This paper will discuss the various aspects involved in reaching this decision

  13. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  14. Infectious waste feed system

    Science.gov (United States)

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  15. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  17. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  18. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  19. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  20. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  1. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  2. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  3. Nuclear waste solidification

    International Nuclear Information System (INIS)

    Bjorklund, W.J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition

  4. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  5. Radioactive waste treatment

    International Nuclear Information System (INIS)

    Alter, U.

    1988-01-01

    For the Federal Government the safe disposal of waste from nuclear power plants constitutes the precondition for their further operation. The events in the year 1987 about the conditioning and transport of low activity waste and medium activity waste made it clear that it was necessary to intensify state control and to examine the structures in the field of waste disposal. A concept for the control of radioactive waste with negligible heat development (LAW) from nuclear installations is presented. (DG) [de

  6. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  7. Nuclear waste

    International Nuclear Information System (INIS)

    1990-07-01

    The state of Nevada opposed DOE's development of a nuclear waste repository at Yucca Mountain. As a result, disputes have arisen over how Nevada has spent financial assistance provided by DOE to pay the state's repository program costs. This report reviews Nevada's use of about $32 million in grant funds provided by DOE through June 1989 and found that Nevada improperly spent about $1 million. Nevada used as much as $683,000 for lobbying and litigation expenses that were unauthorized or were expressly prohibited by law, court decision, or grant terms; exceeded a legislative spending limit on socioeconomic studies by about $96,000; and used, contrary to grant terms, about $275,000 from one grant period to pay expenses incurred in the prior year. Also, Nevada did not always exercise adequate internal controls over grant funds, such as timely liquidation of funds advanced to contractors. A permissive approach to grant administration by DOE contributed to Nevada's inappropriate use of grant funds

  8. The Disposal of Hazardous Wastes.

    Science.gov (United States)

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  9. Commercial and Institutional Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Commercial and institutional waste is primarily from retail (stores), hotels, restaurants, health care (except health risk waste), banks, insurance companies, education, retirement homes, public services and transport. Within some of these sectors, e.g. retail and restaurants, large variations...... are found in terms of which products and services are offered. Available data on unit generation rates and material composition as well as determining factors are discussed in this chapter. The characterizing of commercial and institutional waste is faced with the problem that often only a part of the waste...... is handled in the municipal waste system, where information is easily accessible. An important part of commercial and institutional waste is packaging waste, and enterprises with large quantities of clean paper, cardboard and plastic waste may have their own facilities for baling and storing their waste...

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  11. Construction and Demolition Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Andersen, L.

    2011-01-01

    Construction and demolition waste (C&D waste) is the waste generated during the building, repair, remodeling or removal of constructions. The constructions can be roads, residential housing and nonresidential buildings. C&D waste has traditionally been considered without any environmental problems...... should be managed accordingly. Another reason is that it has been documented that a large fraction of C&D waste (about 90 %) can be easily recycled and thus can conserve landfill capacity. C&D waste may conveniently be divided into three subcategories: Buildings, roads and excavations. This chapter...

  12. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  13. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  14. Introduction to Waste Engineering

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management as introduced in Chapter 1.1 builds in many ways on engineering. Waste engineering here means the skills and ability to understand quantitatively how a waste management system works in such a detail that waste management can be planned, facilities can be designed and sited......) regional plans for waste management, including (3) the selection of main management technologies and siting of facilities, (4) the design of individual technological units and, for example, (5) the operation of recycling schemes within a municipality. This chapter gives an introduction to waste engineering...

  15. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  16. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  17. Radioactive Waste in Perspective

    International Nuclear Information System (INIS)

    2011-01-01

    Large volumes of hazardous wastes are produced each year, however only a small proportion of them are radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements. The objective of this NEA study is to put the management of radioactive waste into perspective, firstly by contrasting features of radioactive and hazardous wastes, together with their management policies and strategies, and secondly by examining the specific case of the wastes resulting from carbon capture and storage of fossil fuels. The study seeks to give policy makers and interested stakeholders a broad overview of the similarities and differences between radioactive and hazardous wastes and their management strategies. Contents: - Foreword; - Key Points for Policy Makers; - Executive Summary; - Introduction; - Theme 1 - Radioactive and Hazardous Wastes in Perspective; - Theme 2 - The Outlook for Wastes Arising from Coal and from Nuclear Power Generation; - Risk, Perceived Risk and Public Attitudes; - Concluding Discussion and Lessons Learnt; - Strategic Issues for Radioactive Waste; - Strategic Issues for Hazardous Waste; - Case Studies - The Management of Coal Ash, CO 2 and Mercury as Wastes; - Risk and Perceived Risk; - List of Participants; - List of Abbreviations. (authors)

  18. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  19. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  20. Wastes - Issue 2014. Key figures

    International Nuclear Information System (INIS)

    Haeusler, Laurence; Moro-Goubely, Anne-Gaelle; Berthoin, Guillaume; Mathery, Christian; Galio, Pierre; Heyberger-Paroisse, Agnes

    2014-06-01

    This publication proposes numerous tables and graphs of data and indicators (and of their evolution) regarding wastes. It addresses waste prevention and production in France (concerned materials, waste production, waste origins, actions and measures for waste prevention, re-use), waste collection (for domestic, industrial wastes, cross-border exchanges, nuclear reactors), waste processing (of dangerous and non dangerous wastes), valorisation processes (sorting, recycling, composting, methanization), waste-based energy production, economy and costs of the waste management activity, and environmental impacts (atmospheric emissions, impact of recycling)

  1. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  2. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  3. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  4. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  5. Business unusual - Waste Act implementation: solid waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2013-08-01

    Full Text Available The preamble to the Waste Act (2008) is very clear that, as a result of this legislation, waste management in South Africa will never be the same again. This should send a clear message that ‘business as usual’ will no longer be sufficient....

  6. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  7. Mixed Waste Focus Area - Waste form initiative

    International Nuclear Information System (INIS)

    Nakaoka, R.; Waters, R.; Pohl, P.; Roach, J.

    1998-01-01

    The mission of the US Department of Energy's (DOE) Mixed Waste Focus Area (MWFA) is to provide acceptable technologies that enable implementation of mixed waste treatment systems which are developed in partnership with end-users, stakeholders, tribal governments, and regulators. To accomplish this mission, a technical baseline was established in 1996 and revised in 1997. The technical baseline forms the basis for determining which technology development activities will be supported by the MWFA. The primary attribute of the technical baseline is a set of prioritized technical deficiencies or roadblocks related to implementation of mixed waste treatment systems. The Waste Form Initiative (WFI) was established to address an identified technical deficiency related to waste form performance. The primary goal of the WFI was to ensure that the mixed low-level waste (MLLW) treatment technologies being developed, currently used, or planned for use by DOE would produce final waste forms that meet the waste acceptance criteria (WAC) of the existing and/or planned MLLW disposal facilities. The WFI was limited to an evaluation of the disposal requirements for the radioactive component of MLLW. Disposal requirements for the hazardous component are dictated by the Resource Conservation and Recovery Act (RCRA), and were not addressed. This paper summarizes the technical basis, strategy, and results of the activities performed as part of the WFI

  8. Waste canister for storage of nuclear wastes

    International Nuclear Information System (INIS)

    Duffy, J.B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall. 4 claims, 4 figures

  9. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  10. Solid waste handling

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1995-01-01

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.)

  11. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  12. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  13. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  14. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  15. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  16. Rock & Roll : Waste seperation

    NARCIS (Netherlands)

    Beunder, L.; Rem, P.C.; Van Den Berg, R.

    2000-01-01

    Five hundred tonnes of glass, 1 million tonnes of plastic,14 million tonnes of building and demolition waste, 7 million tonnes of household waste, 3 million tonnes of packaging, 3.5 million tonnes of paper and board, and 300,000 old cars. All part of the annual harvest of waste materials in the

  17. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  18. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  19. WASTE CONTAINMENT OVERVIEW

    Science.gov (United States)

    BSE waste is derived from diseased animals such as BSE (bovine spongiform encepilopothy, also known as Mad Cow) in cattle and CWD (chronic wasting disease) in deer and elk. Landfilling is examined as a disposal option and this presentation introduces waste containment technology...

  20. Household food waste

    NARCIS (Netherlands)

    Wahlen, S.; Winkel, Thomas

    2017-01-01

    Food waste is debated not only in the light of sustainable consumption in research and policy, but also in the broader public. This article focuses on food waste in household contexts, what is widely believed the end of the food chain. However, household food waste is far more complex and intricate

  1. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  2. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  3. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  4. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the second part of a report of a preliminary study for AECL. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) geotechnical assessment, 2) hydrogeology and waste containment, 3) thermal loading and 4) rock mechanics. (author)

  5. Swedish waste management

    International Nuclear Information System (INIS)

    Sandwall, L.

    2004-01-01

    Sweden has a well-functioning organization for managing various types of radioactive waste. There is an interim storage facility for spent nuclear fuel, a final repository for low and intermediate level waste, and a specially-built vessel with transport casks and containers for shipping the radioactive waste between the nuclear installations. (author)

  6. Nuclear wastes; Dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  7. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The article cites and summarizes the papers on the topics: economic and ecological importance of waste management, reprocessing of nuclear fuel and recycling of uranium and plutonium, waste management and final storage, transports and organizational aspects of waste management, presented at this symposium. (HR/AK) [de

  8. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  9. Ironing out industrial wastes

    International Nuclear Information System (INIS)

    Valenti, M.

    1996-01-01

    This article describes a hazardous waste treatment known as the catalytic extraction process, which also stabilizes and reduces low-level radioactive wastes to a fraction of their original volume, easing their disposal. It uses molten iron and other metals to convert hazardous wastes into useful materials

  10. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  11. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  12. Waste inventory, waste characteristics and waste repositories in Japan

    International Nuclear Information System (INIS)

    Shimooka, K.

