WorldWideScience

Sample records for wasa wave hindcast

  1. The wave climate of the Northeast Atlantic over the period 1955-1994: the WASA wave hindcast

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H.; Rosenthal, W.; Stawarz, M. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik; Carretero, J.C.; Gomez, M.; Lozano, I.; Serrano, O. [Programa de Clima Maritimo (Puertos del Estado), Madrid (Spain); Reistad, M. [Det Norske Meteorologiske Inst., Bergen (Norway)

    1997-12-31

    The European project ``waves and storms in the North Atlantic`` (WASA) has been set up to prove, or to disprove, hypotheses of a worsening storm and wave climate in the Northeast Atlantic and adjacent seas in the present century. A major obstacle for assessing changes in storm and wave conditions are inhomogeneities in the observational records, both in the local observations and in the analysed products, which usually produce an artificial increase of extreme winds and waves. Therefore, changes in the wave climate were assessed with a state-of-the-art wave model using wind analyses. Within the scope of the WASA project, a 40 year reconstruction (1955-1994) of the wave climate in the North Atlantic was completed using the WAM wave model. The input wind fields were assumed to be reasonably homogeneous with time in the area south of 70 N and east of 20 W, and it was expected that the hindcast wave data would reliably describe the space-time evolution of wave conditions in this area. The results of the hindcast experiment are presented in this article. The main conclusion was that the wave climate in most of the Northeast Atlantic and in the North Sea has undergone significant variations on time scales of decades. Part of variability was found to be related to the North Atlantic oscillation. As a general result we noted an increase of the maximum annual significant wave height over the last 40 years of about 5 to 10 cm/year for large parts of the Northeast Atlantic, north of the North Sea. There was also a slight increase of probabilities of high waves derived from conventional extreme value statistics in northwest approaches to the North Sea. Similar trends of the extreme waves were found in a scenario of future wave climate at a time of doubled C0{sub 2} concentration in the atmosphere. (orig.) 28 refs.

  2. Hindcasting cyclonic waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Chakravarty, N.V.

    for computing extreme wave conditions or design wave statistics. As far as Indian seas are concerned recorded wave data are available for short periods for some places along the coasts. Estimation of wave parameters by numerical wave forecasting schemes... is useful and attractive in many applications. It not only involves an enormous amount of computational effort but also needs elaborate meteorological and oceanographic data. Hindcasting waves using past storm wind fields can overcome this deficiency...

  3. A multi-decadal wind-wave hindcast for the North Sea 1949-2014: coastDat2

    Science.gov (United States)

    Groll, Nikolaus; Weisse, Ralf

    2017-12-01

    Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949-2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the doi:10.1594/WDCC/coastDat-2_WAM-North_Sea Groll and Weisse(2016) or via the coastDat web-page http://www.coastdat.de.

  4. Wave hindcast experiments in the Indian Ocean using MIKE 21 SW ...

    Indian Academy of Sciences (India)

    Wave prediction and hindcast studies are important in ocean engineering, coastal ... wave data can be used for the assessment of wave climate in offshore and coastal areas. In the .... for the change in performance during SW monsoon.

  5. Extended Long Wave Hindcast inside Port Solutions to Minimize Resonance

    Directory of Open Access Journals (Sweden)

    Gabriel Diaz-Hernandez

    2016-02-01

    Full Text Available The present study shows a methodology to carry out a comprehensive study of port agitation and resonance analysis in Geraldton Harbor (Western Australia. The methodology described and applied here extends the short and long wave hindcast outside the harbor and towards the main basin. To perform such an analysis, and as the first stage of the methodology, it is necessary to determine, in detail, both the long and short wave characteristics, through a comprehensive methodology to obtain and to hindcast the full spectral data (short waves + long waves, for frequencies between 0.005 and 1 Hz. Twelve-year spectral hindcast wave data, at a location before the reef, have been modified analytically to include the energy input associated with infragravity waves. A decomposition technique based on the energy balance of the radiation stress of short waves is followed. Predictions for long wave heights and periods at different harbor locations are predicted and validated with data recorded during 2004 to 2009. This new database will ensure an accurate and reliable assessment of long wave hourly data (height, period and currents in any area within the main basin of the Port of Geraldton, for its present geometry. With this information, two main task will be completed: (1 undertake a forensic diagnosis of the present response of the harbor, identifying those forcing characteristics related to inoperability events; and (2 propose any layout solutions to minimize, change, dissipate/fade/vanish or positively modify the effects of long waves in the harbor, proposing different harbor geometry modifications. The goal is to identify all possible combinations of solutions that would minimize the current inoperability in the harbor. Different pre-designs are assessed in this preliminary study in order to exemplify the potential of the methodology.

  6. Abnormal storm waves in the winter East/Japan Sea: generation process and hindcasting using an atmosphere-wind wave modelling system

    Directory of Open Access Journals (Sweden)

    H. S. Lee

    2010-04-01

    Full Text Available Abnormal storm waves cause coastal disasters along the coasts of Korean Peninsula and Japan in the East/Japan Sea (EJS in winter, arising due to developed low pressures during the East Asia winter monsoon. The generation of these abnormal storm waves during rough sea states were studied and hindcast using an atmosphere-wave coupled modelling system. Wind waves and swell due to developed low pressures were found to be the main components of abnormal storm waves. The meteorological conditions that generate these waves are classified into three patterns based on past literature that describes historical events as well as on numerical modelling. In hindcasting the abnormal storm waves, a bogussing scheme originally designed to simulate a tropical storm in a mesoscale meteorological model was introduced into the modelling system to enhance the resolution of developed low pressures. The modelling results with a bogussing scheme showed improvements in terms of resolved low pressure, surface wind field, and wave characteristics obtained with the wind field as an input.

  7. Wind waves in the Black Sea: results of a hindcast study

    Science.gov (United States)

    Arkhipkin, V. S.; Gippius, F. N.; Koltermann, K. P.; Surkova, G. V.

    2014-11-01

    In this study we describe the wind wave fields in the Black Sea. The general aims of the work were the estimation of statistical wave parameters and the assessment of interannual and seasonal wave parameter variability. The domain of this study was the entire Black Sea. Wave parameters were calculated by means of the SWAN wave model on a 5 × 5 km rectangular grid. Initial conditions (wind speed and direction) for the period between 1949 and 2010 were derived from the NCEP/NCAR reanalysis. According to our calculations the average significant wave height on the Black Sea does not exceed 0.7 m. Areas of most significant heavy sea are the southwestern and the northeastern parts of the sea as expressed in the spatial distribution of significant wave heights, wave lengths and periods. Besides, long-term annual variations of wave parameters were estimated. Thus, linear trends of the annual total duration of storms and of their quantity are nearly stable over the hindcast period. However, an intensification of storm activity is observed in the 1960s-1970s.

  8. The international workshop on wave hindcasting and forecasting and the coastal hazards symposium

    Science.gov (United States)

    Breivik, Øyvind; Swail, Val; Babanin, Alexander V.; Horsburgh, Kevin

    2015-05-01

    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection.

  9. The WASA detector at CELSIUS

    International Nuclear Information System (INIS)

    Bilger, R.; Blom, M.; Bogoslawsky, D.; Bondar, A.; Brodowski, W.; Calen, H.; Chuvilo, I.; Clement, H.; Dunin, V.; Dyring, J.; Ekstroem, C.; Fransson, K.; Friden, C-J.; Gustafsson, L.; Haeggstroem, S.; Hoeistad, B.; Jacewicz, M.; Johanson, J.; Johansson, A.; Johansson, T.; Khoukaz, A.; Kilian, K.; Kimura, N.; Koch, I.; Kolachev, G.; Komogorov, M.; Kullander, S.; Kupsc, A.; Kurdadze, L.; Kuzmin, A.; Kuznetsov, A.; Marciniewski, P.; Martemyanov, A.; Martemyanov, B.; Morosov, B.; Moertsell, A.; Nawrot, A.; Oelert, W.; Oreshkin, S.; Petukhov, Y.; Povtorejko, A.; Przestrzelska, K.; Paetzold, J.; Reistad, D.; Ruber, R.J.M.Y.; Sandukovsky, V.; Schuberth, U.; Sefzick, T.; Sidorov, V.; Shwartz, B.; Sopov, V.; Stepaniak, J.; Sukhanov, A.; Sukhanov, A.; Sundberg, P.; Tchernychev, V.; Tikhomirov, V.; Turowiecki, A.; Wagner, G.; Wilhelmi, Z.; Yamamoto, A.; Yamaoka, H.; Zabierowski, J.; Zernov, A.; Zlomanczuk, J.

    2000-01-01

    The assembly of the WASA 4π detector at the The Svedberg Laboratory in Uppsala is now completed. The superconducting solenoid, the vacuum chambers and all of the sensitive parts of the detector have been installed at the CELSIUS accelerator and storage ring. The pellet generator, providing internal hydrogen (and deuterium) targets, has been installed on top of WASA. The first test run together with the CELSIUS proton beam was carried through in May 1999

  10. GOW2.0: A global wave hindcast of high resolution

    Science.gov (United States)

    Menendez, Melisa; Perez, Jorge; Losada, Inigo

    2016-04-01

    The information provided by reconstructions of historical wind generated waves is of paramount importance for a variety of coastal and offshore purposes (e.g. risk assessment, design of costal structures and coastal management). Here, a new global wave hindcast (GOW2.0) is presented. This hindcast is an update of GOW1.0 (Reguero et al. 2012) motivated by the emergence of new settings and atmospheric information from reanalysis during recent years. GOW2.0 is based on version 4.18 of WaveWatch III numerical model (Tolman, 2014). Main features of the model set-up are the analysis and selection of recent source terms concerning wave generation and dissipation (Ardhuin et al. 2010, Zieger et al., 2015) and the implementation of obstruction grids to improve the modeling of wave shadowing effects in line with the approach described in Chawla and Tolman (2007). This has been complemented by a multigrid system and the use of the hourly wind and ice coverage from the Climate Forecast System Reanalysis, CFSR (30km spatial resolution approximately). The multigrid scheme consists of a series of "two-way" nested domains covering the whole ocean basins at a 0.5° spatial resolution and continental shelfs worldwide at a 0.25° spatial resolution. In addition, a technique to reconstruct wave 3D spectra for any grid-point is implemented from spectral partitioning information. A validation analysis of GOW2.0 outcomes has been undertaken considering wave spectral information from surface buoy stations and multi-mission satellite data for a spatial validation. GOW2.0 shows a substantial improvement over its predecessor for all the analyzed variables. In summary, GOW2.0 reconstructs historical wave spectral data and climate information from 1979 to present at hourly resolution providing higher spatial resolution over regions where local generated wind seas, bimodal-spectral behaviour and relevant swell transformations across the continental shelf are important. Ardhuin F, Rogers E

  11. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    Science.gov (United States)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  12. Evaluation and adjustment of altimeter measurement and numerical hindcast in wave height trend estimation in China's coastal seas

    Science.gov (United States)

    Li, Shuiqing; Guan, Shoude; Hou, Yijun; Liu, Yahao; Bi, Fan

    2018-05-01

    A long-term trend of significant wave height (SWH) in China's coastal seas was examined based on three datasets derived from satellite measurements and numerical hindcasts. One set of altimeter data were obtained from the GlobWave, while the other two datasets of numerical hindcasts were obtained from the third-generation wind wave model, WAVEWATCH III, forced by wind fields from the Cross-Calibrated Multi-Platform (CCMP) and NCEP's Climate Forecast System Reanalysis (CFSR). The mean and extreme wave trends were estimated for the period 1992-2010 with respect to the annual mean and the 99th-percentile values of SWH, respectively. The altimeter wave trend estimates feature considerable uncertainties owing to the sparse sampling rate. Furthermore, the extreme wave trend tends to be overestimated because of the increasing sampling rate over time. Numerical wave trends strongly depend on the quality of the wind fields, as the CCMP waves significantly overestimate the wave trend, whereas the CFSR waves tend to underestimate the trend. Corresponding adjustments were applied which effectively improved the trend estimates from the altimeter and numerical data. The adjusted results show generally increasing mean wave trends, while the extreme wave trends are more spatially-varied, from decreasing trends prevailing in the South China Sea to significant increasing trends mainly in the East China Sea.

  13. Hindcast of extreme sea states in North Atlantic extratropical storms

    Science.gov (United States)

    Ponce de León, Sonia; Guedes Soares, Carlos

    2015-02-01

    This study examines the variability of freak wave parameters around the eye of northern hemisphere extratropical cyclones. The data was obtained from a hindcast performed with the WAve Model (WAM) model forced by the wind fields of the Climate Forecast System Reanalysis (CFSR). The hindcast results were validated against the wave buoys and satellite altimetry data showing a good correlation. The variability of different wave parameters was assessed by applying the empirical orthogonal functions (EOF) technique on the hindcast data. From the EOF analysis, it can be concluded that the first empirical orthogonal function (V1) accounts for greater share of variability of significant wave height (Hs), peak period (Tp), directional spreading (SPR) and Benjamin-Feir index (BFI). The share of variance in V1 varies for cyclone and variable: for the 2nd storm and Hs V1 contains 96 % of variance while for the 3rd storm and BFI V1 accounts only for 26 % of variance. The spatial patterns of V1 show that the variables are distributed around the cyclones centres mainly in a lobular fashion.

  14. Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts

    Directory of Open Access Journals (Sweden)

    Hung-Ju Shih

    2018-02-01

    Full Text Available A 12-year sea-state hindcast for Taiwanese waters, covering the period from 2005 to 2016, was conducted using a fully coupled tide-surge-wave model. The hindcasts of significant wave height and peak period were employed to estimate the wave power resources in the waters surrounding Taiwan. Numerical simulations based on unstructured grids were converted to structured grids with a resolution of 25 × 25 km. The spatial distribution maps of offshore annual mean wave power were created for each year and for the 12-year period. Waters with higher wave power density were observed off the northern, northeastern, southeastern (south of Green Island and southeast of Lanyu and southern coasts of Taiwan. Five energetic sea areas with spatial average annual total wave energy density of 60–90 MWh/m were selected for further analysis. The 25 × 25 km square grids were then downscaled to resolutions of 5 × 5 km, and five 5 × 5 km optimal areas were identified for wave energy converter deployments. The spatial average annual total wave energy yields at the five optimal areas (S1–(S5 were estimated to be 64.3, 84.1, 84.5, 111.0 and 99.3 MWh/m, respectively. The prevailing wave directions for these five areas lie between east and northeast.

  15. Output fields from the NOAA WAVEWATCH III® wave model monthly hindcasts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA WAVEWATCH III® hindcast dataset comprises output fields from the monthly WAVEWATCH III® hindcast model runs conducted at the National Centers for...

  16. The 14th international workshop on wave hindcasting and forecasting and the 5th coastal hazards symposium

    Science.gov (United States)

    Breivik, Øyvind; Alves, Jose Henrique; Greenslade, Diana; Horsburgh, Kevin; Swail, Val

    2017-04-01

    Following the 14th International Workshop on Wave Hindcasting and Forecasting and 5th Coastal Hazards Symposium in November 2014 in Key West, Florida, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the 16 papers published in this topical collection as well as an overview of the widening scope of the conference in recent years. A general trend in the field has been towards closer integration between the wave and ocean modelling communities. This is also seen in this topical collection, with several papers exploring the interaction between surface waves and mixed layer dynamics and sea ice.

  17. Wind Atlas for South Africa (WASA) – Best practice guide for application of WASA

    DEFF Research Database (Denmark)

    Hansen, Jens Carsten; Mortensen, Niels Gylling; Cronin, Tom

    The present report is a best practice guide for application of results from the Wind Atlas for South Africa (WASA). A general description of the methodological framework – the wind atlas methodology – is given, including validation results of the numerical wind atlas at 10 measurement sites...

  18. Long Term Wave Climate at the Danish Test Site DanWEC Based on 35 Years Hindcast Data

    DEFF Research Database (Denmark)

    Tetu, Amélie; Jensen, Palle Martin; Kramer, Morten Mejlhede

    2017-01-01

    This paper presents an analysis of the wave climate of the DanWEC test site based on the 35 years hindcast data. This includes monthly and annual variation of the wave climate at the site together with an analysis of extreme events. This work includees results from the project “Resource Assessment...... and reduce WEC’s costs. The work so far has been concentrated on establishing the base for gaining detailed information on the wave and current climate at DanWEC. In this paper an analysis of the wave climate at the DanWEC test site based on 35 years modelled data will be presented. Relevant characteristics...... of the test site, such as scatter tables in terms of wave height and energy period (Hm0, Te) and weather window characteristics will be given. Based on 35 years of data gathered so far, an analysis of extreme events at the DanWEC test site is also included in this work....

  19. The WASA Data Acquisition System (WDAQ)

    CERN Document Server

    Gustafsson, L; Sukhanov, A

    1999-01-01

    The WASA Data Acquisition System (WDAQ) is described. It is a modular, and scalable network based system. The chosen structure facilitate that different old and new front-end electronics standards can work together in an efficient way. Fast hardware triggers are created from discriminated signals from specific parts of the WASA detector by extensive use of programmable logic. The trigger logic is configured to do cluster finding in one or two dimensions. The front- end data is linked together in an event-building switch using the Asynchronous Transfer Mode (ATM) protocol and sent to different PC- stations for further filtering, before put onto tape. The data analysis software is using the ROOT (CERN) system which provides a set of object oriented frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficient way. The slow control software is based on the MIDAS (PSI/TRIUMF) system and comprises a fast online database to keep and monitor all WDAQ parameters. The WAS...

  20. Charge symmetry breaking in the dd → {sup 4}Heπ{sup 0} reaction with WASA-at-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Maria [Forschungszentrum Juelich, Juelich (Germany); Collaboration: WASA-at-COSY-Collaboration

    2015-07-01

    Investigations of charge symmetry breaking is one of the key topics for the WASA-at-COSY experiment. The study concentrates on the charge symmetry forbidden dd → {sup 4}Heπ{sup 0} reaction. The aim is to compare the experimental results with Chiral Perturbation Theory predictions, probing hadronic effects of the up and down quarks mass difference. It was found that previous data taken close to the reaction threshold were consistent with s-wave. In order to probe also p-wave contributions, new data at sufficiently high energy were required. The measurement should comprise the charge symmetry forbidden dd → {sup 4}Heπ{sup 0} reaction and the charge symmetry conserving reaction dd → {sup 3}Henπ{sup 0} to provide additionally the experimental input for the description of the initial state interactions. Results on the dd → {sup 3}Henπ{sup 0} and dd → {sup 4}Heπ{sup 0} reactions with the WASA detector setup at a beam momentum of 1.2 GeV/c are presented. In addition, the status of the recent high statistics run in spring 2014 is discussed.

  1. Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation

    Directory of Open Access Journals (Sweden)

    Liliana Rusu

    2015-09-01

    Full Text Available The principal target of the present work is to assess the wave energy potential in the Black Sea, identifying also some relevant energetic features and possible patterns. A wave prediction system based on the Simulating Waves Nearshore model (SWAN has been implemented and intensively tested in the entire sea basin. Moreover, considering an optimal interpolation technique, an assimilation scheme of the satellite data has been developed, leading to a visible improvement of the wave model predictions in terms of significant wave heights and, consequently, also in terms of wave power. Using this wave prediction system with data assimilation, simulations have been performed for a 15-year period (1999–2013. Considering the results of this 15-year wave hindcast, an analysis of the wave energy conditions in the basin of the Black Sea has been carried out. This provided a more comprehensive picture concerning the wave energy patterns in the coastal environment of the Black Sea focused on the average wave conditions that might be expected in this sea. Following the results presented, it can be concluded that the wave energy extraction in the Black Sea can become an issue of interest, especially from the perspective of the hybrid solutions.

  2. Hadrons and broken symmetries with WASA- at-COSY

    Indian Academy of Sciences (India)

    Abstract. The WASA Detector Facility is an internal experiment at the cooler syn- .... This is an improvement of more than two orders of magnitude in the event ..... demonstrates the quality of the data for events coming from the reaction 1 GeV.

  3. Calculating Depth of Closure Using WIS Hindcast Data

    Science.gov (United States)

    2016-03-01

    revised the Hallermeier (1978, 1981) equations using data from the Duck , NC, U.S. Army Corps of Engineers (USACE) Field Research Facility. Many studies ... Study (WIS) hindcast stations along the United States coastlines. The results summarized in this CHETN are available in the form of a spreadsheet on...theoretical definition of DOC came from a study by Hallermeier (1978, 1981) using wave tank and field data. Initially, the DOC was related to the critical

  4. Mechanical design of the WASA DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Bashkanov, M; Clement, H; Doroshkevich, E; Perez del Rio, E Perez; Priking, A; Skorodko, T, E-mail: evd@pit.physik.uni-tuebingen.de [Physikalisches Institute, Eberhardt-Karls-Universitaet Tuebingen, 72076 Tuebingen (Germany)

    2011-10-15

    For precise measurements of the velocity of highly relativistic particles the detection of Cherenkov light is very promising. The Cherenkov rings can be reconstructed from the internally reflected Cherenkov photons detected with position sensitive photomultipliers. DIRC detectors (both in form of a barrel and in form of a disc) are planned to be used in the PANDA detector at FAIR. For the WASA-at-COSY experiment details of the DIRC elements manufacturing and their holding structure are discussed.

  5. The Wind Atlas for South Africa (WASA): A tool to aid developers and decision makers

    CSIR Research Space (South Africa)

    Mabille, E

    2015-10-01

    Full Text Available ): A tool to aid developers and decision makers Eugene Mabille The WASA Project Team SANEDI South African National Energy Development Institute • executing agency – contracting the implementing partners • coordination and dissemination UCT... to produce wind atlas for generalised surface conditions (uniform terrain and roughness). Files compatible with WAsP software.  Used for the first WASA published in 2012.  KAMM/WAsP method, numerically very cheap, gives good results  underestimation...

  6. Charge symmetry breaking in dd→{sup 4}Heπ{sup 0} with WASA-at-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Adlarson, P. [Division of Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden); Augustyniak, W. [Department of Nuclear Physics, National Centre for Nuclear Research, ul. Hoza 69, 00-681, Warsaw (Poland); Bardan, W. [Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków (Poland); Bashkanov, M. [Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany); Kepler Center for Astro and Particle Physics, Eberhard Karls University Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany); Bergmann, F.S. [Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster (Germany); Berłowski, M. [High Energy Physics Department, National Centre for Nuclear Research, ul. Hoza 69, 00-681, Warsaw (Poland); Bhatt, H. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra (India); Bondar, A. [Budker Institute of Nuclear Physics of SB RAS, 11 akademika Lavrentieva prospect, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090 (Russian Federation); Büscher, M. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); and others

    2014-12-12

    Charge symmetry breaking (CSB) observables are a suitable experimental tool to examine effects induced by quark masses on the nuclear level. Previous high precision data from TRIUMF and IUCF are currently used to develop a consistent description of CSB within the framework of chiral perturbation theory. In this work the experimental studies on the reaction dd→{sup 4}Heπ{sup 0} have been extended towards higher excess energies in order to provide information on the contribution of p-waves in the final state. For this, an exclusive measurement has been carried out at a beam momentum of p{sub d}=1.2 GeV/c using the WASA-at-COSY facility. The total cross section amounts to σ{sub tot}=(118±18{sub stat}±13{sub sys}±8{sub ext}) pb and first data on the differential cross section are consistent with s-wave pion production.

  7. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    Science.gov (United States)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  8. Mesoscale modeling for the Wind Atlas of South Africa (WASA) project

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Lennard, Chris; Badger, Jake

    This document reports on the methods used to create and the results of the two numerical wind atlases developed for the Wind Atlas for South Africa (WASA) project. The wind atlases were created using the KAMM-WAsP method and from the output of climate-type simulations of the Weather, Research...

  9. U.S. Navy Hindcast Spectral Ocean Wave Model Climatic Atlas: Mediterranean Sea

    Science.gov (United States)

    1990-01-01

    8217 (total) were obtained by summing the percent frequencies across each row. Rounding may cause minor differences between printed totals and total cell counts...34c9 3 N6 l7 4, i 5E F TI + e "t1- 4TI 3- ’$69"- -’ - + el4 𔄃 t 14 t , + t. -. ----- + 13,, 6 6 , 4- +0 2 4 9,: o . ;.. .;,+ + 5 ., 𔃿 6.--’ r’ ---- ’p...The SOWM generates ’en-.!rgy ’ariaLLcb’ cell within the 180 element matrix f The output from a SOWM hindcast includes a wind fields. There is a

  10. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  11. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  12. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  13. Study of light mesons with WASA-at-COSY

    Science.gov (United States)

    Prencipe, Elisabetta

    2014-06-01

    The WASA detector, operating at the COSY facility in Jülich (Germany) has been collecting data since 2007. The experiment allows to perform studies of light mesons, such as π0, η and ω rare decay processes, in order to perform precise measurements of branching ratios, determine Dalitz plot parameters, test symmetry and symmetry breaking, and evaluate transition form factors. In the experiments a proton or deuteron beam impinged on a pellet target of hydrogen or deuterium, which allows the reactions proton-proton (pp) or proton-deuteron (pd). A high-statistics sample of η mesons has been collected: in the reaction pd →3He η, 3×107η mesons were tagged at a beam energy of 1.0 GeV, while 5×108η mesons were produced in the reaction pp → ppη at 1.4 GeV. This corresponds to the production of 10 η/s and 100 η/s, respectively, for the two reaction processes. In the pp dataset a higher background level is found compared to the pd data set. In both cases, we identify the η mesons by means of the missing mass derived from the recoil particles. A kinematic fit largely rejects the background in our analysis. The advantage in using the pp dataset is that the production of η mesons is almost a factor of 10 higher than in the pd fusion to 3He. As we plan to measure the branching ratios of very rare processes, high statistics is needed. A summary of the recent activity on the study of light mesons with WASA-at-COSY here is given.

  14. Study of light mesons with WASA-at-COSY

    Directory of Open Access Journals (Sweden)

    Prencipe Elisabetta

    2014-06-01

    Full Text Available The WASA detector, operating at the COSY facility in Jülich (Germany has been collecting data since 2007. The experiment allows to perform studies of light mesons, such as π0, η and ω rare decay processes, in order to perform precise measurements of branching ratios, determine Dalitz plot parameters, test symmetry and symmetry breaking, and evaluate transition form factors. In the experiments a proton or deuteron beam impinged on a pellet target of hydrogen or deuterium, which allows the reactions proton-proton (pp or proton-deuteron (pd. A high-statistics sample of η mesons has been collected: in the reaction pd →3He η, 3×107η mesons were tagged at a beam energy of 1.0 GeV, while 5×108η mesons were produced in the reaction pp → ppη at 1.4 GeV. This corresponds to the production of 10 η/s and 100 η/s, respectively, for the two reaction processes. In the pp dataset a higher background level is found compared to the pd data set. In both cases, we identify the η mesons by means of the missing mass derived from the recoil particles. A kinematic fit largely rejects the background in our analysis. The advantage in using the pp dataset is that the production of η mesons is almost a factor of 10 higher than in the pd fusion to 3He. As we plan to measure the branching ratios of very rare processes, high statistics is needed. A summary of the recent activity on the study of light mesons with WASA-at-COSY here is given.

  15. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    Science.gov (United States)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  16. Encounter Probability of Significant Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    The determination of the design wave height (often given as the significant wave height) is usually based on statistical analysis of long-term extreme wave height measurement or hindcast. The result of such extreme wave height analysis is often given as the design wave height corresponding to a c...

  17. Spectator tagging in quasi-free pn-reactions on deuterium at PROMICE/WASA, CELSIUS

    International Nuclear Information System (INIS)

    Bilger, R.; Brodowski, W.; Calen, H.; Clement, H.; Dunin, V.; Dyring, J.; Ekstroem, C.; Fransson, K.; Greiff, J.; Gustafsson, L.; Haeggstroem, S.; Hoeistad, B.; Johanson, J.; Johansson, A.; Johansson, T.; Khoukaz, A.; Kilian, K.; Koch, I.; Kullander, S.; Kupsc, A.; Marciniewski, P.; Morosov, B.; Neubauer, T.; Oelert, W; Ruber, R.; Shwartz, B.; Stepaniak, J.; Sukhanov, A.; Sukhanov, A.; Sundberg, P.; Turowiecki, A.; Wagner, G.; Wilhelmi, Z.; Wilkin, C.; Zabierowski, J.; Zernov, A.; Zlomanczuk, J.

    2000-01-01

    A set of silicon detectors has been added to the PROMICE/WASA (P/W) experiment at CELSIUS. These detectors have been used for spectator-proton tagging in proton deuteron collisions to investigate proton-neutron reactions at intermediate energies. The performance of the setup has been tested by measuring the pd → dπ o p spectator reaction

  18. Wind Atlas for South Africa (WASA). Report on Measurements

    DEFF Research Database (Denmark)

    Mabille, Eugéne; Prinsloo, Eric; Mortensen, Niels Gylling

    , to verify the results of the meso-scale modelling. The Measurements work package (WP2) is one of six work packages that collectively make up the Wind Atlas for South Africa (WASA) project. The measurements also provide observed wind climates at the measurement sites, which can be used by micrositing...... to be commissioned was WM06 (Sutherland) and this was completed on 17 September 2010. The outputs of WP2 are: i. Establish 10 high quality wind measurement stations providing three years of measurement data for calibration of the mesoscale modelling. ii. A database system for wind data collection and on-line Web...

  19. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    Science.gov (United States)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  20. Long-term wave climate at DanWEC

    DEFF Research Database (Denmark)

    Tetu, Amélie; Kofoed, Jens Peter

    andthe current network of sensors are also presented. The numerical model used toobtain the 35 years hindcast data is introduced together with its validation againstbuoy-measured data and with the description of the dataset utilised for thelong-term climate definition. The recommendations from [IEC 62600...... buoys are continuously recorded and the data is analysed on a quarterly basis. The directional wave measuring buoys were first installed in March 2015. As two years is not sufficient for long-term wave climate definition, modelled data was more appropriate for the task. Thelong-term wave climate around...... Hanstholm is defined in the present report using the hindcast data from the MIKE 21 Spectral Wave model provided by DHI, one of the partners of the project. Before the actual wave climate definition, a description of the site includinglocation and bathymetry is included. The historical wave data of the area...

  1. Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts

    Science.gov (United States)

    Brune, Sebastian; Düsterhus, André; Pohlmann, Holger; Müller, Wolfgang A.; Baehr, Johanna

    2017-11-01

    We analyze the time dependency of decadal hindcast skill in the North Atlantic subpolar gyre within the time period 1961-2013. We compare anomaly correlation coefficients and temporal interquartile ranges of total upper ocean heat content and sea surface temperature for three differently initialized sets of hindcast simulations with the global coupled model MPI-ESM. All initializations use weakly coupled assimilation with the same full value nudging in the atmospheric component and different assimilation techniques for oceanic temperature and salinity: (1) ensemble Kalman filter assimilating EN4 observations and HadISST data, (2) nudging of anomalies to ORAS4 reanalysis, (3) nudging of full values to ORAS4 reanalysis. We find that hindcast skill depends strongly on the evaluation time period, with higher hindcast skill during strong multiyear trends, especially during the warming in the 1990s and lower hindcast skill in the absence of such trends. Differences between the prediction systems are more pronounced when investigating any 20-year subperiod within the entire hindcast period. In the ensemble Kalman filter initialized hindcasts, we find significant correlation skill for up to 5-8 lead years, albeit along with an overestimation of the temporal interquartile range. In the hindcasts initialized by anomaly nudging, significant correlation skill for lead years greater than two is only found in the 1980s and 1990s. In the hindcasts initialized by full value nudging, correlation skill is consistently lower than in the hindcasts initialized by anomaly nudging in the first lead years with re-emerging skill thereafter. The Atlantic meridional overturning circulation reacts on the density changes introduced by oceanic nudging, this limits the predictability in the subpolar gyre in the first lead years. Overall, we find that a model-consistent assimilation technique can improve hindcast skill. Further, the evaluation of 20 year subperiods within the full hindcast period

  2. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  3. Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts with MPI-ESM

    Science.gov (United States)

    Brune, Sebastian; Düsterhus, Andre; Pohlmann, Holger; Müller, Wolfgang; Baehr, Johanna

    2017-04-01

    We analyze the time dependency of decadal hindcast skill in the North Atlantic subpolar gyre within the time period 1961-2013. We compare anomaly correlation coefficients and interquartile ranges of total upper ocean heat content and sea surface temperature for three differently initialized sets of hindcast simulations with the global coupled model MPI-ESM. All initializations use weakly coupled assimilation with the same full-field nudging in the atmospheric component and different assimilation techniques for oceanic temperature and salinity: (1) ensemble Kalman filter assimilating EN4 and HadISST observations, (2) nudging of anomalies to ORAS4 reanalysis, (3) nudging of full values to ORAS4 reanalysis. We find that hindcast skill depends strongly on the evaluation time period, with higher hindcast skill during strong multiyear trends and lower hindcast skill in the absence of such trends. While there may only be small differences between the prediction systems in the analysis focusing on the entire hindcast period, these differences between the hindcast systems are much more pronounced when investigating any 20-year subperiod within the entire hindcast period. For the ensemble Kalman filter high skill in the assimilation experiment is generally linked to high skill in the initialized hindcasts. Such direct link does not seem to exist in the hindcasts initialized by either nudged system. In the ensemble Kalman filter initialized hindcasts, we find significant hindcast skill for up to 5 to 8 lead years, except for the 1970s. In the nudged system initialized hindcasts, hindcast skill is consistently diminished in lead years 2 and 3 with lowest skill in the 1970s as well. Overall, we find that a model-consistent assimilation technique can improve hindcast skill. Further, the evaluation of 20 year subperiods within the full hindcast period provides essential insights to judge the success of both the assimilation and the subsequent hindcast skill.