    1997-01-01

    There are two types of repositories for the low level radioactive wastes in Japan. One is a trench type repository only for concrete debris generated from the dismantling of the research reactor. According to the safety assurance system, Japan Atomic Energy Research Institute (JAERI) has disposed of the concrete debris arose from the dismantling of the Japan Power Demonstration Reactor (JPDR). The other type is the concreted pit with engineered barriers. Rokkasho Low Level Radioactive Waste Disposal Center has this type of repository mainly for the power plant wastes. Japan Nuclear Fuel Ltd. (JNFL) established by electric power companies is the operator of the LLW disposal project. JNFL began the storage operation in 1992 and buried approximately 60,000 drums there. Two hundred thousand drums of uniformly solidified, waste may be buried ultimately. 4 refs, 3 tabs

  13. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  14. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  15. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  17. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  19. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  20. Properties of radioactive wastes and waste containers

    International Nuclear Information System (INIS)

    Arora, H.S.; Dayal, R.

    1984-01-01

    Major tasks in this NRC-sponsored program include: (1) an evaluation of the acceptability of low-level solidified wastes with respect to minimizing radionuclide releases after burial; and (2) an assessment of the influence of pertinent environmental stresses on the performance of high-integrity radwaste container (HIC) materials. The waste form performance task involves studies on small-scale laboratory specimens to predict and extrapolate: (1) leachability for extended time periods; (2) leach behavior of full-size forms; (3) performance of waste forms under realistic leaching conditions; and (4) leachability of solidified reactor wastes. The results show that leach data derived from testing of small-scale specimens can be extrapolated to estimate leachability of a full-scale specimen and that radionuclide release data derived from testing of simulants can be employed to predict the release behavior of reactor wastes. Leaching under partially saturated conditions exhibits lower releases of radionuclides than those observed under the conventional IAEA-type or ANS 16.1 leach tests. The HIC assessment task includes the characterization of mechanical properties of Marlex CL-100, a candidate radwaste high density polyethylene material. Tensile strength and creep rupture tests have been carried out to determine the influence of specific waste constituents as well as gamma irradiation on material performance. Emphasis in ongoing tests is being placed on studying creep rupture while the specimens are in contact with a variety of chemicals including radiolytic by-products of irradiated resin wastes. 12 references 6 figures, 2 tables

  1. Waste container and method for containing waste

    International Nuclear Information System (INIS)

    Ono, Akira; Matsushita, Mitsuhiro; Doi, Makoto; Nakatani, Seiichi.

    1990-01-01

    In a waste container, water-proof membranes and rare earth element layers are formed on the inner surface of a steel plate concrete container in which steel plates are embedded. Further, rear earth element detectors are disposed each from the inner side of the steel plate concrete container by way of a pressure pipe to the outer side of the container. As a method for actually containing wastes, when a plurality of vessels in which wastes are fixed are collectively enhoused to the waste container, cussioning materials are attached to the inner surface of the container and wastes fixing containers are stacked successively in a plurality of rows in a bag made of elastic materials. Subsequently, fixing materials are filled and tightly sealed in the waste container. When the waste container thus constituted is buried underground, even if it should be deformed to cause intrusion of rain water to the inside of the container, the rare earth elements in the container dissolved in the rain water can be detected by the detectors, the containers are exchanged before the rain water intruding to the inner side is leached to the surrounding ground, to previously prevent the leakage of radioactive nuclides. (K.M.)

  2. Ten questions on nuclear wastes

    International Nuclear Information System (INIS)

    Guillaumont, R.; Bacher, P.

    2004-01-01

    The authors give explanations and answers to ten issues related to nuclear wastes: when a radioactive material becomes a waste, how radioactive wastes are classified and particularly nuclear wastes in France, what are the risks associated with radioactive wastes, whether the present management of radioactive wastes is well controlled in France, which wastes are raising actual problems and what are the solutions, whether amounts and radio-toxicity of wastes can be reduced, whether all long life radionuclides or part of them can be transmuted, whether geologic storage of final wastes is inescapable, whether radioactive material can be warehoused over long durations, and how the information on radioactive waste management is organised

  3. Solid waste study

    International Nuclear Information System (INIS)

    Ortiz, Paul G.

    1995-01-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ''Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel

  4. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  5. SOLID WASTE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    PAUL G. ORTIZ - COLEMAN RESEARCH CORP/COMPA INDUSTRIES

    1995-08-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ``Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel.

  6. EPRI waste processing projects

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    The Electric Power Research Institute (EPRI) manages research for its sponsoring electric utilities in the United States. Research in the area of low level radioactive waste (LLRW) from light water reactors focuses primarily on waste processing within the nuclear power plants, monitoring of the waste packages, and assessments of disposal technologies. Accompanying these areas and complimentary to them is the determination and evaluation of the sources of nuclear power plants radioactive waste. This paper focuses on source characterization of nuclear power plant waste, LLRW processing within nuclear power plants, and the monitoring of these wastes. EPRI's work in waste disposal technology is described in another paper in this proceeding by the same author. 1 reference, 5 figures

  7. Mixed waste: Proceedings

    International Nuclear Information System (INIS)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-01-01

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base

  8. Tank waste treatment science

    International Nuclear Information System (INIS)

    LaFemina, J.P.; Blanchard, D.L.; Bunker, B.C.; Colton, N.G.; Felmy, A.R.; Franz, J.A.; Liu, J.; Virden, J.W.

    1994-01-01

    Remediation efforts at the U.S. Department of Energy's Hanford Site require that many technical and scientific principles be combined for effectively managing and disposing the variety of wastes currently stored in underground tanks. Based on these principles, pretreatment technologies are being studied and developed to separate waste components and enable the most suitable treatment methods to be selected for final disposal of these wastes. The Tank Waste Treatment Science Task at Pacific Northwest Laboratory is addressing pretreatment technology development by investigating several aspects related to understanding and processing the tank contents. The experimental work includes evaluating the chemical and physical properties of the alkaline wastes, modeling sludge dissolution, and evaluating and designing ion exchange materials. This paper gives some examples of results of this work and shows how these results fit into the overall Hanford waste remediation activities. This work is part of series of projects being conducted for the Tank Waste Remediation System

  9. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  10. Nuclear waste landscapes

    International Nuclear Information System (INIS)

    Solomon, B.D.; Cameron, D.M.

    1990-01-01

    In this paper the authors explore the time dimension in nuclear waste disposal, with the hope of untangling future land use issues for a full range of radioactive waste facilities. The longevity and hazards presented by nuclear reactor irradiated (spent) fuel and liquid reprocessing waste are well known. Final repositories for these highly radioactive wastes, to be opened early in the 21st Century, are to be located deep underground in rural locations throughout the developed world. Safety concerns are addressed by engineered and geological barriers containing the waste containers, as well as through geographic isolation from heavily populated areas. Yet nuclear power plants (as well as other applications of atomic energy) produce an abundance of other types of radioactive wastes. These materials are generally known as low level wastes (LLW) in the United States, though their level of longevity and radioactivity can vary dramatically

  11. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  12. Wastes in space

    International Nuclear Information System (INIS)

    2011-01-01

    As human space activities have created more wastes on low and high Earth orbits over the past 50 years than the solar system injected meteorites over billions of years, this report gives an overview of this problem. It identifies the origins of these space debris and wastes (launchers, combustion residues, exploitation wastes, out-of-use satellites, accidental explosions, accidental collisions, voluntary destructions, space erosion), and proposes a stock list of space wastes. Then, it distinguishes the situation for the different orbits: low Earth orbit or LEO (traffic, presence of the International Space Station), medium Earth orbits or MEO (traffic, operating satellites, wastes), geostationary Earth orbit or GEO (traffic, operating satellites, wastes). It also discusses wastes and bacteria present on the moon (due to Apollo missions or to crash tests). It evokes how space and nuclear industry is concerned, and discusses the re-entry issue (radioactive boomerang, metallic boomerang). It also indicates elements of international law

  13. Mixed waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  14. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  15. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  16. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  17. New Waste Calcining Facility (NWCF) Waste Streams

    International Nuclear Information System (INIS)

    K. E. Archibald

    1999-01-01

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF

  18. Properties of radioactive wastes and waste containers

    International Nuclear Information System (INIS)

    Morcos, N.; Dayal, R.

    1982-01-01

    This program is sponsored by the Nuclear Regulatory Commission to address basic concerns in assessing the performance of solidified radwaste. Experiments were initiated to address these concerns. In particular, leachability of solidified radwastes and the physical stability of the ensuing waste forms were evaluated. In addition, leaching experiments designed to address the effects of alternating wet/dry cycles and of varying the length of these cycles on the leach behavior of waste forms were initiated

  19. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  1. Waste management in NUCEF

    International Nuclear Information System (INIS)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I.