  4. Proceedings of the First International Workshop on Automotive Software Architecture (WASA'15, Montreal, Canada, May 4, 2015)

    NARCIS (Netherlands)

    Kruchten, P.; Dajsuren, Y.; Altinger, H.; Staron, M.

    2015-01-01

    It is our great pleasure to welcome you to the First International Workshop on Automotive Software Architectures -- WASA'15. More than a decade ago, the term automotive software engineering was officially introduced in the software community addressing research challenges and technical issues

  5. Application of Bayesian Networks to hindcast barrier island morphodynamics

    Science.gov (United States)

    Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.

    2015-01-01

    Prediction of coastal vulnerability is of increasing concern to policy makers, coastal managers and other stakeholders. Coastal regions and barrier islands along the Atlantic and Gulf coasts are subject to frequent, large storms, whose waves and storm surge can dramatically alter beach morphology, threaten infrastructure, and impact local economies. Given that precise forecasts of regional hazards are challenging, because of the complex interactions between processes on many scales, a range of probable geomorphic change in response to storm conditions is often more helpful than deterministic predictions. Site-specific probabilistic models of coastal change are reliable because they are formulated with observations so that local factors, of potentially high influence, are inherent in the model. The development and use of predictive tools such as Bayesian Networks in response to future storms has the potential to better inform management decisions and hazard preparation in coastal communities. We present several Bayesian Networks designed to hindcast distinct morphologic changes attributable to the Nor'Ida storm of 2009, at Fire Island, New York. Model predictions are informed with historical system behavior, initial morphologic conditions, and a parameterized treatment of wave climate.

  6. Spectator tagging in quasi-free pn-reactions on deuterium at PROMICE/WASA, CELSIUS

    CERN Document Server

    Bilger, R; Calén, H; Clement, H; Dunin, V; Dyring, J; Ekström, C; Fransson, K; Greiff, J; Gustafsson, L; Häggström, S; Hoeistad, B; Johanson, J; Johansson, A; Johansson, T; Khoukaz, A; Kilian, K; Koch, I; Kullander, Sven; Kupsc, A; Marciniewski, P; Morosov, B; Neubauer, T; Oelert, W; Ruber, Roger J M Y; Shwartz, B A; Stepaniak, J; Sukhanov, A; Sukhanov, A; Sundberg, P; Turowiecki, A; Wagner, G; Wilhelmi, Z; Wilkin, C; Zabierowski, J; Zernov, A; Zlomanczuk, Yu

    2000-01-01

    A set of silicon detectors has been added to the PROMICE/WASA (P/W) experiment at CELSIUS. These detectors have been used for spectator-proton tagging in proton deuteron collisions to investigate proton-neutron reactions at intermediate energies. The performance of the setup has been tested by measuring the pd -> d pi sup o p sub s sub p sub e sub c sub t sub a sub t sub o sub r reaction

  7. On the Extreme Wave Height Analysis

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....

  8. First Successful Hindcasts of the 2016 Disruption of the Stratospheric Quasi-biennial Oscillation

    Science.gov (United States)

    Watanabe, S.; Hamilton, K.; Osprey, S.; Kawatani, Y.; Nishimoto, E.

    2018-02-01

    In early 2016 the quasi-biennial oscillation in tropical stratospheric winds was disrupted by an anomalous easterly jet centered at 40 hPa, a development that was completely missed by all operational extended range weather forecast systems. This event and its predictability are investigated through 40 day ensemble hindcasts using a global model notable for its sophisticated representation of the upper atmosphere. Integrations starting at different times throughout January 2016—just before and during the initial development of the easterly jet—were performed. All integrations simulated the unusual developments in the stratospheric mean wind, despite considerable differences in other aspects of the flow evolution among the ensemble members, notably in the evolution of the winter polar vortex and the day-to-day variations in extratropical Rossby waves. Key to prediction of this event is simulating the slowly evolving mean winds in the winter subtropics that provide a waveguide for Rossby waves propagating from the winter hemisphere.

  9. Atlantic Coast Hindcast, Shallow-Water, Significant Wave Information.

    Science.gov (United States)

    1983-01-01

    AULICS LAB N E JENSEN JAN 83 UNCLASSIFIED W SRF 21NL mEEohhohhhmhEE EhhhEmmhhmhEEEE 1111 .0= 128 llI Ir111-1 11111.6 MICROCOPY RESOLUTION TEST CHART...six data products: 1. Geographical variation in the wave climate :, 2. Twenty-year percent occurrence tables: (Continued) DD EUnclassified SECUmTY...PAOCleWff DO& MIew0O I]1 Preface In late 1976, a study to produce a wave climate for U. S. coastal waters was initiated at the U. S. Army Engineer

  10. Wind fields of storms from surface isobars for wave hindcasting

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Vaithiyanathan, R.; Santanam, K.

    Marine operations of various types are critically linked to mean and extreme wave statistics. In the Indian seas extreme wave conditions are caused by cyclones and steady strong monsoon winds. Wave data from cyclone areas are not directly available...

  11. Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts

    Science.gov (United States)

    Shonk, Jonathan K. P.; Guilyardi, Eric; Toniazzo, Thomas; Woolnough, Steven J.; Stockdale, Tim

    2018-02-01

    The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere-ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about 10 days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin.

  12. Wave Data Acquisition and Hindcast for Saginaw Bay, Michigan.

    Science.gov (United States)

    1983-06-01

    Bretschneider (1952) and Mitsuyasu and Kimura (1965) for f the peak fre- %m quency (where fm = f g/U) while the total energy decay rate follows that mm...Spectra of Wind-Generated Gravity Waves," Journal of Physical Oceanography, Vol 5, pp 410-420. Mitsuyasu, Hisashi . 1968. "On the Growth of the...8217 . , / . - . ’ -’ -. .. ’ . .. _..- -’ - Mitsuyasu, Hisashi , and Kirmura, Hisao. 1965. "Wind Wave in Decay Area," Coastal Engineering in Japan, Vol 8, pp 221-35. Ou, Shan-Hwei. 1980 (Sep

  13. Hindcasting of storm waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.

    Department NN neural network net i weighted sum of the inputs of neuron i o k network output at kth output node P total number of training pattern s i output of neuron i t k target output at kth output node 1. Introduction Severe storms occur in Bay of Bengal...), forecasting of runoff (Crespo and Mora, 1993), concrete strength (Kasperkiewicz et al., 1995). The uses of neural network in the coastal the wave conditions will change from year to year, thus a proper statistical and climatological treatment requires several...

  14. Feasibility study of the {eta}'{yields} {pi}{sup +} {pi}{sup -} {pi}{sup 0} decay using WASA-at-COSY apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, M.

    2008-07-15

    One of the objectives of the vast physics programme of the recently commissioned WASA-at-COSY facility is the study of fundamental symmetries via the measurements of the {eta} and {eta}' mesons decays. Especially interesting are isospin violating hadronic precesses of these mesons into 3{pi} systems driven by the term of QCD Lagrangian which depends on the mass difference of the u and d quarks. When an {eta} or an {eta}' meson is created in the hadronic reaction signals from such decays may be significantly obscured by the prompt production of {pi} mesons. In this thesis we present the estimation of the upper limit of the background due to prompt pion production for the {eta}'{yields}3{pi}{sup 0} and {eta}'{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0} decays. Using the data from proton-proton collisions measured by the COSY-11 group we have extracted differential cross sections for the multimeson production with the invariant mass corresponding to the mass of the {eta}' meson. Based on these results and on parametrizations of the total cross sections for the {eta}' meson as well as parametrization of the upper limit for the prompt pi{sup +}pi{sup -}pi{sup 0} production in the collisions of protons we discuss in details the feasibility of a measurement of the {eta}' meson decay into 3{pi} channels with the WASA-at-COSY facility. Based on the chiral unitary approach the value of the branching ratio BR({eta}'{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}) was recently predicted to be about 1%. We show that the WASA-at-COSY has a potential to verify this result empirically. (orig.)

  15. Wind waves on the Black Sea: results of a hindcast study

    Science.gov (United States)

    Arkhipkin, V. S.; Gippius, F. N.; Koltermann, K. P.; Surkova, G. V.

    2014-02-01

    In this study we describe the wind waves fields on the Black Sea. The general aims of the work were the estimation of statistical wave parameters and the assessment of interannual and seasonal storm variability. The domain of this study was the entire Black Sea. Wave parameters were calculated by means of the SWAN wave model on a 5 km × 5 km rectangular grid. Initial conditions (wind speed and direction) for the period between 1948 and 2010 were derived from the NCEP/NCAR reanalysis. In our calculations the average significant wave height on the Black Sea does not exceed 0.7 m. Areas of most significant storminess are the south-western and the north-eastern corners as expressed in the spatial distribution of wave heights, wave lengths and periods. Besides that, long-term annual variations of storminess were estimated. Thus, linear trends of the annual total duration of storms and of their quantity are nearly stable over the reanalysis period. However, an intensification of storm activity is observed in the 1960s-1970s.

  16. Wave simulation for the design of an innovative quay wall: the case of Vlorë Harbour

    Science.gov (United States)

    Antonini, Alessandro; Archetti, Renata; Lamberti, Alberto

    2017-01-01

    Sea states and environmental conditions are basic data for the design of marine structures. Hindcasted wave data have been applied here with the aim of identifying the proper design conditions for an innovative quay wall concept. In this paper, the results of a computational fluid dynamics model are used to optimise the new absorbing quay wall of Vlorë Harbour (Republic of Albania) and define the design loads under extreme wave conditions. The design wave states at the harbour entrance have been estimated analysing 31 years of hindcasted wave data simulated through the application of WaveWatch III. Due to the particular geography and topography of the Bay of Vlorë, wave conditions generated from the north-west are transferred to the harbour entrance with the application of a 2-D spectral wave module, whereas southern wave states, which are also the most critical for the port structures, are defined by means of a wave generation model, according to the available wind measurements. Finally, the identified extreme events have been used, through the NewWave approach, as boundary conditions for the numerical analysis of the interaction between the quay wall and the extreme events. The results show that the proposed method, based on numerical modelling at different scales from macro to meso and to micro, allows for the identification of the best site-specific solutions, also for a location devoid of any wave measurement. In this light, the objectives of the paper are two-fold. First, they show the application of sea condition estimations through the use of wave hindcasted data in order to properly define the design wave conditions for a new harbour structure. Second, they present a new approach for investigating an innovative absorbing quay wall based on CFD modelling and the NewWave theory.

  17. Numerical investigations of the WASA pellet target operation and proposal of a new technique for the PANDA pellet target

    International Nuclear Information System (INIS)

    Varentsov, Victor L.

    2011-01-01

    The conventional nozzle vibration technique of the hydrogen micro-droplet generation that is supposed to be used for internal pellet target production for the future PANDA experiment at the international FAIR facility in Darmstadtfor is described. The operation of this technique has been investigated by means of detailed computer simulations. Results of calculations for the geometry and operation conditions of the WASA pellet generator are presented and discussed. We have found that for every given pellet size, there is a set of operation parameters where the efficiency of the WASA hydrogen pellet target operation is considerably increased. Moreover, the results of presented computer simulations clearly show that the future PANDA pellet target setup can be realized with the use of much smaller (and cheaper) vacuum pumps than those used at present in the WASA hydrogen pellet target. To qualitatively improve the PANDA hydrogen pellet target performance we have proposed the use of a novel flow focusing method of Ganan-Calvo and Barreto (1997,1999) combined with the use of conventional vacuum injection capillary. Possibilities of this approach for the PANDA pellet target production have been also explored by means of computer simulations. The results of these simulations show that the use of this new approach looks very promising and in particular, there is no need here to use of expensive ultra-pure hydrogen to prevent nozzle clogging or freezing up due to impurities and it will allow simple, fast, smooth and a wide range of change of pellet sizes in accordance with requirements of different experiments at the PANDA detector. In this article we also propose and describe the idea of a new technique to break up a liquid microjet into microdroplets using a process of liquid jet evaporation under pulsed laser beam irradiation. This technique should be experimentally checked before it may be used in the design of the future PANDA pellet target setup.

  18. Numerical investigations of the WASA pellet target operation and proposal of a new technique for the PANDA pellet target

    Energy Technology Data Exchange (ETDEWEB)

    Varentsov, Victor L., E-mail: v.varentsov@gsi.de [Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2011-08-01

    The conventional nozzle vibration technique of the hydrogen micro-droplet generation that is supposed to be used for internal pellet target production for the future PANDA experiment at the international FAIR facility in Darmstadtfor is described. The operation of this technique has been investigated by means of detailed computer simulations. Results of calculations for the geometry and operation conditions of the WASA pellet generator are presented and discussed. We have found that for every given pellet size, there is a set of operation parameters where the efficiency of the WASA hydrogen pellet target operation is considerably increased. Moreover, the results of presented computer simulations clearly show that the future PANDA pellet target setup can be realized with the use of much smaller (and cheaper) vacuum pumps than those used at present in the WASA hydrogen pellet target. To qualitatively improve the PANDA hydrogen pellet target performance we have proposed the use of a novel flow focusing method of Ganan-Calvo and Barreto (1997,1999) combined with the use of conventional vacuum injection capillary. Possibilities of this approach for the PANDA pellet target production have been also explored by means of computer simulations. The results of these simulations show that the use of this new approach looks very promising and in particular, there is no need here to use of expensive ultra-pure hydrogen to prevent nozzle clogging or freezing up due to impurities and it will allow simple, fast, smooth and a wide range of change of pellet sizes in accordance with requirements of different experiments at the PANDA detector. In this article we also propose and describe the idea of a new technique to break up a liquid microjet into microdroplets using a process of liquid jet evaporation under pulsed laser beam irradiation. This technique should be experimentally checked before it may be used in the design of the future PANDA pellet target setup.

  19. Assessment of Arctic and Antarctic sea ice predictability in CMIP5 decadal hindcasts

    Directory of Open Access Journals (Sweden)

    C.-Y. Yang

    2016-10-01

    Full Text Available This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5 models. Decadal hindcasts exhibit a large multi-model spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3–7 years, but there is a re-emerging predictive skill in the North Atlantic at a lead time of 6–8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic.

  20. Investigation of the charge symmetry breaking reaction dd → {sup 4}Heπ{sup 0} with the WASA-at-COSY facility

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Maria Katarzyna

    2017-07-01

    Probing elementary symmetries and symmetry breaking tests our understanding of the theory of strong forces, Quantum Chromodynamics. The presented study concentrates on the charge symmetry forbidden reaction dd → {sup 4}Heπ{sup 0}. The aim is to provide experimental results for comparison with predictions from Chiral Perturbation Theory (χ{sub PT}) to study effects induced by quark masses on the hadronic level, e.g., the proton-neutron mass difference. First calculations showed that in addition to the existing high-precision data from TRIUMF and IUCF, more data are required for a precise determination of the parameters of χ{sub PT}. These new data should comprise the measurement of the charge symmetry forbidden dd → {sup 4}Heπ{sup 0} reaction at sufficiently high energy, where the p-wave contribution becomes important. A first measurement with the WASA-at-COSY experiment at an excess energy of ε = 60 MeV was performed, but the results did not allow for a decisive interpretation because of limited statistics. This thesis reports on a second measurement of the dd → {sup 4}Heπ{sup 0} reaction at ε = 60 MeV using an improved WASA detector setup aiming at higher statistics. A sample of 336 ± 43 event candidates have been extracted using a data set from an eight-week long beamtime, and total and differential cross sections have been determined. The angular distribution has been described with a function of the form dσ/dΩ = a + b cos{sup 2}θ*, where θ* is the scattering angle of the pion in the c.m. coordinate system. The obtained parameters a and b and the total cross section are: a = (1.75 ± 0.46(stat.){sup +0.31}{sub -0.8}(syst.)) pb/sr, b = (13.6 ± 2.2(stat.){sup +0.9}{sub -2.7}(syst.)) pb/sr, σ{sub tot} = (79.1 ± 7.3(stat.){sup +1.2}{sub -10.5}(syst.) ± 8.1(norm.) ± 2.0(lumi. syst.)) pb. For this experiment a modified detector setup optimized for a time-of-flight measurement of the forward going particles has been used. After detector

  1. Analysis and Hindcast Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+DART

    Science.gov (United States)

    Pedatella, N. M.; Liu, H.-L.; Marsh, D. R.; Raeder, K.; Anderson, J. L.; Chau, J. L.; Goncharenko, L. P.; Siddiqui, T. A.

    2018-04-01

    The ability to perform data assimilation in the Whole Atmosphere Community Climate Model eXtended version (WACCMX) is implemented using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. Results are presented demonstrating that WACCMX+DART analysis fields reproduce the middle and upper atmosphere variability during the 2009 major sudden stratospheric warming (SSW) event. Compared to specified dynamics WACCMX, which constrains the meteorology by nudging toward an external reanalysis, the large-scale dynamical variability of the stratosphere, mesosphere, and lower thermosphere is improved in WACCMX+DART. This leads to WACCMX+DART better representing the downward transport of chemical species from the mesosphere into the stratosphere following the SSW. WACCMX+DART also reproduces most aspects of the observed variability in ionosphere total electron content and equatorial vertical plasma drift during the SSW. Hindcast experiments initialized on 5, 10, 15, 20, and 25 January are used to assess the middle and upper atmosphere predictability in WACCMX+DART. A SSW, along with the associated middle and upper atmosphere variability, is initially predicted in the hindcast initialized on 15 January, which is ˜10 days prior to the warming. However, it is not until the hindcast initialized on 20 January that a major SSW is forecast to occur. The hindcast experiments reveal that dominant features of the total electron content can be forecasted ˜10-20 days in advance. This demonstrates that whole atmosphere models that properly account for variability in lower atmosphere forcing can potentially extend the ionosphere-thermosphere forecast range.

  2. On the probability of occurrence of rogue waves

    Directory of Open Access Journals (Sweden)

    E. M. Bitner-Gregersen

    2012-03-01

    Full Text Available A number of extreme and rogue wave studies have been conducted theoretically, numerically, experimentally and based on field data in the last years, which have significantly advanced our knowledge of ocean waves. So far, however, consensus on the probability of occurrence of rogue waves has not been achieved. The present investigation is addressing this topic from the perspective of design needs. Probability of occurrence of extreme and rogue wave crests in deep water is here discussed based on higher order time simulations, experiments and hindcast data. Focus is given to occurrence of rogue waves in high sea states.

  3. Trend analysis of wave storminess: wave direction and its impact on harbour agitation

    Directory of Open Access Journals (Sweden)

    M. Casas-Prat

    2010-11-01

    Full Text Available In the context of wave climate variability, long-term alterations in the wave storminess pattern of the Catalan coast (northwestern Mediterranean Sea are analysed in terms of wave energy content and wave direction, on the basis of wave hindcast data (from 44-year time series. In general, no significant temporal trends are found for annual mean and maximum energy. However, the same analysis carried out separately for different wave directions reveals a remarkable increase in the storm energy of events from the south, which is partly due to a rise in the annual percentage of such storms. A case study of Tarragona Port (on the southern Catalan coast highlights the importance of including changes in wave direction in the study of potential impacts of climate change. In particular, an increase in the frequency of storms from the south leads to greater agitation inside the Port.

  4. Hindcast of breaking waves and its impact at an island sheltered coast, Karwar

    Science.gov (United States)

    Dora, G. Udhaba; Kumar, V. Sanil

    2018-01-01

    Variability in the characteristics of depth-induced wave breakers along a non-uniform coastal topography and its impact on the morpho-sedimentary processes is examined at the island sheltered wave-dominated micro-tidal coast, Karwar, west coast of India. Waves are simulated using the coupled wind wave model, SWAN nested in WAVEWATCH III, forced by the reanalysis winds from different sources (NCEP/NCAR, ECMWF, and NCEP/CFSR). Impact of the wave breakers is evaluated through mean longshore current and sediment transport for various wave energy conditions across different coastal morphology. Study revealed that the NCEP/CFSR wind is comparatively reasonable in simulation of nearshore waves using the SWAN model nested by 2D wave spectra generated from WAVEWATCH III. The Galvin formula for estimating mean longshore current using the crest wave period and the Kamphuis approximation for longshore sediment transport is observed realistically at the sheltered coastal environment while the coast interacts with spilling and plunging breakers.

  5. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    Science.gov (United States)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    This quarter was largely devoted to a detailed study of temperature data acquired by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS. Our analysis used the same sequence of methods that have been developed, tested and refined on a more limited subset of temperature data acquired by the CRISTA instrument. We focused on a limited subset of our reasoning that geographical and vertical trends in the small-scale temperature variability could be compared with similar trends observed in November 1994 by the CRISTA-SPAS satellite. Results, backed up with hindcasts from the Mountain Wave Forecast Model (MWFM), reveal strong evidence of mountain waves, most persuasively in the Himalayas on 16-17 November, 1992. These CLAES results are coherent over the 30-50 km range and compare well with MWFM hindcasts for the same period. This constitutes, we believe, the first clear evidence that CLAES explicitly resolved long wavelength gravity waves in its CO2 temperature channel. A series of other tasks, related to mesoscale modeling of mountain waves in CRISTA data and fitting of ground-based and HRDI data on global scales, were seen through to publication stage in peer-reviewed journals.

  6. Towards a new upper limit for the η-decay η→π{sup 0} + e{sup +} + e{sup -} with WASA-at-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Florian; Demmich, Kay; Huesken, Nils; Sitterberg, Karsten; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Collaboration: WASA-at-COSY-Collaboration

    2015-07-01

    A major part of the WASA-at-COSY experimental program is dedicated to investigations on symmetries and symmetry breaking to get a better understanding of the physics within the standard model. An elegant way to search for violation of conservation laws, which are directly connected to symmetry breaking effects, is the study of rare meson decays. Here the η-meson is of particular interest. High statistics of η-meson production are required to obtain new limits on the C, P and T symmetry breaking or combinations thereof. The study of rare meson decays also allows to search for physics beyond the standard model like the dark photon. In this contribution we present and discuss investigations of the C-violating η-decay η→π{sup 0} + e{sup +} + e{sup -} using the high statistics p+d→{sup 3}He+η data obtained with WASA-at-COSY. The dominant C-conserving contribution to this decay via a π{sup 0}+γ*+γ* intermediate state has an expected branching ratio of less than 10{sup -8} in the standard model. An observation of a significantly higher branching ratio would indicate the presence of a C-violating process.

  7. Building a Pre-Competitive Knowledge Base to Support Australia's Wave Energy Industry

    Science.gov (United States)

    Hoeke, R. K.; Hemer, M. A.; Symonds, G.; Rosebrock, U.; Kenyon, R.; Zieger, S.; Durrant, T.; Contardo, S.; O'Grady, J.; Mcinnes, K. L.

    2016-02-01

    A pre-competitive, query-able and openly available spatio-temporal atlas of Australia's wind-wave energy resource and marine management uses is being delivered. To provide the best representation of wave energy resource information, accounting for both spatial and temporal characteristics of the resource, a 34+yr numerical hindcast of wave conditions in the Australian region has been developed. Considerable in situ and remotely sensed data have been collected to support calibration and validation of the hindcast, resulting in a high-quality characterisation of the available wave resource in the Australian domain. Planning for wave energy projects is also subject to other spatial constraints. Spatial information on alternative uses of the marine domain including, for example, fisheries and aquaculture, oil and gas, shipping, navigation and ports, marine parks and reserves, sub-sea cables and infrastructure, shipwrecks and sites of cultural significance, have been compiled to complement the spatial characterisation of resource and support spatial planning of future wave energy projects. Both resource and spatial constraint information are being disseminated via a state-of-the-art portal, designed to meet the needs of all industry stakeholders. Another aspect currently impeding the industry in Australia is the limited evidence-base of impacts of wave energy extraction on adjacent marine and coastal environments. To build this evidence base, a network of in situ wave measurement devices have been deployed surrounding the 3 wave energy converters of Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to calibrate and validate numerical simulations of the project site. Early stage results will be presented.

  8. The climatology of the Red Sea - part 2: the waves

    KAUST Repository

    Langodan, Sabique; Cavaleri, Luigi; Pomaro, Angela; Vishwanadhapalli, Yesubabu; Bertotti, Luciana; Hoteit, Ibrahim

    2017-01-01

    The wave climatology of the Red Sea is described based on a 30-year hindcast generated using WAVEWATCH III configured on a 5-km resolution grid and forced by Red Sea reanalysis surface winds from the advanced Weather Research and Forecasting model

  9. Process-based, morphodynamic hindcast of decadal deposition (1856-1887) and erosion (1951-1983) patterns in San Pablo Bay, California

    Science.gov (United States)

    Wegen, M. V.; Jaffe, B. E.; Roelvink, J.

    2009-12-01

    The objective of the current research is to hindcast decadal morphodynamic development in San Pablo Bay, California, USA using a process-based, numerical model, Delft3D. Experience gained in the current research will be ultimately used to model future morphodynamic changes in San Pablo Bay under different scenarios of climate change. Delft3D is run in 3D mode including wind waves, salt and fresh water interaction, sand and mud fractions and applies a sophisticated morphodynamic update scheme [Roelvink (2006)]. Model outcomes are evaluated against measured bathymetric developments [Cappiella (1999), Jaffe et al (2007)] and include an extensive sensitivity analysis on model parameter settings. In the 19th century more than 250 million cubic meters of sediment was deposited in San Pablo Bay because of the increased sediment load associated with hydraulic gold mining activities. When mining stopped and dam construction regulated river flows and trapped sediment upstream early 20th century, San Pablo Bay showed an eroding trend. Focus of the hindcast is on the 1856 to 1887 depositional period and on the 1951 to 1983 erosional period. The results of the model heavily depend on parameter settings related to sediment transport, bed composition and boundary conditions schematization. A major handicap is that the (historic) values of these parameters are not known in detail. Recommendations by Ganju et al. (2008) are used to overcome this problem. The results show, however, that applying best-guess model parameter settings can predict decadal morphodynamic developments reasonably well in San Pablo Bay. From all varied settings sediment concentration, river discharge and waves have the most significant effect on deposition volumes, whereas waves have the most impact on sediment distribution within San Pablo Bay. For the depositional period Brier Skill Scores have values around 0.25 with a maximum of 0.43 (qualified as ‘good’) although higher values (up to 0.65) were

  10. Hindcasting to measure ice sheet model sensitivity to initial states

    Directory of Open Access Journals (Sweden)

    A. Aschwanden

    2013-07-01

    Full Text Available Validation is a critical component of model development, yet notoriously challenging in ice sheet modeling. Here we evaluate how an ice sheet system model responds to a given forcing. We show that hindcasting, i.e. forcing a model with known or closely estimated inputs for past events to see how well the output matches observations, is a viable method of assessing model performance. By simulating the recent past of Greenland, and comparing to observations of ice thickness, ice discharge, surface speeds, mass loss and surface elevation changes for validation, we find that the short term model response is strongly influenced by the initial state. We show that the thermal and dynamical states (i.e. the distribution of internal energy and momentum can be misrepresented despite a good agreement with some observations, stressing the importance of using multiple observations. In particular we identify rates of change of spatially dense observations as preferred validation metrics. Hindcasting enables a qualitative assessment of model performance relative to observed rates of change. It thereby reduces the number of admissible initial states more rigorously than validation efforts that do not take advantage of observed rates of change.

  11. Wave climate and trends along the eastern Chukchi Arctic Alaska coast

    Science.gov (United States)

    Erikson, L.H.; Storlazzi, C.D.; Jensen, R.E.

    2011-01-01

    Due in large part to the difficulty of obtaining measurements in the Arctic, little is known about the wave climate along the coast of Arctic Alaska. In this study, numerical model simulations encompassing 40 years of wave hind-casts were used to assess mean and extreme wave conditions. Results indicate that the wave climate was strongly modulated by large-scale atmospheric circulation patterns and that mean and extreme wave heights and periods exhibited increasing trends in both the sea and swell frequency bands over the time-period studied (1954-2004). Model simulations also indicate that the upward trend was not due to a decrease in the minimum icepack extent. ?? 2011 ASCE.

  12. A Source Term for Wave Attenuation by Sea Ice in WAVEWATCH III (registered trademark): IC4

    Science.gov (United States)

    2017-06-07

    blue and 4 locations in the ice: 1, 2, 5, and 10 km. Notice the steepening of the high frequency face and the shift of the peak to slightly lower...Term for Wave Attenuation by Sea Ice in WAVEWATCH III®: IC4 ClarenCe O. COllins iii W. eriCk rOgers Ocean Dynamics and Prediction Branch Oceanography...Wave model Sea ice Ocean surface waves Arctic Ocean WAVEWATCH III Spectral wave modeling Source terms Wave hindcasting 73-N2K2-07-5 Naval Research

  13. Search for the He-η bound states with the WASA-at-COSY facility

    Directory of Open Access Journals (Sweden)

    Krzemien W.

    2012-12-01

    Full Text Available The η-mesic nuclei in which the η meson is bound with nucleus via strong interaction was postulated already in 1986, however till now no experiment confirmed empirically its existence. The discovery of this new kind of an exotic nuclear matter would be very important for better understanding of the η meson structure and its interaction with nucleons. The search for η-mesic helium is carried out with high statistic and high acceptance with the WASA-at-COSY detection setup in the Research Center Jülich. The search is conducted via the measurement of the excitation function for the chosen decay channels of the 4He-η system. Till now two reactions dd → (4He-ηbs → 3Hepπ− and dd → (4He-ηbs → 3Henπ0 were measured with the beam momentum ramped around the η production threshold. This report includes the description of experimental method and status of the analysis.

  14. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    Science.gov (United States)

    Goswami, A.

    2016-11-01

    In this work we present a study of the Dalitz decay η → γe+e-. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it's decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  15. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    Directory of Open Access Journals (Sweden)

    Goswami A.

    2016-01-01

    Full Text Available In this work we present a study of the Dalitz decay η → γe+e−. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it’s decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  16. Electromagnetic transition form factor of the η meson with WASA-at-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Ankita [Indian Institute of Technology Indore, Indore (India); Collaboration: WASA-at-COSY-Collaboration

    2015-07-01

    The aim of this work is to measure the transition form factor of the η meson. The transition form factor describes the internal structure of a particle. The precise determination of the transition form factor of the η meson is possible through the η→γe{sup +} e{sup -} Dalitz decay. When a particle is point-like then its decay rate can be calculated within QED. However, the complex structure of the particle modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. η mesons are produced using the reaction pp→ppη at a beam kinetic energy of 1.4 GeV at the COSY accelerator of Forschungszentrum Juelich and decay particles of the η meson are detected with the WASA detector. In the higher invariant mass region recent theoretical calculations slightly deviate from the the data. With the high statistics dataset we expect precise results in the higher invariant mass region. The status of the analysis is reported.

  17. Shoreline Changes on the Wave-Influenced Senegal River Delta, West Africa: The Roles of Natural Processes and Human Interventions

    OpenAIRE

    Sadio , Mamadou; Anthony , Edward ,; Diaw , Amadou ,; DUSSOUILLEZ , Philippe; FLEURY , Jules; Kane , Alioune; Almar , Rafael; Kestenare , Élodie

    2017-01-01

    International audience; The Senegal River delta in West Africa, one of the finest examples of " wave-influenced " deltas, is bounded by a spit periodically breached by waves, each breach then acting as a shifting mouth of the Senegal River. Using European Re-Analysis (ERA) hindcast wave data from 1984 to 2015 generated by the Wave Atmospheric Model (WAM) of the European Centre for Medium-Range Weather Forecasts (ECMWF), we calculated longshore sediment transport rates along the spit. We also ...

  18. Evolution of Indian Ocean biases in the summer monsoon season hindcasts from the Met Office Global Seasonal Forecasting System GloSea5

    Science.gov (United States)

    Chevuturi, A.; Turner, A. G.; Woolnough, S. J.