    2000-01-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  2. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  3. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  4. Japanese Nuclear Waste Avatars

    International Nuclear Information System (INIS)

    Wynn Kirby, Peter; Stier, Daniel

    2016-01-01

    Japan's cataclysmic 2011 tsunami has become a vast, unwanted experiment in waste management. The seismic event and resulting Fukushima Daiichi radiation crisis created an awkwardly fortuitous rupture in Japanese nuclear practice that exposed the lax and problematic management of nuclear waste in this country to broader scrutiny, as well as distortions in its very conception. This article looks at the full spectrum of nuclear waste in post-tsunami Japan, from spent fuel rods to contorted reactor containment, and the ways that nuclear waste mirrors or diverges from more quotidian waste practices in Japanese culture. Significantly, the Fukushima Daiichi plant itself and its erstwhile banal surroundings have themselves transmuted into an unwieldy form of nuclear waste. The immense challenges of the Fukushima Daiichi site have stimulated a series of on-the-fly innovations that furnish perspective on more everyday nuclear waste practices in the industry. While some HLW can be reprocessed for limited use in today's reactors, it cannot be ignored that much of Japan's nuclear waste is simply converted into other forms of waste. In a society that has long been fixated on segregating filth, maintaining (imagined) purity, and managing proximity to pollution, the specter of nuclear waste looms over contemporary Japan and its ongoing debates over resources, risk, and Japanese nuclear identity itself

  5. Ferrocyanide tank waste stability

    International Nuclear Information System (INIS)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  6. Waste Inspection Tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons

  7. Stabilization of compactible waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs

  8. TSA waste stream and final waste form composition

    International Nuclear Information System (INIS)

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-01-01

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ''average'' transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ''average'' transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties

  9. Waste statistics 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-07

    The 2004 reporting to the ISAG comprises 394 plants owned by 256 enterprises. In 2003, reports covered 403 plants owned by 273 enterprises. Waste generation in 2004 is compared to targets for 2008 in the government's Waste Strategy 2005-2008. The following summarises waste generation in 2004: 1) In 2004, total reported waste arisings amounted to 13,359,000 tonnes, which is 745,000 tonnes, or 6 per cent, more than in 2003. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2004 were 12,179,000 tonnes, which is a 9 per cent increase from 2003. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2004 amounted to 7,684,000 tonnes, which is 328,000 tonnes, or 4 per cent, more than in 2002. In other words, there has been an increase in total waste arisings, if residues and waste from building and construction are excluded. Waste from the building and construction sector is more sensitive to economic change than most other waste. 4) The total rate of recycling was 65 per cent. The 2008 target for recycling is 65 per cent. The rate of recycling in 2003 was also 65 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2003. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point better than the overall landfill target of a maximum of 9 per cent landfilling in 2008. Also in 2003, 8 per cent of the waste was landfilled. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being

  10. Waste characterization practices: summary paper

    International Nuclear Information System (INIS)

    Logan, J.A.

    1987-01-01

    Recent reviews of the records on disposal waste at several DOE sites have indicated that records still contain little information practical to waste management. Much of the disposed waste is identified by vague terms, i.e., general plant waste. Attached to this paper is a new waste characterization code devised by the Idaho National Engineering Laboratory to aid in waste volume reduction and stabilization. It is recommended that every facility involved in waste generation and disposal needs to be detailing its wastes to support upgrading of waste management practices. 1 table

  11. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  12. Processing of nuclear waste

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1981-01-01

    The processing of nuclear waste to transform the liquid waste from fuel reprocessing activities is well defined. Most solid waste forms, if they are cooled and contain diluted waste, are compatible with many permanent storage environments. The public acceptance of methods for disposal is being delayed in the US because of the alternatives studies of waste forms and repositories now under way that give the impression of indecision and difficulty for the disposal of HLW. Conservative programs that dilute and cool solid waste are under way in France and Sweden and demonstrate that a solution to the problem is available now. Research and development should be directed toward improving selected methods rather than seeking a best method, which at best, may always be illusory

  13. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  14. Solid medical waste

    DEFF Research Database (Denmark)

    Udofia, Emilia Asuquo; Gulis, Gabriel; Fobil, Julius

    2017-01-01

    BACKGROUND: Solid medical waste (SMW) in households is perceived to pose minimal risks to the public compared to SMW generated from healthcare facilities. While waste from healthcare facilities is subject to recommended safety measures to minimize risks to human health and the environment, similar...... waste in households is often untreated and co-mingled with household waste which ends up in landfills and open dumps in many African countries. In Ghana, the management of this potentially hazardous waste stream at household and community level has not been widely reported. The objective of this study...... likely to report harm in the household (OR 2.75, 95%CI 1.15-6.54). CONCLUSION: The belief that one can be harmed by diseases associated with SMW influenced reporting rates in the study area. Disposal practices suggest the presence of unwanted medicines and sharps in the household waste stream conferring...

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  16. Waste acceptance and logistics

    International Nuclear Information System (INIS)

    Carlson, James H.

    1992-01-01

    There are three major components which are normally highlighted when the Civilian Radioactive Waste Management Program is discussed - the repository, the monitored retrievable storage facility, and the transportation system. These are clearly the major physical system elements and they receive the greatest external attention. However, there will not be a successful, operative waste management system without fully operational waste acceptance plans and logistics arrangements. This paper will discuss the importance of developing, on a parallel basis to the normally considered waste management system elements, the waste acceptance and logistics arrangements to enable the timely transfer of spent nuclear fuel from more than one hundred and twenty waste generators to the Federal government. The paper will also describe the specific activities the Program has underway to make the necessary arrangements. (author)

  17. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  18. Measuring waste prevention.

    Science.gov (United States)

    Zorpas, Antonis A; Lasaridi, Katia

    2013-05-01

    The Waste Framework Directive (WFD-2008/98/EC) has set clear waste prevention procedures, including reporting, reviewing, monitoring and evaluating. Based on the WFD, the European Commission and will offer support to Member States on how to develop waste prevention programmes through guidelines and information sharing on best practices. Monitoring and evaluating waste prevention activities are critical, as they constitute the main tools to enable policy makers, at the national and local level, to build their strategic plans and ensure that waste prevention initiatives are effective and deliver behaviour change. However, how one can measure something that is not there, remains an important and unresolved research question. The paper reviews and attempts to evaluate the methods that are being used for measuring waste prevention and the impact of relevant implemented activities at the household level, as the available data is still limited. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  20. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  1. Guidelines for mixed waste minimization

    International Nuclear Information System (INIS)

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization

  2. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  3. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the first part of a report of a preliminary study for Atomic Energy of Canada Limited. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) underground layout, 2) cost estimates, 3) waste handling, 4) retrievability, decommissioning, sealing and monitoring, and 5) research and design engineering requirements. (author)

  4. Operational Waste Volume Projection

    Energy Technology Data Exchange (ETDEWEB)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  5. Operational waste volume projection

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995

  6. Operational Waste Volume Projection

    International Nuclear Information System (INIS)

    STRODE, J.N.

    2000-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000

  7. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Schmude, J.

    1976-01-01

    Speech on the 18th March 1976 in the Bundestag by the parliamentary Secretary of State, Dr. Juergen Schmude, to substantiate the Federal government's draft to a Fourth Act amending the Atomic Energy Act. The draft deals mainly with the final storage of radioactive wastes and interrelated questions concerning waste treatment and waste collection, and with several ordinance empowerments in order to improve licensing and supervisory procedures. (orig./LN) [de

  8. Categorizing operational radioactive wastes

    International Nuclear Information System (INIS)

    2007-04-01

    The primary objective of this publication is to improve communications among waste management professionals and Member States relative to the properties and status of radioactive waste. This is accomplished by providing a standardized approach to operational waste categorization using accepted industry practices and experience. It is a secondary objective to draw a distinction between operational waste categorization and waste disposal classification. The approach set forth herein is applicable to waste generation by mature (major, advanced) nuclear programmes, small-to-medium sized nuclear programmes, and programmes with waste from other nuclear applications. It can be used for planning, developing or revising categorization methodologies. For existing categorization programmes, the approach set forth in this publication may be used as a validation and evaluation tool for assessing communication effectiveness among affected organizations or nations. This publication is intended for use by waste management professionals responsible for creating, implementing or communicating effective categorization, processing and disposal strategies. For the users of this publication, it is important to remember that waste categorization is a communication tool. As such, the operational waste categories are not suitable for regulatory purposes nor for use in health and safety evaluations. Following Section 1 (Introduction) Section 2 of this publication defines categorization and its relationship to existing waste classification and management standards, regulations and practices. It also describes the benefits of a comprehensive categorization programme and fundamental record considerations. Section 3 provides an overview of the categorization process, including primary categories and sub-categories. Sections 4 and 5 outline the specific methodology for categorizing unconditioned and conditioned wastes. Finally, Section 6 provides a brief summary of critical considerations that

  9. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  11. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  12. Nuclear wastes: overview

    International Nuclear Information System (INIS)

    Billard, Isabelle

    2006-01-01

    Nuclear wastes are a major concern for all countries dealing with civil nuclear energy, whatever these countries have decided yet about reprocessing/storage options. In this chapter, a (exact) definition of a (radioactive) waste is given, together with definitions of waste classes and their characteristics (volumes, types etc.). The various options that are currently experienced in the world will be presented but focus will be put on the French case. Envision evolutions will be briefly presented. (author)

  13. Characteristics of healthcare wastes

    International Nuclear Information System (INIS)

    Diaz, L.F.; Eggerth, L.L.; Enkhtsetseg, Sh.; Savage, G.M.

    2008-01-01

    A comprehensive understanding of the quantities and characteristics of the material that needs to be managed is one of the most basic steps in the development of a plan for solid waste management. In this case, the material under consideration is the solid waste generated in healthcare facilities, also known as healthcare waste. Unfortunately, limited reliable information is available in the open literature on the quantities and characteristics of the various types of wastes that are generated in healthcare facilities. Thus, sound management of these wastes, particularly in developing countries, often is problematic. This article provides information on the quantities and properties of healthcare wastes in various types of facilities located in developing countries, as well as in some industrialized countries. Most of the information has been obtained from the open literature, although some information has been collected by the authors and from reports available to the authors. Only data collected within approximately the last 15 years and using prescribed methodologies are presented. The range of hospital waste generation (both infectious and mixed solid waste fractions) varies from 0.016 to 3.23 kg/bed-day. The relatively wide variation is due to the fact that some of the facilities surveyed in Ulaanbaatar include out-patient services and district health clinics; these facilities essentially provide very basic services and thus the quantities of waste generated are relatively small. On the other hand, the reported amount of infectious (clinical, yellow bag) waste varied from 0.01 to 0.65 kg/bed-day. The characteristics of the components of healthcare wastes, such as the bulk density and the calorific value, have substantial variability. This literature review and the associated attempt at a comparative analysis point to the need for worldwide consensus on the terms and characteristics that describe wastes from healthcare facilities. Such a consensus would greatly

  14. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  15. Radiological waste problems

    International Nuclear Information System (INIS)

    Milanov, M.