    2016-12-01

    In this study we investigate the development of biases in the Indian Ocean region in summer hindcasts of the UK Met Office coupled initialised global seasonal forecasting system, GloSea5-GC2. Previous work has demonstrated the rapid evolution of strong monsoon circulation biases over India from seasonal forecasts initialised in early May, together with coupled strong easterly wind biases on the equator. We analyse a set of three springtime start dates for the 20-year hindcast period (1992-2011) and fifteen total ensemble members for each year. We use comparisons with a variety of observations to test the rate of evolving mean-state biases in the Arabian Sea, over India, and over the equatorial Indian Ocean. Biases are all shown to develop rapidly, particularly for the circulation bias over India that is connected to convection. These circulation biases later reach the surface and lead to responses in Arabian Sea SST in accordance with coastal and Ekman upwelling processes. We also assess the evolution of radiation and turbulent heat fluxes at the surface. Meanwhile at the equator, easterly biases in surface winds are shown to develop rapidly, consistent with an SST pattern that is consistent with positive-Indian Ocean dipole mean state conditions (warm western equatorial Indian Ocean, cold east). This bias develops consistent with coupled ocean-atmosphere exchanges and Bjerknes feedback. We hypothesize that lower tropospheric easterly wind biases developing in the equatorial region originate from the surface, and also that signals of the cold bias in the eastern equatorial Indian Ocean propagate to the Bay of Bengal via coastal Kelvin waves. Earlier work has shown the utility of wind-stress corrections in the Indian Ocean for correcting the easterly winds bias there and ultimately improving the evolution of the Indian Ocean Dipole. We identify and test this wind-stress correction technique in case study years from the hindcast period to see their impact on seasonal

  19. Energy calibration for the forward detector at WASA-at-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Demmich, Kay; Bergmann, Florian; Huesemann, Patrice; Huesken, Nils; Taeschner, Alexander; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Collaboration: WASA-at-COSY-Collaboration

    2014-07-01

    Studies on rare and forbidden decays of light mesons are one main aspect of the WASA-at-COSY physics program. In this context a large data set of η mesons has been produced in proton proton scattering in order to investigate the decay properties of this meson. This high statistic measurement allows, e.g., for the search for the C parity violating reaction η → π{sup 0} + e{sup +} + e{sup -}, for which only an upper limit for the relative branching ratio of 4 x 10{sup -5} is quoted by the particle data group. The analysis of this forbidden decay channel relies on an effective separation of the physical background which is mainly caused by the direct pion production. To handle this background a missing mass analysis and kinematic fitting will be applied. Since both methods rely on a high energy resolution of the forward detector this detector, which measures the proton energies, has to be calibrated very carefully. In this contribution, a new calibration software is presented which has been developed especially for proton-proton measurements, and which allows for a precise determination of the calibration parameters by the mean of a graphical user interface and a dedicated fitting algorithm. Moreover, with this tool a run-by-run calibration can be realised. First results of the improved calibration are presented.

  20. Hindcast and validation of Hurricane Ike waves, forerunner, and storm surge

    NARCIS (Netherlands)

    Hope, M.E.; Westerink, J.J.; Kennedy, A.B.; Kerr, P.C.; Dietrich, J.C.; Dawson, C.; Bender, C.J.; Smith, J.M.; Jensen, R.E.; Zijlema, M.; Holthuijsen, L.H.; Luettich, R.A.; Powell, M.D.; Cardone, V.J.; Cox, A.T.; Pourtaheri, H.; Roberts, H.J.; Atkinson, J.H.; Tanaka, S.; Westerink, H.J.; Westerink, L.G.

    2013-01-01

    Hurricane Ike (2008) made landfall near Galveston, Texas, as a moderate intensity storm. Its large wind field in conjunction with the Louisiana-Texas coastline's broad shelf and large scale concave geometry generated waves and surge that impacted over 1000 km of coastline. Ike's complex and varied

  1. Predictability over the North Atlantic ocean in hindcast ensembles of MPI-ESM initialized by EnKF and three nudging systems

    Science.gov (United States)

    Brune, Sebastian; Pohlmann, Holger; Düsterhus, Andre; Kröger, Jürgen; Müller, Wolfgang; Baehr, Johanna

    2016-04-01

    We investigate hindcast skill for surface air temperature and upper ocean heat content (0-700m) in the North Atlantic for yearly mean values from 1960 to 2014 in four prediction systems based on the global coupled Max Planck Institute for Meteorology Earth System Model (MPI-ESM). We find that in the North Atlantic and within the four prediction systems under consideration only the EnKF initialized hindcasts reproduce the variability of the reference data well both in terms of anomaly correlation and representation of the probability density function. The systems under consideration only differ in the method how they incorporate surface and sub-surface oceanic temperatures and salinities during assimilation: ensemble Kalman Filter (EnKF), anomaly nudging of ORA reanalysis (BS-1), full field nudging of ORA and GECCO reanalysis, respectively (PT-ORA, PT-GEC). We assess the hindcast skill of each prediction system with reference to HadCRUT4 near surface air temperature data (Morice et al. 2012) and NOAA OC5 upper ocean heat content data (Levitus et al. 2012) using anomaly correlation (ACC) and by analysing the interquartile range (IQR) of the probability density function (PDF). Firstly, we calculate hindcast skill in terms of ACC and IQR against reference data over the whole time period. Here, the hindcast skills of EnKF and BS-1 are better for both ACC and IQR in lead years 2 to 5 when compared to PT-ORA and PT-GEC, their hindcast skill drops off after lead year 1. Secondly, the PDF of the reference data is not uniformly distributed over time. We therefore calculate ACC and IQR for a 20 year moving window. We find hindcast skill in terms of ACC for EnKF and BS-1 in the 1960s and from the 1990s onwards, up to eight lead years in advance, with almost no skill for the time period inbetween. In contrast, there is no skill for PT-ORA and PT-GEC in any period after lead year one. The IQR of reference data is best captured by the EnKF, in the 1960s and 1990s up to lead year

  2. Operational wave now- and forecast in the German Bight as a basis for the assessment of wave-induced hydrodynamic loads on coastal dikes

    Science.gov (United States)

    Dreier, Norman; Fröhle, Peter

    2017-12-01

    The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now- and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5-6 December, 2013 (German name `Xaver') are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the EurOtop (2016) approach.

  3. Wave power for La Isla Bonita

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Carballo, R. [Univ. of Santiago de Compostela, Hydraulic Eng., EPS, Campus Univ. s/n, 27002 Lugo (Spain)

    2010-12-15

    The island of La Palma (Spain), dubbed La Isla Bonita for its beauty, is a UNESCO Biosphere Reserve in the Atlantic Ocean. The island's authorities are aiming for energy self-sufficiency based on wave energy and other renewables. In this research its wave resource is investigated using a 44-years hindcast dataset obtained through numerical modelling and validated with wave buoy records. First, its distribution around La Palma is studied. Significant variations are found, with the largest resource occurring off the north and northwest coasts; the northwest presents operational advantages (proximity to a port). Second, the seasonal variations in this area are studied. Wave energy is provided essentially by powerful NNW-NW swells in winter and autumn, by less energetic NNE-N waves in summer and spring. Finally, the resource is characterised in terms of sea states; it is found that the bulk of the energy is provided by waves between 9.5 s and 13.5 s of energy period and 1.5 m and 3.5 m of significant wave height, so the selection of the Wave Energy Converters to be installed should guarantee maximum efficiency in these ranges. (author)

  4. An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models

    Science.gov (United States)

    Ma, H.-Y.; Chuang, C. C.; Klein, S. A.; Lo, M.-H.; Zhang, Y.; Xie, S.; Zheng, X.; Ma, P.-L.; Zhang, Y.; Phillips, T. J.

    2015-12-01

    We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two-step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off-line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a "Core" integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud-associated processes relative to observations.

  5. Importance of d-wave contributions in the charge symmetry breaking reaction dd →4Heπ0

    Science.gov (United States)

    Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Hanhart, C.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Parol, W.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; WASA-at-COSY Collaboration

    2018-06-01

    This letter reports a first quantitative analysis of the contribution of higher partial waves in the charge symmetry breaking reaction dd →4Heπ0 using the WASA-at-COSY detector setup at an excess energy of Q = 60MeV. The determined differential cross section can be parametrized as d σ /d Ω = a + bcos2 ⁡θ*, where θ* is the production angle of the pion in the center-of-mass coordinate system, and the results for the parameters are a = (1.55 ± 0.46(stat) + 0.32 - 0.8 (syst)) pb /sr and b = (13.1 ± 2.1 (stat)-2.7+1.0 (syst)) pb /sr. The data are compatible with vanishing p-waves and a sizable d-wave contribution. This finding should strongly constrain the contribution of the Δ isobar to the dd →4Heπ0 reaction and is, therefore, crucial for a quantitative understanding of quark mass effects in nuclear production reactions.

  6. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Stopa, Justin E.; Cheung, Kwok Fai; Chen, Yi-Leng

    2011-01-01

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  7. The climatology of the Red Sea - part 2: the waves

    KAUST Repository

    Langodan, Sabique

    2017-05-09

    The wave climatology of the Red Sea is described based on a 30-year hindcast generated using WAVEWATCH III configured on a 5-km resolution grid and forced by Red Sea reanalysis surface winds from the advanced Weather Research and Forecasting model. The wave simulations have been validated using buoy and altimeter data. The four main wind systems in the Red Sea characterize the corresponding wave climatology. The dominant ones are the two opposite wave systems with different genesis, propagating along the axis of the basin. The highest waves are generated at the centre of the Red Sea as a consequence of the strong seasonal winds blowing from the Tokar Gap on the African side. There is a general long-term trend toward lowering the values of the significant wave height over the whole basin, with a decreasing rate depending on the genesis of the individual systems.

  8. Evaluation of decadal hindcasts by application of a satellite simulator for SSM/I & SSMIS

    Science.gov (United States)

    Spangehl, T.; Schroeder, M.; Glowienka-Hense, R.; Hense, A.; Bodas-Salcedo, A.; Hollmann, R.

    2017-12-01

    A satellite simulator for the Special Sensor Microwave Imager (SSM/I) and for the Special Sensor Microwave Imager and Sounder (SSMIS) is developed and applied to decadal hindcast simulations performed within the MiKlip project (http://fona-miklip.de, funded by the Federal Ministry of Education and Research in Germany). The aim is to evaluate the climatological and predictive skill of the hindcasts focusing on water cycle components. Classical evaluation approaches commonly focus on geophysical parameters such as temperature, precipitation or wind speed using observational datasets and reanalysis as reference. The employment of the satellite simulator enables an evaluation in the instrument's parameter and thereby reduces uncertainties on the reference side. The simulators are developed utilizing the CFMIP Observation Simulator Package (COSP, http://cfmip.metoffice.com/COSP.html). On the reference side the SSM/I & SSMIS Fundamental Climate Data Record (FCDR) provided by the CM SAF (DOI: 10.5676/EUM_SAF_CM/FCDR_MWI/V003) is used which constitutes a quality controlled, recalibrated and intercalibrated record of brightness temperatures for the period from 1978 to 2015. Simulated brightness temperatures for selected channels which are sensitive to either water vapor content (22 GHz) or hydrometeor content (85 GHz, vertical minus horizontal polarization) as an indicator for precipitation are used. For lead year 1 analysis of variance (ANOVA) reveals potential predictability for large parts of the tropical ocean areas for both water vapor and precipitation related channels. Furthermore, the Conditional Ranked Probability Skill Score (CRPSS) indicates predictive skill for large parts of the tropical/sub-tropical Pacific, parts of the tropical/sub-tropical Atlantic and the equatorial Indian Ocean. For lead years 2-3 ANOVA still indicates potential predictability for equatorial ocean areas. Moreover, CRPSS indicates predictive skill for parts of the tropical

  9. Long-term wave measurements in a climate change perspective.

    Science.gov (United States)

    Pomaro, Angela; Bertotti, Luciana; Cavaleri, Luigi; Lionello, Piero; Portilla-Yandun, Jesus

    2017-04-01

    At present multi-decadal time series of wave data needed for climate studies are generally provided by long term model simulations (hindcasts) covering the area of interest. Examples, among many, at different scales are wave hindcasts adopting the wind fields of the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF, Reading, U.K.) at the global level and by regional re-analysis as for the Mediterranean Sea (Lionello and Sanna, 2006). Valuable as they are, these estimates are necessarily affected by the approximations involved, the more so because of the problems encountered within modelling processes in small basins using coarse resolution wind fields (Cavaleri and Bertotti, 2004). On the contrary, multi-decadal observed time series are rare. They have the evident advantage of somehow representing the real evolution of the waves, without the shortcomings associated with the limitation of models in reproducing the actual processes and the real variability within the wave fields. Obviously, observed wave time series are not exempt of problems. They represent a very local information, hence their use to describe the wave evolution at large scale is sometimes arguable and, in general, it needs the support of model simulations assessing to which extent the local value is representative of a large scale evolution. Local effects may prevent the identification of trends that are indeed present at large scale. Moreover, a regular maintenance, accurate monitoring and metadata information are crucial issues when considering the reliability of a time series for climate applications. Of course, where available, especially if for several decades, measured data are of great value for a number of reasons and can be valuable clues to delve further into the physics of the processes of interest, especially if considering that waves, as an integrated product of the local climate, if available in an area sensitive to even limited changes of the

  10. Selecting optimum locations for co-located wave and wind energy farms. Part II: A case study

    International Nuclear Information System (INIS)

    Astariz, S.; Iglesias, G.

    2016-01-01

    Highlights: • The benefits of wave and wind combined systems relative to independent farms are analysed. • This purpose is carried out through a case study off the Danish coast. • The power production, power smoothing and shadow effect are analysed. • Hindcast and measured wave and wind data from 2005 to 2015 are used. • Third-generation models of winds and waves (WAsP and SWAN) are used. - Abstract: Combined energy systems present an opportunity to enhance the competitiveness of renewables and overcome other challenges of these novel renewables by realising the synergies between them. Among the different possibilities for combined systems, this work focuses on wave and wind co-located farms with the aim of assessing their benefits relative to standalone wind farms. To this end we estimate the energy production, investigate the power smoothing and shadow effect, and quantify the reduction in downtime achieved by the co-located farm through a case study off the Danish coast – a promising area for co-located farms based on the available resource and other considerations including technical constraints. The analysis is carried out based on hindcast data and observations extending from 2005 to 2015, and by means of state-of-the-art numerical models of the wind and wave fields – WAsP and SWAN, respectively. It is found that the energy yield per unit area with the combined wave-wind farm increases by 3.4% relative to a standalone wind farm, the downtime periods decrease by 58% and the power output variability reduces by 12.5%. Moreover, the capital and operational expenditures (CAPEX and OPEX, respectively) would also be significantly reduced thanks to the synergies realised through the combination of wind and wave power.

  11. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    Science.gov (United States)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  12. Hindcasting of decadal‐timescale estuarine bathymetric change with a tidal‐timescale model

    Science.gov (United States)

    Ganju, Neil K.; Schoellhamer, David H.; Jaffe, Bruce E.

    2009-01-01

    Hindcasting decadal-timescale bathymetric change in estuaries is prone to error due to limited data for initial conditions, boundary forcing, and calibration; computational limitations further hinder efforts. We developed and calibrated a tidal-timescale model to bathymetric change in Suisun Bay, California, over the 1867–1887 period. A general, multiple-timescale calibration ensured robustness over all timescales; two input reduction methods, the morphological hydrograph and the morphological acceleration factor, were applied at the decadal timescale. The model was calibrated to net bathymetric change in the entire basin; average error for bathymetric change over individual depth ranges was 37%. On a model cell-by-cell basis, performance for spatial amplitude correlation was poor over the majority of the domain, though spatial phase correlation was better, with 61% of the domain correctly indicated as erosional or depositional. Poor agreement was likely caused by the specification of initial bed composition, which was unknown during the 1867–1887 period. Cross-sectional bathymetric change between channels and flats, driven primarily by wind wave resuspension, was modeled with higher skill than longitudinal change, which is driven in part by gravitational circulation. The accelerated response of depth may have prevented gravitational circulation from being represented properly. As performance criteria became more stringent in a spatial sense, the error of the model increased. While these methods are useful for estimating basin-scale sedimentation changes, they may not be suitable for predicting specific locations of erosion or deposition. They do, however, provide a foundation for realistic estuarine geomorphic modeling applications.

  13. Storm-wave trends in Mexican waters of the Gulf of Mexico and Caribbean Sea

    Directory of Open Access Journals (Sweden)

    E. Ojeda

    2017-08-01

    Full Text Available Thirty-year time series of hindcast wave data were analysed for 10 coastal locations along the eastern Mexican coast to obtain information about storm events occurring in the region, with the goal of examining the possible presence of interannual trends in the number of storm-wave events and their main features (wave height, duration and energy content. The storms were defined according to their significant wave height and duration, and the events were classified as related to either tropical cyclones or Norte events. The occurrence and characteristics of both types of events were analysed independently. There is no statistically significant change in the number of storm-wave events related to Nortes or their characteristics during the study period. However, there is a subtle increase in the number of events related to tropical cyclones in the western Caribbean region and a more evident increase in wave height and energy content of these events.

  14. The sinking of the El Faro: predicting real world rogue waves during Hurricane Joaquin.

    Science.gov (United States)

    Fedele, Francesco; Lugni, Claudio; Chawla, Arun

    2017-09-11

    We present a study on the prediction of rogue waves during the 1-hour sea state of Hurricane Joaquin when the Merchant Vessel El Faro sank east of the Bahamas on October 1, 2015. High-resolution hindcast of hurricane-generated sea states and wave simulations are combined with novel probabilistic models to quantify the likelihood of rogue wave conditions. The data suggests that the El Faro vessel was drifting at an average speed of approximately 2.5 m/s prior to its sinking. As a result, we estimated that the probability that El Faro encounters a rogue wave whose crest height exceeds 14 meters while drifting over a time interval of 10 (50) minutes is ~1/400 (1/130). The largest simulated wave is generated by the constructive interference of elementary spectral components (linear dispersive focusing) enhanced by bound nonlinearities. Not surprisingly then, its characteristics are quite similar to those displayed by the Andrea, Draupner and Killard rogue waves.

  15. Selecting optimum locations for co-located wave and wind energy farms. Part I: The Co-Location Feasibility index

    International Nuclear Information System (INIS)

    Astariz, S.; Iglesias, G.

    2016-01-01

    Highlights: • New approach to identifying suitable sites for co-located wave and wind farms. • A new tool, the Co-Location Feasibility (CLF) index, is defined. • Its application is analysed by means of a case study off the Danish coast. • Hindcast and measured wave and wind data from 2005 to 2015 are used. • Third-generation models of winds and waves (WAsP and SWAN) are used. - Abstract: Marine energy is poised to play a fundamental role in meeting renewable energy and carbon emission targets thanks to the abundant, and still largely untapped, wave and tidal resources. However, it is often considered difficult and uneconomical – as is usually the case of nascent technologies. Combining various renewables, such as wave and offshore wind energy, has emerged as a solution to improve their competitiveness and in the process overcome other challenges that hinder their development. The objective of this paper is to develop a new approach to identifying suitable sites for co-located wave and wind farms based on the assessment of the available resources and technical constraints, and to illustrate its application by means of a case study off the Danish coast – an area of interest for combining wave and wind energy. The method is based on an ad hoc tool, the Co-Location Feasibility (CLF) index, and is based on a joint characterisation of the wave and wind resources, which takes into account not only the available power but also the correlation between both resources and the power variability. The analysis is carried out based on hindcast data and observations from 2005 to 2015, and using third-generation models of winds and waves – WAsP and SWAN, respectively. Upon selection and ranking, it is found that a number of sites in the study region are indeed suited to realising the synergies between wave and offshore wind energy. The approach developed in this work can be applied elsewhere.

  16. An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000

    KAUST Repository

    Hoteit, Ibrahim

    2010-03-02

    An eddy-permitting adjoint-based assimilation system has been implemented to estimate the state of the tropical Pacific Ocean. The system uses the Massachusetts Institute of Technology\\'s general circulation model and its adjoint. The adjoint method is used to adjust the model to observations by controlling the initial temperature and salinity; temperature, salinity, and horizontal velocities at the open boundaries; and surface fluxes of momentum, heat, and freshwater. The model is constrained with most of the available data sets in the tropical Pacific, including Tropical Atmosphere and Ocean, ARGO, expendable bathythermograph, and satellite SST and sea surface height data, and climatologies. Results of hindcast experiments in 2000 suggest that the iterated adjoint-based descent is able to significantly improve the model consistency with the multivariate data sets, providing a dynamically consistent realization of the tropical Pacific circulation that generally matches the observations to within specified errors. The estimated model state is evaluated both by comparisons with observations and by checking the controls, the momentum balances, and the representation of small-scale features that were not well sampled by the observations used in the assimilation. As part of these checks, the estimated controls are smoothed and applied in independent model runs to check that small changes in the controls do not greatly change the model hindcast. This is a simple ensemble-based uncertainty analysis. In addition, the original and smoothed controls are applied to a version of the model with doubled horizontal resolution resulting in a broadly similar “downscaled” hindcast, showing that the adjustments are not tuned to a single configuration (meaning resolution, topography, and parameter settings). The time-evolving model state and the adjusted controls should be useful for analysis or to supply the forcing, initial, and boundary conditions for runs of other models.

  17. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  18. Predicting average wintertime wind and wave conditions in the North Atlantic sector from Eurasian snow cover in October

    International Nuclear Information System (INIS)

    Brands, Swen

    2014-01-01

    The present study assesses the lead–lag teleconnection between Eurasian snow cover in October and the December-to-February mean boreal winter climate with respect to the predictability of 10 m wind speed and significant wave heights in the North Atlantic and adjacent seas. Lead–lag correlations exceeding a magnitude of 0.8 are found for the short time period of 1997/98–2012/13 (n = 16) for which daily satellite-sensed snow cover data is available to date. The respective cross-validated hindcast skill obtained from using linear regression as a statistical forecasting technique is similarly large in magnitude. When using a longer but degraded time series of weekly snow cover data for calculating the predictor variable (1979/80–2011/12, n = 34), hindcast skill decreases but yet remains significant over a large fraction of the study area. In addition, Monte-Carlo field significance tests reveal that the patterns of skill are globally significant. The proposed method might be used to make forecast decisions for wind and wave energy generation, seafaring, fishery and offshore drilling. To exemplify its potential suitability for the latter sector, it is additionally applied to DJF frequencies of significant wave heights exceeding 2 m, a threshold value above which mooring conditions at oil platforms are no longer optimal. (paper)

  19. Validation of a homogeneous 41-year (1961-2001) winter precipitation hindcasted dataset over the Iberian Peninsula: assessment of the regional improvement of global reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sotillo, M.G. [Area de Medio Fisico, Puertos del Estado, Madrid (Spain); Martin, M.L. [Universidad de Valladolid, Dpto. Matematica Aplicada, Escuela Universitaria de Informatica, Campus de Segovia, Segovia (Spain); Valero, F. [Universidad Complutense de Madrid, Dpto. Astrofisica y CC. de la Atmosfera, Facultad de CC Fisicas, Madrid (Spain); Luna, M.Y. [Instituto Nacional de Meteorologia, Madrid (Spain)

    2006-11-15

    A 44-year (1958-2001) homogeneous, Mediterranean, high-resolution atmospheric database was generated through dynamical downscaling within the HIPOCAS (Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe) Project framework. This work attempts to provide a validation of the monthly winter HIPOCAS precipitation over the Iberian Peninsula and the Balearic Islands and to evaluate the potential improvement of these new hindcasted data versus global reanalysis datasets. The validation was performed through the comparative analysis with a precipitation database derived from 4,617 in situ stations located over Iberia and the Balearics. The statistical comparative analysis between the observed and the HIPOCAS fields highlights their very good agreement not only in terms of spatial and time distribution, but also in terms of total amount of precipitation. A principal component analysis is carried out, showing that the patterns derived from the HIPOCAS data largely capture the main characteristics of the observed field. Moreover, it is worth to note that the HIPOCAS patterns reproduce accurately the observed regional characteristics linked to the main orographic features of the study domain. The existence of high correlations between the hindcasted and observed principal component time series gives a measure of the model performance ability. An additional comparative study of the HIPOCAS winter precipitation with global reanalysis data (NCEP and ERA) is performed. This study reveals the important regional improvement in the characterization of the observed precipitation introduced by the HIPOCAS hindcast relative to the above global reanalyses. Such improvement is effective not only in terms of total amount values, but also in the spatial distribution, the observed field being much more realistically reproduced by HIPOCAS than by the global reanalysis data. (orig.)

  20. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  1. Impacts of wave-induced circulation in the surf zone on wave setup

    Science.gov (United States)

    Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk

    2018-03-01

    Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.

  2. Wave Energy Resource along the Coast of Santa Catarina (Brazil

    Directory of Open Access Journals (Sweden)

    Pasquale Contestabile

    2015-12-01

    Full Text Available Brazil has one of the largest electricity markets in South America, which needs to add 6000 MW of capacity every year in order to satisfy growing the demand from an increasing and more prosperous population. Apart from biomass, no other renewable energy sources, besides hydroelectricity, play a relevant role in the energy mix. The potential for wind and wave energy is very large. Brazil's Santa Catarina state government is starting a clean energy program in the state, which is expected to bring more than 1 GW of capacity. Assessment of wave energy resources is needed along the coastline. This work studied the potential wave energy along the north-central coasts of Santa Catarina, in Southern Brazil, by analysis of the hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF. The annual offshore wave power was found to be equal to 15.25 kW/m, the bulk of which is provided by southeastern waves. The nearshore energetic patterns were studied by means of a numerical coastal propagation model (Mike21 SW. The mean wave power of 20 m isobaths is 11.43 kW/m. Supplementary considerations are drawn on realistic perspectives for wave energy converters installations.

  3. IFIS Model-Plus: A Web-Based GUI for Visualization, Comparison and Evaluation of Distributed Flood Forecasts and Hindcasts

    Science.gov (United States)

    Krajewski, W. F.; Della Libera Zanchetta, A.; Mantilla, R.; Demir, I.

    2017-12-01

    This work explores the use of hydroinformatics tools to provide an user friendly and accessible interface for executing and assessing the output of realtime flood forecasts using distributed hydrological models. The main result is the implementation of a web system that uses an Iowa Flood Information System (IFIS)-based environment for graphical displays of rainfall-runoff simulation results for both real-time and past storm events. It communicates with ASYNCH ODE solver to perform large-scale distributed hydrological modeling based on segmentation of the terrain into hillslope-link hydrologic units. The cyber-platform also allows hindcast of model performance by testing multiple model configurations and assumptions of vertical flows in the soils. The scope of the currently implemented system is the entire set of contributing watersheds for the territory of the state of Iowa. The interface provides resources for visualization of animated maps for different water-related modeled states of the environment, including flood-waves propagation with classification of flood magnitude, runoff generation, surface soil moisture and total water column in the soil. Additional tools for comparing different model configurations and performing model evaluation by comparing to observed variables at monitored sites are also available. The user friendly interface has been published to the web under the URL http://ifis.iowafloodcenter.org/ifis/sc/modelplus/.

  4. Continuously on-­going regional climate hindcast simulations for impact applications

    Science.gov (United States)

    Anders, Ivonne; Piringer, Martin; Kaufmann, Hildegard; Knauder, Werner; Resch, Gernot; Andre, Konrad

    2017-04-01

    Observational data for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation performed with the regional climate model COSMO-CLM is forced by ERAinterim and optimized for the Alpine Region. The simulation available for the period of 1979-2015 in a spatial resolution of about 10km is prolonged ongoing and fullfils the customer's needs with respect of output variables, levels, intervals and statistical measures. One of the main tasks is to capture strong precipitation events which often occur during summer when low pressure systems develop over the Golf of Genoa, moving to the Northeast. This leads to floods and landslide events in Austria, Czech Republic and Germany. Such events are not sufficiently represented in the CORDEX-evaluation runs. ZAMG use high quality gridded precipitation and temperature data for the Alpine Region (1-6km) to evaluate the model performance. Data is provided e.g. to hydrological modellers (high water, low water), but also to assess icing capability of infrastructure or the calculation the separation distances between livestock

  5. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    Science.gov (United States)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  6. Coupling of high-resolution meteorological and wave models over southern Italy

    Directory of Open Access Journals (Sweden)

    L. Bertotti

    2009-07-01

    Full Text Available In the framework of RISKMED project, three different high-resolution limited area meteorological models (BOLAM, MOLOCH and WRF have been run over southern Italy for the retrospective analysis of three case studies characterized by strong winds and severe wave conditions in the Ionian, southern Adriatic and southern Tyrrhenian seas. All the models were able to reproduce the main meteorological features of each event.

    The wind fields simulated by the meteorological models and those provided by the ECMWF analysis have been ingested into a wave model (WAM for the hindcast of the main wave parameters. The results have been compared with the observations of three buoys whose measurements were available in the area of interest.

    A remarkable improvement in the representation of the significant wave height came out using the limited area model data with respect to the simulations where the ECMWF analyses were used as forcing. Among the limited area models, the BOLAM-MOLOCH modelling system provided slightly better performances. From the limited set of simulations, the different model predictions came out closer to each other and more skilful in areas where the waves approach the coastline perpendicularly from the open sea.

  7. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

    Science.gov (United States)

    Pohlmann, Holger; Kröger, Jürgen; Greatbatch, Richard J.; Müller, Wolfgang A.

    2017-10-01

    Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2-5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2-5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.

  8. Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module

    Science.gov (United States)

    Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.

    2017-11-01

    Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable-region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observational dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate it is

  9. An approximate method of short-term tsunami forecast and the hindcasting of some recent events

    Directory of Open Access Journals (Sweden)

    Yu. P. Korolev

    2011-11-01

    Full Text Available The paper presents a method for a short-term tsunami forecast based on sea level data from remote sites. This method is based on Green's function for the wave equation possessing the fundamental property of symmetry. This property is well known in acoustics and seismology as the reciprocity principle. Some applications of this principle on tsunami research are considered in the current study. Simple relationships and estimated transfer functions enabled us to simulate tsunami waveforms for any selected oceanic point based only on the source location and sea level data from a remote reference site. The important advantage of this method is that it is irrespective of the actual source mechanism (seismic, submarine landslide or other phenomena. The method was successfully applied to hindcast several recent tsunamis observed in the Northwest Pacific. The locations of the earthquake epicenters and the tsunami records from one of the NOAA DART sites were used as inputs for the modelling, while tsunami observations at other DART sites were used to verify the model. Tsunami waveforms for the 2006, 2007 and 2009 earthquake events near Simushir Island were simulated and found to be in good agreement with the observations. The correlation coefficients between the predicted and observed tsunami waveforms were from 0.50 to 0.85. Thus, the proposed method can be effectively used to simulate tsunami waveforms for the entire ocean and also for both regional and local tsunami warning services, assuming that they have access to the real-time sea level data from DART stations.

  10. AGCM hindcasts with SST and other forcings: Responses from global to agricultural scales

    Science.gov (United States)

    Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark

    2000-08-01

    Multiple realizations of the 1969-1998 time period have been simulated by the GISS AGCM to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM lower tropospheric, tropospheric, and lower stratospheric brightness temperature (Tb) time series for correlations with microwave sounding unit (MSU) time series. AGCM regional surface air temperature and precipitation were also correlated with GISTEMP temperature data and with rain gage data. Seven realizations by the AGCM were forced solely by observed sea surface temperatures. Subsequent runs hindcast January 1969 through April 1998 with an accumulation of forcings: observed sea surface temperatures (SSTs), greenhouse gases, stratospheric volcanic aerosols, stratospheric and tropospheric ozone, and tropospheric sulfate and black carbon aerosols. Lower stratospheric Tb correlations between the AGCM and the MSU for 1979-1998 reached as high as 0.93 globally given SST, greenhouse gases, volcanic aerosol, and stratospheric ozone forcings. Midtropospheric Tb correlations reached as high as 0.66 globally and 0.84 across the equatorial, 20°S-20°N band. Oceanic lower tropospheric Tb correlations were less high at 0.59 globally and 0.79 across the equatorial band. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with midtropospheric Tb correlations up to 0.80. The two other agricultural regions, in Africa and in the northern midlatitudes, suffered from higher levels of non-SST-induced variability. Zimbabwe had a maximum midtropospheric correlation of 0.54, while the U.S. Corn Belt reached only 0.25. Hindcast surface temperatures and precipitation were also correlated with observations, up to 0.46 and 0.63, respectively, for Nordeste. Correlations between AGCM and observed time series improved with addition of certain atmospheric forcings in zonal bands but not in

  11. Wave Resource Characterization Using an Unstructured Grid Modeling Approach

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Wu

    2018-03-01

    Full Text Available This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization, using the unstructured grid Simulating WAve Nearshore (SWAN model coupled with a nested grid WAVEWATCH III® (WWIII model. The flexibility of models with various spatial resolutions and the effects of open boundary conditions simulated by a nested grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured grid-modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Center Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the ST2 physics package’s ability to predict wave power density for large waves, which is important for wave resource assessment, load calculation of devices, and risk management. In addition, bivariate distributions show that the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than with the ST2 physics package. This study demonstrated that the unstructured grid wave modeling approach, driven by regional nested grid WWIII outputs along with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (102 km.

  12. A test-bed modeling study for wave resource assessment

    Science.gov (United States)

    Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.

    2016-02-01

    Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.

  13. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    Science.gov (United States)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  14. Study of the decay η→e+e-e+e- with WASA-at-COSY

    International Nuclear Information System (INIS)

    Yurev, Leonid Sergeewitsch

    2011-01-01

    This work is dedicated to the study of the double Dalitz decay η→e + e - e + e - . For this rare decay of the η meson only an experimental upper limit for the branching ratio is known. The theoretical prediction is based on Quantum Electrodynamics for the branching ratio is about 2.5 x 10 -5 , which is a factor of three below the experimental upper limit. One of the main points of interest to study this decay is the possibility to measure the transition form factor, which describes the electromagnetic structure of the decaying neutral meson at the η→γ * γ * vertex. In the final state of the decay η→e + e - e + e - there are two lepton pairs, whose squared invariant mass equals the four momenta squared of the virtual photons. The knowledge about the structure of the transition form factor can indicate whether double vector meson dominance is realized in nature, which has important implications for kaon decays and the μ anomalous magnetic moment. Using the WASA at COSY facility it is possible for the first time to determine the branching ratio of the η→e + e - e + e - decay. The data analyzed in this work were taken in the reaction pd→ 3 Heη at 1 GeV kinetic energy and contain ∝10 x 10 6 events of η-mesons. A sample of (30±10) η→e + e - e + e - . event candidates has been extracted, corresponding to a branching ratio of 2.9 x 10 -5 .