    1990-01-01

    The chapter offers a description of the system of radioactive waste treatment as presented in the Belene NPP technical project and goes beyond the scope of the project evaluation in the account of the radioactive waste treatment, storage and disposal of other sources including the industry, science and the medicine of Bulgaria. The necessity for a developed legislative basis and an accepted policy regarding the radioactive waste management in the country is stressed upon. There is an elaboration on the problem of the construction of a new radioactive waste depository, the capacities of the existing disposal site being used up. 17 refs., 7 tabs. (R.Ts.)

  16. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  17. Waste as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, T. M.; Lorimer, A. D.

    1979-07-01

    The methods of using the energy available in wastes to reduce the energy costs in processes are discussed. Special reference is made to the need for careful evaluation of the potential of the waste to reduce energy costs, before significant investment is made. Problems generally arise due to the effective balancing of the cost of the waste pretreatment with the disposal fee and prime fuel saving. Special reference is made to use of waste as a fuel in the cement industry. Municipal refuse is discussed as a typical successful application.

  18. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  19. Monitoring of radioactive wastes

    International Nuclear Information System (INIS)

    Houriet, J.Ph.

    1982-08-01

    The estimation of risks presented by final disposal of radioactive wastes depends, among other things, on what is known of their radioisotope content. The first aim of this report is to present the current state of possibilities for measuring (monitoring) radionuclides in wastes. The definition of a global monitoring system in the framework of radioactive waste disposal has to be realized, based on the information presented here, in accordance with the results of work to come and on the inventory of wastes to be stored. Designed for direct measurement of unpackaged wastes and for control of wastes ready to be stored, the system would ultimately make it possible to obtain all adaquate information about their radioisotope content with regard to the required disposal safety. The second aim of this report is to outline the definition of such a global system of monitoring. Designed as a workbase and reference source for future work by the National Cooperative for the Storage of Radioactive Waste on the topic of radioactive waste monitoring, this report describes the current situation in this field. It also makes it possible to draw some preliminary conclusions and to make several recommendations. Centered on the possibilities of current and developing techniques, it makes evident that a global monitoring system should be developed. However, it shows that the monitoring of packaged wastes will be difficult, and should be avoided as far as possible, except for control measurements

  20. Controlling radioactive waste

    International Nuclear Information System (INIS)

    Wurtinger, W.

    1992-01-01

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.) [de

  1. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  2. WASTE PACKAGE TRANSPORTER DESIGN

    International Nuclear Information System (INIS)

    Weddle, D.C.; Novotny, R.; Cron, J.

    1998-01-01

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''

  3. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  4. Waste-form development

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    Contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements

  5. Waste minimization assessment procedure

    International Nuclear Information System (INIS)

    Kellythorne, L.L.

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative

  6. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  7. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  8. Nuclear waste issue

    International Nuclear Information System (INIS)

    Ryhanen, V.

    2000-01-01

    A prerequisite for future use of nuclear energy in electricity production is safe management of the radioactive wastes generated by nuclear power industry. A number of facilities have been constructed for different stages of nuclear waste management around the world, for example for conditioning of different kind of process wastes and for intermediate storage of spent nuclear fuel. Difficulties have often been encountered particularly when trying to advance plans for final stage of waste management, which is permanent disposal in stable geological formations. The main problems have not been technical, but poor public acceptance and lack of necessary political decisions have delayed the progress in many countries. However, final disposal facilities are already in operation for low- and medium-level nuclear wastes. The most challenging task is the development of final disposal solutions for long-lived high-level wastes (spent fuel or high-level reprocessing waste). The implementation of deep geological repositories for these wastes requires persistent programmes for technology development, siting and safety assessments, as well as for building public confidence in long-term safety of the planned repositories. Now, a few countries are proceeding towards siting of these facilities, and the first high-level waste repositories are expected to be commissioned in the years 2010 - 2020. (author)

  9. Waste inspection tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  10. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  11. Aqueous radioactive waste bituminization

    International Nuclear Information System (INIS)

    Williamson, A.S.

    1980-08-01

    The bituminzation of decontamination and ion exchange resin stripping wastes with four grades of asphalt was investigated to determine the effects of asphalt type on the properties of the final products. All waste forms deformed readily under light loads indicating they would flow if not restrained. It was observed in all cases that product leaching rates increased as the hardness of the asphalt used to treat the waste increased. If bituminization is adopted for any Ontario Hydro aqueous radioactive wastes they should be treated with soft asphalt to obtain optimum leaching resistance and mechanical stability during interim storage should be provided by a corrosion resistant container

  12. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  13. How to minimize wastes

    International Nuclear Information System (INIS)

    Ambolet, M.

    1988-10-01

    Actions undertaken by the CEA to decrease the stock of natural and depleted uranium are presented in this paper. Various wastes and residues are produced in uranium fabrication. If for some wastes or residues processing methods were found previously, for other storage was the rule. Facing growing problems of safety, bulkiness, and cost new treatments allow to decrease a great amount of wastes. Uranium fabrication cycle, wastes and residues are described. Processing of the different residues of operations and optimization of manufacture are indicated [fr

  14. Politics of nuclear waste

    International Nuclear Information System (INIS)

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments

  15. Waste management at WAK

    International Nuclear Information System (INIS)

    Kuhn, K.D.; Willax, H.O.

    1986-01-01

    After a short description of the WAK plant and its reprocessing and intervention activities, types and sources of WAK wastes are described. Roughly half of the waste volume is generated during reprocessing, the other half during intervention periods. Most of the waste is transported to KfK for conditioning. Only waste from the head end cell is cementated on the spot. HLLW is stored in stainless steel tanks. Some results from analyzing this stuff are given. The corrosion behavior is acceptable for medium term storage. (orig.)

  16. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  17. Politics of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Colglazier, E.W. Jr. (eds.)

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  18. Waste inspection tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU

  19. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  20. Waste Generation Overview, Course 23263

    International Nuclear Information System (INIS)

    Simpson, Lewis Edward

    2016-01-01

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  1. Waste Generation Overview, Course 23263

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  2. Theoretical investigations of fuel behavior during LOCA and ATWS

    International Nuclear Information System (INIS)

    Meyder, R.; Unger, H.

    1976-01-01

    The program system SSYST has been improved. The results of the SSYST-FRAP comparison calculations showed good agreement. In both programs, for instance, ballooning at the hottest spot occurs almost at the same time (appr 8 s). The calculation of the experiments of IRB on ballooning led also to a qualitative good agreement of experimental and theoretical results. The parameters in Nortons creep law are quantitatively not yet satisfactory. Gas gap flow equalizes axial pressure difference already at small gaps. The method of 'Moment Matching' for the statistical analysis needs considerably less computer time than 'Monte Carlo' method, and differs only slightly in expected values and variances. (orig./RW) [de

  3. ATWS: a reappraisal. Part 3. Frequency of anticipated transients

    International Nuclear Information System (INIS)

    McClymont, A.S.; Poehlman, B.W.

    1982-01-01

    This document is the first revision of Part 3 of the EPRI study of the anticipated transients without scram question. This revision includes an update of events at nuclear power plants which had led to fast reactor shutdowns (scrams). The purpose of this document is to present the nuclear power plant operating experience, reflecting the frequency of these events identified by their principal characteristics

  4. Controlled energy generation from nuclear fusion. 60th year atw

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Georg [Pintsch Bamag AG, Frankfurt am Main (Germany)

    2015-02-15

    Prospects increase, that with a controlled process of nuclear fusion one day an additional nuclear energy source will be commercially exploitable. In what follows, scientific principles according to the most recent research will be presented. Since approximately 30 years we are aware of the fact, that energy in form of light and heat provided by the sun and other fixed stars since over four billions years resulted from reactions of atomic nuclei. A series of such reactions became known which are considered for 'thermonuclear' processes, for example the carbon cycle by Bethe, where hydrogen is converted into helium. Most of the reflections and experiments dealt until 1938 with the reaction between nuclei of light elements. The possibility of splitting heavy nuclei was not anticipated. Its discovery by Hahn and Strassmann was a complete surprise - so to speak a rash reaction to release energy at the end of the element row. This 'way out' captured the interest of nuclear physicist for more than a decade. Only today, by starting to construct big nuclear power plants - only today, being able to assess the possibilities and limitations of this technology, the idea of energy generation through nuclear fusion steps into the foreground of nuclear research.

  5. Waste to wealth

    International Nuclear Information System (INIS)

    Sivapalan Kathiravale; Muhd Noor Muhd Yunus

    2010-01-01

    We currently live in a world where depletion of resources is beyond control. The call for sustainable development both environmentally and economically is spelt out loud and clear. Hence, the current and future generations must ensure that all resources shall be preserved, fully utilized and well managed. Waste generation has been part and parcel of man kinds pursuit for development, be it in social or economic activities. Municipal Solid Waste (MSW) is an example of socio-economic activities that entails with waste generation. Generation rates of MSW vary according to the economic and social standing of a country. This in return will also affect the management style of the MSW generated. Generally, the higher income countries generated more waste, recycle more and have the money to employ new technology to treat their waste. As for the lower income countries, the waste generated is more organic in nature, which calls for lesser recycling, whereas disposal is by open dumping. The effects of this naturally would mean that in the lower income countries pollution to the water and air is huge as compare to the more developed countries. However on the other hand, does waste alone generate harmful gasses that pollute the world or does manufacturing, transportation and power production, which is rampant in the more industrialized countries contributing more towards pollution? This subject is argumentative and could be discussed at length. However, the environment cannot wait for the population to debate on the above matter. Action needs to be taken in a world where economic power determines the treatment method. Hence, the idea of recovering all 'wealth' in the waste is essential to ensure that even the poorest countries could benefit from all waste management technologies. For this to work, recycling, reuse and recovery of energy is essential in an integrated approach towards waste management. This would also mean that many environmental disasters could be avoided

  6. Regulatory aspects of mixed waste

    International Nuclear Information System (INIS)

    Boyle, R.R.; Orlando, D.A.

    1990-01-01

    Mixed waste is waste that satisfies the definition of low-level radioactive waste in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) and contains hazardous waste that is either: (1) listed as a hazardous waste in 40 CFR 261, Subpart D; or (2) causes the waste to exhibit any of the characteristics identified in 40 CFR 261, Subpart C. Low-level radioactive waste is defined in the LLRWPAA as radioactive material that is not high level waste, spent nuclear fuel, or byproduct material, as defined in Section 11e(2) of the Atomic Energy Act of 1954, and is classified as low-level waste by the U.S. Nuclear Regulatory Commission (NRC). This paper discusses dual regulatory (NRC and Environmental Protection Agency) responsibility, overview of joint NRC/EPA guidance, workshops, national mixed waste survey, and principal mixed waste uncertainties

  7. Nuclear waste - a fresh perspective

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.

    1996-01-01

    Rather than looking at the nuclear waste problem in isolation, it should be viewed in the broader context of how society disposes of all of its wastes. A comparison of radioactive and non-radioactive wastes shows, contrary to popular perception, that the properties of these two waste types are actually very similar. However, the methods of regulation and management of the two waste types are very different. It is time that these differences were reconciled - both the nuclear and the non-nuclear waste industries have a lot to gain. There are three main categories of (non-nuclear) waste: municipal wastes, hazardous wastes, and industrial wastes. Rather than treating each of these waste types in separate, isolated compartments, there should be an integration of the principles and regulations involved in their management. The non-nuclear waste industry has much to learn from the nuclear approach

  8. Defense waste management plan

    International Nuclear Information System (INIS)

    1983-06-01

    Defense high-level waste (HLW) and defense transuranic (TRU) waste are in interim storage at three sites, namely: at the Savannah River Plant, in South Carolina; at the Hanford Reservation, in Washington; and at the Idaho National Engineering Laboratory, in Idaho. Defense TRU waste is also in interim storage at the Oak Ridge National Laboratory, in Tennessee; at the Los Alamos National Laboratory, in New Mexico; and at the Nevada Test Site, in Nevada. (Figure E-2). This document describes a workable approach for the permanent disposal of high-level and transuranic waste from atomic energy defense activities. The plan does not address the disposal of suspect waste which has been conservatively considered to be high-level or transuranic waste but which can be shown to be low-level waste. This material will be processed and disposed of in accordance with low-level waste practices. The primary goal of this program is to utilize or dispose of high-level and transuranic waste routinely, safely, and effectively. This goal will include the disposal of the backlog of stored defense waste. A Reference Plan for each of the sites describes the sequence of steps leading to permanent disposal. No technological breakthroughs are required to implement the reference plan. Not all final decisions concerning the activities described in this document have been made. These decisions will depend on: completion of the National Environmental Policy Act process, authorization and appropriation of funds, agreements with states as appropriate, and in some cases, the results of pilot plant experiments and operational experience. The major elements of the reference plan for permanent disposal of defense high-level and transuranic waste are summarized

  9. America's nuclear waste backlog

    International Nuclear Information System (INIS)

    Benenson, R.

    1981-01-01

    This report discusses three topics: concern and controversy relating to nuclear waste; high-level waste storage and politics of waste disposal. The most pressing waste disposal problem concerns spent fuel assemblies from commercial nuclear power plants. It was expected that commercial spent fuel would be sent to commercial reprocessing plants. The feasibility of commercial reprocessing in the United States is contingent on the expansion of the nuclear power industry. The current high-level liquid waste inventory is about 77 million gallons. These are stored at Richland, Washington; Aiken, South Carolina; and Idaho Falls, Idaho. The only commercial high-level wastes ever produced are stored at the defunct reprocessing facility at West Valley, New York. A high-level waste repository must be capable of isolating wastes that will remain dangerous for thousands of years. Salt has long been considered the most suitable medium for high-level and transuranic waste disposal. The timetable for opening a deep geological repository is one of the issues that will have to be dealt with by Congress. The 97th Congress appears ready to act on high-level nuclear waste legislation. Even opponents of nuclear expansion admit the necessity of legislation. Even if Congress gets its act together, it does not mean that the nuclear waste issue is gone. There are still unknowns - future of reprocessing, the needs and demands of the military; the health of the nuclear power industry; the objections of residents in potential site areas; the possibility of a state veto, and the unsolved technological problems in geologic site selection

  10. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  11. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  12. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  13. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  15. Waste statistics 2001

    International Nuclear Information System (INIS)

    2004-01-01

    Reports to the ISAG (Information System for Waste and Recycling) for 2001 cover 402 Danish waste treatment plants owned by 295 enterprises. The total waste generation in 2001 amounted to 12,768,000 tonnes, which is 2% less than in 2000. Reductions are primarily due to the fact that sludge for mineralization is included with a dry matter content of 20% compared to 1,5% in previous statistics. This means that sludge amounts have been reduced by 808,886 tonnes. The overall rate of recycling amounted to 63%, which is 1% less than the overall recycling target of 64% for 2004. Since sludge has a high recycling rate, the reduction in sludge amounts of 808,886 tonnes has also caused the total recycling rate to fall. Waste amounts incinerated accounted for 25%, which is 1% more than the overall target of 24% for incineration in 2004. Waste going to landfill amounted to 10%, which is better than the overall landfill target for 2004 of a maximum of 12% for landfilling. Targets for treatment of waste from the different sectors, however, are still not complied with, since too little waste from households and the service sector is recycled, and too much waste from industry is led to landfill. (BA)

  16. Hazardous waste minimization

    International Nuclear Information System (INIS)

    Freeman, H.

    1990-01-01

    This book presents an overview of waste minimization. Covers applications of technology to waste reduction, techniques for implementing programs, incorporation of programs into R and D, strategies for private industry and the public sector, and case studies of programs already in effect

  17. Waste incinerating plant

    Energy Technology Data Exchange (ETDEWEB)

    1972-12-01

    This plant is provided with a NKK-Ferunst type reciprocating stage fire lattice which has a good ventilating effect and a proper stirring and loosening effect, achieving a high combustion rate, and has also a gas flow system by which gas can flow in the reverse direction to adjust its flow for seasonal variations in the quality of waste. Also, a room in which the exhaust gas is mixed is provided in this plant as a help for the complete neutralization and combustion of acid gas such as hydrogen chloride and imperfect combustion gas from plastic waste contained in wastes. In this system, waste can accept a sufficient radiant heat from the combustion gas, the furnace wall, and the ceiling; even on the post combustion fire lattice the ashes are given heat enough to complete the post combustion, so that it can be completely reduced to ashes. For these reasons, this type of incinerator is suitable for the combustion of low-calorie wastes such as city wastes. The harmful gases resulting from the combustion of wastes are treated completely by desulfurization equipment which can remove the oxides of sulfur. This type of plant also can dispose of a wide variety of wastes, and is available in several capacities from 30 tons per 8 hr to 1,200 tons per 24 hr.

  18. Nuclear waste solutions

    Science.gov (United States)

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  19. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  20. Food-Processing Wastes.

    Science.gov (United States)

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  1. Waste to energy

    CERN Document Server

    Syngellakis, S

    2014-01-01

    Waste to Energy deals with the very topical subject of converting the calorific content of waste material into useful forms of energy. Topics included cover: Biochemical Processes; Conversions by Thermochemical Processes; Computational Fluid Dynamics Modelling; Combustion; Pyrolysis; Gasification; Biofuels; Management and Policies.

  2. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  3. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  4. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  5. Waste statistics 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Reports to the ISAG (Information System for Waste and Recycling) for 2001 cover 402 Danish waste treatment plants owned by 295 enterprises. The total waste generation in 2001 amounted to 12,768,000 tonnes, which is 2% less than in 2000. Reductions are primarily due to the fact that sludge for mineralization is included with a dry matter content of 20% compared to 1,5% in previous statistics. This means that sludge amounts have been reduced by 808,886 tonnes. The overall rate of recycling amounted to 63%, which is 1% less than the overall recycling target of 64% for 2004. Since sludge has a high recycling rate, the reduction in sludge amounts of 808,886 tonnes has also caused the total recycling rate to fall. Waste amounts incinerated accounted for 25%, which is 1% more than the overall target of 24% for incineration in 2004. Waste going to landfill amounted to 10%, which is better than the overall landfill target for 2004 of a maximum of 12% for landfilling. Targets for treatment of waste from the different sectors, however, are still not complied with, since too little waste from households and the service sector is recycled, and too much waste from industry is led to landfill. (BA)

  6. Storage of radioactive waste

    International Nuclear Information System (INIS)

    Pittman, F.K.

    1974-01-01

    Four methods for managing radioactive waste in order to protect man from its potential hazards include: transmutation to convert radioisotopes in waste to stable isotopes; disposal in space; geological disposal; and surface storage in shielded, cooled, and monitored containers. A comparison of these methods shows geologic disposal in stable formations beneath landmasses appears to be the most feasible with today's technology. (U.S.)

  7. Nuclear waste for NT

    International Nuclear Information System (INIS)

    Nelson, Brendan

    2005-01-01

    The Northern Territory may be powerless to block the dumping of low-level nuclear waste in the Territory under legislation introduced into Parliament by Minister for Education Science and Training, Dr Brendan Nelson, in October. Despite strong opposition to the dumping of nuclear waste in the NT, the Australian Government will be able to send waste to one of the three nominated Commonwealth-owned Defence sites within the NT under the Commonwealth Radioactive Waste Management Bill 2005 and the Commonwealth Radioactive Waste Management (Related Amendment) Bill 2005. The Bills veto recently drafted NT legislation designed to scuttle the plans. Low-level nuclear waste is stored at more than 100 sites around Australia, including hospitals, factories, universities and defence facilities. Medical isotopes produced at Lucas Heights and provided for medical procedures are the source of much of this waste, including some 16 cubic metres currently held at Darwin Hospital. Dr Nelson stressed that the Government would take all die necessary steps to comply with safety and regulatory precautions, including handling waste in line with relevant environmental, nuclear safety and proliferation safeguards

  8. Waste classification sampling plan

    International Nuclear Information System (INIS)

    Landsman, S.D.