  15. Sensitivity of a numerical wave model on wind re-analysis datasets

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  16. Wave modelling to assess the storm conditions in the Black Sea

    Science.gov (United States)

    Rusu, Liliana; Raileanu, Alina

    2014-05-01

    The work proposed herewith presents the results of a ten-year wave hindcast performed in the Black Sea and focused on the storm conditions. A wave modelling system, SWAN based, was implemented in the basin of the Black Sea. Validations have been performed both against in situ and remotely sensed data for the entire ten-year period considered (1999-2008). The wind field provided by NCEP-CFSR (United States National Centers for Environmental Prediction, Climate Forecast System Reanalysis) with a spatial resolution of 0.312ºx0.312º and a temporal resolution of 3 hours was considered for forcing the wave model. In statistical terms, the results are in general in line with those provided by similar wave prediction systems implemented in enclosed or semi-enclosed seas, the most important factors in increasing the general system reliability being the accuracy and resolution of the wind fields considered. As regards the physical processes, the calibration tests performed show that whitecapping still represents the weak link in deep water wave modelling. The most relevant storm conditions encountered in this ten-year period considered were further analysed. This analysis was performed from the point of view of the intensity, location of occurrence, duration and propagation in the geographical space of the storms. Following the results of the work, the western side of the sea is more energetic and almost each year storms with significant wave heights of about eight meters are encountered in this part of the Black Sea, while in the case of the extreme storms significant wave heights even greater than eleven meters may occur. From this perspective, it can be concluded that the present work provides valuable information about the characteristics of the storm conditions and on their dynamics in the Black Sea. Moreover, this marine environment is currently subjected to high navigation traffic and to offshore operations and the strong storms that systematically occur may produce

  17. Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan

    Science.gov (United States)

    Shimozono, Takenori; Tajima, Yoshimitsu; Kennedy, Andrew B.; Nobuoka, Hisamichi; Sasaki, Jun; Sato, Shinji

    2015-06-01

    Super typhoon Haiyan struck the Philippines on 8 November 2013, marking one of the strongest typhoons at landfall in recorded history. Extreme storm waves attacked the Pacific coast of Eastern Samar where the violent typhoon first made landfall. Our field survey confirmed that storm overwash heights of 6-14 m above mean sea level were distributed along the southeastern coast and extensive inundation occurred in some coastal villages in spite of natural protection by wide fringing reefs. A wave model based on Boussinesq-type equations is constructed to simulate wave transformation over shallow fringing reefs and validated against existing laboratory data. Wave propagation and runup on the Eastern Samar coast are then reproduced using offshore boundary conditions based on a wave hindcast. The model results suggest that extreme waves on the shore are characterized as a superposition of the infragravity wave and sea-swell components. The balance of the two components is strongly affected by the reef width and beach slope through wave breaking, frictional dissipation, reef-flat resonances, and resonant runup amplification. Therefore, flood characteristics significantly differ from site to site due to a large variation of the two topographic parameters on the hilly coast. Strong coupling of infragravity waves and sea swells produces extreme runup on steep beaches fronted by narrow reefs, whereas the infragravity waves become dominant over wide reefs and they evolve into bores on steep beaches.

  18. A high-resolution assessment of wind and wave energy potentials in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2016-08-24

    This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model. This model was initialized with ERA-Interim global data and the Red Sea reanalysis was generated using a cyclic three-dimensional variational approach assimilating available data in the region. The wave hindcast was generated using WAVEWATCH III on a 5 km resolution grid, forced by the Red Sea reanalysis surface winds. The wind and wave products were validated against data from buoys, scatterometers and altimeters. Our analysis suggests that the distribution of wind and wave energy in the Red Sea is inhomogeneous and is concentrated in specific areas, characterized by various meteorological conditions including weather fronts, mesoscale vortices, land and sea breezes and mountain jets. A detailed analysis of wind and wave energy variation was performed at three hotspots representing the northern, central and southern parts of the Red Sea. Although there are potential sites for harvesting wind energy from the Red Sea, there are no potential sites for harvesting wave energy because wave energy in the Red Sea is not strong enough for currently available wave energy converters. Wave energy should not be completely ignored, however, at least from the perspective of hybrid wind-wave projects. (C) 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments

    Directory of Open Access Journals (Sweden)

    Eugen Rusu

    2014-06-01

    Full Text Available The main objective of the present work was to assess and compare the wave power resources in various offshore and nearshore areas. From this perspective, three different groups of coastal environments were considered: the western Iberian nearshore, islands and an enclosed environment with sea waves, respectively. Some of the most representative existent wave converters were evaluated in the analysis and a second objective was to compare their performances at the considered locations, and in this way to determine which is better suited for potential commercial exploitation. In order to estimate the electric power production expected in a certain location, the bivariate distributions of the occurrences corresponding to the sea states, defined by the significant wave height and the energy period, were constructed in each coastal area. The wave data were provided by hindcast studies performed with numerical wave models or based on measurements. The transformation efficiency of the wave energy into electricity is evaluated via the load factor and also through the capture width, defined as the ratio between the electric power estimated to be produced by each specific wave energy converters (WEC and the expected wave power corresponding to the location considered. Finally, by evaluating these two different indicators, comparisons of the performances of three WEC types (Aqua Buoy, Pelamis and Wave Dragon in the three different groups of coastal environments considered have been also carried out. The work provides valuable information related to the effectiveness of various technologies for the wave energy extraction that would operate in different coastal environments.

  20. Real time wave forecasting using wind time history and numerical model

    Science.gov (United States)

    Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.

    Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.

  1. Investigations of η → π{sup 0}e{sup +}e{sup -} with WASA-at-COSY in the light of C-violation and physics beyond SM

    Energy Technology Data Exchange (ETDEWEB)

    Demmich, Kay; Bergmann, Florian; Huesken, Nils; Sitterberg, Karsten; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Collaboration: WASA-at-COSY-Collaboration

    2015-07-01

    The decay η → π{sup 0}e{sup +}e{sup -} is a perfect probe for testing the conservation of the C-parity within the standard model and for the search of dark U-bosons. This reaction has not been observed so far and only an upper limit of the branching ratio of 4 x 10{sup -5} is quoted by the PDG. With the WASA-at-COSY facility a huge data set of ∼ 5 x 10{sup 8} η mesons has been produced in proton-proton scattering dedicated for studies on rare and forbidden decays of the η meson. This high statistics measurement allows for the determination of the relative branching ratio below the recent upper limit and is sensitive to small C-violating and dark matter contributions. The current status of the analysis is presented and discussed.

  2. Dynamical influence of gravity waves generated by the Vestfjella Mountains in Antarctica: radar observations, fine-scale modelling and kinetic energy budget analysis

    Directory of Open Access Journals (Sweden)

    Joel Arnault

    2012-02-01

    Full Text Available Gravity waves generated by the Vestfjella Mountains (in western Droning Maud Land, Antarctica, southwest of the Finnish/Swedish Aboa/Wasa station have been observed with the Moveable atmospheric radar for Antarctica (MARA during the SWEDish Antarctic Research Programme (SWEDARP in December 2007/January 2008. These radar observations are compared with a 2-month Weather Research Forecast (WRF model experiment operated at 2 km horizontal resolution. A control simulation without orography is also operated in order to separate unambiguously the contribution of the mountain waves on the simulated atmospheric flow. This contribution is then quantified with a kinetic energy budget analysis computed in the two simulations. The results of this study confirm that mountain waves reaching lower-stratospheric heights break through convective overturning and generate inertia gravity waves with a smaller vertical wavelength, in association with a brief depletion of kinetic energy through frictional dissipation and negative vertical advection. The kinetic energy budget also shows that gravity waves have a strong influence on the other terms of the budget, i.e. horizontal advection and horizontal work of pressure forces, so evaluating the influence of gravity waves on the mean-flow with the vertical advection term alone is not sufficient, at least in this case. We finally obtain that gravity waves generated by the Vestfjella Mountains reaching lower stratospheric heights generally deplete (create kinetic energy in the lower troposphere (upper troposphere–lower stratosphere, in contradiction with the usual decelerating effect attributed to gravity waves on the zonal circulation in the upper troposphere–lower stratosphere.

  3. Modeled changes in extreme wave climates of the tropical Pacific over the 21st century: Implications for U.S. and U.S.-Affiliated atoll islands

    Science.gov (United States)

    Shope, J.B.; Storlazzi, Curt; Erikson, Li H.; Hegermiller, C.A.

    2015-01-01

    Wave heights, periods, and directions were forecast for 2081–2100 using output from four coupled atmosphere–ocean global climate models for representative concentration pathway scenarios RCP4.5 and RCP8.5. Global climate model wind fields were used to drive the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. December–February 95th percentile extreme significant wave heights under both climate scenarios decreased by 2100 compared to 1976–2010 historical values. Trends under both scenarios were similar, with the higher-emission RCP8.5 scenario displaying a greater decrease in extreme significant wave heights than where emissions are reduced in the RCP4.5 scenario. Central equatorial Pacific Islands displayed the greatest departure from historical values; significant wave heights decreased there by as much as 0.32 m during December–February and associated wave directions rotated approximately 30° clockwise during June–August compared to hindcast data.

  4. Modeling Waves and Coastal Flooding along the Connecticut Coast

    Science.gov (United States)

    Cifuentes-Lorenzen, A.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.; O'Donnell, J.; Asthita, M.

    2015-12-01

    We have used a hydrodynamic- wave coupled numerical model (FVCOM-SWAVE) to simulate flooding at the Connecticut coastline during severe storms. The model employed a one-way nesting scheme and an unstructured grid. The parent domain spanned most of the southern New England shelf and the fine resolution grid covered Long Island Sound (LIS) and extended across the Connecticut coast to the 10m elevation contour. The model results for sea level, current and wave statistics from the parent grid have been tested with data from several field campaigns at different locations spanning the western, central and eastern portions of LIS. Waves are fetch limited and improvements to the model-data comparison required modifications to spectral coefficients in the wave model. Finally, the nested results were validated with two field campaigns in shallow water environments (i.e. New Haven and Old Saybrook). To assess the spatial variability of storm wave characteristics the domain was forced with the hindcast winds obtained from meteorological models (NAM and WRF) for 13 severe weather events that affected LIS in the past 15 years. We have also forced the system with a simulation of Superstorm Sandy in a warmer climate to assess the impact a climate change on the character of flooding. The nested grid is currently being used to map flooding risks under severe weather events including the effects of precipitation on river flow and discharge.

  5. Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic

    Science.gov (United States)

    2015-08-01

    windfield improvements in WIS result in a superior hindcast product. ERDC/CHL TR-15-11 16 Figure 6. Station 44025 full hindcast evaluations. See...using IOKA winds and WAVEWATCH III modeling technology. Furthermore, the NCEP reanalysis hindcast will likely be rerun with improved WAVEWATCH III...surface wind speeds. Part I: Theory and seawinds observations. Journal of Climate 19:497–520. Ramsey, R., D. Leathers , D. Wells, and H. Talley. 1998

  6. Wave hindcast studies using SWAN nested in WAVEWATCH III - comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Amrutha, M.M.; SanilKumar, V.; Sandhya, K.G.; Nair, T.M.B; Rathod, J.L.

    Waves in the nearshore waters (~15 m water-depth) of eastern Arabian Sea were simulated using SWAN nested in WAVEWATCH III (WW3) for the year 2014. The sensitivity of the numerical wave model WW3 towards different source term (ST) packages...

  7. CMIP5-based global wave climate projections including the entire Arctic Ocean

    Science.gov (United States)

    Casas-Prat, M.; Wang, X. L.; Swart, N.

    2018-03-01

    This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.

  8. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    Science.gov (United States)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  9. Long-run evolution of the global economy: 2. Hindcasts of innovation and growth

    Science.gov (United States)

    Garrett, T. J.

    2015-03-01

    Long-range climate forecasts rely upon integrated assessment models that link the global economy to greenhouse gas emissions. This paper evaluates an alternative economic framework, outlined in Part 1, that is based on physical principles rather than explicitly resolved societal dynamics. Relative to a reference model of persistence in trends, model hindcasts that are initialized with data from 1950 to 1960 reproduce trends in global economic production and energy consumption between 2000 and 2010 with a skill score greater than 90%. In part, such high skill appears to be because civilization has responded to an impulse of fossil fuel discovery in the mid-twentieth century. Forecasting the coming century will be more of a challenge because the effect of the impulse appears to have nearly run its course. Nonetheless, the model offers physically constrained futures for the coupled evolution of civilization and climate during the Anthropocene.

  10. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  11. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  12. Spectral partitioning and swells in the black sea

    NARCIS (Netherlands)

    van Vledder, G.P.; Akpınar, Adem; Lynett, P.

    2016-01-01

    The swell climate of the Black Sea has been determined using a long-term 31-year wave hindcast with the thirdgeneration spectral wave model SWAN in combination with spectral partitioning. This technique enables decomposing wave spectra into individual wave systems representing wind seas or swells

  13. Wave and offshore wind potential for the island of Tenerife

    International Nuclear Information System (INIS)

    Veigas, M.; Iglesias, G.

    2013-01-01

    Highlights: • The island aims to reduce its carbon footprint by developing renewable energy. • The substantial wave and offshore wind resources around the island are examined. • One area is appropriate for installing a hybrid wave–offshore wind farm. - Abstract: The island of Tenerife, a UNESCO Biosphere Reserve in the Atlantic Ocean, aims to be energy self-sufficient in order to reduce its carbon footprint. To accomplish this goal it should develop the renewable sources, in particular wave and offshore wind energy. The objectives of this work are twofold; (i) to characterize the wave and offshore wind power distribution around the island and (ii) to determine which offshore area is best suited for their exploitation, taking into account the resource and other conditioning factors such as the bathymetry, distance to the coastline and ports, and offshore zoning. To carry out this research, hindcast wave and wind data obtained with numerical models are used alongside observations from meteorological stations. One area, in the vicinity of Puerto de la Cruz, is identified as having great potential for installing a hybrid floating wave–wind farm. Both resources are characterized for the area selected: the wave resource in terms of wave directions, significant wave heights and energy periods; the offshore wind resource in terms of directions and speeds in addition to the seasonality for the both resources. It is found that most of the wave resource is provided by N and NNW waves with significant wave heights between 1.5 m and 3.0 m and energy periods between 10 s and 14 s. It follows that the Wave Energy Converters deployed in the area should have maximum efficiency in those ranges. As for the offshore wind resource, most of the energy corresponds to NNE and NE winds with speeds between 9 and 14 m s −1 , which should be taken into account when selecting the offshore wind turbines

  14. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    Science.gov (United States)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  15. A comparison of dynamical and statistical downscaling methods for regional wave climate projections along French coastlines.

    Science.gov (United States)

    Laugel, Amélie; Menendez, Melisa; Benoit, Michel; Mattarolo, Giovanni; Mendez, Fernando

    2013-04-01

    Wave climate forecasting is a major issue for numerous marine and coastal related activities, such as offshore industries, flooding risks assessment and wave energy resource evaluation, among others. Generally, there are two main ways to predict the impacts of the climate change on the wave climate at regional scale: the dynamical and the statistical downscaling of GCM (Global Climate Model). In this study, both methods have been applied on the French coast (Atlantic , English Channel and North Sea shoreline) under three climate change scenarios (A1B, A2, B1) simulated with the GCM ARPEGE-CLIMAT, from Météo-France (AR4, IPCC). The aim of the work is to characterise the wave climatology of the 21st century and compare the statistical and dynamical methods pointing out advantages and disadvantages of each approach. The statistical downscaling method proposed by the Environmental Hydraulics Institute of Cantabria (Spain) has been applied (Menendez et al., 2011). At a particular location, the sea-state climate (Predictand Y) is defined as a function, Y=f(X), of several atmospheric circulation patterns (Predictor X). Assuming these climate associations between predictor and predictand are stationary, the statistical approach has been used to project the future wave conditions with reference to the GCM. The statistical relations between predictor and predictand have been established over 31 years, from 1979 to 2009. The predictor is built as the 3-days-averaged squared sea level pressure gradient from the hourly CFSR database (Climate Forecast System Reanalysis, http://cfs.ncep.noaa.gov/cfsr/). The predictand has been extracted from the 31-years hindcast sea-state database ANEMOC-2 performed with the 3G spectral wave model TOMAWAC (Benoit et al., 1996), developed at EDF R&D LNHE and Saint-Venant Laboratory for Hydraulics and forced by the CFSR 10m wind field. Significant wave height, peak period and mean wave direction have been extracted with an hourly-resolution at

  16. Trend analysis of the wave storminess: the wave direction

    Science.gov (United States)

    Casas Prat, M.; Sierra, J. P.; Mösso, C.; Sánchez-Arcilla, A.

    2009-09-01

    directionality. It is based on 44 year hindcast model data (1958-2001) of the HIPOCAS project, enabling to work with a longer time series compared to the existing measured ones. 41 nodes of this database are used, containing 3 hourly simulated data of significant wave height and wave direction, among other parameters. For storm definition, the Peak Over Threshold (POT) method is used with some additional duration requirements in order to analyse statistically independent events (Mendoza & Jiménez, 2006). Including both wave height and storm duration, the wave storminess is characterised by the energy content (Mendoza & Jiménez, 2004), being in turn log-transformed because of its positive scale. Separately, the wave directionality itself is analysed in terms of different sectors and approaching their probability of occurrence by counting events and using Bayesian inference (Agresti, 2002). Therefore, the original data is transformed into compositional data and, before performing the trend analysis, the isometric logratio (ilr) transformation (Egozcue et al., 2003) is done. In general, the trend analysis methodology consists in two steps: 1) trend detection and 2) trend quantification. For 1) the Mann Kendall test is used in order to identify the nodes with significant trend. For these selected nodes, the trend quantification is done, comparing two methods: 1) a simple linear regression analysis complemented with the bootstrap technique and 2) a Bayesian analysis, assuming normally distributed data with linearly increasing mean. Preliminary results show no significant trend for both annual mean and maximum energy content except for some nodes located to the Northern Catalan coast. Regarding the wave direction (but not only considering stormy conditions) there is a tendency of North direction to decrease whereas South and Southeast direction seems to increase.

  17. Observation of a tropopause fold by MARA VHF wind-profiler radar and ozonesonde at Wasa, Antarctica: comparison with ECMWF analysis and a WRF model simulation

    Directory of Open Access Journals (Sweden)

    M. Mihalikova

    2012-09-01

    Full Text Available Tropopause folds are one of the mechanisms of stratosphere–troposphere exchange, which can bring ozone rich stratospheric air to low altitudes in the extra-tropical regions. They have been widely studied at northern mid- or high latitudes, but so far almost no studies have been made at mid- or high southern latitudes. The Moveable Atmospheric Radar for Antarctica (MARA, a 54.5 MHz wind-profiler radar, has operated at the Swedish summer station Wasa, Antarctica (73° S, 13.5° W during austral summer seasons from 2007 to 2011 and has observed on several occasions signatures similar to those caused by tropopause folds at comparable Arctic latitudes. Here a case study is presented of one of these events when an ozonesonde successfully sampled the fold. Analysis from European Center for Medium Range Weather Forecasting (ECMWF is used to study the circumstances surrounding the event, and as boundary conditions for a mesoscale simulation using the Weather Research and Forecasting (WRF model. The fold is well resolved by the WRF simulation, and occurs on the poleward side of the polar jet stream. However, MARA resolves fine-scale layering associated with the fold better than the WRF simulation.

  18. Long-term variability of extreme waves in the Caspian, Black, Azov and Baltic Seas

    Science.gov (United States)

    Arkhipkin, Victor; Dobroliubov, Sergey

    2013-04-01

    In order to study extreme storm waves in the Caspian, Black, Azov and Baltic Sea we used the spectral wave model SWAN. Significant wave height, swell and sea height, direction of propagation, their length and period were calculated with the NCEP/NCAR (1,9°x1,9°, 4-daily) reanalysis wind forcing from 1948 to 2010 in the Caspian, Black and Baltic Seas and with the NCEP/CFSR (0,3°x0,3°, 1 hour) for the period from 1979 to 2010 in the Azov Sea. The calculations were performed on supercomputers of Lomonosov Moscow State University (MSU). The spatial resolution of the numerical grid was of order 5 km for the Caspian, Baltic and Black Seas, 2 km for the Azov Sea. These model wave hindcasts were used to calculate interannual and seasonal variability of the storm frequency, location and duration. The Initial Distribution Method and Annual Maxima Series Methods were used to study probable waves of a century reoccurrence. The long-term variability of extreme waves revealed different trends in the investigated seas. The Caspian and Azov seas decreased the storm activity, while in the Baltic Sea the number of storm cases increased and the Black Sea showed no significant trend. The of more than 12 m were observed in two centers in the middle part of the Caspian Sea and in the center of the Baltic Sea. In the Black Sea the extreme waves of the same probability of more than 14 m were found in the region to the south of the Crimean peninsula. In the Azov Sea the highest waves of a century reoccurrence do not exceed 5 m. The work was done in Natural Risk Assessment Laboratory, MSU under contract G.34.31.0007.

  19. Long-run evolution of the global economy - Part 2: Hindcasts of innovation and growth

    Science.gov (United States)

    Garrett, T. J.

    2015-10-01

    Long-range climate forecasts use integrated assessment models to link the global economy to greenhouse gas emissions. This paper evaluates an alternative economic framework outlined in part 1 of this study (Garrett, 2014) that approaches the global economy using purely physical principles rather than explicitly resolved societal dynamics. If this model is initialized with economic data from the 1950s, it yields hindcasts for how fast global economic production and energy consumption grew between 2000 and 2010 with skill scores > 90 % relative to a model of persistence in trends. The model appears to attain high skill partly because there was a strong impulse of discovery of fossil fuel energy reserves in the mid-twentieth century that helped civilization to grow rapidly as a deterministic physical response. Forecasting the coming century may prove more of a challenge because the effect of the energy impulse appears to have nearly run its course. Nonetheless, an understanding of the external forces that drive civilization may help development of constrained futures for the coupled evolution of civilization and climate during the Anthropocene.

  20. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

    Science.gov (United States)

    Erikson, Li H.; Hegermiller, Christie; Barnard, Patrick; Ruggiero, Peter; van Ormondt, Martin

    2015-01-01

    Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs were used to generate an ensemble of wave conditions for a recent historical time-period (1976–2005) and projections for the mid and latter parts of the 21st century under two radiative forcing scenarios (RCP 4.5 and RCP 8.5), as defined by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) experiments. Comparisons of results from historical simulations with wave buoy and ERA-Interim wave reanalysis data indicate acceptable model performance of wave heights, periods, and directions, giving credence to generating projections. Mean and extreme wave heights are projected to decrease along much of the North American west coast. Extreme wave heights are projected to decrease south of ∼50°N and increase to the north, whereas extreme wave periods are projected to mostly increase. Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. Local spatial patterns of the changing wave climate are similar under the RCP 4.5 and RCP 8.5 scenarios, but stronger magnitudes of change are projected under RCP 8.5. Findings of this study are similar to previous work using CMIP3 GCMs that indicates decreasing mean and extreme wave conditions in the Eastern North Pacific, but differ from other studies with respect to magnitude and local patterns of change. This study contributes toward a larger ensemble of global and regional climate projections needed to better assess uncertainty of potential future wave climate change, and provides model boundary conditions for assessing the impacts of

  1. Projections of extreme water level events for atolls in the western Tropical Pacific

    Science.gov (United States)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-12-01

    Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.

  2. Regional improvement of global reanalyses by means of a new long-term Mediterranean hindcasted precipitation dataset: a first study over the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. G. Sotillo

    2006-01-01

    Full Text Available Generation of a Mediterranean long-term (1958-2001 homogeneous high resolution environmental database constituted the main objective whitin the HIPOCAS Project. The high number of parameters included in this database allows a complete characterization of Mediterranean storms. In this paper, the HIPOCAS precipitation reliability over the Iberian Peninsula and the Balearic Islands is evaluated against long-term in-situ observations from Iberia. In order to provide a more complete study, comparisons of the HIPOCAS field with NCEP/NCAR and ERA global reanalysis show the important improvement in the characterisation of the observed precipitation introduced by the HIPOCAS hindcast.

  3. Modeling long period swell in Southern California: Practical boundary conditions from buoy observations and global wave model predictions

    Science.gov (United States)

    Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.

    2016-02-01

    Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.

  4. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    Science.gov (United States)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  5. Identification of wind fields for wave modeling near Qatar

    Science.gov (United States)

    Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay

    2016-04-01

    Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was

  6. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    Science.gov (United States)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  7. Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

    Science.gov (United States)

    O'Neill, Andrea; Erikson, Li; Barnard, Patrick

    2017-01-01

    While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.

  8. Energy Generation Potential of West African Ocean Current ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2015-12-01

    Dec 1, 2015 ... to be due to hydrodynamic influence of discharging upland rivers into the .... A. Francis Ogbu, “Correlation of solar radiation with cloud cover and relative ... “A hindcast study of the extreme wave climate of offshore West Africa.

  9. Measurement of the ω → π+π-π0 Dalitz plot distribution

    Science.gov (United States)

    Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khan, F. A.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Varma, R.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; Kubis, B.; Leupold, S.

    2017-07-01

    Using the production reactions pd →3He ω and pp → ppω, the Dalitz plot distribution for the ω →π+π-π0 decay is studied with the WASA detector at COSY, based on a combined data sample of (4.408 ± 0.042) ×104 events. The Dalitz plot density is parametrised by a product of the P-wave phase space and a polynomial expansion in the normalised polar Dalitz plot variables Z and ϕ. For the first time, a deviation from pure P-wave phase space is observed with a significance of 4.1σ. The deviation is parametrised by a linear term 1 + 2 αZ, with α determined to be + 0.147 ± 0.036, consistent with the expectations of ρ-meson-type final-state interactions of the P-wave pion pairs.

  10. Measurement of the ω→π+π−π0 Dalitz plot distribution

    Directory of Open Access Journals (Sweden)

    P. Adlarson

    2017-07-01

    Full Text Available Using the production reactions pd→He3ω and pp→ppω, the Dalitz plot distribution for the ω→π+π−π0 decay is studied with the WASA detector at COSY, based on a combined data sample of (4.408±0.042×104 events. The Dalitz plot density is parametrised by a product of the P-wave phase space and a polynomial expansion in the normalised polar Dalitz plot variables Z and ϕ. For the first time, a deviation from pure P-wave phase space is observed with a significance of 4.1σ. The deviation is parametrised by a linear term 1+2αZ, with α determined to be +0.147±0.036, consistent with the expectations of ρ-meson-type final-state interactions of the P-wave pion pairs.

  11. Nowcasting, forecasting and hindcasting Harvey and Irma inundation in near-real time using a continental 2D hydrodynamic model

    Science.gov (United States)

    Sampson, C. C.; Wing, O.; Quinn, N.; Smith, A.; Neal, J. C.; Schumann, G.; Bates, P.

    2017-12-01

    During an ongoing natural disaster data are required on: (1) the current situation (nowcast); (2) its likely immediate evolution (forecast); and (3) a consistent view post-event of what actually happened (hindcast or reanalysis). We describe methods used to achieve all three tasks for flood inundation during the Harvey and Irma events using a continental scale 2D hydrodynamic model (Wing et al., 2017). The model solves the local inertial form of the Shallow Water equations over a regular grid of 1 arcsecond ( 30m). Terrain data are taken from the USGS National Elevation Dataset with known flood defences represented using the U.S. Army Corps of Engineers National Levee Dataset. Channels are treated as sub-grid scale features using the HydroSHEDS global hydrography data set. The model is driven using river flows, rainfall and coastal water levels. It simulates river flooding in basins > 50 km2, and fluvial and coastal flooding everywhere. Previous wide area validation tests show this model to be capable of matching FEMA maps and USGS local models built with bespoke data with hit rates of 86% and 92% respectively (Wing et al., 2017). Boundary conditions were taken from NOAA QPS data to produce nowcast and forecast simulations in near real time, before updating with NOAA observations to produce the hindcast. During the event simulation results were supplied to major insurers and multi-nationals who used them to estimate their likely capital exposure and to mitigate flood damage to their infrastructure whilst the event was underway. Simulations were validated against modelled flood footprints computed by FEMA and USACE, and composite satellite imagery produced by the Dartmouth Flood Observatory. For the Harvey event, hit rates ranged from 60-84% against these data sources, but a lack of metadata meant it was difficult to perform like-for-like comparisons. The satellite data also appeared to miss known flooding in urban areas that was picked up in the models. Despite

  12. Multiple GISS AGCM Hindcasts and MSU Versions of 1979-1998

    Science.gov (United States)

    Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark

    1998-01-01

    Multiple realizations of the 1979-1998 time period have been simulated by the Goddard Institute for Space Studies Atmospheric General Circulation Model (GISS AGCM) to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM's lower tropospheric, tropospheric and lower stratospheric brightness temperature (Tb) time series for correlations with the various Microwave Sounding Unit (MSU) time series available. MSU maps of monthly means and anomalies were also used to assess the AGCM's mean annual cycle and regional variability. Seven realizations by the AGCM were forced by observed sea surface temperatures (sst) through 1992 to gather rough standard deviations associated with internal model variability. Subsequent runs hindcast January 1979 through April 1998 with an accumulation of forcings: observed ssts, greenhouse gases, stratospheric volcanic aerosols. stratospheric and tropospheric ozone and tropospheric sulfate and black carbon aerosols. The goal of narrowing gaps between AGCM and MSU time series was complicated by MSU time series, by Tb simulation concerns and by unforced climatic variability in the AGCM and in the real world. Lower stratospheric Tb correlations between the AGCM and MSU for 1979-1998 reached as high as 0.91 +/-0.16 globally with sst, greenhouse gases, volcanic aerosol, stratospheric ozone forcings and tropospheric aerosols. Mid-tropospheric Tb correlations reached as high as 0.66 +/-.04 globally and 0.84 +/-.02 in the tropics. Oceanic lower tropospheric Tb correlations similarly reached 0.61 +/-.06 globally and 0.79 +/-.02 in the tropics. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with mid-tropospheric Tb correlations up to 0.75 +/- .03. The two other agricultural regions, in Africa and in the northern mid-latitudes, suffered from higher levels of non-sst variability. Zimbabwe

  13. Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study

    Directory of Open Access Journals (Sweden)

    S. D. Eckermann

    2006-01-01

    Full Text Available Two-dimensional radiance maps from Channel 9 (~60–90 hPa of the Advanced Microwave Sounding Unit (AMSU-A, acquired over southern Scandinavia on 14 January 2003, show plane-wave-like oscillations with a wavelength λh of ~400–500 km and peak brightness temperature amplitudes of up to 0.9 K. The wave-like pattern is observed in AMSU-A radiances from 8 overpasses of this region by 4 different satellites, revealing a growth in the disturbance amplitude from 00:00 UTC to 12:00 UTC and a change in its horizontal structure between 12:00 UTC and 20:00 UTC. Forecast and hindcast runs for 14 January 2003 using high-resolution global and regional numerical weather prediction (NWP models generate a lower stratospheric mountain wave over southern Scandinavia with peak 90 hPa temperature amplitudes of ~5–7 K at 12:00 UTC and a similar horizontal wavelength, packet width, phase structure and time evolution to the disturbance observed in AMSU-A radiances. The wave's vertical wavelength is ~12 km. These NWP fields are validated against radiosonde wind and temperature profiles and airborne lidar profiles of temperature and aerosol backscatter ratios acquired from the NASA DC-8 during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II. Both the amplitude and phase of the stratospheric mountain wave in the various NWP fields agree well with localized perturbation features in these suborbital measurements. In particular, we show that this wave formed the type II polar stratospheric clouds measured by the DC-8 lidar. To compare directly with the AMSU-A data, we convert these validated NWP temperature fields into swath-scanned brightness temperatures using three-dimensional Channel 9 weighting functions and the actual AMSU-A scan patterns from each of the 8 overpasses of this region. These NWP-based brightness temperatures contain two-dimensional oscillations due to this resolved stratospheric mountain wave that have an amplitude, wavelength

  14. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress

    Science.gov (United States)

    Brown, Jennifer M.; Wolf, Judith

    2009-05-01

    We revisit the surge of November 1977, a storm event which caused damage on the Sefton coast in NW England. A hindcast has been made with a coupled surge-tide-wave model, to investigate whether a wave-dependent surface drag is necessary for accurate surge prediction, and also if this can be represented by an optimised Charnock parameter. The Proudman Oceanographic Laboratory Coastal Modelling System-Wave Model (POLCOMS-WAM) has been used to model combined tides, surges, waves and wave-current interaction in the Irish Sea on a 1.85 km grid. This period has been previously thoroughly studied, e.g. Jones and Davies [Jones, J.E., Davies, A.M., 1998. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction. Continental Shelf Research 18(2), 201-251] and we build upon this previous work to validate the POLCOMS-WAM model to test the accuracy of surge elevation predictions in the study area. A one-way nested approach has been set up from larger scale models to the Irish Sea model. It was demonstrated that (as expected) swell from the North Atlantic does not have a significant impact in the eastern Irish Sea. To capture the external surge generated outside of the Irish Sea a (1/9° by 1/6°) model extending beyond the continental shelf edge was run using the POLCOMS model for tide and surge. The model results were compared with tide gauge observations around the eastern Irish Sea. The model was tested with different wind-stress formulations including Smith and Banke [Smith, S.D., Banke, E.G., 1975. Variation of the surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorology Society, 101(429), 665-673] and Charnock [Charnock, H., 1955. Wind-stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350), 639-640]. In order to get a single parameterisation that works with wave-coupling, the wave-derived surface roughness length has been imposed in the surge model

  15. Dicty_cDB: Contig-U13443-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available lignments: (bits) Value N ( AF305060 ) Dictyostelium discoideum Wiscott-Aldrich syndrome... 529 0.0 10 ( BJ3... AF305060 ) Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene...icant alignments: (bits) Value AF305060_1( AF305060 |pid:none) Dictyostelium discoideum Wiscott...0_1( AF305060 |pid:none) Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, complete cds

  16. Simultaneous observations of Polar Mesosphere Summer Echoes at two different latitudes in Antarctica

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2008-11-01

    Full Text Available Simultaneous observations of Polar Mesosphere Summer Echoes (PMSE at Wasa and Davis in Antarctica have been compared. Data with simultaneous observations were obtained for 16 days between 18 January and 5 February 2007. Wasa is at a higher geographic latitude than Davis, but at lower geomagnetic latitude. PMSE strength and occurrence frequency were significantly higher at Wasa. The variation of daily PMSE occurrence over the measurement period was in agreement with temperature and frost-point estimates from the Microwave Limb Sounder on the Aura spacecraft for both Wasa and Davis. The diurnal variation of PMSE strength and occurrence frequency as well as the shape of the altitude profiles of average PMSE strength and occurrence frequency were similar for the two sites. The deepest part of the evening minimum in PMSE occurrence frequency occurred for the same magnetic local time at the two sites rather than for the same local solar time. The study indicates that PMSE strength and occurrence increase between 68.6° and 73° geographic latitude, consistent with observed differences in mesospheric temperatures and water vapor content. The average altitude distribution of PMSE varies relatively little with latitude in the same hemisphere.

  17. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    Science.gov (United States)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  18. Investigation of Spatial Variation of Sea States Offshore of Humboldt Bay CA Using a Hindcast Model.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season. The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.

  19. η-meson production in proton-proton collisions at excess energies of 40 and 72 MeV

    Science.gov (United States)

    Petrén, H.; Bargholtz, Chr.; Bashkanov, M.; Bogoslavsky, D.; Calén, H.; Clement, H.; Demirörs, L.; Ekström, C.; Fransson, K.; Fäldt, G.; Gerén, L.; Höistad, B.; Ivanov, G.; Jacewicz, M.; Jiganov, E.; Johansson, T.; Keleta, S.; Khakimova, O.; Koch, I.; Kren, F.; Kullander, S.; Kupść, A.; Lindberg, K.; Marciniewski, P.; Morosov, B.; Pauly, C.; Petukhov, Y.; Povtorejko, A.; Schönning, K.; Scobel, W.; Skorodko, T.; Stepaniak, J.; Tegnér, P.-E.; Thörngren Engblom, P.; Tikhomirov, V.; Wilkin, C.; Wolke, M.; Zabierowski, J.; Zartova, I.; Złomańczuk, J.

    2010-11-01

    The production of η mesons in proton-proton collisions has been studied using the WASA detector at the CELSIUS storage ring at excess energies of Q=40 MeV and Q=72 MeV. The η was detected through its 2γ decay in a near-4π electromagnetic calorimeter, whereas the protons were measured by a combination of straw chambers and plastic scintillator planes in the forward hemisphere. About 6.9×104 and 9.3×104 events were found at Q=40 MeV and Q=72 MeV, respectively, with background contributions of less than 5%. A simple parametrization of the production cross section in terms of low partial waves was used to evaluate the acceptance corrections. Strong evidence was found for the influence of higher partial waves. The Dalitz plots show the presence of p waves in both the pp and the η{pp} systems and the angular distributions of the η in the center-of-mass frame suggest the influence of d-wave η mesons.

  20. Comparison of MAGIC and Diatom paleolimnological model hindcasts of lakewater acidification in the Adirondack region of New York

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Bernert, J.A.; Eliers, J.M. (E and S Environmental Chemistry, Corvallis, OR (USA)); Jenne, E.A. (Pacific Northwest Lab., Richland, WA (USA)); Cosby, B.J. (Duke Univ., Durham, NC (USA). School of Forestry and Environmental Studies); Charles, D.F.; Selle, A.R. (Environmental Protection Agency, Corvallis, OR (USA). Environmental Research Lab.)

    1991-03-01

    Thirty-three lakes that had been statistically selected as part of the US Environmental Protection Agency's Eastern Lake Survey and Direct Delayed Response Project (DDRP) were used to compare the MAGIC (watershed) and Diatom (paleolimnological) models. The study lakes represented a well-defined group of Adirondack lakes, each larger than 4 ha in area and having acid-neutralizing capacity (ANC) <400 {mu}eq L{sup {minus}1}. The study first compared current and pre-industrial (before 1850) pH and ANC estimates from Diatom and MAGIC as they were calibrated in the preceding Paleocological Investigation of Recent Lake Acidification (PIRLA) and DDRP studies, respectively. Initially, the comparison of hindcasts of pre-industrial chemistry was confounded by seasonal and methodological differences in lake chemistry data used in calibration of the model. Although certain differences proved to be of little significance for comparison, MAGIC did predict significantly higher pre-industrial ANC and pH values than did Diatom, using calibrations in the preceding studies. Both models suggest acidification of low ANC Adirondack region lakes since preindustrial times, but differ primarily in that MAGIC inferred greater acidification and that acidification has occurred in all lakes in the comparison, whereas Diatom inferred that acidification has been restricted to low ANC lakes (

  1. Projections of wind-waves in South China Sea for the 21st century

    Science.gov (United States)

    Mohammed, Aboobacker; Dykyi, Pavlo; Zheleznyak, Mark; Tkalich, Pavel

    2013-04-01

    IPCC-coordinated work has been completed within Fourth Assessment Report (AR4) to project climate and ocean variables for the 21st century using coupled atmospheric-ocean General Circulation Models (GCMs). GCMs are not having a wind-wave variable due to a poor grid resolution; therefore, dynamical downscaling of wind-waves to the regional scale is advisable using well established models, such as Wave Watch III (WWIII) and SWAN. Rectilinear-coordinates WWIII model is adapted for the far field comprising the part of Pacific and Indian Oceans centered at the South China Sea and Sunda Shelf (90 °E-130 °E, 10 °S - 26.83 °N) with a resolution of 10' (about 18 km). Near-field unstructured-mesh SWAN model covers Sunda Shelf and centered on Singapore Strait, while reading lateral boundary values from WWIII model. The unstructured grid has the coarsest resolution in the South China Sea (6 to 10 km), medium resolution in the Malacca Strait (1 to 2 km), and the finest resolution in the Singapore Strait (400 m) and along the Singapore coastline (up to 100 m). Following IPCC methodology, the model chain is validated climatologically for the past period 1961-1990 against Voluntary Observing Ship (VOS) data; additionally, the models are validated using recent high-resolution satellite data. The calibrated model chain is used to project waves to 21st century using WRF-downscaled wind speed output of CCSM GCM run for A1FI climate change scenario. To comply with IPCC methodology the entire modeling period is split into three 30-years periods for which statistical parameters are computed individually. Time series of significant wave height at key points near Singapore and on ship sea routes in the SCS are statistically analysed to get probability distribution functions (PDFs) of extreme values. Climatological maps of mean and maximum significant wave height (SWH) values, and mean wave period are built for Singapore region for each 30-yrs period. Linear trends of mean SWH values

  2. Implementation and test of a coastal forecasting system for wind waves in the Mediterranean Sea

    Science.gov (United States)

    Inghilesi, R.; Catini, F.; Orasi, A.; Corsini, S.

    2010-09-01

    A coastal forecasting system has been implemented in order to provide a coverage of the whole Mediterranean Sea and of several enclosed coastal areas as well. The problem is to achieve a good definition of the small scale coastal processes which affect the propagation of waves toward the shores while retaining the possibility of selecting any of the possible coastal areas in the whole Mediterranean Sea. The system is built on a very high resolution parallel implementation of the WAM and SWAN models, one-way chain-nested in key areas. The system will shortly be part of the ISPRA SIMM forecasting system which has been operative since 2001. The SIMM sistem makes available the high resolution wind fields (0.1/0.1 deg) used in the coastal system. The coastal system is being tested on several Italian coastal areas (Ligurian Sea, Lower Tyrrenian Sea, Sicily Channel, Lower Adriatic Sea) in order to optimise the numerics of the coastal processes and to verify the results in shallow waters and complex bathymetries. The results of the comparison between hindcast and buoy data in very shallow (14m depth) and deep sea (150m depth) will be shown for several episodes in the upper Tyrrenian Sea.

  3. Wave Extremes in the Northeast Atlantic from Ensemble Forecasts

    Science.gov (United States)

    Breivik, Øyvind; Aarnes, Ole Johan; Bidlot, Jean-Raymond; Carrasco, Ana; Saetra, Øyvind

    2013-10-01

    A method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the North-East Atlantic, the Norwegian Sea and the North Sea are computed from archived +240-h forecasts of the ECMWF ensemble prediction system (EPS) from 1999 to 2009. We make three assumptions: First, each forecast is representative of a six-hour interval and collectively the data set is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which we confirm by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. We find anomaly correlations of 0.20, but peak events (>P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the data set we also find that the estimates follow the same distribution and appear unaffected by correlations in the ensemble. The annual mean and variance over the 11-year archived period exhibit no significant departures from stationarity compared with a recent reforecast, i.e., there is no spurious trend due to model upgrades. EPS yields significantly higher return values than ERA-40 and ERA-Interim and is in good agreement with the high-resolution hindcast NORA10, except in the lee of unresolved islands where EPS overestimates and in enclosed seas where it is biased low. Confidence intervals are half the width of those found for ERA-Interim due to the magnitude of the data set.

  4. Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean-atmosphere hindcasts

    Energy Technology Data Exchange (ETDEWEB)

    Orsolini, Yvan J. [Norwegian Institute for Air Research (NILU), PO BOX 100, Kjeller (Norway); Senan, Retish; Benestad, Rasmus E.; Melsom, Arne [Norwegian Meteorological Institute (met. no), Oslo (Norway)

    2012-06-15

    The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean-atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10 C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn. (orig.)

  5. Outer Continental Shelf Environmental Assessment Program. Final reports of principal investigators. Volume 74

    International Nuclear Information System (INIS)

    1991-10-01

    The volume contains: synthesis of seismicity studies for western Alaska; bottom and near-bottom sediment dynamics in Norton Sound; integration of circulation data in the Beaufort Sea; numerical modeling of storm surges in the Beaufort and Chukchi Seas; numerical modeling of storm surges in Norton Sound; Yukon delta oceanography and meteorology; and superstructure icing and wave hindcast statistics in the Navarin and St. George Basin areas

  6. North Texas Sediment Budget: Sabine Pass to San Luis Pass

    Science.gov (United States)

    2006-09-01

    concrete units have been placed over sand-filled fabric tube . .......................................33 Figure 28. Sand-filled fabric tubes protecting...system UTM Zone 15, NAD 83 Longshore drift directions King (in preparation) Based on wave hindcast statistics and limited buoy data Rollover Pass...along with descriptions of the jetties and limited geographic coordinate data1 (Figure 18). The original velum or Mylar sheets from which the report

  7. Forecasting the impact of storm waves and sea-level rise on Midway Atoll and Laysan Island within the Papahānaumokuākea Marine National Monument—a comparison of passive versus dynamic inundation models

    Science.gov (United States)

    Storlazzi, Curt D.; Berkowitz, Paul; Reynolds, Michelle H.; Logan, Joshua B.

    2013-01-01

    Two inundation events in 2011 underscored the potential for elevated water levels to damage infrastructure and affect terrestrial ecosystems on the low-lying Northwestern Hawaiian Islands in the Papahānaumokuākea Marine National Monument. The goal of this study was to compare passive "bathtub" inundation models based on geographic information systems (GIS) to those that include dynamic water levels caused by wave-induced set-up and run-up for two end-member island morphologies: Midway, a classic atoll with islands on the shallow (2-8 m) atoll rim and a deep, central lagoon; and Laysan, which is characterized by a deep (20-30 m) atoll rim and an island at the center of the atoll. Vulnerability to elevated water levels was assessed using hindcast wind and wave data to drive coupled physics-based numerical wave, current, and water-level models for the atolls. The resulting model data were then used to compute run-up elevations using a parametric run-up equation under both present conditions and future sea-level-rise scenarios. In both geomorphologies, wave heights and wavelengths adjacent to the island shorelines increased more than three times and four times, respectively, with increasing values of sea-level rise, as more deep-water wave energy could propagate over the atoll rim and larger wind-driven waves could develop on the atoll. Although these increases in water depth resulted in decreased set-up along the islands’ shorelines, the larger wave heights and longer wavelengths due to sea-level rise increased the resulting wave-induced run-up. Run-up values were spatially heterogeneous and dependent on the direction of incident wave direction, bathymetry, and island configuration. Island inundation was modeled to increase substantially when wave-driven effects were included, suggesting that inundation and impacts to infrastructure and terrestrial habitats will occur at lower values of predicted sea-level rise, and thus sooner in the 21st century, than suggested

  8. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    Science.gov (United States)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  9. How realistic are air quality hindcasts driven by forcings from climate model simulations?

    Science.gov (United States)

    Lacressonnière, G.; Peuch, V.-H.; Arteta, J.; Josse, B.; Joly, M.; Marécal, V.; Saint Martin, D.; Déqué, M.; Watson, L.

    2012-12-01

    Predicting how European air quality could evolve over the next decades in the context of changing climate requires the use of climate models to produce results that can be averaged in a climatologically and statistically sound manner. This is a very different approach from the one that is generally used for air quality hindcasts for the present period; analysed meteorological fields are used to represent specifically each date and hour. Differences arise both from the fact that a climate model run results in a pure model output, with no influence from observations (which are useful to correct for a range of errors), and that in a "climate" set-up, simulations on a given day, month or even season cannot be related to any specific period of time (but can just be interpreted in a climatological sense). Hence, although an air quality model can be thoroughly validated in a "realistic" set-up using analysed meteorological fields, the question remains of how far its outputs can be interpreted in a "climate" set-up. For this purpose, we focus on Europe and on the current decade using three 5-yr simulations performed with the multiscale chemistry-transport model MOCAGE and use meteorological forcings either from operational meteorological analyses or from climate simulations. We investigate how statistical skill indicators compare in the different simulations, discriminating also the effects of meteorology on atmospheric fields (winds, temperature, humidity, pressure, etc.) and on the dependent emissions and deposition processes (volatile organic compound emissions, deposition velocities, etc.). Our results show in particular how differing boundary layer heights and deposition velocities affect horizontal and vertical distributions of species. When the model is driven by operational analyses, the simulation accurately reproduces the observed values of O3, NOx, SO2 and, with some bias that can be explained by the set-up, PM10. We study how the simulations driven by climate

  10. Depth averaged wave-current interaction in the multi bank morphology of the southern North Sea

    Science.gov (United States)

    Komijani, Homayoon; Osuna, Pedro; Ocampo Torres, Francisco; Monbaliu, Jaak

    2017-04-01

    The effects of wind induced waves on the barotropic mean flow during a storm event in the southern North Sea are investigated. The well known radiation stress gradient theory of Longuet-Higgins and Stewart (1962, 1964) together with the influence of waves through the Stokes drift (Hasselmann, 1971 and Garret, 1976) are incorporated in the RANS equation system of the COHERENS circulation model (Luyten et al., 2005) following the methodology worked out by Bennis et al. (2011) . The SWAN spectral wave model (version 40.91, http://www.swan.tudelft.nl/) is used to provide the wave information. This allows us to take into account the dissipative terms of wave momentum flux to the mean flow such as depth induced wave breaking and bottom friction as well as the conservative terms of wave effects such as the vortex-force and wave induced pressure gradient. The resulting coupled COHERENS-SWAN model has been validated using the well known planar beach test case proposed by Haas and Warner (2009) in depth averaged mode. For the application in the southern North Sea, a series of nested grids using COHERENS (circulation model) and WAM cycle 4.5.3 (spectral wave model applied to the North Sea shelf area, Monbaliu et al. 2000; Günther, H. and A. Behrens, personal communications, May 2012) is set up to provide the hydrodynamic and wave boundary conditions for the COHERENS-SWAN two way coupled wave-current model for the Belgian coastal zone model. The improvements obtained in hindcasting the circulation processes in the Belgian coastal area during a storm event will be highlighted. But also difficulties faced in the coupling of the models and in the simulation of a real case storm will be discussed. In particular, some of the approaches for dealing with the numerical instabilities due to multi bank morphology of the southern North Sea will be addressed. References : Bennis, A.-C., F. Ardhuin, and F. Dumas (2011). "On the coupling of wave and three-dimensional circulation models

  11. Brazilian offshore wave climate based on NWW3 reanalysis

    Directory of Open Access Journals (Sweden)

    Cássia Pianca

    2010-03-01

    Full Text Available This paper provides a description of the wave climate off the Brazilian coast based on an eleven-year time series (Jan/1997-Dec/2007 obtained from the NWW3 operational model hindcast reanalysis. Information about wave climate in Brazilian waters is very scarce and mainly based on occasional short-term observations, the present analysis being the first covering such temporal and spatial scales. To define the wave climate, six sectors were defined and analyzed along the Brazilian shelf-break: South (W1, Southeast (W2, Central (W3, East (W4, Northeast (W5 and North (W6. W1, W2 and W3 wave regimes are determined by the South Atlantic High (SAH and the passage of synoptic cold fronts; W4, W5 and W6 are controlled by the Intertropical Convergence Zone (ITCZ and its meridional oscillation. The most energetic waves are from the S, generated by the strong winds associated to the passage of cold fronts, which mainly affect the southern region. Wave power presents a decrease in energy levels from south to north, with its annual variation showing that the winter months are the most energetic in W1 to W4, while in W5 and W6 the most energetic conditions occur during the austral summer. The information presented here provides boundary conditions for studies related to coastal processes, fundamental for a better understanding of the Brazilian coastal zone.O presente trabalho apresenta o clima de ondas da região ao largo da costa brasileira com base em uma série temporal de onze anos (Jan/1997-Dez/2007 obtida através de dados de reanálise do modelo operacional NWW3. Informações sobre o regime de ondas no Brasil são escassas e baseadas em observações ocasionais de curto período, sendo a presente análise inédita na escala espaço-temporal apresentada. Para a definição do clima de ondas foram definidos e analisados seis setores ao longo da quebra da plataforma continental brasileira: Sul (W1, Sudeste (W2, Central (W3, Leste (W4, Nordeste (W5 e Norte

  12. Heraklion Airport

    DEFF Research Database (Denmark)

    Frigaard, Peter

    Heraklion City is located on Crete Island, Grece with a population of 150000. In the project for extension of the airport at Heraklion, part of the runway is placed in the sea. The runway must be designed to resist attack from the waves. the observed wave and wind data in the period of 1949......-1988 are collected by Athanassoulis et. al. (1992). The data are based on the visual observations made by deck officers aboard travelling ships. Extreme wave height analysis has been performed both on the observed wave heights and on hindcasted from wind data (AHL,1995). Because the damage to the slope protections...... depends on both the size and the number of waves it is necessary for the design process to havean estimate of the duration of the storms throughout the structure lifetime. This report gives the estimate of wave history corresponding to various intervals of wave heights in the lifetime of the structure....

  13. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  14. Use of Lagrangian simulations to hindcast the geographical position of propagule release zones in a Mediterranean coastal fish.

    Science.gov (United States)

    Calò, Antonio; Lett, Christophe; Mourre, Baptiste; Pérez-Ruzafa, Ángel; García-Charton, José Antonio

    2018-03-01

    The study of organism dispersal is fundamental for elucidating patterns of connectivity between populations, thus crucial for the design of effective protection and management strategies. This is especially challenging in the case of coastal fish, for which information on egg release zones (i.e. spawning grounds) is often lacking. Here we assessed the putative location of egg release zones of the saddled sea bream (Oblada melanura) along the south-eastern coast of Spain in 2013. To this aim, we hindcasted propagule (egg and larva) dispersal using Lagrangian simulations, fed with species-specific information on early life history traits (ELTs), with two approaches: 1) back-tracking and 2) comparing settler distribution obtained from simulations to the analogous distribution resulting from otolith chemical analysis. Simulations were also used to assess which factors contributed the most to dispersal distances. Back-tracking simulations indicated that both the northern sector of the Murcia region and some traits of the North-African coast were hydrodynamically suitable to generate and drive the supply of larvae recorded along the coast of Murcia in 2013. With the second approach, based on the correlation between simulation outputs and field results (otolith chemical analysis), we found that the oceanographic characteristics of the study area could have determined the pattern of settler distribution recorded with otolith analysis in 2013 and inferred the geographical position of main O. melanura spawning grounds along the coast. Dispersal distance was found to be significantly affected by the geographical position of propagule release zones. The combination of methods used was the first attempt to assess the geographical position of propagule release zones in the Mediterranean Sea for O. melanura, and can represent a valuable approach for elucidating dispersal and connectivity patterns in other coastal species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Metamaterials, from electromagnetic waves to water waves, bending waves and beyond

    KAUST Repository

    Dupont, G.

    2015-08-04

    We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.

  16. Evaluation of cool season precipitation event characteristics over the Northeast US in a suite of downscaled climate model hindcasts

    Science.gov (United States)

    Loikith, Paul C.; Waliser, Duane E.; Kim, Jinwon; Ferraro, Robert

    2017-08-01

    Cool season precipitation event characteristics are evaluated across a suite of downscaled climate models over the northeastern US. Downscaled hindcast simulations are produced by dynamically downscaling the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) using the National Aeronautics and Space Administration (NASA)-Unified Weather Research and Forecasting (WRF) regional climate model (RCM) and the Goddard Earth Observing System Model, Version 5 (GEOS-5) global climate model. NU-WRF RCM simulations are produced at 24, 12, and 4-km horizontal resolutions using a range of spectral nudging schemes while the MERRA2 global downscaled run is provided at 12.5-km. All model runs are evaluated using four metrics designed to capture key features of precipitation events: event frequency, event intensity, even total, and event duration. Overall, the downscaling approaches result in a reasonable representation of many of the key features of precipitation events over the region, however considerable biases exist in the magnitude of each metric. Based on this evaluation there is no clear indication that higher resolution simulations result in more realistic results in general, however many small-scale features such as orographic enhancement of precipitation are only captured at higher resolutions suggesting some added value over coarser resolution. While the differences between simulations produced using nudging and no nudging are small, there is some improvement in model fidelity when nudging is introduced, especially at a cutoff wavelength of 600 km compared to 2000 km. Based on the results of this evaluation, dynamical regional downscaling using NU-WRF results in a more realistic representation of precipitation event climatology than the global downscaling of MERRA2 using GEOS-5.

  17. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  18. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  19. Numerical climate modeling and verification of selected areas for heat waves of Pakistan using ensemble prediction system

    International Nuclear Information System (INIS)

    Amna, S; Samreen, N; Khalid, B; Shamim, A

    2013-01-01

    Depending upon the topography, there is an extreme variation in the temperature of Pakistan. Heat waves are the Weather-related events, having significant impact on the humans, including all socioeconomic activities and health issues as well which changes according to the climatic conditions of the area. The forecasting climate is of prime importance for being aware of future climatic changes, in order to mitigate them. The study used the Ensemble Prediction System (EPS) for the purpose of modeling seasonal weather hind-cast of three selected areas i.e., Islamabad, Jhelum and Muzaffarabad. This research was purposely carried out in order to suggest the most suitable climate model for Pakistan. Real time and simulated data of five General Circulation Models i.e., ECMWF, ERA-40, MPI, Meteo France and UKMO for selected areas was acquired from Pakistan Meteorological Department. Data incorporated constituted the statistical temperature records of 32 years for the months of June, July and August. This study was based on EPS to calculate probabilistic forecasts produced by single ensembles. Verification was done out to assess the quality of the forecast t by using standard probabilistic measures of Brier Score, Brier Skill Score, Cross Validation and Relative Operating Characteristic curve. The results showed ECMWF the most suitable model for Islamabad and Jhelum; and Meteo France for Muzaffarabad. Other models have significant results by omitting particular initial conditions.

  20. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong

    2015-08-19

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.

  1. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  2. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

    Science.gov (United States)

    Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.

    2014-01-01

    The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

  3. Storm surge modeling of Superstorm Sandy in the New York City Metropolitan area

    Science.gov (United States)

    Benimoff, A. I.; Blanton, B. O.; Dzedzits, E.; Fritz, W. J.; Kress, M.; Muzio, P.; Sela, L.

    2013-12-01

    Even though the New York/New Jersey area does not lie within the typical 'hurricane belt', recent events and the historical record indicate that large infrequent tropical storms have had direct hits on the region, with impacts being amplified due to the nearly right angle bend in the coastline. The recent plan unveiled by New York City's Mayor Bloomberg lays out mitigation strategies to protect the region's communities, infrastructure, and assets from future storms, and numerical simulation of storm surge and wave hazards driven by potential hurricanes plays a central role in developing and evaluating these strategies. To assist in local planning, recovery, and decision-making, we have used the tide, storm surge, and wind wave model ADCIRC+SWAN to simulate storm surge in one of the most populated areas of the United States: the New York City (NYC) metropolitan area. We have generated a new high-resolution triangular finite-element model grid for the region from recent USGS data as well as recent city topographic maps at 2-foot (0.6m) contour intervals, nautical charts, and details of shipping channels. Our hindcast simulations are compared against Superstorm Sandy. We used the City University of New York High Performance Computing Center's Cray XE6tm at the College of Staten Island for these simulations. Hindcasting and analysis of the Superstorm Sandy storm surge and waves indicates that our simulations produce a reasonable representation of actual events. The grid will be used in an ADCIRC-based forecasting system implementation for the region.

  4. Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides

    CERN Document Server

    Schneider, Wilhelm; Trulsen, Karsten

    2006-01-01

    Waves in Geophysical Fluids describes: the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans; stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave; the full story about the discovery of the very large oceanic internal waves, how the waves are visible from above through the signatures on the sea surface, and how to compute them; observations of energetic internal tides and hot spots from several field campaigns in all parts of the world's oceans, with interpretation of spectra. An essential work for students, scientists and engineers working with the fundamental and applied aspects of ocean waves.

  5. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  6. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of

  7. Wave fronts of electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.

    1982-01-01

    In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed

  8. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong; Liu, Yike; Schuster, Gerard T.

    2015-01-01

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve

  9. Assessment of offshore wind power potential in the Aegean and Ionian Seas based on high-resolution hindcast model results

    Directory of Open Access Journals (Sweden)

    Takvor Soukissian

    2017-03-01

    Full Text Available In this study long-term wind data obtained from high-resolution hindcast simulations is used to analytically assess offshore wind power potential in the Aegean and Ionian Seas and provide wind climate and wind power potential characteristics at selected locations, where offshore wind farms are at the concept/planning phase. After ensuring the good model performance through detailed validation against buoy measurements, offshore wind speed and wind direction at 10 m above sea level are statistically analyzed on the annual and seasonal time scale. The spatial distribution of the mean wind speed and wind direction are provided in the appropriate time scales, along with the mean annual and the inter-annual variability; these statistical quantities are useful in the offshore wind energy sector as regards the preliminary identification of favorable sites for exploitation of offshore wind energy. Moreover, the offshore wind power potential and its variability are also estimated at 80 m height above sea level. The obtained results reveal that there are specific areas in the central and the eastern Aegean Sea that combine intense annual winds with low variability; the annual offshore wind power potential in these areas reach values close to 900 W/m2, suggesting that a detailed assessment of offshore wind energy would be worth noticing and could lead in attractive investments. Furthermore, as a rough estimate of the availability factor, the equiprobable contours of the event [4 m/s ≤ wind speed ≤ 25 m/s] are also estimated and presented. The selected lower and upper bounds of wind speed correspond to typical cut-in and cut-out wind speed thresholds, respectively, for commercial offshore wind turbines. Finally, for seven offshore wind farms that are at the concept/planning phase the main wind climate and wind power density characteristics are also provided.

  10. Wave-particle dualism of spiral waves dynamics.

    Science.gov (United States)

    Biktasheva, I V; Biktashev, V N

    2003-02-01

    We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral waves in active media. That means although spiral waves appear as nonlocal processes involving the whole medium, they respond to small perturbations as effectively localized entities. The dualism appears as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.

  11. A coupled modelling system for the Irish Sea and Liverpool Bay with application to coastal flood forecasting and beyond

    Science.gov (United States)

    Wolf, J.; Bricheno, L. R.; Brown, J. E.; Bolaños, R.

    2012-04-01

    The POLCOMS-WAM coupled wave and hydrodynamic model has been implemented at 1.8km resolution for the Irish Sea and 180m in a nested model of Liverpool Bay. It can be forced with output from the UK Met Office Unified Model. This allows the use of Smith and Banke (1975) and Charnock (1955) formulations for the wind-stress. The former gives an underestimate of the wind-stress, requiring enhanced winds for accurate surge hindcasts. While the latter gives good results for the Irish Sea and Liverpool Bay, with different values of the Charnock coefficient, it also allows the inclusion of a coupled wave stress into the wind-stress (Brown and Wolf, 2009). New results have been obtained by using wind and pressures from the WRF atmospheric model, allowing further development of air-sea coupling. The coupled model also includes bottom friction and the Doppler shift of the waves by the depth-averaged current), as well as advanced coupling procedures: use of the 3D current in the wave physics and calculation of radiation stress and Stokes' drift (Brown et al., 2011). During storm conditions it is found that the radiation stress is the most important term in this shallow water application. However, WAM runs in near real time, making this model only practical for research purposes. The model system has been used to hindcast tides, surges and waves in Liverpool Bay. Data are readily available from the Liverpool Bay Coastal Observatory to quantify the importance of each coupled term with the aim of producing the most accurate model setup for coastal forecasting. A storm event, 18th January 2007, has been hindcast to investigate extreme tide-surge-wave condition both offshore and inshore. During storm events, wave setup in shallow regions can contribute significantly to the total water elevation. The application of a 2D method to calculate radiation stress in a 3D hydrodynamic model is thoroughly examined by comparison with observations and a 3D model (Mellor, 2003). The results show

  12. CMS-Wave

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can

  13. Infragravity Waves Produced by Wave Groups on Beaches

    Institute of Scientific and Technical Information of China (English)

    邹志利; 常梅

    2003-01-01

    The generation of low frequency waves by a single or double wave groups incident upon two plane beaches with the slope of 1/40 and 1/100 is investigated experimentally and numerically. A new type of wave maker signal is used to generate the groups, allowing the bound long wave (set-down) to be included in the group. The experiments show that the low frequency wave is generated during breaking and propagation to the shoreline of the wave group. This process of generation and propagation of low frequency waves is simulated numerically by solving the short-wave averaged mass and momentum conservation equations. The computed and measured results are in good agreement. The mechanism of generation of low frequency waves in the surf zone is examined and discussed.

  14. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  15. Electromagnetic waves in gravitational wave spacetimes

    International Nuclear Information System (INIS)

    Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.

    2013-01-01

    We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).

  16. Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John

    2014-01-01

    The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...

  17. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing

    2017-02-08

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  18. Skeletonized wave-equation Qs tomography using surface waves

    KAUST Repository

    Li, Jing

    2017-08-17

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.

  19. Wave-equation Qs Inversion of Skeletonized Surface Waves

    KAUST Repository

    Li, Jing; Dutta, Gaurav; Schuster, Gerard T.

    2017-01-01

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.

  20. Nonlinear wave equation with intrinsic wave particle dualism

    International Nuclear Information System (INIS)

    Klein, J.J.

    1976-01-01

    A nonlinear wave equation derived from the sine-Gordon equation is shown to possess a variety of solutions, the most interesting of which is a solution that describes a wave packet travelling with velocity usub(e) modulating a carrier wave travelling with velocity usub(c). The envelop and carrier wave speeds agree precisely with the group and phase velocities found by de Broglie for matter waves. No spreading is exhibited by the soliton, so that it behaves exactly like a particle in classical mechanics. Moreover, the classically computed energy E of the disturbance turns out to be exactly equal to the frequency ω of the carrier wave, so that the Planck relation is automatically satisfied without postulating a particle-wave dualism. (author)

  1. Millimeter wave and terahertz wave transmission characteristics in plasma

    International Nuclear Information System (INIS)

    Ma Ping; Qin Long; Chen Weijun; Zhao Qing; Shi Anhua; Huang Jie

    2013-01-01

    An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas. (authors)

  2. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  3. The wave of the future - Searching for gravity waves

    International Nuclear Information System (INIS)

    Goldsmith, D.