    1998-01-01

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  10. Management of reactor waste

    International Nuclear Information System (INIS)

    Baatz, H.

    1976-01-01

    The author discusses the type, production and amount of radioactive waste produced in a nuclear power station (LWR) as well as its conditioning and disposal. The mobile system developed by STEAG for the solidification of medium-activity waste and sludge is referred to in this connection. (HR) [de

  11. ERDA waste management program

    International Nuclear Information System (INIS)

    Kuhlman, C.W.

    1976-01-01

    The ERDA commercial waste program is summarized. It consists of three parts: terminal storage, processing, and preparation of the Generic Environmental Impact Statement. Emplacement in geologic formations is the best disposal method for high-level waste; migration would be essentially zero, as it was in the Oklo event. Solidification processes are needed. Relations with the states, etc. are touched upon

  12. Encapsulation of nuclear wastes

    International Nuclear Information System (INIS)

    Arnold, J.L.; Boyle, R.W.

    1978-01-01

    Toxic waste materials are encapsulated by the method wherein the waste material in liquid or finely divided solid form is uniformly dispersed in a vinyl ester resin or an unsaturated polyester and the resin cured under conditions that the exotherm does not rise above the temperature at which the integrity of the encapsulating material is destroyed

  13. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  14. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  15. Overview of mixed waste issues

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC

  16. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Moos, L.; Thuot, J.R.

    1996-01-01

    Environmental restoration, decontamination and decommissioning and facility dismantelment projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized. In fact, however, there are three significant areas where waste and cost can be reduced. Waste reduction can occur in three ways: beneficial reuse or recycling; segregation of waste types; and reducing generation of secondary waste. This paper will discuss several examples of reuse, recycle, segregation, and secondary waste reduction at ANL restoration programs

  17. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  18. Waste Determination Equivalency - 12172

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Rebecca D. [Savannah River Remediation (United States)

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed

  19. Waste statistics 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The 2003 reporting to the ISAG comprises 403 plants owned by 273 enterprises. In 2002, reports covered 407 plants owned by 296 enterprises. Waste generation in 2003 is compared to targets from 2008 in the government's Waste Strategy 2005-2008. The following can be said to summarise waste generation in 2003: 1) In 2003, total reported waste arisings amounted to 12,835,000 tonnes, which is 270,000 tonnes, or 2 per cent, less than in 2002. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2003 were 11,597,000 tonnes, which is a 2 per cent increase from 2002. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2003 amounted to 7,814,000 tonnes, which is 19,000 tonnes, or 1 per cent, less than in 2002. In other words, there has been a fall in total waste arisings, if residues and waste from building and construction are excluded. 4) The overall rate of recycling amounted to 66 per cent, which is one percentage point above the overall recycling target of 65 per cent for 2008. In 2002 the total rate of recycling was 64 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2002. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point below the overall landfill target of a maximum of 9 per cent landfilling in 2008. In 2002, 9 per cent was led to landfill. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being led to landfill. (au)

  20. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  1. The Waste Negotiator's mission

    International Nuclear Information System (INIS)

    Bataille, Christian

    1993-01-01

    The mission of the Waste Negotiator is to seek out sites for deep underground laboratories to study their potential for disposal of high level radioactive waste. Although appointed by the government, he acts independently. In 1990, faced by severe public criticism at the way that the waste disposal was being handled, and under increasing pressure to find an acceptable solution, the government stopped the work being carried out by ANDRA (Agence nationale pour la gestion des dechets radioactifs) and initiated a full review of the issues involved. At the same time, parliament also started its own extensive investigation to find a way forward. These efforts finally led to the provision of a detailed framework for the management of long lived radioactive waste, including the construction of two laboratories to investigate possible repository sites. The Waste Negotiator was appointed to carry out a full consultative process in the communities which are considering accepting an underground laboratory. (Author)

  2. Waste pipe calculus extensions

    International Nuclear Information System (INIS)

    O'Connell, W.J.

    1979-01-01

    The waste pipe calculus provides a rapid method, using Laplace transforms, to calculate the transport of a pollutant such as nuclear waste, by a network of one-dimensional flow paths. The present note extends previous work as follows: (1) It provides an alternate approximation to the time-domain function (inverse Laplace transform) for the resulting transport. This algebraic approximation may be viewed as a simpler and more approximate model of the transport process. (2) It identifies two scalar quantities which may be used as summary consequence measures of the waste transport (or inversely, waste retention) system, and provides algebraic expressions for them. (3) It includes the effects of radioactive decay on the scalar quantity results, and further provides simplifying approximations for the cases of medium and long half-lives. This algebraic method can be used for quick approximate analyses of expected results, uncertainty and sensitivity, in evaluating selection and design choices for nuclear waste disposal systems

  3. Treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Machida, Chuji

    1976-01-01

    Japan Atomic Energy Research Institute (JAERI) is equipped with such atomic energy facilities as a power test reactor, four research reactors, a hot laboratory, and radioisotope-producing factory. All the radioactive wastes but gas generated from these facilities are treated by the waste treatment facilities established in JAERI. The wastes carried into JAERI through Japan Radioisotope Association are also treated there. Low level water solution is treated with an evaporating apparatus, an ion-exchange apparatus, and a cohesive precipitating apparatus, while medium level solution is treated with an evaporating apparatus, and low level combustible solid is treated with an incinerating apparatus. These treated wastes and sludges are mixed with Portland cement in drum cans to solidify, and stored in a concrete pit. The correct classification and its indication as well as the proper packing for the wastes are earnestly demanded by the treatment facilities. (Kobatake, H.)

  4. Vitrification of NORM wastes

    International Nuclear Information System (INIS)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man's oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ''lessons learned'' from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM

  5. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  6. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  7. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  8. Why partition nuclear waste

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1976-01-01

    A cursory review of literature dealing with various separatory processes involved in the handling of high-level liquid nuclear waste discloses that, for the most part, discussion centers on separation procedures and methodology for handling the resulting fractions, particularly the actinide wastes. There appears to be relatively little discussion on the incentives or motivations for performing these separations in the first place. Discussion is often limited to the assumption that we must separate out ''long-term'' from our ''short-term'' management problems. This paper deals with that assumption and devotes primary attention to the question of ''why partition waste'' rather than the question of ''how to partition waste'' or ''what to do with the segregated waste.''

  9. Conditioning of alpha waste

    International Nuclear Information System (INIS)

    Halaszovich, S.; Gerontopoulos, P.; Hennart, D.; Ledebrink, F.W.; Loida, A.; Phillips, D.C.; Vandevoorde, N.

    1985-01-01

    The long life and high radiotoxicity of the alph-emitting transuranics in radioactive waste provide an incentive for the constant improvement of existing processes and waste forms or the development of new alternatives, to isolate them safely from the biosphere. In the following, five processes at differing stages of development are outlined, the products ranging between cement, glass and ceramics: a process developed by ALKEM for the cementation of waste from fuel element manufacture; a process to improve the quality of cement products containing Magnox hulls, under development at AERE Harwell; high-temperature slagging incineration, developed at SCK/CEN; embedding of waste in an alumosilicate-based ceramic, being developed at KfK; embedding of waste in a titanium dioxide-based ceramic, proposed by Agip

  10. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  11. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  12. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  13. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  14. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  15. Composite waste analysis system

    International Nuclear Information System (INIS)

    Wachter, J.R.; Hagan, R.C.; Bonner, C.A.; Malcom, J.E.; Camp, K.L.

    1993-01-01

    Nondestructive analysis (NDA) of radioactive waste forms an integral component of nuclear materials accountability programs and waste characterization acceptance criterion. However, waste measurements are often complicated by unknown isotopic compositions and the potential for concealment of special nuclear materials in a manner that is transparent to gamma-ray measurement instruments. To overcome these complications, a new NDA measurement system has been developed to assay special nuclear material in both transuranic and low level waste from the same measurement platform. The system incorporates a NaI detector and customized commercial software routines to measure small quantities of radioactive material in low level waste. Transuranic waste analysis is performed with a coaxial HPGE detector and uses upgraded PC-based segmented gamma scanner software to assay containers up to 55 gal. in volume. Gamma-Ray isotopics analysis of both waste forms is also performed with this detector. Finally, a small neutron counter using specialized software is attached to the measurement platform to satisfy safeguards concerns related to nuclear materials that are not sensed by the gamma-ray instruments. This report describes important features and capabilities of the system and presents a series of test measurements that are to be performed to define system parameters

  16. Radioactive waste equivalence

    International Nuclear Information System (INIS)

    Orlowski, S.; Schaller, K.H.

    1990-01-01

    The report reviews, for the Member States of the European Community, possible situations in which an equivalence concept for radioactive waste may be used, analyses the various factors involved, and suggests guidelines for the implementation of such a concept. Only safety and technical aspects are covered. Other aspects such as commercial ones are excluded. Situations where the need for an equivalence concept has been identified are processes where impurities are added as a consequence of the treatment and conditioning process, the substitution of wastes from similar waste streams due to the treatment process, and exchange of waste belonging to different waste categories. The analysis of factors involved and possible ways for equivalence evaluation, taking into account in particular the chemical, physical and radiological characteristics of the waste package, and the potential risks of the waste form, shows that no simple all-encompassing equivalence formula may be derived. Consequently, a step-by-step approach is suggested, which avoids complex evaluations in the case of simple exchanges

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  18. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  19. Buried Waste Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities

  20. Energy from waste

    International Nuclear Information System (INIS)

    Sajidas, A.