    1991-01-01

    Research on gravity waves conducted by such scientists as Gamov, Wheeler, Weber and Zel'dovich is discussed. Particular attention is given to current trends in the theoretical analysis of gravity waves carried out by theorists Kip Thorne and Leonid Grishchuk. The problems discussed include the search for gravity waves; calculation of the types of gravity waves; the possibility of detecting gravity waves from localized sources, e.g., from the collision of two black holes in a distant galaxy or the collapse of a star, through the Laser Interferometer Gravitational Wave Observatory; and detection primordial gravity waves from the big bang

  4. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  5. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  6. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  7. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  8. Rogue waves, rational solitons and wave turbulence theory

    International Nuclear Information System (INIS)

    Kibler, Bertrand; Hammani, Kamal; Michel, Claire; Finot, Christophe; Picozzi, Antonio

    2011-01-01

    Considering a simple one-dimensional nonlinear Schroedinger optical model, we study the existence of rogue wave events in the highly incoherent state of the system and compare them with the recently identified hierarchy of rational soliton solutions. We show that rogue waves can emerge in the genuine turbulent regime and that their coherent deterministic description provided by the rational soliton solutions is compatible with an accurate statistical description of the random wave provided by the wave turbulence theory. Furthermore, the simulations reveal that even in the weakly nonlinear regime, the nonlinearity can play a key role in the emergence of an individual rogue wave event in a turbulent environment. -- Highlights: → Rogue wave events are studied in the highly incoherent regime of interaction. → We show that rogue waves can emerge in the genuine turbulent regime. → Their coherent deterministic description is provided by the rational solutions. → It coexists with a statistical description provided of the random wave. → The nonlinearity plays a key role even in a turbulent environment.

  9. Low Frequency Waves Detected in a Large Wave Flume under Irregular Waves with Different Grouping Factor and Combination of Regular Waves

    Directory of Open Access Journals (Sweden)

    Luigia Riefolo

    2018-02-01

    Full Text Available This paper describes a set of experiments undertaken at Universitat Politècnica de Catalunya in the large wave flume of the Maritime Engineering Laboratory. The purpose of this study is to highlight the effects of wave grouping and long-wave short-wave combinations regimes on low frequency generations. An eigen-value decomposition has been performed to discriminate low frequencies. In particular, measured eigen modes, determined through the spectral analysis, have been compared with calculated modes by means of eigen analysis. The low frequencies detection appears to confirm the dependence on groupiness of the modal amplitudes generated in the wave flume. Some evidence of the influence of low frequency waves on runup and transport patterns are shown. In particular, the generation and evolution of secondary bedforms are consistent with energy transferred between the standing wave modes.

  10. Generating gravity waves with matter and electromagnetic waves

    International Nuclear Information System (INIS)

    Barrabes, C.; Hogan, P A.

    2008-01-01

    If a homogeneous plane lightlike shell collides head on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision

  11. Velocity-space diffusion due to resonant wave-wave scattering of electromagnetic and electrostatic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, Reija

    1991-01-01

    The velocity-space diffusion equation describing distortion of the velocity distribution function due to resonant wave-wave scattering of electromagnetic and electrostatic waves in an unmagnetized plasma is derived from the Vlasov-Maxwell equations by perturbation theory. The conservation laws for total energy and momentum densities of waves and particles are verified, and the time evolutions of the energy and momentum densities of particles are given in terms of the nonlinear wave-wave coupling coefficient in the kinetic wave equation. (author)

  12. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    Science.gov (United States)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H.-Y.; Ahlgrimm, M.; Bazile, E.; Berg, L. K.; Cheng, A.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Lee, W.-S.; Liu, Y.; Mellul, L.; Merryfield, W. J.; Qian, Y.; Roehrig, R.; Wang, Y.-C.; Xie, S.; Xu, K.-M.; Zhang, C.; Klein, S.; Petch, J.

    2018-03-01

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.

  13. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  14. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  15. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  16. Upper atmospheric planetary-wave and gravity-wave observations

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  17. Investigation of Wave Height Reduction behind the Wave Dragon Wave Energy Converters and Application in Santander, Spain

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke

    This paper deals with a case study on the wave height reduction behind floating Wave Dragon wave energy converters in Santander Bay, Spain. The study is performed using the MIKE21 Boussinesq model from DHI. The Wave Dragon transmission characteristics in the numerical wave propagation model...... are based on previously performed physical model tests in scale 1:51. Typical winter storm conditions are considered in the case study together with different stiffness in the mooring system of the floating device. From the study it is found that if multiple Wave Dragons are positioned in a farm the wave...

  18. Rootslased tegid "Puhastuse" piletitega kiirelt puhta vuugi / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2011-01-01

    Sofi Oksase näitemängu "Puhastus" etendustest Stocholmi Linnateatris. Lavastaja Åsa Melldahl. Turnee mööda Rootsi linnu teevad "Puhastuse" etendustega kaks rootsikeelset Soome teatrit - Åbo Svenska Teater ja Wasa Teater

  19. Dicty_cDB: VFE551 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available Value N AF305060 |AF305060.1 Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, complet...ictyostelium discoideum Wiscott-A... 112 4e-24 AC117076_18( AC117076 |pid:none) D

  20. Dicty_cDB: CFG253 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available Value N AF305060 |AF305060.1 Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, complete...ences producing significant alignments: (bits) Value AF305060_1( AF305060 |pid:none) Dictyostelium discoideum Wiscott

  1. In-tube shock wave driven by atmospheric millimeter-wave plasma

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya

    2009-01-01

    A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)

  2. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    Science.gov (United States)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion

  3. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing

    2016-09-06

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.

  4. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere

    International Nuclear Information System (INIS)

    Li Ziliang

    2008-01-01

    By introducing a new transformation, a new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system, which extends Fan's direct algebraic method to the case when r > 4. The solutions of a first-order nonlinear ordinary differential equation with a higher degree nonlinear term and Fan's direct algebraic method of obtaining exact solutions to nonlinear partial differential equations are applied to the combined KdV-mKdV-GKdV equation, which is derived from a simple incompressible non-hydrostatic Boussinesq equation with the influence of thermal forcing and is applied to investigate internal gravity waves in the atmosphere. As a result, by taking advantage of the new first-order nonlinear ordinary differential equation with a fifth-degree nonlinear term and an eighth-degree nonlinear term, periodic wave solutions associated with the Jacobin elliptic function and the bell and kink profile solitary wave solutions are obtained under the effect of thermal forcing. Most importantly, the mechanism of propagation and generation of the periodic waves and the solitary waves is analysed in detail according to the values of the heating parameter, which show that the effect of heating in atmosphere helps to excite westerly or easterly propagating periodic internal gravity waves and internal solitary waves in atmosphere, which are affected by the local excitation structures in atmosphere. In addition, as an illustrative sample, the properties of the solitary wave solution and Jacobin periodic solution are shown by some figures under the consideration of heating interaction

  5. Skeletonized wave-equation Qs tomography using surface waves

    KAUST Repository

    Li, Jing; Dutta, Gaurav; Schuster, Gerard T.

    2017-01-01

    We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data

  6. Wave Tank Studies of Phase Velocities of Short Wind Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  7. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  8. Wave-particle interaction in the Faraday waves.

    Science.gov (United States)

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.

  9. On the interaction of small-scale linear waves with nonlinear solitary waves

    Science.gov (United States)

    Xu, Chengzhu; Stastna, Marek

    2017-04-01

    In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow

  10. Observation-based input and dissipation version of WAVEWATCH III

    Science.gov (United States)

    Zieger, Stefan; Babanin, Alexander; Rogers, Erick; Young, Ian

    2013-04-01

    Measurements collected at Lake George, Australia, resulted in new insights on the processes of wind wave interaction and white-capping dissipation and consequently new parameterisations of these source terms. The new nonlinear wind input source term accounts for dependence of the growth increment on wave steepness, for airflow separation which leads to a relative reduction of the growth under extreme wind conditions, and for negative growth rate under adverse winds. The new wave breaking and whitecapping dissipation source function features two separate terms: the inherent breaking term and a cumulative dissipation term due to influences of longer waves on wave breaking of shorter waves. Another novel feature of this dissipation is the threshold in terms of spectral density: below this threshold breaking stops and whitecapping becomes zero. In such conditions dissipation due to wave interaction with water turbulence takes over, which regime is particularly relevant for decaying seas and for swell. This paper describes these source terms implemented in WAVEWATCH III and evaluates the performance against existing source terms in duration-limited simulations and against buoy measurements for windsea-dominated conditions. Results show agreement by means of growth curves and integral parameters in the simulations and hindcast. The paper also introduces wave breaking probability as model output, along with standard wind-wave metrics.

  11. Interaction between electromagnetic waves and plasma waves in motional plasma

    International Nuclear Information System (INIS)

    Chen, S. Y.; Gao, M.; Tang, C. J.; Peng, X. D.

    2009-01-01

    The electromagnetic wave (EM wave) behavior and the electromagnetic instability caused by the interaction between an EM wave and a plasma wave in motional plasma are studied. The dispersion relation of EM waves and the dielectric tensor of motional plasma are derived by magnetohydrodynamics, and the wave phenomenon in motional plasma is displayed. As a result, the electromagnetic instability, which is excited by the interaction between the EM waves and the plasma waves, is revealed. The mechanism of the instability is the coupling between high frequency electromagnetic field and the transverse electron oscillation derived from the deflection of longitudinal electron oscillation due to self-magnetic field. The present research is useful with regard to the new type of plasma radiation source, ion-focusing accelerator, and plasma diagnostic technique.

  12. Quasitravelling waves

    International Nuclear Information System (INIS)

    Beklaryan, Leva A

    2011-01-01

    A finite difference analogue of the wave equation with potential perturbation is investigated, which simulates the behaviour of an infinite rod under the action of an external longitudinal force field. For a homogeneous rod, describing solutions of travelling wave type is equivalent to describing the full space of classical solutions to an induced one-parameter family of functional differential equations of point type, with the characteristic of the travelling wave as parameter. For an inhomogeneous rod, the space of solutions of travelling wave type is trivial, and their 'proper' extension is defined as solutions of 'quasitravelling' wave type. By contrast to the case of a homogeneous rod, describing the solutions of quasitravelling wave type is equivalent to describing the quotient of the full space of impulsive solutions to an induced one-parameter family of point-type functional differential equations by an equivalence relation connected with the definition of solutions of quasitravelling wave type. Stability of stationary solutions is analyzed. Bibliography: 9 titles.

  13. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  14. Parametric decay of lower hybrid wave into drift waves

    International Nuclear Information System (INIS)

    Sanuki, Heiji.

    1976-12-01

    A dispersion relation describing the parametric decay of a lower hybrid wave into an electrostatic drift wave and a drift Alfven wave is derived for an inhomogeneous magnetized plasma. Particularly the stimulated scattering of a drift Alfven wave in such a plasma was investigated in detail. The resonance backscattering instability is found to yield the minimum threshold. (auth.)

  15. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  16. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  17. Dicty_cDB: SFJ736 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 060.1 Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, complete cds. 470 e-129 2 BQ923...1( AF305060 |pid:none) Dictyostelium discoideum Wiscott-A... 81 1e-14 AC117076_18

  18. Propagation of nonlinear ion acoustic wave with generation of long-wavelength waves

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu; Kamimura, Tetsuo

    1978-01-01

    The nonlinear propagation of the wave packet of an ion acoustic wave with wavenumber k 0 asymptotically equals k sub(De) (the electron Debye wavenumber) is investigated by computer simulations. From the wave packet of the ion acoustic wave, waves with long wavelengths are observed to be produced within a few periods for the amplitude oscillation of the original wave packet. These waves are generated in the region where the original wave packet exists. Their characteristic wavelength is of the order of the length of the wave packet, and their propagation velocity is almost equal to the ion acoustic speed. The long-wavelength waves thus produced strongly affect the nonlinear evolution of the original wave packet. (auth.)

  19. WAVE-E: The WAter Vapour European-Explorer Mission

    Science.gov (United States)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  20. Magnetohydrodynamic waves, electrohydrodynamic waves and photons

    International Nuclear Information System (INIS)

    Carstoin, J.

    1984-01-01

    Two new subjects have lately attracted increased attention: the magnetohydrodynamics (m.h.d.) and the theory of lasers. Equally important is the subject of electrohydrodynamics (e.h.d.). Now, clearly, all electromagnetic waves carry photons; it is the merit of Louis de Broglie to have had reconciled the validity of the Maxwell equations with existence of the latter. I have, recently, derived L. de Broglie's equations from the equations C. It seems natural to assume that the m.h.d. waves carry also photons, but how to reconcile the m.h.d axioms with the existence of photons ... a problem which has, so far, escaped the notice of physicists. In the lines which follows, an attempt is made to incorporate the photons in the m.h.d. waves, re e.h.d. waves in a rather simple fashion

  1. Design wave estimation considering directional distribution of waves

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C

    .elsevier.com/locate/oceaneng Technical Note Design wave estimation considering directional distribution of waves V. Sanil Kumar a,C3 , M.C. Deo b a OceanEngineeringDivision,NationalInstituteofOceanography,Donapaula,Goa-403004,India b Civil... of Physical Oceanography Norway, Report method for the routine 18, 1020–1034. ocean waves. Division of No. UR-80-09, 187 p. analysis of pitch and roll Conference on Coastal Engineering, 1. ASCE, Taiwan, pp. 136–149. Deo, M.C., Burrows, R., 1986. Extreme wave...

  2. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  3. How to turn gravity waves into Alfven waves and other such tricks

    International Nuclear Information System (INIS)

    Newington, Marie E; Cally, Paul S

    2011-01-01

    Recent observations of travelling gravity waves at the base of the chromosphere suggest an interplay between gravity wave propagation and magnetic field. Our aims are: to explain the observation that gravity wave flux is suppressed in magnetic regions; to understand why we see travelling waves instead of standing waves; and to see if gravity waves can undergo mode conversion and couple to Alfven waves in regions where the plasma beta is of order unity. We model gravity waves in a VAL C atmosphere, subject to a uniform magnetic field of various orientations, considering both adiabatic and radiatively damped propagation. Results indicate that in the presence of a magnetic field, the gravity wave can propagate as a travelling wave, with the magnetic field orientation playing a crucial role in determining the wave character. For the majority of magnetic field orientations, the gravity wave is reflected at low heights as a slow magneto-acoustic wave, explaining the observation of reduced flux in magnetic regions. In a highly inclined magnetic field, the gravity wave undergoes mode conversion to either field guided acoustic waves or Alfven waves. The primary effect of incorporating radiative damping is a reduction in acoustic and magnetic fluxes measured at the top of the integration region. By demonstrating the mode conversion of gravity waves to Alfven waves, this work identifies a possible pathway for energy transport from the solar surface to the upper atmosphere.

  4. Abnormal Waves Modelled as Second-order Conditional Waves

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral densit...

  5. Studies on the reaction p+d→{sup 3}He+η and search for C violation in the decay η→π{sup 0}+e{sup +}+e{sup -} with WASA-at-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Florian Sebastian

    2017-07-21

    The reaction p+d→{sup 3}He+η was measured with theWASA-at-COSY experimental setup during two beam times in 2008 and 2009. Most of the data were recorded at an excess energy of Q=59.8 MeV, while data were collected at Q=48.8 MeV during one day of the 2009 beam time. In the first part of this thesis the production reaction p+d→{sup 3}He+η was investigated utilizing a part of the data collected in 2009 at Q=59.8 MeV and the full data measured at Q=48.8 MeV. The data were used to determine the differential cross sections for 23 angular bins in the range from cos θ{sup CMS}{sub η}=-0.92 to cos θ{sup CMS}{sub η}=0.92. The resulting distributions can be described by polynomial distributions of third order. Furthermore, the total cross section ratio of (σ{sub η}(48.8 MeV))/(σ{sub η}(59.8 MeV))=0.77±0.06 was extracted. This result indicates a distinct and unexpected fluctuation of the total cross section between Q=20 MeV and Q=60 MeV, which might indicate a possible variation of the production mechanism in this energy range. Due to these results a new beam time was conducted withWASAat- COSY in 2014 covering the excess energy range from 13.6 MeV to 80.9 MeV. The second part of the thesis was based on both the 2008 and the 2009 data set with the goal to search for the decay η→π{sup 0}+e{sup +}+e{sup -} in regards to a C parity violating process. It was possible to extract an improved upper limit for the branching ratio of the decay η→π{sup 0}+γ{sup *}→π{sup 0}+e{sup +}+e{sup -} of 7.52 x 10{sup -6} (CL=90%) and for the branching ratio of the decay η→π{sup 0}+e{sup +}+e{sup -} according to three-particle phase space of 9.49 x 10{sup -6}(CL=90%).

  6. Wave-induced current considering wave-tide interaction in Haeundae

    Science.gov (United States)

    Lim, Hak Soo

    2017-04-01

    The Haeundae, located at the south eastern end of the Korean Peninsula, is a famous beach, which has an approximately 1.6 km long and 70 m wide coastline. The beach has been repeatedly eroded by the swell waves caused by typhoons in summer and high waves originating in the East Sea in winter. The Korean government conducted beach restoration projects including beach nourishment (620,000 m3) and construction of two submerged breakwaters near both ends of the beach. To prevent the beach erosion and to support the beach restoration project, the Korean government initiated a R&D project, the development of coastal erosion control technology since 2013. As a part of the project, we have been measuring waves and currents at a water depth of 22 m, 1.8 km away from the beach using an acoustic wave and current meter (AWAC) continuously for more than three years; we have also measured waves and currents intensively near the surf-zone in summer and winter. In this study, a numerical simulation using a wave and current coupled model (ROMS-SWAN) was conducted for determining the wave-induced current considering seasonal swell waves (Hs : 2.5 m, Tp: 12 s) and for better understanding of the coastal process near the surf-zone in Haeundae. By comparing the measured and simulated results, we found that cross-shore current during summer is mainly caused by the eddy produced by the wave-induced current near the beach, which in turn, is generated by the strong waves coming from the SSW and S directions. During other seasons, longshore wave-induced current is produced by the swell waves coming from the E and ESE directions. The longshore current heading west toward Dong-Back Island, west end of the beach, during all the seasons and eddy current toward Mipo-Port, east end of the beach, in summer which is well matched with the observed residual current. The wave-induced current with long-term measurement data is incorporated in simulation of sediment transport modeling for developing

  7. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  8. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...

  9. Alfvén wave mixing and non-JWKB waves in stellar winds

    International Nuclear Information System (INIS)

    Webb, G M; McKenzie, J F; Hu, Q; Zank, G P

    2013-01-01

    Alfvén wave mixing equations used in locally incompressible turbulence transport equations in the solar wind contain as a special case, non-Jeffreys–Wentzel–Kramers–Brouillon (non-JWKB) wave equations used in models of Alfvén wave driven winds. We discuss the canonical wave energy equation; the physical wave energy equation, and the JWKB limit of the wave interaction equations. Lagrangian and Hamiltonian variational principles for the waves are developed. Noether’s theorem is used to derive the canonical wave energy equation which is associated with the linearity symmetry of the equations. A further conservation law associated with time translation invariance of the action, applicable for steady background wind flows is also derived. In the latter case, the conserved density is the Hamiltonian density for the waves, which is distinct from the canonical wave energy density. The canonical wave energy conservation law is a special case of a wider class of conservation laws associated with Green’s theorem for the wave mixing system and the adjoint wave mixing system, which are related to Noether’s second theorem. In the sub-Alfvénic flow, inside the Alfvén point of the wind, the backward and forward waves have positive canonical energy densities, but in the super-Alfvénic flow outside the Alfvén critical point, the backward Alfvén waves are negative canonical energy waves, and the forward Alfvén waves are positive canonical energy waves. Reflection and transmission coefficients for the backward and forward waves in both the sub-Alfvénic and super-Alfvénic regions of the flow are discussed. (paper)

  10. Forecasting and Hindcasting Waves In and Near the Marginal Ice Zone: Wave Modeling and the ONR Sea State Field Experiment

    Science.gov (United States)

    2018-04-12

    analysis of Figure 101 herein: This gives ; = 7. • In Lamb (1932), Article 349, which is on “the effect of viscosity on water waves”, there is an...estimate for dissipation by viscosity in the entire water column. See also Weber (1987) and Sutherland et al. (2017). This gives ; = 5. • In Lamb (1932...Sutherland et al. (2017), Weber (1987) and Lamb (1932) utilize expressions for dissipation by viscosity or eddy viscosity. These expressions come in two

  11. Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-05-01

    Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.

  12. Waves in the seas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J

    , steep nonsymmetric cnoidal waves, solitons and random waves. They have different properties too. Any wave form has a wave period (T), wave height (H) and speed (C) which depends on T. Still another type of waves are breaking waves near a coast...

  13. Millimeter wave scattering off a whistler wave in a tokamak

    International Nuclear Information System (INIS)

    Sawhney, B.K.; Singh, S.V.; Tripathi, V.K.

    1994-01-01

    Obliquely propagating whistler waves through a plasma cause density perturbations. A high frequency electromagnetic wave sent into such a perturbed region suffers scattering. The process can be used as a diagnostics for whistler. We have developed a theory of electromagnetic wave scattering in a tokamak where density profile is taken a parabolic. Numerical calculations have been carried out to evaluate the ratio of the power of the scattered electromagnetic wave to that of the incident electromagnetic wave. The scattered power decreases with the frequency of the incident electromagnetic wave. For typical parameters, the ratio of the power of the scattered to the incident electromagnetic wave comes out to be of the order of 10 -4 at a scattering angle of 3 which can be detected. (author). 2 refs, 1 fig

  14. The effect of lower-hybrid waves on the propagation of hydromagnetic waves

    International Nuclear Information System (INIS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro

    1988-01-01

    Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)

  15. COMPARISON STUDY OF EXPERIMENTS AND PREDICTIONS OF WAVE KINEMATICS FOR ROGUE WAVE

    Directory of Open Access Journals (Sweden)

    Hae Jin Choi

    2018-01-01

    Full Text Available To investigate the wave kinematics under the rogue wave crest, a series of experiments were performed in 2-D wave tank with the application of PIV technique to measure the velocities under the free surface. Three different prediction methods of linear extrapolation, Wheeler stretching, and modified stretching were applied to estimate water wave kinematics and compared with PIV experimental results under the highest wave crest of irregular wave trains satisfying with rogue wave criteria. Also, the cut-off frequency dependence for three prediction methods was investigated with varying spectral peak frequencies to estimate wave kinematics including velocities and accelerations in horizontal and vertical directions. It was suggested that the cut-off frequency for the reasonable prediction of the wave kinematics under the rogue wave crest could be chosen three times of spectral peak wave frequency for the linear extrapolation and higher frequency than four times of spectral peak wave frequency for Wheeler stretching and modified stretching method.

  16. Bursts of electron waves modulated by oblique ion waves

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1984-01-01

    Experimental evidence is presented which shows small packets of electron plasma waves modulated by large amplitude obliquely propagating non-linear ion plasma waves. Very often the whole system is modulated by an oscillation near the ion gyro frequency or its harmonics. The ion waves seem to be similar to those measured in the current carrying auroral plasma. These results suggest that the generation of ion and electron waves in the auroral plasma may be correlated

  17. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  18. Dicty_cDB: SSL103 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available (bits) Value N AF305060 |AF305060.1 Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, c...ctyostelium discoideum Wiscott-A... 306 4e-82 FN392319_1421( FN392319 |pid:none) Pichia pastoris GS115 chrom

  19. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  20. Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia

    Science.gov (United States)

    Jung, P.; Cornell-Bell, A. H.

    Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.

  1. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  2. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  3. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    Science.gov (United States)

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  4. Wave-current interactions at the FloWave Ocean Energy Research Facility

    Science.gov (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  5. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ( f ast waves ) . In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  6. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  7. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    Science.gov (United States)

    Sapsis, Themistoklis; Farazmand, Mohammad

    2017-11-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.

  8. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  9. Tropical to extratropical: Marine environmental changes associated with Superstorm Sandy prior to its landfall

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-12-01

    Superstorm Sandy was a massive storm that impacted the U.S. East Coast on 22-31 October 2012, generating large waves, record storm surges, and major damage. The Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling system was applied to hindcast this storm. Sensitivity experiments with increasing complexity of air-sea-wave coupling were used to depict characteristics of this immense storm as it underwent tropical to extratropical transition. Regardless of coupling complexity, model-simulated tracks were all similar to the observations, suggesting the storm track was largely determined by large-scale synoptic atmospheric circulation, rather than by local processes resolved through model coupling. Analyses of the sea surface temperature, ocean heat content, and upper atmospheric shear parameters showed that as a result of the extratropical transition and despite the storm encountering much cooler shelf water, its intensity and strength were not significantly impacted. Ocean coupling was not as important as originally thought for Sandy.

  10. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies, co...

  11. Revisiting the difference between traveling-wave and standing-wave thermoacoustic engines - A simple analytical model for the standing-wave one

    Science.gov (United States)

    Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi

    2015-11-01

    There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.

  12. Simulation of Wave Overtopping of Maritime Structures in a Numerical Wave Flume

    Directory of Open Access Journals (Sweden)

    Tiago C. A. Oliveira

    2012-01-01

    Full Text Available A numerical wave flume based on the particle finite element method (PFEM is applied to simulate wave overtopping for impermeable maritime structures. An assessment of the performance and robustness of the numerical wave flume is carried out for two different cases comparing numerical results with experimental data. In the first case, a well-defined benchmark test of a simple low-crested structure overtopped by regular nonbreaking waves is presented, tested in the lab, and simulated in the numerical wave flume. In the second case, state-of-the-art physical experiments of a trapezoidal structure placed on a sloping beach overtopped by regular breaking waves are simulated in the numerical wave flume. For both cases, main overtopping events are well detected by the numerical wave flume. However, nonlinear processes controlling the tests proposed, such as nonlinear wave generation, energy losses along the wave propagation track, wave reflection, and overtopping events, are reproduced with more accuracy in the first case. Results indicate that a numerical wave flume based on the PFEM can be applied as an efficient tool to supplement physical models, semiempirical formulations, and other numerical techniques to deal with overtopping of maritime structures.

  13. Waves in plasmas (part 1 - wave-plasma interaction general background)

    International Nuclear Information System (INIS)

    Dumont, R.

    2004-01-01

    This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)

  14. Wave kinematics and response of slender offshore structures. Vol 4: Wave kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Riber, H.J.

    1999-08-01

    The kinematics of large surface waves has been measured by means of sonar's placed on the sea floor at the Tyra field. Measurements from the most severe storm are analysed and extreme wave velocity profiles are compared to Stoke wave velocity profiles. Statistical distributions of crest velocity and wave celerity are presented. The analysis shows how the deviation from the Stokes prediction varies with wave heights and steepness. Analyses of the directional wave field leads to the conclusion that the extreme waves are three-dimensional. It is shown that the peculiar kinematics of extreme waves is of great relevance to the design of jacket type structures. (au)

  15. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick; Limber, Patrick W.; Erikson, Li; Cole, Blake

    2017-01-01

    We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea-level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea-level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea-level rise scenarios of 0.93 to 2.0 m.

  16. Transport of pollutants and sediment in the area of the Wave Hub (Celtic Sea)

    Science.gov (United States)

    Shapiro, Georgy; Huntley, David

    2010-05-01

    consequences. This paper presents some preliminary modelling results of a baseline study focussed on hind-cast and now-cast simulation of the 3D structure of temperature, salinity and current velocity in the area immediately adjacent to the location of the Wave Hub. Of the range of available 3D numerical models for shelf sea hydrodynamics, we have selected the Proudman Oceanographic Laboratory Coastal Modelling System (POLCOMS). The POLCOMS has successfully been used in a number of coastal/shelf sea regions to simulate circulation of coastal waters. Modelling is carried out in the region of approximately 200x 200 km with the variable vertical resolution typically less than 2 m. Such parameters allow resololution of the formation of coastal density fronts both within and outside the wave shadow zone, expected to be of the order of tens of kilometres. The meteorological parameters are obtained from the publicly available NCEP re-analyses data base. These parameters include components of the wind velocity and the surface heat fluxes, air pressure at sea level; temperature and humidity in the low troposphere; precipitation and cloudiness. In this study, the transport of pollution is simulated by a number of passive drifters located at a certain depth at a number of locations including the central point of the Wave Hub. Sediment transport is modelled using the Engelund-Hansen algorithm taking the current velocities produced by the POLCOMS as an input parameter. The Celtic sea is a tidally dominated region, and the modelling is run both in full-forcing and in tide-only modes in order to assess effects of density fronts on the residual (tidally averaged) circulation pattern. The results show that the pollution pathways are very sensitive to the formation of temperature fronts. In some cases the passive traces move in nearly opposite directions when the effect of temperature fronts is disregarded. Sediment transport is highly non-uniform spatially with some four areas along the

  17. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    Science.gov (United States)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG

  18. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  19. Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave

    Science.gov (United States)

    Baines, Luke W. S.; Van Gorder, Robert A.

    2018-06-01

    While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.

  20. Accuracy of visual wave observation from merchant ships and estimated wave loads; Accuracy of visual wave observation from merchant ships and estimated wave loads

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, H. [National Defense Academy, Kanagawa (Japan); Masaoka, K. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1998-06-01

    There is a large number of studies on discussions concerning accuracy of visual observation of waves and the correction method thereon. This paper give considerations on observation accuracy placing a viewpoint on that by merchant ships. Based on ship meteorological observation tables reported to the Meteorological Agency of Japan on meteorology in North Pacific during 14 years from 1976 to1989, wave observation values taken by merchant ships and observation ships were compared statistically to investigate the accuracy of visual wave observations carried out by merchant ships. With regard to wave heights, the observation values taken by the observation ships and the merchant ships have strong correlation, where the merchant ships evaluate them somewhat higher than the observation ships. Regarding wave cycles of wind waves, the merchant ships tend to have the observation values on longer cycle side. Correlation between the observations values by the merchant ships and the observation ships is weak both in wind waves and swells. There is not much of variation in accuracy of observations during daytime and at night performed by the merchant ships. It will be necessary in the future to give considerations on a method to correct the observation values on wave cycles taken by the merchant ship, and on a correction method in which both of the wave cycles and the wave heights are corrected simultaneously to make the observation values of the merchant ship equal to those of the observation ships. Thus, the observation values reported by general merchant ships in a large number every year will have to be utilized more effectively. 11 refs., 21 figs., 2 tabs.

  1. Financial Rogue Waves

    International Nuclear Information System (INIS)

    Yan Zhenya

    2010-01-01

    We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.

  2. Three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves

    International Nuclear Information System (INIS)

    Ghosh, G.; Das, K.P.

    1994-01-01

    Starting from a set of equations that lead to a linear dispersion relation coupling kinetic Alfven waves and ion-acoustic waves, three-dimensional KdV equations are derived for these waves. These equations are then used to investigate the three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves by the small-k perturbation expansion method of Rowlands and Infeld. For kinetic Alfven waves it is found that there is instability if the direction of the plane-wave perturbation lies inside a cone, and the growth rate of the instability attains a maximum when the direction of the perturbation lies in the plane containing the external magnetic field and the direction of propagation of the solitary wave. For ion-acoustic waves the growth rate of instability attains a maximum when the direction of the perturbation lies in a plane perpendicular to the direction of propagation of the solitary wave. (Author)

  3. Dicty_cDB: VSJ735 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available |AF305060.1 Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, complete cds. 436 0.0 5 A... AF305060 |pid:none) Dictyostelium discoideum Wiscott-A... 214 2e-54 BC087802_1( BC087802 |pid:none) Xenopus

  4. Dicty_cDB: VSC304 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 05060 |AF305060.1 Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, complete cds. 622 0...bits) Value AF305060_1( AF305060 |pid:none) Dictyostelium discoideum Wiscott-A... 167 1e-44 AC117076_18( AC1

  5. Dicty_cDB: CFG349 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available its) Value N AF305060 |AF305060.1 Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, com...060_1( AF305060 |pid:none) Dictyostelium discoideum Wiscott-A... 247 4e-64 DQ985464_1( DQ985464 |pid:none) S

  6. Photon wave function

    OpenAIRE

    Bialynicki-Birula, Iwo

    2005-01-01

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, t...

  7. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  8. Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves

    Science.gov (United States)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-01-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.

  9. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    International Nuclear Information System (INIS)

    Klingler, S.; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.

    2015-01-01

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves

  10. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw-muenchen.de; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2015-05-25

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves.

  11. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    International Nuclear Information System (INIS)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    2015-01-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves

  12. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  13. Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra

    Science.gov (United States)

    Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro

    2018-05-01

    Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.

  14. Gabor Wave Packet Method to Solve Plasma Wave Equations

    International Nuclear Information System (INIS)

    Pletzer, A.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach

  15. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    Science.gov (United States)

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  16. Layout of wave gauge array for estimation of 3D waves

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller; Frigaard, Peter

    2012-01-01

    Wave gauge array are commonly used to estimate significant wave properties of multi-directional waves. The objective of this study is to gain insight into which parameters influence the accuracy of an array. The approach chosen is to determine the accuracy of an array by comparing generated waves...

  17. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  18. Modeling of Mud-Wave Interaction: Mud-Induced Wave Transport & Wave-Induced Mud Transport

    National Research Council Canada - National Science Library

    Winterwerp, Johan C

    2007-01-01

    .... Also a new rheological model has been proposed to describe liquefaction of soft mud by waves, and the subsequent strength recovery after the passage of the waves. A scheme is presented on how to implement these formulations in Delft3D.

  19. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  20. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    Science.gov (United States)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  1. Beating HF waves to generate VLF waves in the ionosphere

    Science.gov (United States)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2012-03-01

    Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.

  2. Lagrangian analysis of nonlinear wave-wave interactions in bounded plasmas

    International Nuclear Information System (INIS)

    Carr, A.R.

    1979-01-01

    In a weakly turbulent nonlinear wave-supporting medium, one of the important nonlinear processes which may occur is resonant three-wave interaction. Whitham's averaged Lagrangian method provides a general formulation of wave evolution laws which is easily adapted to nonlinear dispersive media. In this thesis, the strength of nonlinear interactions between three coherent, axisymmetric, low frequency, magnetohydrodynamic (Alfven) waves propagating in resonance along a cold cylindrical magnetized plasma column is calculated. Both a uniform and a parabolic density distribution have been considered. To account for a non-zero plasma temperature, pressure effects have been included. Distinctive features of the work are the use of cylindrical geometry, the presence of a finite rather than an infinite axial magnetic field, the treatment of a parabolic density distribution, and the inclusion of both ion and electron contributions in all expressions. Two astrophysical applications of the presented theory have been considered. In the first, the possibility of resonant three-wave coupling between geomagnetic micropulsations, which propagate as Alfven or magnetosonic waves along the Earth's magnetic field lines, has been investigated. The second case is the theory of energy transport through the solar chromosphere by upward propagating magnetohydrodynamic waves, which may then couple to heavily damped waves in the corona, causing the observed excess heating in that region

  3. The Wave Dragon

    DEFF Research Database (Denmark)

    Sørensen, H. C.; Hansen, R.; Friis-Madsen, E.

    2000-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type, utilizing a patented wave reflector design to focus the waves towards a ramp, and the overtopping is used for electricity production through a set of Kaplan/propeller hydro turbines. During the last 2 years, excessive...... design an testing has been performed on a scale 1:50 model of the Wave Dragon, and on a scale 1:3:5 model turbine. Thus survivability, overtopping, hydraulic response, turbine performance and feasibility have been verified....

  4. Langmuir wave turbulence generated by electromagnetic waves in the laboratory and the ionosphere

    International Nuclear Information System (INIS)

    Lee, M.C.; Riddolls, R.J.; Moriarty, D.T.; Dalrymple, N.E.; Rowlands, M.J.

    1996-01-01

    The authors will present some recent results of the laboratory experiments at MIT, using a large plasma device known as the Versatile Toroidal Facility (VTF). These experiments are aimed at cross-checking the ionospheric plasma heating experiments at Arecibo, Puerto Rico using an HF heating facility (heater). The plasma phenomenon under investigation is the spectral characteristic of Langmuir wave turbulence produced by ordinary (o-mode) electromagnetic pump waves. The Langmuir waves excited by o-mode heaters waves at Arecibo have both a frequency-upshifted spectrum and a frequency-downshifted (viz., cascading) spectrum. While the cascading spectrum can be well explained in terms of the parametric decay instability (PDI), the authors have interpreted the frequency-upshifted Langmuir waves to be anti-Stokes Langmuir waves produced by a nonlinear scattering process as follows. Lower hybrid waves creates presumably by lightning-induced whistler waves can scatter nonlinearly the PDI-excited mother langmuir waves, yielding obliquely propagating langmuir waves with frequencies as the summation of the mother Langmuir wave frequencies and the lower hybrid wave frequencies. This suggested process has been confirmed in the laboratory experiments, that can reproduce the characteristic spectra of Langmuir wave turbulence observed in the Arecibo experiments

  5. Parametric analysis of change in wave number of surface waves

    Directory of Open Access Journals (Sweden)

    Tadić Ljiljana

    2015-01-01

    Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.

  6. Propagation-invariant waves in acoustic, optical, and radio-wave fields

    OpenAIRE

    Salo, Janne

    2003-01-01

    The physical phenomena considered in this thesis are associated with electromagnetic and acoustic waves that propagate in free space or in homogeneous media without diffraction. The concept of rotationally periodic wave propagation is introduced in the first journal article included in the thesis and it is subsequently used to analyse waves that avoid diffractive deterioration by repeatedly returning to their initial shape, possibly rotated around the optical axis. Such waves constitute an es...

  7. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    Science.gov (United States)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  8. Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....

  9. Tropical cyclogenesis in a tropical wave critical layer: easterly waves

    Directory of Open Access Journals (Sweden)

    T. J. Dunkerton

    2009-08-01

    Full Text Available The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i a region of

  10. Physics of waves

    CERN Document Server

    Elmore, William C

    1985-01-01

    Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam

  11. Wave-particle dualism in matter wave interferometry

    International Nuclear Information System (INIS)

    Rauch, H.

    1984-01-01

    Neutron interferometry is a unique tool for investigations in the field of particle-wave dualism because massive elementary particles behave like waves within the interferometer. The invention of perfect crystal neutron interferometers providing widely separated coherent beams stimulated a great variety of experiments with matter waves in the field of basic quantum mechanics. The phase of the spatial and spinor wave function become a measurable quantity and can be influenced individually. High degrees of coherence and high order interferences have been observed by this technique. The 4π-symmetry of a spinor wave function and the mutual modulation of nuclear and magnetic phase shifts have been measured in the past. Recent experiments dealt with polarized neutron beams, which are handled to realize the spin-superposition of two oppositionally polarized subbeams resulting in final polarization perpendicular to both initial beam polarizations. The different action on the coherent beams of static and dynamic flippers have been visualized. Monolithic multicrystal arrangements in Laue position can also be used to achieve an extremely high energy (10 -9 eV) or angular resolution (0.001 sec of arc). This feature is based on the Pendelloesung interference within the perfect crystal. A transverse coherence length up to 6.5 mm is deduced from single slit diffraction experiments. (Auth.)

  12. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...

  13. Kinematics and dynamics of green water on a fixed platform in a large wave basin in focusing wave and random wave conditions

    Science.gov (United States)

    Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard

    2018-06-01

    Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.

  14. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  15. Wave and tidal level analysis, maritime climate change, navigation's strategy and impact on the costal defences - Study case of São Paulo State Coastline Harbour Areas (Brazil)

    Science.gov (United States)

    Alfredini, P.; Pezzoli, A.; Cristofori, E. I.; Dovetta, A.; Arasaki, E.

    2012-04-01

    São Paulo State Coastline Harbour Area concentrates around of 40% of Brazilian GNP, Santos Harbour is the America South Atlantic Hub Port and São Sebastião Oil Maritime Terminal is the most important oil and gas facility of PETROBRAS, the Brazilian National Petroleum Company. Santos Harbour had in the last decade increased rapidly the container handling rate, being the first in Latin America. In the last decade important oil and gas reserves were discovered in the Santos Oceanic Basin and São Paulo Coastline received a big demand for supplier ships harbours for the petroleum industry. Santos Metropolitan Region is one of the most important of Brazilian Coastline, also considering the turism. For that great economic growth scenario it is very important to have the main maritime hydrodynamics forcing processes, wave climate and tidal levels, well known, considering the sea hazards influence in ship operations. Since the hindcast just represents the deep water wave climate, to make time-series of the waves parameters in coastal waters, for evaluation of sea hazards and ship operations, it is necessary to take into acount the variations of those parameters in shallow waters with coastal instrumental data. Analysis of long term wave data-base (1957-2002) generated by a comparison between wave's data modeled by a "deep water model" (ERA40-ECMWF) and measured wave's data in the years 1982-1984 by a coastal buoy in Santos littoral (São Paulo State, Brazil) was made. Calibration coefficients according to angular sectors of wave's direction were obtained by the comparison of the instrument data with the modeled ones, and applied to the original scenarios. Validation checking procedures with instrumental measurements of storm surges made in other years than 1982-1984 shows high level of confidence. The analysis of the wave climate change on the extreme storm surge wave's conditions, selecting cases of Hs > 3,0 m, using that virtual data-base shows an increase in the Hs

  16. Dicty_cDB: SFG565 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 5060.1 Dictyostelium discoideum Wiscott-Aldrich syndrome protein (wasA) gene, complete cds. 626 0.0 8 AC1170...bits) Value AF305060_1( AF305060 |pid:none) Dictyostelium discoideum Wiscott-A... 254 4e-77 AC117076_18( AC1

  17. Draft South African wind energy technology platform: preliminary wind energy research and development framework

    CSIR Research Space (South Africa)

    Szewczuk, S

    2011-08-01

    Full Text Available The South African Wind Energy Technology Programme (SAWEP) Phase 1 aims to achieve two key strategic outputs that will guide South Africa on wind energy development. One of these outputs is the Wind Atlas for South Africa (WASA) which will play a...

  18. 2D full-wave simulation of waves in space and tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Kim Eun-Hwa

    2017-01-01

    Full Text Available Simulation results using a 2D full-wave code (FW2D for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF waves in the scape-off layer (SOL of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.

  19. 2D full-wave simulation of waves in space and tokamak plasmas

    Science.gov (United States)

    Kim, Eun-Hwa; Bertelli, Nicola; Johnson, Jay; Valeo, Ernest; Hosea, Joel

    2017-10-01

    Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.

  20. Wave-particle interaction and Hamiltonian dynamics investigated in a traveling wave tube

    International Nuclear Information System (INIS)

    Doveil, Fabrice; Macor, Alessandro

    2006-01-01

    For wave-particle interaction studies, the one-dimensional (1-D) beam-plasma system can be advantageously replaced by a Traveling Wave Tube (TWT). This led us to a detailed experimental analysis of the self-consistent interaction between unstable waves and a small either cold or warm beam. More recently, a test electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is investigated with a trochoidal energy analyzer that records the beam energy distribution at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated to a single wave is also observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap leading to a typical 'devil's staircase' behavior. A new strategy for the control of chaos is tested

  1. Magnetospheric plasma waves

    International Nuclear Information System (INIS)

    Shawhan, S.D.

    1977-01-01

    A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)

  2. Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.

    Science.gov (United States)

    Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng

    2011-11-01

    In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  3. A hydrodynamic model of nearshore waves and wave-induced currents

    Directory of Open Access Journals (Sweden)

    Ahmed Khaled Seif

    2011-09-01

    Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

  4. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    Science.gov (United States)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  5. Waves and Tsunami Project

    Science.gov (United States)

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  6. Seasonal changing sand waves and the effect of surface waves

    NARCIS (Netherlands)

    Sterlini, Fenneke; van Dijk, Thaiënne A.G.P.; IJzer, Steven; Hulscher, Suzanne; Schüttrumpf, Holger; Tomasicchio, Guiseppe Roberto

    2012-01-01

    Sand waves are wavelike subaqueous sediment structures that exist in large areas in shelf seas. Due to their characteristics sand waves can severely affect human offshore activities, such as navigation. This makes it important to understand the physical processes that shape and change sand waves. In

  7. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  8. Numerical investigation of freak waves

    Science.gov (United States)

    Chalikov, D.

    2009-04-01

    Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent

  9. A numerical study of the wave shoaling effect on wind-wave momentum flux

    Science.gov (United States)

    Hao, Xuanting; Shen, Lian

    2017-11-01

    Momentum transfer between wind and waves is crucial to many physical processes in air-sea interactions. For decades, there has been a number of observational evidence that the surface roughness in the nearshore region is notably higher than in the open sea. In order to explain the mechanism behind this important phenomenon, in particular the wave shoaling effect on surface roughness, we conduct a series of numerical experiments using the wind-wave module of WOW (Wave-Ocean-Wind), a high-fidelity computational framework developed in house. We use prescribed monochromatic waves with linear shoaling effect incorporated, while the wind field is simulated using wall-resolved large-eddy simulation. A comparison between a shallow water wave case and deep water wave cases shows remarkably stronger wave effects on the wind for the former. Detailed analyses show that the increased surface roughness is closely associated with the increased form drag that is mainly due to the reduced wave age in wave shoaling.

  10. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1992-09-01

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  11. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  12. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    Science.gov (United States)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  13. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing; Schuster, Gerard T.

    2016-01-01

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel

  14. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  15. Moreton wave, "EIT wave", and type II radio burst as manifestations of a single wave front

    Science.gov (United States)

    Kuzmenko, I. V.; Grechnev, V. V.; Uralov, A. M.

    2011-12-01

    We show that a Moreton wave, an "EIT wave," and a type II radio burst observed during a solar flare of July 13, 2004, might have been a manifestation of a single front of a decelerating shock wave, which appeared in an active region (AR) during a filament eruption. We propose describing a quasi-spheroidal wave propagating upward and along the solar surface by using relations known from a theory of a point-like explosion in a gas whose density changes along the radius according to a power law. By applying this law to fit the drop in density of the coronal plasma enveloping the solar active region, we first managed to bring the measured positions and velocities of surface Moreton wave and "EIT wave" into correspondence with the observed frequency drift rate of the meter type II radio burst. The exponent of the vertical coronal density falloff is selected by fitting the power law to the Newkirk and Saito empirical distributions in the height range of interest. Formal use of such a dependence in the horizontal direction with a different exponent appears to be reasonable up to distances of less than 200 Mm around the eruption center. It is possible to assume that the near-surface shock wave weakens when leaving this radius and finally the active region, entering the region of the quiet Sun where the coronal plasma density and the fast-mode speed are almost constant along the horizontal.

  16. Parsimonious wave-equation travel-time inversion for refraction waves

    KAUST Repository

    Fu, Lei

    2017-02-14

    We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into O(N2) refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave-equation travel-time inversion. Numerical results show that the parsimonious wave-equation travel-time tomogram has about the same accuracy as the tomogram computed by standard wave-equation travel-time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.

  17. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    Directory of Open Access Journals (Sweden)

    Jong-In Lee

    2014-01-01

    Full Text Available This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees, and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  18. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  19. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  20. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  1. Earthquake early warning using P-waves that appear after initial S-waves

    Science.gov (United States)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al

  2. Evaluation of the MiKlip decadal prediction system using satellite based cloud products

    Directory of Open Access Journals (Sweden)

    Thomas Spangehl

    2016-12-01

    Full Text Available The decadal hindcast simulations performed for the Mittelfristige Klimaprognosen (MiKlip project are evaluated using satellite-retrieved cloud parameters from the CM SAF cLoud, Albedo and RAdiation dataset from AVHRR data (CLARA-A1 provided by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF and from the International Satellite Cloud Climatology Project (ISCCP. The forecast quality of two sets of hindcasts, Baseline-1-LR and Baseline-0, which use differing initialisations, is assessed. Basic evaluation focuses on multi-year ensemble mean fields and cloud-type histograms utilizing satellite simulator output. Additionally, ensemble evaluation employing analysis of variance (ANOVA, analysis rank histograms (ARH and a deterministic correlation score is performed. Satellite simulator output is available for a subset of the full hindcast ensembles only. Therefore, the raw model cloud cover is complementary used. The new Baseline-1-LR hindcasts are closer to satellite data with respect to the simulated tropical/subtropical mean cloud cover pattern than the reference hindcasts (Baseline-0 emphasizing improvements of the new MiKlip initialisation procedure. A slightly overestimated occurrence rate of optically thick cloud-types is analysed for different experiments including hindcasts and simulations using realistic sea surface boundaries according to the Atmospheric Model Intercomparison Project (AMIP. By contrast, the evaluation of cirrus and cirrostratus clouds is complicated by observational based uncertainties. Time series of the 3-year mean total cloud cover averaged over the tropical warm pool (TWP region show some correlation with the CLARA-A1 cloud fractional cover. Moreover, ensemble evaluation of the Baseline-1-LR hindcasts reveals potential predictability of the 2–5 lead year averaged total cloud cover for a large part of this region when regarding the full observational period. However, the hindcasts show only

  3. Heuristic method for determining outgoing waves in many-body wave functions

    International Nuclear Information System (INIS)

    Redish, E.F.; Tandy, P.C.; L'Huillier, M.

    1975-12-01

    A new and simple method is proposed for determining the kinds of outgoing waves present in a given many-body wave function. Whether any particular wave function contains ''hidden'' rearrangement components can be determined. 1 figure

  4. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  5. The essential theory of fast wave current drive with full wave method

    International Nuclear Information System (INIS)

    Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan

    2007-01-01

    The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)

  6. Short-Term Wave Forecasting for Real-Time Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Real-time control of wave energy converters requires knowledge of future incident wave elevation in order to approach optimal efficiency of wave energy extraction. We present an approach where the wave elevation is treated as a time series and it is predicted only from its past history. A comparison of a range of forecasting methodologies on real wave observations from two different locations shows how the relatively simple linear autoregressive model, which implicitly models the cyclical beh...

  7. Elastic Wave-equation Reflection Traveltime Inversion Using Dynamic Warping and Wave Mode Decomposition

    KAUST Repository

    Wang, T.

    2017-05-26

    Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.

  8. Computational study on full-wave inversion based on the elastic wave-equation; Dansei hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)

    1997-05-27

    Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.

  9. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  10. Waves in periodic medium. Atomic matter waves in light crystals

    International Nuclear Information System (INIS)

    Oberthaler, M. K.

    1997-07-01

    This work deals with the propagation of matter waves inside a periodic potential. In analogy to photon optics a potential can be described by a refractive index for matter waves. A real potential leads to a refractive spatial structure while an imaginary potential leads to an absorptive structure. A general theoretical description is given in the framework of Floquet theory. The equivalent approach of dynamical diffraction theory will be treated in detail. The analytic solution for weak potentials are given in a general form so that they are applicable for every kind of wave and medium. For our experiments an open two level atom (metastable Argon) propagating inside a standing light wave was used. Detuning the frequency of the light wave from the atomic resonance leads to a real (refractive) periodic potential. Tuning the laser exact on resonance gives rise to a pure imaginary (absorptive) periodic potential. In analogy to solid state crystals in X-ray and neutron optics we call a standing light wave a light crystal. Tuning the standing light field on resonance we demonstrated experimentally the Borrmann effect. This effect describes the increase of the total transmission through a crystal for Bragg incidence. Furthermore, we confirmed that this effect is coherent and that a sinusoidal wave field is formed inside the crystal. The nodes of the wave field were found to coincide with the maxima of absorption. For a detuned standing light field a refractive crystal was realized, for which the expected Pendelloesung effect was demonstrated. In this case the maximum of the wave field inside the crystal was found at the steepest gradient of the potential as predicted by dynamical diffraction theory. Superposing an absorptive and a refractive light crystal a complex light crystal was realized. With such a crystal the violation of Friedel's law was demonstrated in a very clear way. (author)

  11. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  12. The reaction pd→3Heηat 200 MeV excess energy

    International Nuclear Information System (INIS)

    Waters, M.

    1994-05-01

    This work was carried out within the scope of the PROMICE research program at the CELSIUS cooler-storage ring of the The Svedberg Laboratory in Uppsala, Sweden. The aim is to study the fundamental mechanisms for production of mesons in light ion collisions and their interaction with nuclei and nucleons. The role of different resonances in nuclei as well as meson-meson interactions will be examined. In order to enable even measurements of rare mesonic decays, the PROMICE detector setup will later be extended to the full 4π WASA apparatus. PROMICE/WASA is a collaboration between laboratories in Japan, Poland, Russia, Sweden and Germany. The present stage of the setup has been used to measure η production in p-d collisions by detection of the recoil nucleus in the channel d(p, 3 He)η at beam energies of T p =1250 and 1276 MeV using an internal cluster target. (orig.)

  13. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  14. Analysis of Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke

    The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...

  15. Linear waves and instabilities

    International Nuclear Information System (INIS)

    Bers, A.

    1975-01-01

    The electrodynamic equations for small-amplitude waves and their dispersion relation in a homogeneous plasma are outlined. For such waves, energy and momentum, and their flow and transformation, are described. Perturbation theory of waves is treated and applied to linear coupling of waves, and the resulting instabilities from such interactions between active and passive waves. Linear stability analysis in time and space is described where the time-asymptotic, time-space Green's function for an arbitrary dispersion relation is developed. The perturbation theory of waves is applied to nonlinear coupling, with particular emphasis on pump-driven interactions of waves. Details of the time--space evolution of instabilities due to coupling are given. (U.S.)

  16. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  17. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  18. Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development

    Science.gov (United States)

    Katsaros, Kristina B.; Atakturk, Serhad S.

    1992-01-01

    Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of

  19. Viscoelastic Surface Waves

    Science.gov (United States)

    Borcherdt, R. D.

    2007-12-01

    General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.

  20. Specification of Instrumentation of Multi MW Wave Dragon Offshore Wave Energy Converter

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the exp......Wave Dragon is a wave energy converter of the overtopping type and is described e.g. in Tedd et. al. (2006). The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based...

  1. Incident wave, infragravity wave, and non-linear low-frequency bore evolution across fringing coral reefs

    Science.gov (United States)

    Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.

    2016-12-01

    Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.

  2. Interactions of solitary waves and compression/expansion waves in core-annular flows

    Science.gov (United States)

    Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark

    2017-11-01

    The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).

  3. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    Science.gov (United States)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  4. Wave disc engine apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  5. Waves, currents and sediment transport modelling at the Wave Hub site

    OpenAIRE

    Gonzalez-Santamaria, Raul

    2013-01-01

    Primary supervisory team: Qingping Zou and Shunqi Pan This research project uses an integrated modelling system to investigate the effects of a wave farm on nearshore sediment transport at the Wave Hub site. The Wave Hub project is a large scale demonstration site for the development of the operation of arrays of wave energy generation devices located at the southwest coast of the UK where multiple field measurements took place. Particular attention of this study was paid to th...

  6. Inherent Limitations in Mid-Wave and Long-Wave-IR Upconversion Detector

    DEFF Research Database (Denmark)

    Barh, Ajanta; Tseng, Yu-Pei; Pedersen, Christian

    2017-01-01

    Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper.......Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper....

  7. Linear Water Waves

    Science.gov (United States)

    Kuznetsov, N.; Maz'ya, V.; Vainberg, B.

    2002-08-01

    This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

  8. The Virtual Wave Observatory (VWO): A Portal to Heliophysics Wave Data

    Science.gov (United States)

    Fung, Shing F.

    2010-01-01

    The Virtual Wave Observatory (VWO) is one of the discipline-oriented virtual observatories that help form the nascent NASA Heliophysics Data environment to support heliophysics research. It focuses on supporting the searching and accessing of distributed heliophysics wave data and information that are available online. Since the occurrence of a natural wave phenomenon often depends on the underlying geophysical -- i.e., context -- conditions under which the waves are generated and propagate, and the observed wave characteristics can also depend on the location of observation, VWO will implement wave-data search-by-context conditions and location, in addition to searching by time and observing platforms (both space-based and ground-based). This paper describes the VWO goals, the basic design objectives, and the key VWO functionality to be expected. Members of the heliophysics community are invited to participate in VWO development in order to ensure its usefulness and success.

  9. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  10. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    Science.gov (United States)

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  11. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  12. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  13. Rogue waves in shallow water

    Science.gov (United States)

    Soomere, T.

    2010-07-01

    Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.

  14. Large-scale, high-resolution wind resource mapping for wind farm planning and development in South Africa

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Badger, Jake; Hansen, Jens Carsten

    2014-01-01

    estimates are designed for national and provincial planning and strategic environmental impact assessment for wind power in South Africa and the results have therefore been made available in common GIS formats. The database of results is in the public domain and can be downloaded from the WASA web site...

  15. Description of the Probabilistic Wind Atlas Methodology, Deliverable D3.1

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Witha, Björn; Rife, Daran L.

    against data from 10 meteorological masts in South Africa, part of the Wind Atlas of South Africa (WASA) project, where a long-term set of high-quality observations exist. The results of the ensemble simulations are encouraging, but further analysis is needed to quantify their utility. A key disadvantage...

  16. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    Science.gov (United States)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  17. Wave Engine Topping Cycle Assessment

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  18. Hydrodynamic loads of sea waves on horizontal elements of berths with wave quenching chambers

    Directory of Open Access Journals (Sweden)

    Leshchenko Sergey Vladimirovich

    2014-05-01

    Full Text Available In the process of hydraulic structures design, in particular berths with wave cancelling structures, which serve to decrease the wave impact on structures, there appears a problem of vertical wave hydrodynamic loads calculation on floor slabs. In the existing normative documents there are no requirements on calculating vertical wave loads on the horizontal floor slabs of open-type structures (enveloping, mooring, approach trestles, etc. and stairs of sloping-staired open-type structures. A mathematical model is proposed for calculation of the vertical wave loads on the floor slab through moorings. The model is based on the theory of jet impact on a solid surface. The width of the wave crest, striking in the overlap of the pier, and its vertical velocity is determined by the linear wave theory. The coefficient of transmission of waves through wave quenching chambers is calculated according to the previously developed methods. Vertical wave loading is adjusted based on the ratio of the wave length and width of the overlay. Model validation is performed according to the hydraulic modelling interaction of waves with through berths in the port of Tuapse. 7 variants of their design were considered. Data mapping mathematical and hydraulic modeling showed them a close match.

  19. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    International Nuclear Information System (INIS)

    Erofeev, V. I.

    2015-01-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena

  20. Travelling wave solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations

    Directory of Open Access Journals (Sweden)

    M. Arshad

    Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method

  1. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing

    2016-12-08

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.

  2. Propagation of waves

    CERN Document Server

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  3. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  4. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  5. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  6. Antiferromagnetism and d-wave superconductivity in (doped) Mott insulators: A wave function approach

    OpenAIRE

    Weng, Z. Y.; Zhou, Y.; Muthukumar, V. N.

    2003-01-01

    We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be ...

  7. Temporal change in shallow subsurface P- and S-wave velocities and S-wave anisotropy inferred from coda wave interferometry

    Science.gov (United States)

    Yamamoto, M.; Nishida, K.; Takeda, T.

    2012-12-01

    Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the

  8. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    International Nuclear Information System (INIS)

    Chernodub, M.N.

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  9. FIRST SIMULTANEOUS OBSERVATION OF AN H{alpha} MORETON WAVE, EUV WAVE, AND FILAMENT/PROMINENCE OSCILLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Ayumi; Isobe, Hiroaki [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Ishii, Takako T.; Kitai, Reizaburo; Ichimoto, Kiyoshi; UeNo, Satoru; Nagata, Shin' ichi; Morita, Satoshi; Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shiota, Daikou [Advanced Science Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Oi, Akihito [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Akioka, Maki, E-mail: asai@kwasan.kyoto-u.ac.jp [Hiraiso Solar Observatory, National Institute of Information and Communications Technology, Hitachinaka, Ibaraki 311-1202 (Japan)

    2012-02-15

    We report on the first simultaneous observation of an H{alpha} Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). We observed a Moreton wave, associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, in the H{alpha} images taken by the Solar Magnetic Activity Research Telescope at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory we found not only the corresponding EUV fast 'bright' coronal wave, but also the EUV fast 'faint' wave that is not associated with the H{alpha} Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H{alpha} and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570-800 km s{sup -1}. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.

  10. Improved Seasonal Prediction of European Summer Temperatures With New Five-Layer Soil-Hydrology Scheme

    Science.gov (United States)

    Bunzel, Felix; Müller, Wolfgang A.; Dobrynin, Mikhail; Fröhlich, Kristina; Hagemann, Stefan; Pohlmann, Holger; Stacke, Tobias; Baehr, Johanna

    2018-01-01

    We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.

  11. Questions about elastic waves

    CERN Document Server

    Engelbrecht, Jüri

    2015-01-01

    This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.

  12. B-waves revisited

    Directory of Open Access Journals (Sweden)

    Andreas Spiegelberg

    2016-12-01

    With the still unmet need for a clinically acceptable method for acquiring intracranial compliance, and the revival of ICP waveform analysis, B-waves are moving back into the research focus. Herein we provide a concise review of the literature on B-waves, including a critical assessment of non-invasive methods for obtaining B-wave surrogates.

  13. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  14. Alfven wave resonances and flow induced by nonlinear Alfven waves in a stratified atmosphere

    International Nuclear Information System (INIS)

    Stark, B. A.; Musielak, Z. E.; Suess, S. T.

    1996-01-01

    A nonlinear, time-dependent, ideal MHD code has been developed and used to compute the flow induced by nonlinear Alfven waves propagating in an isothermal, stratified, plane-parallel atmosphere. The code is based on characteristic equations solved in a Lagrangian frame. Results show that resonance behavior of Alfven waves exists in the presence of a continuous density gradient and that the waves with periods corresponding to resonant peaks exert considerably more force on the medium than off-resonance periods. If only off-peak periods are considered, the relationship between the wave period and induced longitudinal velocity shows that short period WKB waves push more on the background medium than longer period, non-WKB, waves. The results also show the development of the longitudinal waves induced by finite amplitude Alfven waves. Wave energy transferred to the longitudinal mode may provide a source of localized heating

  15. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark the go...

  16. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    Science.gov (United States)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  17. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  18. Kinesthetic Transverse Wave Demonstration

    Science.gov (United States)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  19. Hierarchical wave functions revisited

    International Nuclear Information System (INIS)

    Li Dingping.

    1997-11-01

    We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)

  20. Developing de Broglie Wave

    Directory of Open Access Journals (Sweden)

    Zheng-Johansson J. X.

    2006-10-01

    Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.

  1. Vector financial rogue waves

    International Nuclear Information System (INIS)

    Yan, Zhenya

    2011-01-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.

  2. Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model

    Science.gov (United States)

    Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.

    2018-03-01

    The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.

  3. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  4. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  5. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  6. From the Somigliana waves to the evanescent waves

    Directory of Open Access Journals (Sweden)

    Pietro Caloi

    2010-02-01

    Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.

  7. Propagation of nonlinear waves over submerged step: wave separation and subharmonic generation

    Science.gov (United States)

    Monsalve, Eduardo; Maurel, Agnes; Pagneux, Vincent; Petitjeans, Philippe

    2015-11-01

    Water waves can be described in simplified cases by the Helmholtz equation. However, even in these cases, they present a high complexity, among which their dispersive character and their nonlinearities are the subject of the present study. Using Fourier Transform Profilometry, we study experimentally the propagation of waves passing over a submerged step. Because of the small water depth after the step, the wave enters in a nonlinear regime. In the shallow water region, the second harmonic leads to two types of waves: bound waves which are slaves of the fundamental frequency with wavenumber 2 k (ω) , and free waves which propagate according to the usual dispersion relation with wavenumber k (2 ω) . Because of the presence of these two waves, beats are produced at the second harmonic with characteristic beat length. In this work, for the first time we extended this analysis to the third and higher harmonics. Next, the region after the step is limited to a finite size L with a reflecting wall. For certain frequencies and L- values, the spectral component becomes involved, with the appearance of sub harmonics. This regime is analyzed in more details, suggesting a transition to a chaotic and quasi-periodic wave behavior.

  8. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    2000-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: 1. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation in rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition to the quark-gluon plasma state. 2. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - the production of light mesons near threshold and their rare decays. 3. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data acquisition, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - a new version of the WASA detector at CELSIUS in Uppsala, - relativistic hyperfragment production experiment in Dubna, Russia. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of the WASA - Promice

  9. Parsimonious wave-equation travel-time inversion for refraction waves

    KAUST Repository

    Fu, Lei; Hanafy, Sherif M.; Schuster, Gerard T.

    2017-01-01

    We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N

  10. Dominant wave frequency and amplitude estimation for adaptive control of wave energy converters

    OpenAIRE

    Nguyen , Hoai-Nam; Tona , Paolino; Sabiron , Guillaume

    2017-01-01

    International audience; Adaptive control is of great interest for wave energy converters (WEC) due to the inherent time-varying nature of sea conditions. Robust and accurate estimation algorithms are required to improve the knowledge of the current sea state on a wave-to-wave basis in order to ensure power harvesting as close as possible to optimal behavior. In this paper, we present a simple but innovative approach for estimating the wave force dominant frequency and wave force dominant ampl...

  11. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Science.gov (United States)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  12. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  13. Periodic waves in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo

    2012-01-01

    Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.

  14. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k...

  15. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2011-01-01

    ‘‘Extreme Ocean Waves’’ is a collection of ten papers edited by Efim Pelinovsky and Christian Kharif that followed the April 2007 meeting of the General Assembly of the European Geosciences Union. A note on terminology: extreme waves in this volume broadly encompass different types of waves, includ- ing deep-water and shallow-water rogue waves (alternatively termed freak waves), storm surges from cyclones, and internal waves. Other types of waves such as tsunamis or rissaga (meteotsunamis) are not discussed in this volume. It is generally implied that ‘‘extreme’’ has a statistical connotation relative to the average or significant wave height specific to each type of wave. Throughout the book, in fact, the reader will find a combination of theoretical and statistical/ empirical treatment necessary for the complete examination of this subject. In the introduction, the editors underscore the importance of studying extreme waves, documenting several dramatic instances of damaging extreme waves that occurred in 2007. 