    2010-01-01

    In accordance with the fast growing population, the demand for energy and the discharge of waste are also increasing day by day. So, there is two method of waste treatment that practiced by our company, centralised and de centralised. For de centralised treatment, there are some advantages like no collection, no transportation, small investment and for disadvantages, more treatment plants are needed. Waste of food materials and other bio degradable wastes generated in Factory canteens, Convents, Hospitals, Hostels, Hotels and other industrial organizations can be treated in an eco-friendly way for the production of cooking gas in very large scale. BIOTECH has completed the installation of 52 Nos. power generation projects using market /slaughter house waste. The power generated from these projects is being utilized for energy requirements of the concerned markets and to meet the in-house requirements of the projects. In recognition of our selfless services to the society through our system of waste management and the generation of Energy from waste. BIOTECH was honored by conferring on it the prestigious International Ashden Award GREEN OSCAR 2007. (Author)

  1. Liquid waste sampling device

    International Nuclear Information System (INIS)

    Kosuge, Tadashi

    1998-01-01

    A liquid pumping pressure regulator is disposed on the midway of a pressure control tube which connects the upper portion of a sampling pot and the upper portion of a liquid waste storage vessel. With such a constitution, when the pressure in the sampling pot is made negative, and liquid wastes are sucked to the liquid pumping tube passing through the sampling pot, the difference between the pressure on the entrance of the liquid pumping pressure regulator of the pressure regulating tube and the pressure at the bottom of the liquid waste storage vessel is made constant. An opening degree controlling meter is disposed to control the degree of opening of a pressure regulating valve for sending actuation pressurized air to the liquid pumping pressure regulator. Accordingly, even if the liquid level of liquid wastes in the liquid waste storage vessel is changed, the height for the suction of the liquid wastes in the liquid pumping tube can be kept constant. With such procedures, sampling can be conducted correctly, and the discharge of the liquid wastes to the outside can be prevented. (T.M.)

  2. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  3. TRU Waste Sampling Program: Volume I. Waste characterization

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  5. Comparative waste forms study

    International Nuclear Information System (INIS)

    Wald, J.W.; Lokken, R.O.; Shade, J.W.; Rusin, J.M.

    1980-12-01

    A number of alternative process and waste form options exist for the immobilization of nuclear wastes. Although data exists on the characterization of these alternative waste forms, a straightforward comparison of product properties is difficult, due to the lack of standardized testing procedures. The characterization study described in this report involved the application of the same volatility, mechanical strength and leach tests to ten alternative waste forms, to assess product durability. Bulk property, phase analysis and microstructural examination of the simulated products, whose waste loading varied from 5% to 100% was also conducted. The specific waste forms investigated were as follows: Cold Pressed and Sintered PW-9 Calcine; Hot Pressed PW-9 Calcine; Hot Isostatic Pressed PW-9 Calcine; Cold Pressed and Sintered SPC-5B Supercalcine; Hot Isostatic pressed SPC-5B Supercalcine; Sintered PW-9 and 50% Glass Frit; Glass 76-68; Celsian Glass Ceramic; Type II Portland Cement and 10% PW-9 Calcine; and Type II Portland Cement and 10% SPC-5B Supercalcine. Bulk property data were used to calculate and compare the relative quantities of waste form volume produced at a spent fuel processing rate of 5 metric ton uranium/day. This quantity ranged from 3173 L/day (5280 Kg/day) for 10% SPC-5B supercalcine in cement to 83 L/day (294 Kg/day) for 100% calcine. Mechanical strength, volatility, and leach resistance tests provide data related to waste form durability. Glass, glass-ceramic and supercalcine ranked high in waste form durability where as the 100% PW-9 calcine ranked low. All other materials ranked between these two groupings

  6. Listed waste determination report

    International Nuclear Information System (INIS)

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idaho identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P ampersand Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application

  7. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  8. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Ikeda, Takashi; Funabashi, Kiyomi; Chino, Koichi.

    1992-01-01

    In a waste processing device for solidifying, pellets formed by condensing radioactive liquid wastes generated from a nuclear power plant, by using a solidification agent, sodium chloride, sodium hydroxide or sodium nitrate is mixed upon solidification. In particular, since sodium sulfate in a resin regenerating liquid wastes absorbs water in the cement upon cement solidification, and increases the volume by expansion, there is a worry of breaking the cement solidification products. This reaction can be prevented by the addition of sodium chloride and the like. Accordingly, integrity of the solidification products can be maintained for a long period of time. (T.M.)

  9. Waste, energy and employment

    Energy Technology Data Exchange (ETDEWEB)

    Boucek, V; Bryer, L

    1983-01-01

    A comparison of municipal waste collection and disposal systems in London, Paris and Munich. A number of common factors can be observed. Reduction in growth rate of waste, rationalisation of waste collection, disposal costs and wages. Political problems of wages regulation. Unemployment problems. In France unstilled workers are trained so that they can take on a number of different tasks. In the Federal Republic of Germany emphasis is placed on cost effectiveness in particular through rationalisation. In Great Britain organisational problems are tackled in more detail. More attention should be drawn to the exchange of technology and know-how between the countries. Statistical data are summarized.

  10. Environmental issues and wastes

    International Nuclear Information System (INIS)

    Mitamura, Hisayoshi; Banba, Tsunetaka; Maeda, Toshikatsu; Ishiyama, Takashi

    1999-08-01

    All countries in the world are concerned about environmental issues because of their global effects. Developed industrial nations are also confronted with waste issues accompanied by mass production, mass consumption, and mass dump. We have reviewed books and reports to obtain a preliminary knowledge and to understand the trend of technology development before we start R and D for 'environmental monitoring, and environmental remediation and protection'. We lay great emphasis on municipal and industrial wastes in environmental issues and summarize the history of the earth, innovative environmental approaches in advanced nations, waste issues in Japan, and examples of technology development for environmental remediation and protection. (author)

  11. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  12. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  13. Treating nuclear waste

    International Nuclear Information System (INIS)

    Marriott, R.; Henyey, F.S.; Hochstim, A.R.

    1984-01-01

    A method of decreasing the amount of relatively long-lived fission products in radioactive waste materials comprises the steps of: separating relatively short-lived radioactive nuclides and stable nuclides from the waste material and storing at least some of them, exposing the remaining waste to a neutron flux in order to induce transmutations, separating the relatively short-lived radioactive nuclides and stable nuclides from the exposed materials and storing at least some of them, and repeating the exposure and separation steps

  14. Nuclear waste: good news

    International Nuclear Information System (INIS)

    Gay, Michel

    2014-01-01

    The author states that the problem of nuclear wastes is solved. He states that 90 per cent of radioactive wastes are now permanently managed and that technical solutions for deep geological storage and for transmutation will soon solve the problem for the remaining 10 pc. He states that geological storage will be funded (it is included in electricity price). He denounces why these facts which he consider as good news, do not prevail. He proposes several documents in appendix: a text explaining the nuclear fuel cycle in France, and an extract of a report made by the national inventory of radioactive materials and wastes

  15. Wood wastes: Uses

    International Nuclear Information System (INIS)

    Cipro, A.

    1993-01-01

    The 1,500 industrial firms manufacturing furniture in the Italian Province of Treviso can generate up to 190,000 tonnes of wood wastes annually. In line with the energy conservation-environmental protection measures contained in Italian Law No. 475/88, this paper indicates convenient uses for these wood wastes - as a raw material for fibreboards or as a fuel to be used in the furniture manufacturing plants themselves and in kilns producing lime. Reference is made to the wood wastes gasification/power generation system being developed by ENEA (the Italian Agency for New Technology, Energy and the Environment)

  16. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  17. Legal incentives for minimizing waste

    International Nuclear Information System (INIS)

    Clearwater, S.W.; Scanlon, J.M.

    1991-01-01

    Waste minimization, or pollution prevention, has become an integral component of federal and state environmental regulation. Minimizing waste offers many economic and public relations benefits. In addition, waste minimization efforts can also dramatically reduce potential criminal requirements. This paper addresses the legal incentives for minimizing waste under current and proposed environmental laws and regulations

  18. Waste Tax 1987-1996

    DEFF Research Database (Denmark)

    Andersen, M. S.; Dengsøe, N.; Brendstrup, S.

    The report gives an ex-post evaluation of the Danish waste tax from 1987 to 1996. The evaluation shows that the waste tax has had a significant impact on the reductions in taxable waste. The tax has been decisive for the reduction in construction and demolition waste, while for the heavier...

  19. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  20. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  1. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  2. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  3. Urban Wood Waste Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    1998-11-20

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

  4. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  5. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Thuot, J.R.; Moos, L.

    1996-01-01

    Environmental restoration, decontamination and decommissioning, and facility dismantlement projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized; however, there are significant areas where waste and cost can be reduced by careful planning and execution. Waste reduction can occur in three ways: beneficial reuse or recycling, segregation of waste types, and reducing generation of secondary waste

  6. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  7. Treatment strategies for transuranic wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Swanson, J.L.; Allen, R.P.; Yasutake, K.M.

    1986-01-01

    This paper presents an analysis of treatment options or strategies for transuranic wastes expected to be generated at a commercial nuclear fuel reprocessing plant. Six potential options were analyzed, ranging from no treatment to maximum volume reduction and high quality waste forms. Economics for the total management of these wastes (treatment, transportation, disposal) indicate life-cycle savings for extensive treatment are as high as $1.7 billion for 70,000 MTU. Evaluations of the waste processing and waste forms support the selection of a number of the extensive waste treatments. It is concluded that there are significant incentives for extensive treatment of transuranic wastes

  8. CEA and its radioactive wastes

    International Nuclear Information System (INIS)

    Marano, S.