  16. Nonlinear effects in water waves

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1989-05-01

    This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs

  17. ULF waves in the foreshock

    Science.gov (United States)

    Greenstadt, E. W.; Le, G.; Strangeway, R. J.

    1995-01-01

    We review our current knowledge of ULF waves in planetary foreshocks. Most of this knowledge comes from observations taken within a few Earth radii of the terrestrial bow shock. Terrestrial foreshock ULF waves can be divided into three types, large amplitude low frequency waves (approximately 30-s period), upstream propagating whistlers (1-Hz waves), and 3-s waves. The 30-s waves are apparently generated by back-streaming ion beams, while the 1-Hz waves are generated at the bow shock. The source of the 3-s waves has yet to be determined. In addition to issues concerning the source of ULF waves in the foreshock, the waves present a number of challenges, both in terms of data acquisition, and comparison with theory. The various waves have different coherence scales, from approximately 100 km to approximately 1 Earth radius. Thus multi-spacecraft separation strategies must be tailored to the phenomenon of interest. From a theoretical point of view, the ULF waves are observed in a plasma in which the thermal pressure is comparable to the magnetic pressure, and the rest-frame wave frequency can be moderate fraction of the proton gyro-frequency. This requires the use of kinetic plasma wave dispersion relations, rather than multi-fluid MHD. Lastly, and perhaps most significantly, ULF waves are used to probe the ambient plasma, with inferences being drawn concerning the types of energetic ion distributions within the foreshock. However, since most of the data were acquired close to the bow shock, the properties of the more distant foreshock have to be deduced mainly through extrapolation of the near-shock results. A general understanding of the wave and plasma populations within the foreshock, their interrelation, and evolution, requires additional data from the more distant foreshock.

  18. A Simple Wave Driver

    Science.gov (United States)

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  19. Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics

    OpenAIRE

    Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies

    1997-01-01

    We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...

  20. Making waves: visualizing fluid flows

    NARCIS (Netherlands)

    Zweers, Wout; Zwart, Valerie; Bokhove, Onno

    2013-01-01

    We explore the visualization of violent wave dynamics and erosion by waves and jets in laser-cut reliefs, laser engravings, and three-dimensional printing. For this purpose we built table-top experiments to cast breaking waves, and also explored the creation of extreme or rogue waves in larger wave

  1. Wave Induced Stresses Measured at the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Corona, L.; Kofoed, Jens Peter

    2006-01-01

    The paper describes the wave induced loading on the overtopping based wave energy converter Wave Dragon. Focus is put on the junction between the main body and the reflector, also called the "shoulder part", where large cross sectional forces and bending moments acts. There are two main objectives...... for this paper, first to verify the FEM results obtained by Niras, Danish society in charge of the finite element modelling and structural design, and then to make a first experimental fatigue analysis of a particular part of the Wave Dragon. This last part shall be considered as an exercise for the further work...

  2. Competing p-wave orders

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P; Pantelidou, Christiana

    2014-01-01

    We construct electrically charged, asymptotically AdS 5 black hole solutions that are dual to d = 4 CFTs in a superfluid phase with either p-wave or (p + ip)-wave order. The two types of black holes have non-vanishing charged two-form in the bulk and appear at the same critical temperature in the unbroken phase. Both the p-wave and the (p + ip)-wave phase can be thermodynamically preferred, depending on the mass and charge of the two-form, and there can also be first order transitions between them. The p-wave black holes have a helical structure and some of them exhibit the phenomenon of pitch inversion as the temperature is decreased. Both the p-wave and the (p + ip)-wave black holes have zero entropy density ground states at zero temperature and we identify some new ground states which exhibit scaling symmetry, including a novel scenario for the emergence of conformal symmetry in the IR. (paper)

  3. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    Science.gov (United States)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.

  4. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  5. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  6. On the unstable mode merging of gravity-inertial waves with Rossby waves

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-08-01

    Full Text Available We recapitulate the results of the combined theory of gravity-inertial-Rossby waves in a rotating, stratified atmosphere. The system is shown to exhibit a "local" (JWKB instability whenever the phase speed of the low-frequency-long wavelength westward propagating Rossby wave exceeds the phase speed ("Kelvin" speed of the high frequency-short wavelength gravity-inertial wave. This condition ensures that mode merging, leading to instability, takes place in some intermediate band of frequencies and wave numbers. The contention that such an instability is "spurious" is not convincing. The energy source of the instability resides in the background enthalpy which can be released by the action of the gravitational buoyancy force, through the combined wave modes.

  7. Revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. These wave packets exhibit initial classical periodic motion followed by a sequence of collapse, fractional (or full) revivals, and fractional (or full) superrevivals. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also considered. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field - that is, the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behavior

  8. Initializing decadal climate predictions over the North Atlantic region

    Science.gov (United States)

    Matei, Daniela Mihaela; Pohlmann, Holger; Jungclaus, Johann; Müller, Wolfgang; Haak, Helmuth; Marotzke, Jochem

    2010-05-01

    Decadal climate prediction aims to predict the internally-generated decadal climate variability in addition to externally-forced climate change signal. In order to achieve this it is necessary to start the predictions from the current climate state. In this study we investigate the forecast skill of the North Atlantic decadal climate predictions using two different ocean initialization strategies. First we apply an assimilation of ocean synthesis data provided by the GECCO project (Köhl and Stammer, 2008) as initial conditions for the coupled model ECHAM5/MPI-OM. Hindcast experiments are then performed over the period 1952-2001. An alternative approach is one in which the subsurface ocean temperature and salinity are diagnosed from an ensemble of ocean model runs forced by the NCEP-NCAR atmospheric reanalyzes for the period 1948-2007, then nudge into the coupled model to produce initial conditions for the hindcast experiments. An anomaly coupling scheme is used in both approaches to avoid the hindcast drift and the associated initial shock. Differences between the two assimilation approaches are discussed by comparing them with the observational data in key regions and processes. We asses the skill of the initialized decadal hindcast experiments against the prediction skill of the non-initialized hindcasts simulation. We obtain an overview of the regions with the highest predictability from the regional distribution of the anomaly correlation coefficients and RMSE for the SAT. For the first year the hindcast skill is increased over almost all ocean regions in the NCEP-forced approach. This increase in the hindcast skill for the 1 year lead time is somewhat reduced in the GECCO approach. At lead time 5yr and 10yr, the skill enhancement is still found over the North Atlantic and North Pacific regions. We also consider the potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) and Nordic Seas Overflow by comparing the predicted values to

  9. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  10. VLF wave generation by beating of two HF waves in the ionosphere

    Science.gov (United States)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2011-05-01

    Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.

  11. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    Science.gov (United States)

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  12. revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also described. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field, i.e., the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behaviour

  13. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  14. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  16. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2015-01-01

    Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments....

  17. Determination of Wave Model Uncertainties used for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...... be implemented in probabilistic reliability assessments....

  18. Wind-wave amplification mechanisms: possible models for steep wave events in finite depth

    Directory of Open Access Journals (Sweden)

    P. Montalvo

    2013-11-01

    Full Text Available We extend the Miles mechanism of wind-wave generation to finite depth. A β-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of β is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the β-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrödinger equation is derived and the Akhmediev, Peregrine and Kuznetsov–Ma breather solutions for weak wind inputs in finite depth h are obtained.

  19. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    Science.gov (United States)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  20. Nonlinear attenuation of S-waves and Love waves within ambient rock

    Science.gov (United States)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  1. Solitary wave and periodic wave solutions for Burgers, Fisher ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 1. Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the (′/)-expansion method. Jalil Manafian Mehrdad Lakestani. Volume 85 Issue 1 July 2015 pp 31-52 ...

  2. Full wave simulations of lower hybrid wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Wright, J. C.; Bonoli, P. T.; Phillips, C. K.; Valeo, E.; Harvey, R. W.

    2009-01-01

    Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)xv te , where v te ≡ (2T e /m e ) 1/2 is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a≥0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions.In typical plasma conditions with electron densities of several 10 19 m -3 and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of 1 mm and the parallel wavelength is of the order of 1 cm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves.The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition.

  3. Three-wave interactions in a warm plasma

    International Nuclear Information System (INIS)

    Shivamoggi, B.K.

    1983-01-01

    The nonlinear resonance interactions between a Langmuir wave and two transverse electromagnetic waves (T-T-L) as well as between an ion-acoustic wave and two transverse electromagnetic waves (T-T-S) in a warm plasma are studied. It is shown that an incident transverse electromagnetic wave decays into another transverse electromagnetic wave and a Langmuir wave in a T-T-L wave-wave interaction as well as into another transverse electromagnetic wave and an ion-acoustic wave in a T-T-S wave-wave interaction. The growth rates of the daughter waves in the T-T-L wave-wave interaction are shown to be smaller than those of the daughter waves in the T-T-S wave-wave interaction. (M.F.W.)

  4. Cold plasma waves

    International Nuclear Information System (INIS)

    Booker, H.G.

    1984-01-01

    The book aims to present current knowledge concerning the propagation of electromagnetic waves in a homogeneous magnetoplasma for which temperature effects are unimportant. It places roughly equal emphasis on the radio and the hydromagnetic parts of the electromagnetic spectrum. The dispersion properties of a magnetoplasma are treated as a function both of wave frequency (assumed real) and of ionization density. The effect of collisions is included only in so far as this can be done with simplicity. The book describes how pulses are radiated from both small and large antennas embedded in a homogeneous magnetoplasma. The power density radiated from a type of dipole antenna is studied as a function of direction of radiation in all bands of wave frequency. Input reactance is not treated, but the dependence of radiation resistance on wave frequency is described for the entire electromagnetic spectrum. Also described is the relation between beaming and guidance for Alfven waves. (Auth.)

  5. Spin-Wave Diode

    Directory of Open Access Journals (Sweden)

    Jin Lan (兰金

    2015-12-01

    Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  6. Full-wave calculation of fast-wave current drive in tokamaks including kparallel upshifts

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.

    1991-01-01

    Numerical calculations of fast-wave current drive (FWCD) efficiency have generally been of two types: ray tracing or global wave calculations. Ray tracing shows that the projection of the wave number (k parallel) along the magnetic field can vary greatly over a ray trajectory, particularly when the launch point is above or below the equatorial plane. As the wave penetrates toward the center of the plasma, k parallel increases, causing a decrease in the parallel phase speed and a corresponding decrease in the current drive efficiency, γ. But the assumptions of geometrical optics, namely short wavelength and strong single-pass absorption, are not greatly applicable in FWCD scenarios. Eigenmode structure, which is ignored in ray tracing, can play an important role in determining electric field strength and Landau damping rates. In such cases, a full-wave or global solution for the wave fields is desirable. In full-wave calculations such as ORION k parallel appear as a differential operator (rvec B·∇) in the argument of the plasma dispersion function. Since this leads to a differential system of infinite order, such codes of necessity assume k parallel ∼ k var-phi = const, where k var-phi is the toroidal wave number. Thus, it is not possible to correctly include effects of the poloidal magnetic field on k parallel. The problem can be alleviated by expressing the electric field as a superposition of poloidal modes, in which case k parallel is purely algebraic. This paper describes a new full-wave calculation, Poloidal Ion Cyclotron Expansion Solution, which uses poloidal and toroidal mode expansions to solve the wave equation in general flux coordinates. The calculation includes a full solution for E parallel and uses a reduced-order form of the plasma conductivity tensor to eliminate numerical problems associated with resolution of the very short wavelength ion Bernstein wave

  7. Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank

    Directory of Open Access Journals (Sweden)

    Adria Moreno Miquel

    2018-06-01

    Full Text Available In this paper, the performance of different wave generation and absorption methods in computational fluid dynamics (CFD-based numerical wave tanks (NWTs is analyzed. The open-source CFD code REEF3D is used, which solves the Reynolds-averaged Navier–Stokes (RANS equations to simulate two-phase flow problems. The water surface is computed with the level set method (LSM, and turbulence is modeled with the k-ω model. The NWT includes different methods to generate and absorb waves: the relaxation method, the Dirichlet-type method and active wave absorption. A sensitivity analysis has been conducted in order to quantify and compare the differences in terms of absorption quality between these methods. A reflection analysis based on an arbitrary number of wave gauges has been adopted to conduct the study. Tests include reflection analysis of linear, second- and fifth-order Stokes waves, solitary waves, cnoidal waves and irregular waves generated in an NWT. Wave breaking over a sloping bed and wave forces on a vertical cylinder are calculated, and the influence of the reflections on the wave breaking location and the wave forces on the cylinder is investigated. In addition, a comparison with another open-source CFD code, OpenFOAM, has been carried out based on published results. Some differences in the calculated quantities depending on the wave generation and absorption method have been observed. The active wave absorption method is seen to be more efficient for long waves, whereas the relaxation method performs better for shorter waves. The relaxation method-based numerical beach generally results in lower reflected waves in the wave tank for most of the cases simulated in this study. The comparably better performance of the relaxation method comes at the cost of larger computational requirements due to the relaxation zones that have to be included in the domain. The reflections in the NWT in REEF3D are generally lower than the published results for

  8. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    Science.gov (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  9. S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission

    Czech Academy of Sciences Publication Activity Database

    Bougeret, J. L.; Goetz, K.; Kaiser, M. L.; Bale, S. D.; Kellogg, P. J.; Maksimovic, M.; Monge, N.; Monson, S. J.; Astier, P. L.; Davy, S.; Dekkali, M.; Hinze, J. J.; Manning, R. E.; Aguilar-Rodriguez, E.; Bonnin, X.; Briand, C.; Cairns, I. H.; Cattell, C. A.; Cecconi, B.; Eastwood, J.; Ergun, R. E.; Fainberg, J.; Hoang, S.; Huttunen, K. E. J.; Krucker, S.; Lecacheux, A.; MacDowall, R. J.; Macher, W.; Mangeney, A.; Meetre, C. A.; Moussas, X.; Nguyen, Q. N.; Oswald, T. H.; Pulupa, M.; Reiner, M. J.; Robinson, P. A.; Rucker, H.; Salem, c.; Santolík, Ondřej; Silvis, J. M.; Ullrich, R.; Zarka, P.; Zouganelis, I.

    2008-01-01

    Roč. 136, 1-4 (2008), s. 487-528 ISSN 0038-6308 Grant - others: NASA (US) NAS5-03076 Institutional research plan: CEZ:AV0Z30420517 Keywords : S/WAVES * STEREO * plasma waves * radio waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.372, year: 2008

  10. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  11. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  12. Electron non-linearities in Langmuir waves with application to beat-wave experiments

    International Nuclear Information System (INIS)

    Bell, A.R.; Gibbon, P.

    1988-01-01

    Non-linear Langmuir waves are examined in the context of the beat-wave accelerator. With a background of immobile ions the waves in one dimension are subject to the relativistic non-linearity of Rosenbluth, M.N. and Liu, C.S., Phys. Rev. Lett., 1972, 29, 701. In two or three dimensions, other electron non-linearities occur which involve electric and magnetic fields. The quasi-linear equations for these non-linearities are developed and solved numerically in a geometry representative of laser-driven beat waves. (author)

  13. Slow Wave Propagation and Sheath Interaction for ICRF Waves in the Tokamak SOL

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2009-01-01

    In previous work we studied the propagation of slow-wave resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the previous calculation to ''dense'' scrape-off-layer (SOL) plasmas where the usual slow wave is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the slow wave couples to a sheath plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length.

  14. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...

  15. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    Science.gov (United States)

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  16. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2013-01-01

    density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data....... An overview is given of the methods used to do this, and a method for identifying outliers of the wave elevation data, based on the joint distribution of wave elevations and accelerations, is presented. The limitations of using a JONSWAP spectrum to model the measured wave spectra as a function of Hm0 and T0......;2 or Hm0 and Tp for the Hanstholm site data are demonstrated. As an alternative, the non-parametric loess method, which does not rely on any assumptions about the shape of the wave elevation spectra, is used to accurately estimate Pw as a function of Hm0 and T0;2....

  17. Traveling-wave photodetector

    Science.gov (United States)

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  18. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...

  19. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  20. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    1999-01-01

    Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  1. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  2. Bragg grating rogue wave

    Energy Technology Data Exchange (ETDEWEB)

    Degasperis, Antonio [Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Wabnitz, Stefan, E-mail: stefan.wabnitz@unibs.it [Dipartimento di Ingegneria dell' Informazione, Università degli Studi di Brescia and INO-CNR, via Branze 38, 25123 Brescia (Italy); Aceves, Alejandro B. [Southern Methodist University, Dallas (United States)

    2015-06-12

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing may lead to extreme waves at extremely low powers.

  3. Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter

    2010-01-01

    The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...

  4. Modulational instability of coupled waves

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Bingham, R.

    1989-01-01

    The collinear propagation of an arbitrary number of finite-amplitude waves is modeled by a system of coupled nonlinear Schroedinger equations; one equation for each complex wave amplitude. In general, the waves are modulationally unstable with a maximal growth rate larger than the modulational growth rate of any wave alone. Moreover, waves that are modulationally stable by themselves can be driven unstable by the nonlinear coupling. The general theory is then applied to the relativistic modulational instability of two laser beams in a beat-wave accelerator. For parameters typical of a proposed beat-wave accelerator, this instability can seriously distort the incident laser pulse shapes on the particle-acceleration time scale, with detrimental consequences for particle acceleration

  5. Nonlinear waves and weak turbulence

    CERN Document Server

    Zakharov, V E

    1997-01-01

    This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.

  6. Electron Bernstein wave excitation by counterpropagating electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Kumar, Asheel; Tripathi, V.K.

    2005-01-01

    Two high-power counterpropagating electromagnetic waves (ω 1 ,k 1 x) and (ω 2 ,-k 2 x) in a low-density plasma in the presence of a static magnetic field B s z, drive an electron Bernstein wave at the beat frequency ω=ω 1 -ω 2 and k=(k 1 +k 2 )x, when ω∼ω c 1 ,ω 2 and kρ≥1, where ω c is the electron cyclotron frequency and ρ is the Larmor radius. The electromagnetic waves exert a ponderomotive force on the electrons and resonantly drive the Bernstein mode(ω,k). When the pump waves have finite z extent, the Bernstein wave has an effective k z and a component of group velocity in the direction of the magnetic field, leaking it out of the interaction region, limiting the level of the Bernstein mode. Plasma inhomogeneity also introduces convection losses. However, the electron Bernstein mode potential could still be significantly greater than the ponderomotive potential

  7. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    International Nuclear Information System (INIS)

    Peralta, J.; López-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.

    2014-01-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere

  8. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  9. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  10. Wave Mechanics or Wave Statistical Mechanics

    International Nuclear Information System (INIS)

    Qian Shangwu; Xu Laizi

    2007-01-01

    By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.

  11. The coexistence of pressure waves in the operation of quartz-crystal shear-wave sensors

    OpenAIRE

    Reddy, SM; Jones, JP; Lewis, TJ

    1998-01-01

    It is demonstrated that an AT-cut quartz crystal driven in the thickness-shear-wave mode and typically used as a sensor to monitor the viscoelastic shear-wave properties of a fluid also produce longitudinal pressure waves. Unlike the shear wave, these waves are capable of long-range propagation through the fluid and of reflection at its boundaries, notably at an outer fluid–air interface. They introduce a component into the measured electrical impedance and resonance frequency shift of the cr...

  12. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    Science.gov (United States)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  13. Wave-flume experiments of soft-rock cliff erosion under monochromatic waves

    Science.gov (United States)

    Regard, Vincent; Astruc, Dominique; Caplain, Bastien

    2017-04-01

    We investigate how cliffs erode under wave attack. Rocky coast erosion works through cycles, each one corresponding to three successive phases: (i) notch creation at cliff toe by mechanical action of waves, (ii) cliff fracturation leading to collapse, and (iii) evacuation of scree aprons by waves and currents. We performed experiments in a 5m x 14cm x 25cm wave flume (15 cm water depth) to investigate how waves are eroding a rocky coast. The cliff is made of wet sand and models a relatively soft rock. We used 3 different grain size (D50 = 0.28-0.41-0.48 mm), changing the cliff rheology. Waves are monochromatic; their height and period differ for the various experiments. Actual wave parameters are estimated by capacitive probes located offshore. The experiments are monitored by two video cameras both on the side and above the flume. Pictures are taken at a rate of 1Hz during the first 4h and then the rate is decreased to 0.1Hz till the end of experiment (about 1 day). The monitoring ensure a confident characterization of experiments in terms of waves (surf similarity parameter ξ and the incident wave energy flux F) and in terms of sediment (Dean number Ω and Shields number θb at breakers). Experiments begin by an initial phase of quick cliff retreat. Then the system evolves with slower cliff retreat. We focus on bottom morphology which we characterize in function of wave forcing (ξ, F). We show that the bottom morphology mainly depends on ξ. For our reference sediment (Dm = 0.41 mm), we observed: (i) surging breakers on a steep terrace (type T1) for ξ > 0.65; (ii)collapsing breakers on a bared profile attached to the inner platform (type T2) for 0.55< ξ <0.6; (iii) spilling breakers on gentle terrace (type T3) for F < 1.3 W/m and 0.55< ξ <0.6. Another bottom morphology, type T4, displays two sub-systems, an outer system with a double-bar profile where breaking waves are plunging, and an inner system with a T1, T2 or T3 profile. Some of these bottom

  14. Up-Wave and Autoregressive Methods for Short-Term Wave Forecasting for an Oscillating Water Column

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, M.F.P.; Conley, Daniel; Ringwood, John

    2015-01-01

    The real-time control of wave energy converters (WECs) requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation up-wave of the WEC. As an application example, this paper focuses on the prediction of the wave elevation inside the chamber of the...

  15. Wave Overtopping Characteristics of the Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    Simulation work has been used extensively with the Wave dragon and other overtopping devices to analyse the power production performance of them and to optimise the structural design and the control strategy. A time domain approach to this is well documented in Jakobsen & Frigaard 1999. Using...... measurements taken from the Wave Dragon Nissum Bredning prototype, some of the previous assumptions have been slightly modified and improved upon, so that the simulation method better represents the reality of what is occurring....

  16. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  17. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  18. Extreme Wave Analysis by Integrating Model and Wave Buoy Data

    Directory of Open Access Journals (Sweden)

    Fabio Dentale

    2018-03-01

    Full Text Available Estimating the extreme values of significant wave height (HS, generally described by the HS return period TR function HS(TR and by its confidence intervals, is a necessity in many branches of coastal science and engineering. The availability of indirect wave data generated by global and regional wind and wave model chains have brought radical changes to the estimation procedures of such probability distribution—weather and wave modeling systems are routinely run all over the world, and HS time series for each grid point are produced and published after assimilation (analysis of the ground truth. However, while the sources of such indirect data are numerous, and generally of good quality, many aspects of their procedures are hidden to the users, who cannot evaluate the reliability and the limits of the HS(TR deriving from such data. In order to provide a simple engineering tool to evaluate the probability of extreme sea-states as well as the quality of such estimates, we propose here a procedure based on integrating HS time series generated by model chains with those recorded by wave buoys in the same area.

  19. Simulation of Irregular Waves and Wave Induced Loads on Wind Power Plants in Shallow Water

    Energy Technology Data Exchange (ETDEWEB)

    Trumars, Jenny [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Water Environment Transport

    2004-05-01

    The essay gives a short introduction to waves and discusses the problem with non-linear waves in shallow water and how they effect an offshore wind energy converter. The focus is on the realisation of non-linear waves in the time domain from short-term statistics in the form of a variance density spectrum of the wave elevation. For this purpose the wave transformation from deep water to the near to shore site of a wind energy farm at Bockstigen has been calculated with the use of SWAN (Simulating Waves Near Shore). The result is a wave spectrum, which can be used as input to the realisation. The realisation of waves is done by perturbation theory to the first and second-order. The properties calculated are the wave elevation, water particle velocity and acceleration. The wave heights from the second order perturbation equations are higher than those from the first order perturbation equations. This is also the case for the water particle kinematics. The increase of variance is significant between the first order and the second order realisation. The calculated wave elevation exhibits non-linear features as the peaks become sharper and the troughs flatter. The resulting forces are calculated using Morison's equation. For second order force and base moment there is an increase in the maximum values. The force and base moment are largest approximately at the zero up and down crossing of the wave elevation. This indicates an inertia dominated wave load. So far the flexibility and the response of the structure have not been taken into account. They are, however, of vital importance. For verification of the wave model the results will later on be compared with measurements at Bockstigen off the coast of Gotland in the Baltic Sea.

  20. Wave-Kinetic Simulations of the Nonlinear Generation of Electromagnetic VLF Waves through Velocity Ring Instabilities

    Science.gov (United States)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.

    2014-12-01

    Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].

  1. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    International Nuclear Information System (INIS)

    Sati, Priti; Tripathi, V. K.

    2012-01-01

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  2. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  3. Nonlinear instability and chaos in plasma wave-wave interactions, I., Introduction

    International Nuclear Information System (INIS)

    Kueny, C.S.; Morrison, P.J.

    1994-11-01

    Conventional linear stability analyses may fail for fluid systems with an indefinite free energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes, or nonlinearly via resonant wave-wave coupling, leading to explosive growth. In the dissipationless case, it is conjectured that intrinsic chaotic behavior may allow initially nonresonant systems to reach resonance by diffusion in phase space. In this and a companion paper [submitted to Physics of Plasmas], this phenomenon is demonstrated for a simple equilibrium involving cold counterstreaming ions. The system is described in the fluid approximation by a Hamiltonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamiltonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, and to either decay or explosive instability via three-wave interactions. These instabilities are described for various (integrable) systems of waves interacting via single nonlinear terms. This discussion provides the foundation for the treatment of nonintegrable systems in the companion paper

  4. Nonlinear instability and chaos in plasma wave--wave interactions. I. Introduction

    International Nuclear Information System (INIS)

    Kueny, C.S.; Morrison, P.J.

    1995-01-01

    Conventional linear stability analyses may fail for fluid systems with an indefinite free-energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes, or nonlinearly via resonant wave--wave coupling, leading to explosive growth. In the dissipationless case, it is conjectured that intrinsic chaotic behavior may allow initially nonresonant systems to reach resonance by diffusion in phase space. In this and a companion paper (submitted to Phys. Plasmas), this phenomenon is demonstrated for a simple equilibrium involving cold counterstreaming ions. The system is described in the fluid approximation by a Hamiltonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamiltonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, and to either decay or explosive instability via three-wave interactions. These instabilities are described for various integrable systems of waves interacting via single nonlinear terms. This discussion provides the foundation for the treatment of nonintegrable systems in the companion paper. copyright 1995 American Institute of Physics

  5. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    2007-01-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived...... experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient...... to allow advanced control systems to be developed using this knowledge to significantly improve power capture....

  6. Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters

    Energy Technology Data Exchange (ETDEWEB)

    Tedd, J.; Frigaard, P. [Department of Civil Engineering, Aalborg University, Aalborg (Denmark)

    2007-07-01

    This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient to allow advanced control systems to be developed using this knowledge to significantly improve power capture.

  7. Experimental study on the wave loads on a rotor of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    Experimental tests have been performed to investigate the wave load on the rotor in design wave conditions. These wave loads should give an indication of the required structural strength around the rotors as well as for other equipment such as the bearings. During the lab tests, the wave loads have...... been measured for the following configurations: • Head and beam seas (wave coming from the front and the side) • For three different submergence levels • For three different dispositions of the rotor (free to rotate, and fixed at 50° and 90°) Based on this results, an estimation of the maximum wave...... loads has been made on the maximum wave loads at the DanWEC test site....

  8. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  9. Wave propagation in plasma-filled wave-guide

    International Nuclear Information System (INIS)

    Leprince, Philippe

    1966-01-01

    This research thesis reports the study of wave propagation along a plasma column without external magnetic field. The author first present and comment various theoretical results, and dispersion curves plotted for the main modes (particularly, the bipolar mode). He tries to define fundamental magnitudes which characterise a plasma-filled wave-guide. He reports the comparison of some experimental results with the previous theoretical results. Based on the study of the bipolar mode, the author develops a method of measurement of plasma column density. In the last part, the author reports the study of the resonance of a plasma-containing cavity. Several resonances are highlighted and new dispersion curves are plotted by using a varying length cavity. He also addresses the coupling of plasma modes with guide modes, and thus indicates the shape of Brillouin diagrams for a plasma-filled wave-guide. Moreover, some phenomena highlighted during plasma column density measurements by using the cavity method could then be explained [fr

  10. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  11. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  12. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    2000-01-01

    Long-term research objective: Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  13. Stochastic Procedures for Extreme Wave Load Predictions- Wave Bending Moment in Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2009-01-01

    A discussion of useful stochastic procedures for stochastic wave load problems is given, covering the range from slightly linear to strongly non-linear (bifurcation) problems. The methods are: Hermite transformation, Critical wave episodes and the First Order Reliability Method (FORM). The proced......). The procedures will be illustrated by results for the extreme vertical wave bending moment in ships....

  14. Waves reflected by solid wall and wave interaction in vapour bubbly liquids

    International Nuclear Information System (INIS)

    Duong, N.H.; Nguyen, V.T.

    2004-01-01

    The vapour bubbly liquids are met in many natural and industrial processes, including in energy equipment. In the nuclear power plants this kind of medium appears in reactor cores (PWR, BWR and etc.), in turbine generators and in heat transfer loops. Due to some circumstances (for example, a hit caused by detonations or strong collisions) the pressure waves can appear in the bubbly liquid medium contained in those facilities. These waves propagate in the mixtures and interact with themselves and with structures. It is important that what will occur during mentioned above processes. The knowledge of this kind processes will be useful for analysing the different sorts of the processes occurred in the energy facilities where the vapor bubbly liquids are used as working or heat transfer medium, like nuclear power plants, and also useful in finding the measures for prevention of unfavourable phenomena (for example, during wave interactions maybe appear too high pressures, which could lead into damages of facilities and etc.) and safety operating the equipment. From the physical point of view, the waves in this kind of medium are interesting that owing to non-linear, dispersion and dissipation effects the wave patterns in them may be diverse and easy altered. In the paper the investigation results of the waves reflected by solid wall or structure of the moderate intensity shock waves, and the behaviour of pressure in the process of wave interaction in some mixtures of liquid with vapour bubbles (of radium ∼1 mm) are presented. (author)

  15. Waves in unmagnetized plasma

    International Nuclear Information System (INIS)

    Lambert, A.J.D.

    1979-01-01

    A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)

  16. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  17. Development of an SH Wave Magnetostrictive Transducer Module for Guided Wave Testing of Plate Structures

    International Nuclear Information System (INIS)

    Cho, Seung Hyun; Park, Jae Ha; Kwon Hyu Sang; Ahn, Bong Young; Lee, Seung Seok

    2009-01-01

    Recently much attention has been paid to a guided wave due to its effective applicability to long range and fast inspection of structures. In guided wave based NDE, the appropriate selection of wave modes is one of important factors since the test performance is highly dependent on which mode of guided waves is employed. As far as plate-like structures are concerned, so far, SH guided wave has not been frequently applied compared to Lamb waves, which is mostly caused by the lack of proper and convenient transducers to generate and measure the SH waves. In this investigation, a new small-sized SH guided wave transducer based on magnetostriction is proposed. The present transducer was designed to be modular and be used with shear couplant to avoid the inconvenience of the existing magnetostrictive patch transducers, which comprises the ferromagnetic patch tightly bonded to a structure. The wave transduction mechanism and the detailed configuration of the present transducer are presented. Experimental verification is also conducted on test specimens and the results confirm the good performance of the present transducer module

  18. Development of an SH Wave Magnetostrictive Transducer Module for Guided Wave Testing of Plate Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Park, Jae Ha; Kwon Hyu Sang; Ahn, Bong Young; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2009-04-15

    Recently much attention has been paid to a guided wave due to its effective applicability to long range and fast inspection of structures. In guided wave based NDE, the appropriate selection of wave modes is one of important factors since the test performance is highly dependent on which mode of guided waves is employed. As far as plate-like structures are concerned, so far, SH guided wave has not been frequently applied compared to Lamb waves, which is mostly caused by the lack of proper and convenient transducers to generate and measure the SH waves. In this investigation, a new small-sized SH guided wave transducer based on magnetostriction is proposed. The present transducer was designed to be modular and be used with shear couplant to avoid the inconvenience of the existing magnetostrictive patch transducers, which comprises the ferromagnetic patch tightly bonded to a structure. The wave transduction mechanism and the detailed configuration of the present transducer are presented. Experimental verification is also conducted on test specimens and the results confirm the good performance of the present transducer module

  19. Solitary waves in fluids

    CERN Document Server

    Grimshaw, RHJ

    2007-01-01

    After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...

  20. Encounter Probability of Individual Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    1998-01-01

    wave height corresponding to a certain exceedence probability within a structure lifetime (encounter probability), based on the statistical analysis of long-term extreme significant wave height. Then the design individual wave height is calculated as the expected maximum individual wave height...... associated with the design significant wave height, with the assumption that the individual wave heights follow the Rayleigh distribution. However, the exceedence probability of such a design individual wave height within the structure lifetime is unknown. The paper presents a method for the determination...... of the design individual wave height corresponding to an exceedence probability within the structure lifetime, given the long-term extreme significant wave height. The method can also be applied for estimation of the number of relatively large waves for fatigue analysis of constructions....