    1999-01-01

    CEA annually produces about 3500 tons of radioactive wastes in its 43 basic nuclear installations. CEA ranks third behind EDF and Cogema. Low-level wastes (A wastes) are sent to ANDRA (national agency for the management of nuclear wastes)whereas medium-level wastes (B wastes) are stored by CEA itself. CEA has checked off its storing places and has set up an installation Cedra to process and store ancient and new nuclear wastes. 3 other installations are planned to operate within 6 years: Agate (Cadarache) will treat liquid effluents, Stella (Saclay) will process liquid wastes that are beta or gamma emitters, and Atena (Marcoule) will treat and store radioactive sodium coming from Phenix reactor and IPSN laboratories. The use of plasma torch for vitrifying wastes is detailed, the management of all the nuclear wastes produced by CEA laboratories and installations is presented. (A.C.)

  9. Waste Characterization: Approaches and Methods

    DEFF Research Database (Denmark)

    Lagerkvist, A.; Ecke, H.; Christensen, Thomas Højlund

    2011-01-01

    Characterization of solid waste is usually a difficult task because of the heterogeneity of the waste and its spatial as well as temporal variations. This makes waste characterization costly if good and reliable data with reasonable uncertainty is to be obtained. Therefore, a waste characterization...... is often narrowly defined to meet specific needs for information. This may however limit the general usefulness of the information gained, for example, if the specific purpose limited the characterization to a subset of variables. In general, data available in the solid waste area are limited and often...... related to individual treatment processes and waste products are dealt with in the following chapters: Characteristic data on residential waste (Chapter 2.2), commercial and institutional waste (Chapter 2.3), industrial waste (Chapter 2.4) and construction and demolition waste (Chapter 2...

  10. Solid wastes management in Lebanon

    International Nuclear Information System (INIS)

    Daniel, Simon E.

    1999-01-01

    The paper describes the problem of wastes in Lebanon and their management according to international (European and French) descriptions. It presents the situation in Lebanon including the policies taken by the ministry of environment towards the treatment of different types of wastes especially solid wastes. It is estimated that the production of wastes in Lebanon is 5854 tones per day and it is distributed as follows: Domestic wastes 3200 t/d; industrial wastes 1300 t/d; commercial wastes 1000 t/d; slaughter-houses 150 t/d; waste oils 100 t/d; hospital wastes 64 t/d; vehicle wheels 40 t/d. The annual production within regions is also presented in tables. Collection, transportation, recycling, composting and incineration of wastes are included

  11. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  12. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  13. Transmuting nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With the problems of disposing of nuclear waste material increasingly the cause for widespread concern, attention is turning to possible new techniques for handling discarded radioactive material and even putting it to good use

  14. Household Hazardous Waste

    Science.gov (United States)

    ... waste collection" near your zip code in the Earth 911 database Exit for more information. Contact your ... lemon juice in one pint of mineral or vegetable oil and wipe furniture. Rug Deodorizer Liberally sprinkle ...

  15. Who wants nuclear waste

    International Nuclear Information System (INIS)

    Fernie, John; Openshaw, Stanley

    1986-01-01

    The criteria involved in selecting sites for disposal of low and short-lived intermediate-level radioactive wastes are explained. The wastes and the sources are identified and the current procedure for their disposal, at Drigg, next to the Sellafield reprocessing plant, is given. If alternative sites could be found for non-Sellafield-produced wastes the lifetime of the Drigg site could be extended. The sites chosen by NIREX (Nuclear Industry Radioactive Waste Executive) have to be cost effective. Indeed, those identified are conveniently situated and would not incur excessive transport costs. However, more remote sites may have to be chosen, even at greater transport cost, because of public protests. Even this may not be satisfactory because the transportation itself incurs risks. (UK)

  16. Energy recovery from wastes

    International Nuclear Information System (INIS)

    De Stefanis, P.

    1999-01-01

    In this paper are reported analysis of some energy recovery form wastes plants. In this work are considered materials and energy flows, environmental impacts and related treatment costs and financial resources [it

  17. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  18. Waste package characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Sannen, L.; Bruggeman, M.; Wannijn, J.P

    1998-09-01

    Radioactive wastes originating from the hot labs of the Belgian Nuclear Research Centre SCK-CEN contain a wide variety of radiotoxic substances. The accurate characterisation of the short- and long-term radiotoxic components is extremely difficult but required in view of geological disposal. This paper describes the methodology which was developed and adopted to characterise the high- and medium-level waste packages at the SCK-CEN hot laboratories. The proposed method is based on the estimation of the fuel inventory evacuated in a particular waste package; a calculation of the relative fission product contribution on the fuel fabrication and irradiation footing; a comparison of the calculated, as expected, dose rate and the real measured dose rate of the waste package. To cope with the daily practice an appropriate fuel inventory estimation route, a user friendly computer programme for fission product and corresponding dose rate calculation, and a simple dose rate measurement method have been developed and implemented.

  19. Waste package characterisation

    International Nuclear Information System (INIS)

    Sannen, L.; Bruggeman, M.; Wannijn, J.P.

    1998-09-01

    Radioactive wastes originating from the hot labs of the Belgian Nuclear Research Centre SCK-CEN contain a wide variety of radiotoxic substances. The accurate characterisation of the short- and long-term radiotoxic components is extremely difficult but required in view of geological disposal. This paper describes the methodology which was developed and adopted to characterise the high- and medium-level waste packages at the SCK-CEN hot laboratories. The proposed method is based on the estimation of the fuel inventory evacuated in a particular waste package; a calculation of the relative fission product contribution on the fuel fabrication and irradiation footing; a comparison of the calculated, as expected, dose rate and the real measured dose rate of the waste package. To cope with the daily practice an appropriate fuel inventory estimation route, a user friendly computer programme for fission product and corresponding dose rate calculation, and a simple dose rate measurement method have been developed and implemented

  20. Nuclear Waste and Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Damveld, Herman [Groningen (Netherlands)

    2003-10-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible.

  1. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  2. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  3. Vitrification of reactor wastes

    International Nuclear Information System (INIS)

    Jouan, A.

    1993-01-01

    The vitrification of low and intermediate level wastes from the NPP operation has been studied in the frame of a Franco-Czech agreement. The laboratory experiments concentrated on a search for a suitable borosilicate glass matrix which could incorporate relatively high quantities of boron and sodium, main components of liquid wastes from the WWER reactor type NPPs. A relatively wide area of waste compositions has been studied and properties of glasses suitable for the technology and waste disposal were measured. Great attention has been paid to the chemical stability (leachability), other properties like thermal dependence of viscosity and electrical conductivity of melts, and the microstructure of the final solidification product have also been evaluated. The feasibility of the vitrification process has been proved during pilot plant tests which were accomplished at the French establishment in Marcoule. The results of tests were promising. (authors). 4 tabs., 7 figs

  4. Nuclear Waste and Ethics

    International Nuclear Information System (INIS)

    Damveld, Herman

    2003-01-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible

  5. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  6. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  7. Biomass goes to waste

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. (CPL Scientific Ltd., Newbury (United Kingdom))

    1994-08-01

    Currently the two most suitable words to describe the biomass energy industry are waste and recycling. However, there are several ways of looking at this. The first is a literal one. This reflects the current changes which are taking place in waste treatment as a consequence of new environmental initiatives. These are predicted to intensify as and when new Community Directives come into force through national legislation within the European Union (EU). At the same time biomass, in the true sense, both goes to waste as crops are not used and generates waste in terms of resources as uneconomic ventures are funded for political reasons. The net result is a depleted industry, in some sectors, and one based on false hopes in others. At the same time there is also some clarity emerging in respect of end use, with most activities focussing on decentralised electricity generation and the formation of liquid transport fuels. (Author)

  8. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  9. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  10. Waste form development

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    In this program, contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements (both as they exist and as they are modified with time). 6 tables

  11. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  12. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  13. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  14. Hospitalary wastes; Residuos sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Epalza, E.

    1997-09-01

    The plan to manage the hospitalary wastes is presented. The management could be develope in two way: 1.- Classical management. 2.- Advanced management. The last is took into account by different countries. (Author)

  15. Vitrification of reactor wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, A [CEA Centre d` Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. des Procedes de Retraitement; Sussmilch, J [Nuclear Research Institut, Rez (Czech Republic)

    1994-12-31

    The vitrification of low and intermediate level wastes from the NPP operation has been studied in the frame of a Franco-Czech agreement. The laboratory experiments concentrated on a search for a suitable borosilicate glass matrix which could incorporate relatively high quantities of boron and sodium, main components of liquid wastes from the WWER reactor type NPPs. A relatively wide area of waste compositions has been studied and properties of glasses suitable for the technology and waste disposal were measured. Great attention has been paid to the chemical stability (leachability), other properties like thermal dependence of viscosity and electrical conductivity of melts, and the microstructure of the final solidification product have also been evaluated. The feasibility of the vitrification process has been proved during pilot plant tests which were accomplished at the French establishment in Marcoule. The results of tests were promising. (authors). 4 tabs., 7 figs.

  16. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Seki, Shuji.

    1992-01-01

    Liquid wastes are supplied to a ceramic filter to conduct filtration. In this case, a device for adding a powdery inorganic ion exchanger is disposed to the upstream of the ceramic filter. When the powdery inorganic ion exchanger is charged to the addition device, it is precoated to the surface of the ceramic filter, to conduct separation of suspended matters and separation of ionic nuclides simultaneously. Liquid wastes returned to a collecting tank are condensed while being circulated between the ceramic filter and the tank and then contained in a condensation liquid waste tank. With such a constitution, both of radioactive nuclides accompanied by suspended matters in the radioactive liquid wastes and ionic nuclides can be captured efficiently. (T.M.)

  17. Transmuting nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-04-15

    With the problems of disposing of nuclear waste material increasingly the cause for widespread concern, attention is turning to possible new techniques for handling discarded radioactive material and even putting it to good use.

  18. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  20. Wastes from fuel reprocessing

    International Nuclear Information System (INIS)

    Eschrich, H.

    1976-01-01

    Handling, treatment, and interim storage of radioactive waste, problems confronted with during the reprocessing of spent fuel elements from LWR's according to the Purex-type process, are dealt with in detail. (HR/LN) [de